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ABSTRACT 

DEEP LEARNING FOR REMOTE SENSING IMAGE PROCESSING 

Yan Lu 
Old Dominion University, 2020 

Director: Dr. Jiang Li 
 

 Remote sensing images have many applications such as ground object detection, 

environmental change monitoring, urban growth monitoring and natural disaster damage 

assessment. As of 2019, there were roughly 700 satellites listing “earth observation” as their 

primary application. Both spatial and temporal resolutions of satellite images have improved 

consistently in recent years and provided opportunities in resolving fine details on the Earth's 

surface. In the past decade, deep learning techniques have revolutionized many applications in the 

field of computer vision but have not fully been explored in remote sensing image processing. In 

this dissertation, several state-of-the-art deep learning models have been investigated and 

customized for satellite image processing in the applications of landcover classification and ground 

object detection. 

 First, a simple and effective Convolutional Neural Network (CNN) model is developed to 

detect fresh soil from tunnel digging activities near the U.S. and Mexico border by using pan-

sharpened synthetic hyperspectral images. These tunnels’ exits are usually hidden under 

warehouses and are used for illegal activities, for example, by drug dealers. Detecting fresh soil 

nearby is an indirect way to search for these tunnels. While multispectral images have been used 

widely and regularly in remote sensing since the 1970s, with the fast advances in hyperspectral 

sensors, hyperspectral imagery is becoming popular. A combination of 80 synthetic hyperspectral 

channels with the original eight multispectral channels collected by the WorldView-2 satellite are 

used by CNN to detect fresh soil. Experimental results show that detection performance can be 



  

 

 

 

significantly improved by the combination of synthetic hyperspectral images with those original 

multispectral channels. 

Second, an end-to-end, pixel-level Fully Convolutional Network (FCN) model is 

implemented to estimate the number of refugee tents in the Rukban area near the Syrian-Jordan 

border using high-resolution multispectral satellite images collected by WordView-2. Rukban is a 

desert area crossing the border between Syria and Jordan, and thousands of Syrian refugees have 

fled into this area since the Syrian civil war in 2014. In the past few years, the number of refugee 

shelters for the forcibly displaced Syrian refugees in this area has increased rapidly. Estimating the 

location and number of refugee tents has become a key factor in maintaining the sustainability of 

the refugee shelter camps. Manually counting the shelters is labor-intensive and sometimes 

prohibitive given the large quantities. In addition, these shelters/tents are usually small in size, 

irregular in shape, and sparsely distributed in a very large area and could be easily missed by the 

traditional image-analysis techniques, making the image-based approaches also challenging. The 

FCN model is also boosted by transfer learning with the knowledge in the pre-trained VGG-16 

model. Experimental results show that the FCN model is very accurate and has less than 2% of 

error.  

Last, we investigate the Generative Adversarial Networks (GAN) to augment training data 

to improve the training of FCN model for refugee tent detection. Segmentation based methods like 

FCN require a large amount of finely labeled images for training. In practice, this is labor-intensive, 

time consuming, and tedious. The data-hungry problem is currently a big hurdle for this application. 

Experimental results show that the GAN model is a better tool as compared to traditional methods 

for data augmentation. Overall, our research made a significant contribution to remote sensing 

image processing.  
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CHAPTER 1 

INTRODUCTION  

 

 Remote sensing (RS) plays a critical role in many aspects of earth observation tasks such 

as ground object detection, climate and environmental change monitoring, urban growth monitoring 

and natural disaster damage assessment. RS images provide detailed global observation and 

insights of ecological health and sustainability for both natural and anthropogenic activities.  As 

of 2019, there were roughly 700 satellites listing “earth observation” as their primary application. 

With the increasing commercial players in the sector in recent years, the consistent improvements 

of both spatial and temporal resolutions of satellite images provide more opportunities in resolving 

fine details on the Earth's surface. For instance, the Worldview-2 satellite has an average revisit 

time of 1.1 days on the Earth surface, and it is capable of collecting up to 1 million square 

kilometers of 8-band imagery per day and provides 0.46-meter panchromatic resolution and 1.84-

meter multispectral resolution [1]. The Sentinel-2 satellite acquires 6 TB of data every day, a full 

image of the Earth is acquired every five days [2]. 

 Multispectral images (MSI) usually refer to satellite images with 3 to 10 bands. MSIs are 

widely and regularly used since 1970s. Meanwhile, hyperspectral imaging (HSI) known as 

imaging spectrometry is becoming popular recently. HSIs usually contain hundreds or thousands 

of bands with much narrower spectral bandwidth (10-20 nm) than multispectral images. Each pixel 

in a hyperspectral image can be regarded as a high-dimensional vector corresponding to the 

spectral reflectance from hundreds of continuous narrow spectral channels within a specific 

wavelength range. The current HSI acquisition technologies can offer not only high spectral 

resolution but also high spatial resolution. MSIs and HSIs data are able to convey very complex 
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characteristics and richer spectral and spatial information. HSIs are expected to be more effective 

and accurate for advanced image analysis in a variety of quality demanding earth observation tasks 

such as target identification [3-5] and anomalous materials and object detection [6, 7]. Significant 

efforts have been made in the past few years to develop a variety of methods for object detection 

by RS images.  

 

1.1 Problem Statement  

 Machine learning has been widely used in remote sensing image analysis for many years. 

The applications for multispectral or hyperspectral satellite image classification tasks often used 

random forests [8, 9], support vector machines [10-16], or decision trees [10, 17] in the earlier 

years. These automatic or semi-automated machine learning methods are able to improve the 

efficiency of analytic workflows, which have been conducted in pixel-based or object-based 

classification [18, 19], rule-based object classification [20, 21], and mathematical morphology-

based classification [22, 23]. However, these machine learning approaches usually include hand-

crafted features, and their performances highly rely on quality of the hand-crafted features. MSIs 

and HSIs data have very high dimensionalities and optimally “hand-crafting” the best feature 

representations are usually impossible.   

 The rich information in MSIs and HSIs data provides opportunities for many applications 

but also renders major challenges: 1) Processing a large amount of inherently non-linearly related 

high dimensional spatial and spectral data is computationally expensive, 2) labeling remote sensing 

images is label intensive and there are not enough training data to train machine learning models, 

and 3) detecting small, cluttered ground objects in MSI and HSI is a non-trivial task since those 
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objects are usually small in size, irregular in shape, and sometimes partially overlapped. We will 

explore these challenges in this dissertation.  

 

1.2 Proposed Work   

 Deep learning networks have been widely applied for computer vision and achieved 

remarkable performances in a wide range of computer vision tasks [24-27]. Compared with 

traditional machine learning methods, deep learning models can automatically learn to extract 

hierarchy image features in an end-to-end manner - hand-craft feature extraction and post-

processing procedures are not needed. In order to address these aforementioned challenges, we 

will investigate state-of-the-art deep learning models including CNNs, FCNs and Mask R-CNNs 

for small object detection in MSI and HSI data. In addition, we will explore GAN models for data 

augmentation to tackle the data-hungry issue in training large FCN models for MSI data.  

 

1.3 Contributions of This Dissertation 

 First, we proposed a CNN model for soil detection near the U.S. and Mexico border by 

using 88 channels of synthetic HSIs data obtained by the extended morphological attributes profile 

(EMAP) [28] method. Our results show that with the synthetic hyperspectral bands, the proposed 

CNN model achieved a significant better performance. The area under the curve (AUC) scores of 

the receiver operating characteristic (ROC) curve of the CNN model have been improved both in 

high spatial resolution and low spatial resolution images. The largest improvement of AUC is 

28.74% while the average AUC improvements are 9.02% in high-resolution images and 7.42% in 

low resolution images as compared to the results by using the eight original multispectral data 
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alone. AUCs are further improved by 3.31% in high resolution images and by 2.85% in low 

resolution images, respectively, with post-processing steps.  

 Second, we proposed an end-to-end pixel-level FCN model to extract refugee tents near 

the Syrian and Jordan border in Worldview-2 satellite imagery. By implementing bilinear 

interpolation deconvolution to up-sample the feature maps in the convolutional layers, the FCN 

model can utilize both the spectral and spatial information in the remote sensing imagery to 

generate outputs. The FCN model is scale-free and is able to analyze images with any sizes that 

are larger than the input patch size. We also applied transfer learning to initialize the FCN model 

with the pre-trained VGG-16 model [29] and then fine-tuned the FCN model with a small training 

dataset that was manually labeled for tent extraction. The transfer learning [30] strategy mitigated 

the lack of training data issues and significantly improved the performances of the FCN model. 

Our experimental results show that the FCN model improved overall accuracy by 4.49%, 3.54%, 

and 0.88% as compared to the spectrum angle mapper (SAM), CNNs and Mask R-CNN models, 

and improved precision by 34.61%, 41.99% and 11.87%, respectively. 

 In the last part of this dissertation, we proposed the use of GAN to generate synthetic 

training samples to furtherly improve the training of the FCN model. We compared the GAN 

augmentation method with other traditional methods, including flipping, rotating, scaling, and 

adding Gaussian, Poisson or salt and pepper noises. Our experimental results show that with GAN 

generated data samples, the overall performance of the FCN model is improved by 0.2-1.5% over 

the classical augmentation methods.  

 A summary of the dissertation contributions is listed in Table 1. We have several peer-

reviewed publications: the research related to topic 1 is published in the 2018 IEEE Ubiquitous 

Computing, Electronics and Mobile Communication Conference (UEMCON) [31]. Research 
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related to topic 2 is published in IEEE Geoscience and Remote Sensing Letters [32]. Topic 3 

research is published in 2019 Winter Simulation Conference [33] and 2019 UEMCON [34]. 

 

1.4 Organization of the Dissertation 

 The rest of the dissertation is organized as follows. Chapter 2 provides the overall 

background information of my dissertation. It includes a literature review for the research of 

remote sensing image classification, object detection, and deep learning techniques used in this 

dissertation. Chapter 3 presents data, models, and experimental results for soil detection in the 

proposed research topic 1. Chapter 4 discusses data, models, and experimental results for the 

refugee tent detection near the Syria-Jordan border, as proposed in research topic 2. Chapter 5 

presents the proposed GAN-based data augmentation model for improving the refugee tent 

detection by the FCN model. Chapter 6 concludes this dissertation with a summary and suggestions 

for future work. 
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Topic Contributions 

 

1.Deep Learning 
with Synthetic 
Hyperspectral Images 
for Improved Soil 
Detection in 
Multispectral 
Imagery  

 

      
     In this research, we presented a four layers deep 
convolutional neural network (CNN) model for soil 
detection by using the combination of 80 synthetic 
hyperspectral bands and its original eight multispectral 
bands, which are collected by the WorldView-2 satellite. 
We applied the CNN model onto a set of high-resolution 
data created by pan-sharpening the original multispectral 
bands and its synthetic hyperspectral bands. Our results 
indicate that by using the pan-sharpened synthetic 
hyperspectral bands, the performance of the CNN model for 
soil detection has been significantly improved [31].  

 

2.Deep 
Learning for 

Effective 
Refugee Tent 

Extraction near 
Syrian-Jordan 

Border 
 

     
     In this research, we presented an FCN model to tackle 
the small ground objects detection problem in Worldview-2 
(WV-2) satellite images and applied it to the refugee tent 
extraction problem. We transferred knowledge in the pre-
trained VGG-16 model to improve the detection accuracy 
and network training convergence. We compared the 
proposed approach with the traditional spectral angle 
mapper (SAM) method, CNNs models, and the Mask R- 
CNN model. Experimental results show that the FCN model 
significantly improved the overall performance as compared 
other competing models [32]. 

 
 

3.Generative 
Adversarial Network 
for improving deep 

learning-based image 
classification 

 

     
     In this research, we proposed a data augmentation 
method by using GAN to generate synthetic image samples 
to improve the performance of the deep learning-based 
image classification models [33, 34].  We applied the GAN 
generated training data samples to the FCN model in 
research topic 2, the overall performance was improved. The  
intersection over union (IoU) scores were improved ranging 
from 0.2-1.5% as compared to without the augmented data. 
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CHAPTER 2  

BACKGROUND OF THE STUDY: METHODS AND MODELS 

 

 This Chapter includes the literature review in remote sensing imagery, remote sensing 

image classification, deep learning, convolutional neural network models and transfer learning. 

 

2.1 Remote Sensing Imagery  

 Remote Sensing (RS) image processing has had a very long tradition since the 1840s. It 

began with the invention of the camera more than 150 years ago. As noted by Avery and Berlin 

[35] as well as Baumann [36], “the RS imagery can be defined as any process whereby the 

information is gathered by the reflectance of light energy from an external source such as sun 

without being contact with it by any devices.” It is like how our human eyes work. Remote sensing 

has become associated more specifically with the Earth's surface monitoring with electromagnetic 

spectrum by satellites in nowadays [37], and the electromagnetic spectrum is shown in Fig 1. 

Through the fast development and wide utilization of RS satellites, RS image has become a major 

tool for data acquisition on the entire Earth surface. The revisit time ranges from a couple of days 

to a matter of hours [38, 39]. Many GIS applications integrate RS images for various analyses, 

particularly for those involved in natural resources [40-42].  

 The RS sensors can be divided into two types - passive and active. The passive sensors do 

not supply energy to objects being detected, and they are mostly used for measuring and recording 

the reflection of light off Earth objects' features. The aerial photography is a major form of remote 

sensing by passive sensors, and it can collect from visible to near-infrared wavelength, or even 

longer wavelength from the solar radiation. In contrast, the active sensors supply their own source 
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of energy, the flash photography and Radio Detection and Ranging (RADAR) system are examples. 

The RADAR system emits energy with wavelengths in the microwave section in the 

electromagnetic spectrum, as shown in Fig. 1, the reflection of this energy from the earth's surface 

produces RADAR images.  

 The electromagnetic spectrum is very broad. However, not all wavelengths are equally 

effective for RS imaging. Besides, most of the shorter wavelengths such as ultraviolet will be 

absorbed by the atmosphere and the glass lenses of sensors. The most commonly used in RS 

research are the visible, near-infrared mid-infrared, and thermal infrared bands. From the spectrum 

as shown in Fig.1, the visible wavelengths reside in the first section of the spectrum chart. The red, 

green, blue, and near-infrared wavelengths can all provide substantial good opportunities for 

observing the earth's surface without significant interference by atmosphere or the sensor itself. 

The middle infrared wavelengths and the thermal regions can be beneficial in many geological 

applications by monitoring heat distributions from industrial, animals, or the soil moisture 

conditions. After the thermal infrared, the area in the microwave region has significant importance 

in environmental RS imagery especially for the use of active radar imaging. This is not only 

because it responds significantly to the texture of the earth surface but it also supplements the 

information gained in other wavelengths such as offering night vision for the regions that are 

consistently covered by cloud. The radar imaging will not be affected significantly by clouds.  
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 Electromagnetic Spectrum from Lillesand, Kiefer et al. 1987 [43] 

 

 By collecting reflected spectral responses over a range of wavelengths, the sensor forms 

spectral response patterns, and these patterns form spectrum signatures. The spectrum signatures 

could be from the multi-spectrum bands such as the RS images that the LANDSAT Thematic 

Mapper system collects [44], which provide multi-spectral imagery in seven spectral bands at 30 

meters resolution. The spectrum signatures could also have more bands such as AVIRIS [45] and 

MODIS[46] system cover similar wavelength ranges but with much narrow band width. Fig. 2 

shows the Landsat-7 satellite, AVIRIS and MODIS systems. 

 

   

 Landsat-7 satellite (left), AVIRIS system (middle) and MODIS system (right) 
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 To distinguish spectral patterns from the spectrum is the key to most of the procedures for 

computer-assisted interpretation in RS image processing. In early days it was believed that 

different materials would have distinctive spectrum signatures. However, in reality it is not often 

the case. Similar objects may have very different spectrum signatures while different objects may 

have very similar spectrum signatures. Finding the most effective bands or features to reflect the 

characteristics for different classes of objects is never a trivial task. Most of the time, it is laborious 

and time-consuming. Most importantly, in traditional spectrum analysis, it only utilized the 

spectrum response patterns and sometimes it was often simply the color features. The texture, size, 

shape, or context information were ignored even though RS image classification techniques had 

been developed since 1980s.  

 

2.2 Pixel-Based Methods 

 Pixel-based methods employed pixel as the basic unit of analysis. Based on spectral 

reflectance of pixel, a series of classification techniques had been developed such as unsupervised 

methods: k-means [47], principle component analysis (PCA) [48-50] and ISODATA [47, 51], and 

supervised methods including maximum likelihood [10, 52], artificial neural networks [53-55], 

decision trees [10, 56, 57], support vector machine [10, 13, 15, 16], random forest [8, 9] and hybrid 

classification [12]. Pixel-based methods are easy to implement. However, the pixel-based methods 

only take consideration of individual pixels without their neighboring pixels and it purely relies on 

spectral characteristics. To resolve this limitation, fuzzy classification [20, 58], spectral mixture 

analysis [59, 60] and some post-classification approaches [28, 61] were introduced.  
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2.3 Object-Based Methods 

 Object-based classification methods [12, 18, 19, 58, 62-64] have been developed since the 

early 2000s with the launch of the very high-resolution remote sensing satellites such as QuickBird 

[65] and WorldView-2 [1]. The object-based methods are built up on the homogeneous properties 

within a group of pixels instead of individual pixels. Object-based image classification involved 

the identification of image objects or segments which are spatially contiguous with similar texture, 

color and tone. Object-based methods are more effective than the pixel-based methods, since the 

approaches allow for consideration of shape, size, and context as well as the spectral features. The 

grouped object pixels enhance the complexity of the high-resolution scene which might be 

involving shadows, changes, and delineating the corresponding physical features such as shapes 

of the objects [66, 67].  

 Though a large number of pixel-based and object-based RS image classification methods 

have been developed, these methods are still limited because they only utilize spectral 

characteristics and spatial features are more or less ignored. Many RS image classification tasks 

remain challenging due to high intra-class variations and low inter-class disparities.  

 Later, new models were developed to incorporate spatial context information such as shape, 

connectivity, contiguity, distance, or direction amongst adjacent objects.  However, these methods 

achieved less satisfactory results since they required pre-defined “spatio-contextual” information 

about shape, size, or structure information of the objects. A group of studies had been originated 

to address this “spatio-contextual” issues by incorporating geographic models [68] or geostatistics 

[69] into RS image processing. These methods were accepted in geography, geology and 

economics but rarely used in RS image classification. Table 2 summarizes traditional RS image 

classification methods. 
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Category Method Example 
 

Pixel-Based 
Rely on spectral characteristic solely on 

individual pixels 
K-means, ISODATA, K-

nearest Neighbors, Random 
forest, SVM 

Object-Based Incorporating characteristic and spatial 
information such as objects shape, 
connectivity, direction contiguity 

Neural networks, 
Regression model, Fuzzy-
spectral mixture analysis, 

OBIA 
Object-based w/ 

Spatio-Contextual  
Incorporating geographic models and 

geostatistical information 
ArcGIS feature analyst 

 

 

2.4 Deep Learning 

 Before 2006, most machine learning algorithms had shallow-structured architectures such 

as Hidden Markov Models, Support Vectors Machines, Multi-perceptron Neural Networks with 

one hidden layer. The shallow structure is effective in solving well-constrained problems but 

limited in modeling complex problems which require more layers of nonlinear processing such as 

image processing and human speech processing.  

 The concept of deep learning originates from artificial neural networks. However, neural 

network learning algorithms tend to be trapped in poor local optimums due to vanishing gradient 

problem if a neural network model goes deeper. To overcome the limitation of back-propagation 

in training deep neural networks, Hinton et al. proposed a greedy layer-wise learning algorithm 

[70] to pre-train the deep structure. This layer-wise greedy learning algorithm fundamentally 

changed the way how neural network weight updating mechanism which made it possible to learn 

a larger and deeper neural network. 
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2.4.1 Explaining Away 

 To explain how this layer-wise greedy algorithm works, it is very important to understand 

the phenomenon of “explaining away” which is the key reason that makes the inference difficult. 

Fig. 3 shows a simple logistic belief net that contains two independent highly un-correlated hidden 

causes and one observed fact. The bias of the node indicates that the observed fact is very unlikely 

to happen unless one of the causes is true. If one of the causes happens, the input is present and 

the observed fact “house jump” node is on. 

 

 
 “Explaining away.” 

 

 Assume that the posterior over the hidden variables are: 

p(1,1) = 0.0001,p(1,0) = 0.4999, p(0,1) = 0.4999,p(0,0) = 0.0001 (1)  

Though there are four different combinations that caused the house jump, two of them are 

extremely unlikely to happen at the same time. The other two are equally probable and exclusive 

to each other. The causes “earthquake” and “truck hits” are two marginally independent causes. 

When the two causes compete to explain the observed data, the two independent causes become 

conditionally dependent given the observed data. The probability of both causes happened is so 

small and the confirmation of one cause reduces the need to invoke another. This is called 
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explaining away. In this case, the earthquake node “explaining away” the evidence for the truck 

node. The phenomenon of explaining away makes the posterior distribution of the hidden variables 

in the networks is hard to infer, which also makes it difficult to learn in a multi-layer network. Fig. 

4 shows a simple multilayer neural network, which is an acyclic directed graph and the nodes are 

random variables. 

 

 
 Multi-layer Neural Network 

 

 To learn the weights in this network, for example, W between the first hidden layer and the 

data, it needs to sample from the posterior distribution in the first hidden layer. However, because 

of the “explaining away,” the posterior distribution of the first hidden layer is not factorial and not 

independent. Since there are higher-level hidden variables, those hidden variables in the layer 

above create a prior on the first hidden layer. These variables in the higher layer are not 

independent with the prior, which causes correlations of the hidden variable in the first hidden 

layer. Thus, to learn W, even if they are only used to approximate the posterior, this requires all 

the weights in the higher layers to be learned. All possible configurations in the higher layers need 

to be learned to get the prior for the first hidden layer.  
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2.4.2 Vanishing and Exploding Gradients  

 Other problems with training deep neural networks are the vanishing and exploding 

gradients. When training a very deep network, the derivatives of the loss function can sometimes 

get to very big or very small. It could grow even exponentially, which makes training difficult. We 

use a simple example to explain this problem. Suppose a deep neural network has l layer with two 

hidden units per layer. Each layer has weight parameters w.,w/,w0,… , w2.  

 For simplicity, suppose the activation function g(z) is linear:  z equals z. And suppose the 

bias of each layer b2 equals to 0, thus g(z) can be defined as, 

g(z) = z, b[2] = 0,                              (2)  

 In this case, the output of the network  y9 is,  

y9 = 	g(w[2]g(w[2;/] … g(w[0]g(w[/]g<w[.]x + b.? + b/)+b0)…+ b2;/) + b2) (3)  

= w[2]w[2;/] …w[0]w[/]w[.]x (4)  

 Suppose the weight matrix of each layer w[2] is equal to identity matrices as,  

w[2] = [	a 0
0 a	] 

(5)  

 So, the output of the network y9 will be a to the power of l-1 times x as, 

y9 = [	a 0
0 a	]

[2][	a 0
0 a	]

[2;/] … A	a 0
0 a	B

[.]
x = a[2;/]x 

(6)  

If the a is larger than 1 and l is very large, the activation function grows exponentially. Conversely, 

if a is smaller than 1 and when the network goes deeper, the activation of the network will decrease 

exponentially to l. The same argument could be applied to the derivatives of the gradients, which 

will increase or decrease exponentially as a function of the number of layers. This makes the 

training take a long time for the gradient descent algorithm to learn anything.  
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2.4.3 Local Minima and Gradients Diffusion 

 The direct results caused by exploding or vanishing gradient are that training deep networks 

are extremely difficult. Two major problems are: local minima  [71-73] and gradients 

diffusion/vanishing [74, 75]:  

• Local Minima: The training of a deep neural network model is a highly non-convex 

optimization problem. If weights in the model are initially large, training with gradient 

descent usually lead to poor local minima. The solution points are likely to be saddle points 

[76, 77]. Such saddle points are surrounded by high error plateaus that can dramatically 

slow down the learning.  

 

 

 Local Minima (Left) and Saddle Point (Right) [77] 

 

• Diffusion/vanishing of gradients: If weights are initially small and gradients in the early 

layers are tiny, gradients will rapidly diminish in magnitude as the network layers 

increases. Therefore, weight changes at the earlier layer are very small and the earlier 

layers fail to learn. It is infeasible to train networks with many hidden layers. 
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2.4.4 Complementary Priors 

 To eliminate the “explaining away” effect in the multilayer network, Hinton et al. [85] 

proposed a method by adding an extra hidden layer as a “complementary prior” to the first hidden 

layer. This “complementary prior” will create exactly the opposite correlations of the likelihood 

between layers. When the likelihood term is multiplied by the priors, it will get a posterior which 

is factorial with respect to the opposite likelihood.  

 Specifically, for a joint distribution over observation x and hidden variables y given a 

likelihood function p(x|y), it defines a complementary prior to those distributions p(y) for this 

joint distribution p(x, y): 

 p(x, y) = p(x|y)p(y)                             (7)  

 It leads to the posteriors p(y|x): 

          p(y|x) = ∏ p(yF|x)F                             (8)  

 As shown in Fig. 6, it is a multilayer logistic belief network with the complementary of the 

priors. The units composed the logistic belief nets are stochastic binary units. These units follow 

the logistic function to generate data. The hidden variables are binary and independent. The non-

independence of the posterior distributions is created by the likelihood term coming from the data.  
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 An Infinite Logistic Belief Net with Tied Weights. 

 

 With the complementary priors, it can sample from the true posterior distribution over 

hidden layers. It starts with a data vector on the visible units, and then uses the transposed weight 

matrices to infer the factorial distributions over the hidden layer. Because the true posterior can be 

sampled, derivatives of the log probability of the data can be computed. For the generative weight 

wGF
..  from unit j in layer H. to unit i in layer V. , the maximum likelihood learning rule in logistic 

net for a single data vector, v. is, 

∂logp(v.)
∂wGF

.. =< hF.(vG. − v9G.) > 
(9)  

 In Eq. 9, <∙> denotes the average over the sampled states and  v9G. is the probability that unit 

i would be turned on, when the visible vector was re-calculated from the sampled hidden states. 

To compute the posterior distribution of the second hidden layer Vi, since we already sampled the 

first hidden layer,	vG/ is a sample from a Bernoulli random variable with probability v9G., 
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∂logp(v.)
∂wGF

.. =< hF.(vG. − vG/) > 
(10)  

 To sum the derivatives of the generative weights between all pairs of layers, we get the full 

derivative for a generative weight as, 

∂logp(v.)
∂wGF

.. =< hF.(vG. − vG/) > +< vG/<hF. − hF/? > +< hF/(vG/ − vG0) > +⋯ 
(11)  

  

2.4.5 Restricted Boltzmann Machine 

 Restricted Boltzmann Machine (RBM) is a generative stochastic neural network model 

proposed by Smolensky et al. [78] in 1986, improved by Freund and Haussler in 1992 [79]  and  

Hinton in 2002 [80]. A single RBM is a two-layer bipartite undirected network consists of two 

layers: visible layer and hidden layer.  It uses symmetrically weighted connections between the 

visible layer and the hidden layer. There are no connections between the nodes in the same layer 

(Fig. 7).  

 

 

 Restricted Boltzmann Machine with 12 Visible Units and 3 Hidden Units.  
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 Each visible node takes a low-level feature. For example, if the input is an image, each 

visible node will receive one pixel-value for each pixel in an image whereas the hidden units 

represent feature detectors. RBMs are undirected and each RBM has a single weight matrix W. If 

the bias units take a for the visible layer v	and b for the hidden layer h, the energy function of a 

joint configuration v, h is defined as, 

E(v, h) = −TaGvG −TbFhF −TTvGwGFhF
FGFG

 (12)  

 The probability distributions over the joint configuration are defined in terms of the energy 

function as, 

p(v, h) =
1
Z e

;W(X,Y) (13)  

 
 Where Z is a normalizer, which is the sum over all possible configuration Z =

∑ e;W(X,Y)X,Y ). The probability assigned by the network to a visible vector is p(v, h) = /
[
e;W(X,Y). 

The network assigns a probability to every possible input image/signal via the p(v, h) function. 

The probability of a training image can be raised by adjusting the weights and biases to lower the 

energy and increase the energy of similar reconstructed images. We would like maximize the log-

likelihood function of the observed data/input p(v) as, 

p(v) =
1
ZTexp	[v\Wh + a\h + b\v]

Y

 (14)  

L(θ) =
1
N	T logPa(vb)

c

bd/
 

(15)  

 To use stochastic gradient descent [81, 82] to maximize L(θ) , we first compute the 

derivative of L(θ) to W as, 
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∂L(θ)
∂WGF

= EefghgivGhFj − EekivGhFj 
(16)  

 EefghgivGhFj is easy to compute (average of all vGhF), but the second term EekivGhFj has 

2|X|m|Y|  combinations, it is usually unsolvable. To solve it, Hinton proposed the Contrastive 

Divergence algorithm [80, 83]. This algorithm uses the input data vector v to get h, and then 

reconstructs input vector v/ . Then v/  is used to generate the new h/ as shown in Fig 10. The 

reconstruction of v/ and h/ is one-time sample of p(v, h). By sampling v and h for multiple times, 

the result set could be considered as a good estimation of p(v, h), then the second term is estimated. 

 

 

 Contrastive Divergence 

 

 Because of the specific structure of RBMs, the visible and hidden units are conditionally 

independent given one-another,  

p(h|v) =np<hFov?		
F

 (17)  

p(v|h) =np(vG|h)		
G

 (18)  
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 For the binary data input, given by the partite function, the probability of a visible unit set 

to 1 for a hidden vector h is  

p(vG = 1|h) = σ(aG +ThFwGF
F

) (19)  

 A binary hidden unit is set to 1 with the following probability for an input vector v as,  

p<hF = 1ov? = σ(bF +TvGwGF
G

) (20)  

  σ is the sigmoid function. Once the binary states have been chosen for the hidden units, vG 

is set to 1 with probability	p(vG = 1|h), the states of hidden units are then updated once more. The 

change in weights is given by 

∆wGF = ε(< vGhF >stut −< vGhF >vwxybzuv{xuws) (21)  

 To summarize, the weight training algorithm can be summarized as: 

1. Get a sample data vector, random initialize W, set the visible layer as the sample data vector. 

2. Update hF	using Eq. 14, then to every connection vGhF compute Pstut<vGhF? = vGhF. 

3. According to the result of h and use Eq. 13 to reconstruct v1, then use v1 and Eq. 14 to 

reconstruct h1, compute P|ysw2<v1Gh1F? = v1Gh1F. 

4. Update wGF using ∆wGF = ε(< vGhF >stut −< vGhF >|ysw2). 

5. Get next sample vector, repeat steps 1-4. 

6. Iterate steps 1-5 for K times. 

 After learning the first layer of binary features, the first layer of feature detectors now 

become the visible units for the learning of the next RBM. This layer by layer learning can be 

repeated multiple times as needed. For continuous data, the first-level RBM remains binary, but 
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the visible units are replaced by a continuous stochastic unit by adding a zero-mean Gaussian noise 

to the input. The energy function becomes as， 

E(v, h) = 	 T
(vi − ai)0

2σG0G	∈	XGz

− 	 T bFhF −	T
vG
σG
hFwGF

G,FF∈YGs

 
(22)  

where σG is the standard deviation of the Gaussian noise for visible unit i.  

 Under the modified energy function, the conditional probability and the update rule for 

each visible and hidden neuron become 

p(vG = v ∣ h) = 𝒩(v ∣ bG +ThFWGF
F

, σG0) 
(23)  

p< hF = 1 ∣∣ v ? = sigmoid	(cF +TWGF
G

vG
σG0
) (24)  

 This procedure will learn a stack of RBMs with one layer at a time. The learned feature 

activations of one RBM are used as the data for training the next RBM in stack. As shown in Fig. 

9, the network was divided into four stacked of RBMs and the output of the lower level RBM is 

the input of the next level RBM.   

In summary, the training procedure can be summarized as: 

1. Train one layer at a time, from first to last, with unsupervised criterion. 

2. Fix the parameters of previous hidden layers. 

3. Previous layers viewed as feature extraction. 
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 Pre-training Procedure and Stacked RBM [84] 

 

2.5 Convolutional Neural Network  

 Convolutional Neural Network (CNN) is inspired from Hubel and Wiesel’s early work on 

the cat’s visual cortex [85]. It is a multi-layer feed forward artificial neural network. The origin of 

CNN dates back to the 1970s, and in 1998 Yann LeCun et. al [86] established the modern model 

of CNN. A typical convolutional neural network includes input layer, convolutional layer, pooling 

layers, and output layer. It introduces three basics but very important ideas into artificial neural 

networks:  

1) Local Receptive Fields/ Sparse Connectivity (Input Layer). 

2) Feature Map, Shared Weights and Bias (Convolutional Layer). 
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3) Pooling (Sub-sampling Layer). 

 

2.5.1 Local Receptive Fields (Sparse Connectivity) 

 In CNN, the input layer is an n × n square of neurons, values of the neurons correspond to 

the input image with n × n pixels. Instead of connecting every input pixel to every hidden neuron 

as in the traditional fully connected neural network, in CNN network, a small region of input 

neurons is connected to one hidden neuron in the first hidden layer. In Fig. 10, a 5´5 region is 

corresponding to 25 input pixels and the 25 input neurons are only connected to 1 neuron in the 

first hidden layer. The local receptive field concept greatly reduced the dimension of input and the 

number of the hidden neurons in the first hidden layer. 

 

                 

 Local Receptive Field. 

 

2.5.2 Feature Maps, Shared Weight and Biases  

 Each hidden neuron has a bias and o	× o weights connected to the local receptive field 

(suppose the local receptive field is in size o × o).  All hidden neurons in hidden layer share the 

same weights and bias. Use sigmoid function as the activation function, suppose b is the shared 
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bias,w2,|  is the o × o array of shared weights,aFm2,�m|  is the input, the output and activation 

function of the j, kuY hidden layer neuron are 

Sigmoid(b +T T w2,|aFm2,�m|
y;/

|d.

y;/

2d.
) (25)  

        Suppose the hidden unit is connected to some particular area in the image. And this particular 

shared weight w2,| and the bias b in this connection will cause the sigmoid function activated. In 

other words, the hidden neuron is activated. The local receptive fields which are associated with 

this hidden neuron might follow some particular patterns, say it is a vertical edge. By keep moving 

the same local receptive field over the whole input image, all hidden neurons which got activated 

indicate the same pattern in the input images. 

 The mapping from the input layer to the hidden layer is called a feature map. The shared 

weights and bias define a convolutional kernel. By moving one kernel over the image results in a 

feature map. And each kernel will generate a feature map. As Fig. 11 shows, three feature maps 

are generated through convolution.  

 

 

 Feature Maps 
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2.5.3 Pooling  

 Convolutional layers are usually followed by a pooling layer to reduce the dimension of 

the feature maps. The most common pooling is max-pooling, in which only the maximum value 

in a sub-region of a feature map is kept as shown in Fig. 12. If a CNN has more than one feature 

maps, the pooling process is usually applied to each of the feature maps as shown in Fig 13. 

 

 

 Max-Pooling 

 

 

 Input Layers, Convolutional Layers and Pooling Layer. 

 

 Use the example in Fig. 13, suppose there are 10 possible outputs, the output layer will be 

fully connected to the pooling layer and all neurons of the pooling layer will be connected to all 

neurons in the output layer as shown in Fig. 14. 
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 CNN Model Structure. 

 

2.5.4 AlexNet 

 Krizhevsky et al. trained a very large and deep CNN, named AlexNet, in the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [87] and won the competition. It 

achieved top-1 and top-5 error rate of 37.5% and 16.4%, respectively. These results outperformed 

the second-best results by a substantial margin of 10%. AlexNet has become a milestone and 

backbone of many later deep CNNs models such as deep residual network [88]. 

 The architecture of AlexNet is shown in Fig. 15. The network has eight layers: five 

convolutional layers followed by max pooling layers and three fully connected layers with a final 

1000-way SoftMax layer for output. 
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 AlexNet Overall Structure 

 

 The input layer contains 3´224´224 neurons, representing the RGB value for a 224´224 

image. The original image is firstly scaled to make the short side has a length of 256, and then is 

cropped out at the center of a 256´256 area, which is subsequently randomly cut as a 224´224 

sub-image as input. The first convolutional layer has a local receptive field of 11´11 with a stride 

of 4. There are 96 feature maps generated. These feature maps are split into two groups and each 

GPU holds one group. Max pooling in a 3x3 region is applied to each feature map. The second 

convolutional layer uses a 5´5 local receptive field and there are 256 feature maps in total.  

Followed by the second convolutional layer is the second max-pooling layer. The third, fourth, 

and fifth hidden layers are all convolutional layers with a local receptive field of 3x3. The third 

and fourth convolutional layers have 384 feature maps, and the last one has 256 feature maps. The 

sixth and seventh hidden layers are fully-connected layers with 4096 neurons in each layer. The 

output layer is a 1000-unit SoftMax layer. Overall, AlexNet has about 660K units, 61M parameters 

and over 600M connections. With the huge size of parameters, it is easy for the network to 

remember the data that results in overfitting. AlexNet uses some optimizing techniques to avoid 

overfitting as described below.  

 

2.5.5 Activation Function - ReLU  

 AlexNet uses the rectified linear unit (ReLU) as activation function [89]. ReLU outputs 

input directly if the input is positive. Otherwise, it will output zero. Prior to the ReLU activation 

function, the hyperbolic tangent function as Eq. 27 and sigmoid function as Eq. 26 were generally 

accepted. Unlike sigmoid or tangent activation functions, ReLU does not saturate to -1, 0 or 1.  
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f(x) =
1

1 + exp	(−x) 
(26)  

f(x) = tanh	(x) (27)  

f(x) =Tσ(x − i + 0.5) ≈ log	(1 + e�)
Gb�

Gd/

 
(28)  

 

 The log	(1 + e�) can be approximated by max function Max (0, x) as shown in Fig.16.  

 

 

  ReLU, Sigmoid and Hyperbolic Tangent Activation Functions 

 

 One reason that ReLU performs better than sigmoid or tangent activation functions is that 

derivative of ReLU does not vanish. As shown in Fig. 17, hyperbolic tangent and sigmoid 

functions have the derivative vanishing problem.  
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 Vanishing Derivatives of Hyperbolic Tangent and Sigmoid Activation Functions 

 

2.5.6 Local Response Normalization  

 AlexNet proposed the local normalization scheme to improve generalization. Local 

response normalization was applied after ReLU for the first and second layers. The local response 

normalization is shown in Eq. 29, and it improved the result by 1%. 

b�,�G = a�,�G /(k + α T (a�,�
F )0

|Gb(c;/,Gmb/0)

Fd|t�(.,G;b/0)

)� 
(29)  

 

2.5.7 Dropout  

 Dropout is a regularization technique that holds many benefits for deep learning. Dropout 

works by removing certain randomly selected neurons in each layer during training. In Fig. 18, 

from top to bottom, the neural network contains an input layer, a dropout layer and an output layer. 

The dropout layers have removed several of the neurons. The dropout neurons do not contribute 

to the feed forward and back propagation computations during training. By applying dropout:  

• It reduces the complexity of co-adaptation of neurons. 
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• It forced the network to learn more robust features.  

 Dropout was used in the first two layers in AlexNet and it substantially reduced the over-

fitting problem. One shortcoming of Dropout is that it roughly doubles the number of training 

iterations required to converge. 

 

 

 Dropout 

 

2.6 Transfer Learning  

 In the computer vision domain, certain low-level features such as edges, shapes, or curves 

can be shared across different tasks. If we have insufficient training data in one task domain, we 

may utilize knowledge learned in a related task to mitigate the challenge  [30, 90]. The definition 

of transfer learning is described as follows.  

 A domain D consists of two components: feature space χ and marginal probability P(X), 

where X  is a sample data point, xG  represents a specific vector. Thus, the domain could be 

mathematically represented as 

								D = 	 {χ, P(X)}				where	X = 	 {x/,… xb}, xG 	 ∈ 	χ (30)  

 A task T is defined as a two-element tuple of label space, with a label space ψ and an 

objective function η. The objective function is denoted as conditional probability distribution of 
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P(Y|X), which is learned from training data pairs (xG, yG). Thus, for a given domain D, task T could 

be defined as 

T = {ψ, P(Y|X)} = 	 {ψ, η}			where	Y = 	 {y/,… yb}, yG 	∈ 	ψ (31)  

 Given a source domain Dz	and a corresponding source task Tz, the objective of transfer 

learning is to learn the target conditional probability distribution P(Y\|X\) in target domain Dz 

with information learned from Dz	and Tz.   
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CHAPTER 3 

HYPERSPECTRAL IMAGE CLASSIFICATION BY CNN  

 

 In this section, we present a 4-layer deep convolutional neural network (CNN) model for 

soil detection by using the combination of 80 synthetic hyperspectral bands and its original 8 

multispectral bands which are collected by the WorldView-2 satellite. Our experimental result 

shows that by using the combined 80 synthetic hyperspectral bands and the original 8 multispectral 

bands, the area under the curve (AUC) scores of our CNN model for soil detection on the three 

testing images has been improved by 7.42% on average from 76.26% to 83.48%, as compared to 

the result by using the 8 multispectral bands alone. We also applied the CNN model onto a set of 

high-resolution data which is created by pan-sharpening the original multispectral bands and its 

synthetic hyperspectral bands, which quadrupled the spatial resolution of the combined synthetic 

hyperspectral bands. With the increased spatial resolution of the combined synthetic hyperspectral 

bands, the average AUC scores of our CNN model was furtherly improved by 10.02% from 81.44% 

to 91.47%.  This significant improvement indicates that by using the pan-sharpened synthetic 

hyperspectral bands, the performance of CNN model for soil detection has been greatly improved. 

 

3.1 Introduction 

 The U.S. has about 10,000 kilometers of international borders with Mexico and Canada. 

Typical border surveillance tasks include trail detection, illegal tunnel detection, and humanitarian 

missions - rescuing people lost in remote locations and exposed to harsh environmental conditions 

[91-93]. According to [94, 95] in 2014, a total of 101 cross-border tunnels were discovered. All 

tunnel digging activities started and ended inside warehouses as shown in Fig. 19, prohibiting 
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direct observation. However, since excavated soil needs to be disposed from the tunnel entrance 

and exit, it is possible to use exposed soil as an indirect indicator of tunnel activities. Conventional 

border monitoring approaches use airborne sensors [96-98] that have close to 1m spatial resolution. 

With recent advances in satellite images such as Worldview-2 (WV2) and Worldview-3 (WV-3) 

that have 0.31m resolution in pan band and 1.24m in visible and near infrared (VNIR) bands, it 

becomes possible to use satellite images for border monitoring and surveillance. 

 

 

 Illegal Tunnels near U.S. and Mexico Border 

 

3.2 Motivation 

 Remote sensing images play a critical role in earth's surface monitoring. Multispectral 

images, which usually refers to images with 3 to 10 bands, have been widely and regularly used in 

the remote sensing area since the 1970s. With the fast advances of hyperspectral sensors, the 

hyperspectral imagery, also known as imaging spectrometry, which contains many more bands 

with much narrower bandwidth (10-20 nm) than multispectral bands are expected to be more 

effective in target identification [3-5, 99], land cover classification [100, 101], anomalous 
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materials, and objects detection [102, 103]. Nonetheless, hyperspectral imagery data might not 

always be available. As an alternative, spectral dimensionality expanding methods [28, 104-106] 

can be used to create synthetic hyperspectral bands by applying it to the original multispectral 

bands. The synthetic hyperspectral bands might not have the same physical meanings as the real 

hyperspectral bands do; however, it is generally expected and accepted that the synthetic 

hyperspectral bands, which hold the correlations with the spatial characteristics of the objects 

along with the spectral information contained in the original images, are highly likely to achieve 

better object detection and classification results than the regular multispectral bands. 

 

3.3 Methodology 

3.3.1 Generating Hyperspectral Bands (EMAP) 

 The satellite images used in this project were captured by the Worldview-2 (WV-2) satellite, 

which contains eight bands of multispectral channels. The first step is to use both spectral and 

spatial information of the eight channels to generate a newly expanded image with high 

dimensional synthetic bands. We used the Extended Multi-Attribute Profile (EMAP) [104] to 

generate eighty synthetic hyperspectral bands as shown in Fig. 20. EMAP is an extended idea of 

attribute profile (AP), a method that has recently been presented as an efficient tool for spectral-

spatial analysis of remote sensing images. APs provide a multi-level characterization of an image 

obtained by applying a sequence of morphological attribute filters to model different kinds of 

structural information on a single-band (or grayscale) image. These attribute filters can be 

morphological operators (so-called features) such as thinning or thickening operators that process 

an image by merging its connected pixels. APs using different types of attribute features on 

different threshold levels can be stacked together, generating EMAPs. 
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 EMAP Synthetic Hyperspectral Bands Generation and Soil Detection Framework 

 

3.3.2 CNN structure 

 The structure of the CNN model we used in this study is shown in Fig. 21; the CNN Model 

has four convolutional layers with various filter sizes and one fully connected layer with 100 

hidden units. After each convolutional layer, the Rectified Linear Unit (ReLU) is used as the 

activation function, the last fully connected layer uses the SoftMax function for classification. We 

add dropout layer for each convolutional layer with a dropout rate of 0.1 to mitigate overfitting. 

 

 

 The CNN Model Structure in Soil Detection. 
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3.3.3 Data Preparation 

 Soil class samples are collected in the red oval areas as shown in Fig. 22. Other than the soil 

class, there are 13 other classes of land cover types including cars, white trucks, black trucks, gray 

buildings, strip-shape-buildings, roads, runways, checkerboard shaped land, land near runways, 

land near soil, general trees, trees near soil and parking lots. All classes of samples are collected in 

the areas as shown in Fig. 23. The masks of these 14 classes are created manually using Matlab by 

visual inspection. 

 

 

 Soil Samples in WV-2. 

 

 Besides the original 8-channel multispectral bands and the 80-channel synthetic 

hyperspectral bands in the original resolution, we applied a pan-sharpening technique to the 8-

channel multispectral data and the 80-channel synthetic hyperspectral data in the original resolution 

(low-resolution). We obtained another training dataset in quadrupled resolution (high-resolution) 

as well. The pan-sharpening of multispectral images was carried out by Dao et al. [107] by using 

the Gram-Schmidt Adaptive (GSA) technique. To train the CNN model, we extracted patches for 

different classes using the masks. Patches are extracted with patch sizes of 7x7x8 and 7x7x88 from 

the 8-channel original multispectral data and the combined synthetic 88-channel hyperspectral data 
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in both low-resolution and high-resolution cases. Details of the extracted training patches for 

different classes are shown in Table 3. 

 

 

 All 14 Classes of Training Samples in Soil Detection. 

 

 

Class Name Class 
ID 

Number of 
Patches 7x7x8 & 

Patches 7x7x88 in 
high resolution 

Number of 
Patches 7x7x8 & 

Patches 7x7x88 in low 
resolution 

Soil 1 89,520 5,537 
Car 2 68,118 4,286 

Truck-White 3 70,599 6,341 
Truck-Black 4 78,003 4,911 

Building-Gray 5 461,257 28,769 
Building-Strip 6 71,051 4,474 

Road 7 635,539 39,404 
Runway 8 588,135 36,826 

Land-Checkerboard 9 850,743 53,226 
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Land-Runway 10 1,393,342 87,137 
Land-Near-Soil 11 213,489 18,040 
Tree-Near-Soil 12 492,081 30,038 
Tree-General 13 187,812 17,169 
Parking-Lot 14 141,556 13,343 

  

 

By manually screening through 12 sets of WV-2 Pan-VNIR images, three images dated 

03/19/2010, 10/11/2010 and 12/02/2010 were selected for testing. The contour of the masks of 

ground truth of soil area in the three images were developed manually as shown in Fig. 24. 

 

 

(a) Testing Image Captured on 03/19/2010 

   

(b) Testing Image Captured on 10/11/2010 

 

(c) Testing Image Captured on 12/02/2010 
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 Testing Images and Ground Truth Masks in Soil Detection. 

 
3.3.4 Imbalance Learning 

 We collected 14 classes in total for training, however, the goal of this project is to detect 

the soil class. Accurately identifying the other class types is not our major concern. Furthermore, 

the training dataset is highly unbalanced as shown in Table 3, of which some classes have 

significant more samples than others. Traditional imbalance learning methods include down-

sampling majority classes or up-sampling minority classes to balance the data. In our study, to 

solve this imbalance learning problem, we randomly sample all classes to the smallest patch 

number among all of the classes (68,118 in high resolution and 4,286 in low resolution) before 

training. In the following training phase, we train the CNN model to classify all the 14 classes. In 

testing, we convert the 14-classes problem to 2-classes problem by using the following conversion 

as, 

P� yG2 =
P yG2

P yG2 + max(Pcyb; yG2)
		 (32)  

P′cyb; yG2 =
max	(Pcyb; yG2)

P yG2 + max	(Pcyb; yG2)
				 

(33)  

where P yG2	and	Pcyb; yG2 are the probabilities of the soil and all non-soil classes predicted by the 

CNN model, while P� yG2	and	P′cyb; yG2 are the converted 2-classes probabilities of soil class and 

non-soil class. 

 

3.3.5 Post-processing 

 After we obtained soil probability map for a testing image, we applied the morphological 

closing operation filter to it to enforce group sparsity across neighbor pixels. This process can 
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reduce false positive and connect isolated soil regions. A low-pass filter was then applied to smooth 

out the soil map. We computed ROC curves and AUC scores as the performance metrics for 

comparing different methods.  

 

3.4 Model Training and Experimental results 

 In this stage, we train the corresponding CNN models in accordance with the combined 

88-channel hyperspectral and 8-channel multispectral data in both high-resolution and low-

resolution scenario. We train the CNNs with a batch size of 64, the training is stopped when the 

CNNs are starting get converged at around 155 epochs of training. Then we save the corresponding 

models for the different testing scenario. 

 After we got the trained CNN models for soil detection task for both the high-resolution 

and low-resolution data, we apply the trained model on the three testing images to detect soil. Our 

results show that: 

1) In all the three testing images, by using the combined synthetic 88-channel hyperspectral 

data, the AUC scores for both high-resolution and low-resolution are all improved. The 

improvement is ranged from 0.61% to 28.74% in different testing scenarios. For the three 

different images, the overall AUC has been improved, on average, 9.02% for high-

resolution data, and 7.42% for low-resolution data. 

2) From our testing results, the combined 88-channel hyperspectral data achieved the largest 

boost for soil detection on the testing image dated March 9th, 2010 as compared to the 8-

channel multispectral data. The AUC is significantly improved by 28.74% for high-

resolution data and 9.72% for low-resolution data in this testing image. The detailed results 
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by using the synthetic 88-channel hyperspectral data and the 8-channel multispectral data 

in the three testing images are shown in the subsequent subsections.  

 Fig. 25 shows the testing results obtained on the testing image taken on 03/19/2010. For 

this testing area, the AUC scores of our CNN soil detection model using 88-channel hyperspectral 

data and 8-channel multispectral data are 96.19% and 67.45% in high resolution, and 84.84% and 

75.12% in low resolution, respectively. Using the synthetic hyperspectral data, it significantly 

improved the soil detection performances.  

 

  

(a) High-resolution Results for Testing Image Dated 3/19/2010. Left: Soil Prediction Map by 88-

band Data. Right: Soil Prediction Map by 8-band Data. 

   

(b) Low-resolution Results for Testing Image Dated 3/19/2010. Left: Soil Prediction Map by 88-

band Data. Right: Soil Prediction Map by 8-band Data. 
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(c) Left: ROC Curves for the Results in (a). Right: ROC Curves for the Results in (b). 

 Soil Detection Results for the Testing Image Dated 3/19/2010. 

 

 Fig. 26 shows the testing results obtained on the testing image taken on 10/11/2010. For 

this testing area, the AUC scores of our CNN soil detection model using 88-channel hyperspectral 

data and 8-channel multispectral data are 86.54% and 85.82% in high resolution, and 78.57% and 

77.15% in low resolution, respectively. All results are comparable for this testing image.  

 

  

(a) High-resolution Results for Testing Image Dated 10/11/2010. Left: Soil Prediction Map by 

88-band Data. Right: Soil Prediction Map by 8-band Data. 
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(b) Low-resolution Results for Testing Image Dated 10/11/2010. Left: Soil Prediction Map by 

88-band Data. Right: Soil Prediction Map by 8-band Data. 

 

  

(c) Left: ROC Curves for the Results in (a). Right: ROC Curves for the Results in (b) 

 Soil Detection Results for the Testing Image Dated 10/11/2010.  

 

 Fig. 27 shows the results obtained on the testing image taken on 12/02/2010. For this testing 

area, the AUC scores of our CNN soil detection model using 88-channel hyperspectral data and 8-

channel multispectral data are 91.67% and 91.06% in high resolution, and 87.03% and 75.51% in 

low resolution, respectively. The results for high-resolution data are comparable. The soil detection 

result is significantly improved by using the combined 88-channel hyperspectral data over the 8-

channel multispectral data for low-resolution data. 
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(a) High-resolution Results for Testing Image Dated 12/2/2010. Left: Soil Prediction Map by 88-

band Data. Right: Soil Prediction Map by 8-band Data. 

  

(b) Low-resolution Results for Testing Image Dated 12/2/2010. Left: Soil Prediction Map by 88-

band Data. Right: Soil Prediction Map by 8-band Data. 

  
  

(c) Left: ROC Curves for the Results in (a). Right: ROC Curves for the Results in (b) 
 

 Soil Detection Results for the Testing Image Dated 12/2/2010. 
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 The soil detection results in the previous subsection demonstrated the benefits of using the 

88-channel hyperspectral data, the soil detection performance of our CNN model has been 

significantly improved. In this subsection, we further applied post-processing with morphological 

filters to the results of 88-channels hyperspectral data. Our experiment results show that by post-

processing, the results can be improved further. 

 Fig. 28(a) shows that the detection results of soil prediction map before and after the post-

processing using 88-channel hyperspectral data in high resolution, and Fig.28(b) shows the 

detection results of soil prediction map before and after the post-processing using 88-channel 

hyperspectral in low-resolution. Fig. 28(c) shows the ROC curves before and after the application 

of the post-processing in both the high resolution and low-resolution cases. The AUC scores were 

improved by 1.52% in high-resolution and 2.28% in low-resolution, respectively. 

 

  

(a) Left: Probability Map of Soil before Post-processing 88-band in High Resolution. Right: 

Probability Map of Soil after Post-processing 88-band in High Resolution. 
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(b) Left: Probability Map of Soil before Post-processing 88-band in Low Resolution. Right: 

Probability Map of Soil after Post-processing 88-band in Low Resolution. 

  

(c) Left: ROC Curves before and after Post-processing in High Resolution. Right: ROC curves 

before and after Post-processing in Low Resolution. 

 Post-processing Results for Testing Image Dated 3/19/2010. 

 

 Fig. 29(a) shows detection results before and after the post processing step on the soil 

prediction map produced by using 88-channel hyperspectral data in high resolution, and Fig. 29(b) 

shows the corresponding results for the low-resolution case. Figs. 29(c) shows the ROC curves 

before and after the application of the post-processing step in both the high-resolution and low-

resolution cases. The AUC scores were improved by 5.95% in high-resolution and 4.63% in low- 

resolution, respectively.  
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(a)   Left: Probability Map of Soil before Post-processing. Right: Probability Map of Soil after 

Post-processing in High Resolution. 

  

(b) Left: Probability Map of Soil before Post-processing. Right: Probability Map of Soil after 

Post-processing in Low Resolution. 

  

(c)  Left: ROC Curves before and after Post-processing in High Resolution.  Right: ROC Curves 

before and after Post-processing in Low Resolution.  

 Post-processing Results for Testing Image Dated 10/11/2010. 
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 Fig. 30(a) shows detection results before and after the post-processing step on the soil 

prediction map produced by using 88-channel hyperspectral data in high resolution, and Fig. 30(b) 

shows the corresponding results for the low-resolution case. Fig. 30(c) shows the ROC curves 

before and after the application of the post-processing step in both the high resolution and low-

resolution cases. The AUC scores were improved by 2.48% in high-resolution and 1.64% in low-

resolution, respectively.  

 

  

(a)   Left: Probability Map of Soil before Post-processing. Right: Probability Map of Soil after 

Post-processing in High Resolution.      

  

(b)  Left: Probability Map of Soil before Post-processing. Right: Probability Map of Soil after 

Post-processing in Low Resolution.   
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(c)  Left: ROC Curves before and after Post-processing in High Resolution. Right: ROC Curves 

before and after Post-processing in Low Resolution. 

 Post-Processing Results for Testing Image Dated 10/11/2010. 

 

 Table 4 summarizes all testing results in this section. It is observed that the CNN model 

achieved significantly better soil detection performances by using the 88-channel synthetic 

hyperspectral data for both the high-resolution and low-resolution cases. The pan-sharpened high-

resolution data have a 0.46m spatial resolution while the low-resolution data have a 1.84m spatial 

resolution. The detection performance also benefited from the high-resolution images. 

 

 

Soil Detection CNN 
Models 

AUC Scores 

Testing Image 
3/19/2010 

Testing Image 
10/11/2010 

Testing Image 
12/2/2010 

8_High_Resolution 0.6745 0.8582 0.9106 

88_High_Resolution 0.9619 0.8654 0.9167 
Improvement  

before Post-processing 0.2874 0.0072 0.0061 

Improvement  
after Post-processing 0.3026 0.0667 0.0309 
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Soil Detection CNN 
Models 

AUC Scores 

Testing Image 
3/19/2010 

Testing Image 
10/11/2010 

Testing Image 
12/2/2010 

8_Low_Resolution 0.7512 0.7715 0.7651 

88_Low_Resolution 0.8484 0.7857 0.8703 

Improvement  
before Post-processing 0.0972 0.0142 0.1112 

Improvement  
after Post-processing 0.1272 0.0605 0.1276 

 

 

3.5 Conclusion 

 In this deep learning based hyperspectral image processing application, we implemented a 

CNN model for soil detection. The detection performance has been significantly improved by 

using 88-channel synthetic hyperspectral bands generated by the EMAP method. We also 

demonstrated that pan-sharpening and morphological post-processing can further improve the soil 

detection performance. These results indicated that even though the synthetic hyperspectral bands 

may not have the same physical meanings as the real hyperspectral bands, they hold the 

correlations with the spatial characteristics of the objects. Along with the spectral information in 

the original bands, the synthetic hyperspectral data with the increased spatial resolution is a good 

alternative for improving object detection and classification in remote sensing applications when 

real hyperspectral data is not available. For the future work, we will investigate furtherly if there 

is a subset of the synthetic hyperspectral bands which highly correlated to the soil class and more 

efficient in detecting the soil class by using non-linear dimension deduction methods such as 

principal component analysis or deep autoencoder, by deducting the dimensions of the bands, it 

will highly likely accelerate the model training and expedite the convergence, and potentially 

improve the detection accuracy and increase the robustness of the CNN model. 
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CHAPTER 4 

EFFECTIVE REFUGEE TENT EXTRACTION BY FCN 

 

 Rukban is an arid remote desert area crossing the border between Syria and Jordan. 

Thousands of Syrian refugees have fled to this area since the Syrian civil war in 2014. In the past 

four years, the number of the shelters for the forcibly displaced Syrian refugees in this area has 

increased rapidly into the tens of thousands. The fast-growing population resulted in severe lack 

of life-support resources such as water, food, and medicine. Estimating the location and number 

of refugee tents has become a key factor in maintaining the sustainability of the shelter camps. 

However, these shelters/tents are usually small in size, irregular in shape, and sparsely distributed 

in a 35 square miles area and could be easily missed by traditional analysis techniques. Manually 

counting the number of shelters is labor-intensive and prohibitive given the large quantities. In this 

section, we proposed a deep Fully Convolutional Neural Network (FCN) method to automatically 

detect and count the refugee shelters/tents in the Rukban area by using the Worldview-2 (WV-2) 

satellite images. We applied transfer learning with the pre-trained VGG-16 model for improved 

accuracy and faster network convergence. We also implemented the traditional Spectral Angle 

Mapper (SAM), deep Convolutional Neural network (CNN) and Mask R-CNN methods as 

comparison, our experiment results show that our proposed FCN method achieved significantly 

better performance than the other models and greatly reduced computational complexity in small 

ground objects detection. FCN model improved the overall accuracy by 4.49%, 3.54% and 0.88% 

as compared to the CNNs, SAM and Mask R-CNN models, and improved precision by 34.61%, 

41.99% and 11.87%, respectively. 
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4.1 Introduction 

 According to the United Nations, the civil war in Syria has resulted in the largest global 

refugee crisis and humanitarian disaster in human history. More than 5.6 million people were 

forced to flee their homes from the ISIS-held part of Syria to the neighboring countries seeking 

asylum [108]. A number of refugees between 40,000 to 50,000 mostly women and children were 

desperately stranded in an isolated formerly barren desert area known as Rukban near the southern 

border of Syria and Jordan. Since the Rukban refugee camp was established in 2015, this area 

started getting crowded with acres of temporary or long-term white refugee tents. In just about 

four years, the number of refugee tents and shelters has increased roughly from 132 to 11,702, an 

almost 89 times increase according to the UNOSAT [109]. Challenged by the severe natural 

condition, the threat of disease and deaths are growing every day in Rukban, the fast-growing 

population are in urgent need of humanitarian assistance including food, water, medicine, and 

lifesaving emergency aid. To provide quantitative perspective to the humanitarian aid 

organizations such as the United Nations High Commissioner for Refugees (UNHCR) for effective 

campsites planning, fields operations and rescue effort, accurate mapping, and estimation of the 

number of refugee shelters have become the key factors and critical consideration maintaining the 

sustainability and viability of the settlement and the well-being of the refugee population. Fig. 31(a) 

shows a typical refugee shelters/tents camp, the white structures are the most commonly seen 

refugee tents in this area. Figure 31(b). demonstrates the fast-growing refugee camps in this area 

from October 2014 to June 2018.  
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(a) 

 

(b) 

  A Typical Refugee Camp in the Rukban Area.  

 

 In this deep learning-based remote sensing image processing application, we proposed a 

deep fully convolutional neural network (FCN) method for accurate refugee shelters/tents 

detection by analyzing the Worldview-2 satellite imagery. Our contributions are summarized as 

below: 

1) We successfully learned an end-to-end and pixel-to-pixel FCN model which consists of 

convolutional and deconvolutional layers by semantic segmentation for the small ground 

object detection to detect the refugee tents in Worldview-2 satellite imagery. 
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2) We implemented bilinear interpolation deconvolution to up-sample the feature maps in the 

convolutional layers, which makes the FCN model is able to utilize both the spectrum and 

spatial information in the remote sensing imagery to generate outputs.  

3) We applied transfer learning to initialize the FCN model with the pre-trained VGG-16 

model. We fine-tuned the FCN model with a small training dataset which was manually 

labeled in the image. The transfer learning strategy mitigated the lack of training data issues 

and significantly improved the performances of the FCN model. 

4) We firstly introduced and developed the FCN approach for detecting small ground objects 

with sparse distribution using large scale satellite images which has not been done before 

based on our research. To the best of our knowledge, this is the first attempt to apply FCN 

with transfer learning for refugee tents detection. 

5) The FCN model is scale-free, it is also able to analyze images with any size that is larger 

than the input patch size. Our experiment results show that our proposed method achieved 

significantly better performances as compared to the CNN and Mask R-CNN models.  

 

4.2 Motivation  

 CNNs have been successfully applied in a wide range of object detection and classification 

applications. CNNs were firstly introduced by LeCun in 1998 [86] and later were improved and 

won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [87]. CNNs were 

inspired by mammal’s natural vision systems and one important property of CNN model is the 

“end-to-end” learning: the model simultaneously and automatically learns feature representations 

and tunes parameters to generate final output - no feature extraction and post-processing 

procedures are needed.   
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  CNNs models usually adopt pre-defined fixed-size receptive fields as convolutional filters 

to extract features and utilize patch-wise training to predict center pixel. When patch size is 

substantially larger than the object size, CNN models will smooth out the details of edges and 

boundaries of the objects to be detected. Accordingly, small objects such as refugee tents are prone 

to be fragmented, misclassified or ignored by CNN models. Furthermore, semantic information in 

the image is not utilized in the patch-wise CNN models for object detection.  

 Region-based CNN models such as R-CNN [110] and its improved variants Fast R-CNN 

[111] and Faster R-CNN  [112] have been developed for object detection. Those models utilize 

region proposals to group adjacent pixels for object detection. Mask R-CNN [113] extended the 

Faster R-CNN model by adding an FCN layer on top to generate a pixel-wise binary mask for 

better segmentation. However, the detection of cluttered, small objects in remote sensing imagery 

remains as a challenging task for Mask R-CNN as verified in our experiments. 

 To overcome the limitations mentioned above, we proposed an FCN model for refugee tent 

extraction in multispectral satellite images. FCN was firstly proposed by Long et al. [114]. A 

typical FCN model adopts the backbone structure of CNNs and uses convolutional layers to extract 

coarse feature maps. It then utilizes up-sampling deconvolutional layers to form pixel-wise label 

maps for the whole input image. FCN performs end-to-end, pixel-to-pixel inference for semantic 

segmentation in images with arbitrary sizes. Through training, FCN incorporates both the spectral 

and spatial information from input image to form a segmentation output. FCN does not involve 

any region proposal so it is very effective to extract crowded small objects in the image. To the 

best of our knowledge, our experiment is the first attempt to apply FCN for refugee tent extraction 

in remote sensing imagery. 
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4.3 Methodology  

4.3.1 FCN Model 

 The system architecture and workflow of the FCN model is depicted in Fig. 32. The 

backbone of our FCN model is inherited from the structure of the VGG-16 model, VGG-16 is a 

convolutional neural network proposed by Karen Simonyan and Andrew Zisserman [87]. The 

model did exceptionally well in ILSVRC14, it achieved 92.7% top-5 test accuracy on ImageNet -

the image dataset consists over 14 million images belonging to 1000 classes. Starting with the 

original VGG-16 structure, we discard the final classifier layer, then convert all fully connected 

layers to convolution layers (Conv6-7), and keep all other layers in our model. In addition, at each 

of the coarse prediction output locations: the Pool3, Pool4 and Pool5 layer, convolutional layers 

with 1 × 1 × dimensions of the classes number are appended after to predict the scores for each 

of the classes (Predict1-3); following each of the prediction layers (Predict1-3), a deconvolution 

layer is appended. The purpose for appending a deconvolutional layer at each of the coarse 

prediction locations is to up-sample the coarse outputs to pixel-based dense predictions, it also 

recovers the prediction maps to the corresponding original input sizes. The deconvolutional layers 

are structured hierarchically, which use a skip structure summing the results of each prediction 

layer and the lower prediction layer by 2 × bilinear interpolation up-sampling.  

 The FCN model contains 15 convolutional layers and 5 max-pooling layers. Each 

convolutional layer is followed by a ReLU activation layer. All convolutional layers have the same 

filter sizes as these of VGG-16. The convolution stride is 1 pixel with zero paddings. All pooling 

layers use 2´2 windowsw to scale down to half size, requiring a minimum input image size of 

32´32. 
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 System Architecture of Our FCN Model. 

 

4.3.2 SAM Model  

 SAM [115] is a classical remote sensing image processing technique which is widely used 

for data analysis in geophysics, oceanography, and atmospheric science. SAM exploits the spectral 

signature of an object at the pixel level. It computes the spectral angles between the target pixel 

and a testing pixel in each band. The smaller the angle, the more similar is the two pixels. Based 

on the spectral angle, an object is identified by grouping similar pixels. The spectral angle is 

computed as,  

θ(x, y) = cos;/(
∑ xGyGc
Gd/

(∑ xG0c
Gd/ )//0(∑ yG0c

Gd/ )//0
) 

(27) 

 

where x is the target pixel, y is the test pixel and N is the number of bands. After computing the 

spectral angles between all paired pixels, a threshold value is defined to exclude pixels that are not 

similar, and an object is identified by grouping similar pixels. 
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4.3.3 CNN Model  

 We implemented three CNN models with different structures in this study denoted as CNN-

7, CNN-5, and CNN-3. CNN-7 takes image patches with a size of 7x7 as input and consists of four 

convolutional layers and one fully connected layer as shown in Fig. 33. The first three 

convolutional layers have 20, 20 and 100 3x3 filters, respectively, and the fourth convolutional 

layer has 100 1x1 filters. The fully connected layer contains 100 hidden units. Each convolutional 

layer is followed by a ReLU layer and a Dropout layer with a dropout rate of 0.1 to avoid over-

fitting [116]. CNN-5 takes image patches of 5x5 as input and consists of two convolutional layers 

and a fully connected layer with 100 hidden units. Each convolutional layer has 20 3x3 filters and 

is followed by a ReLU layer and a Dropout layer with a dropout rate of 0.1. The size of the input 

image patch for CNN-3 is 3x3 and there are two convolutional layers having 20 2x2 filters 

followed by a fully connected layer with 100 hidden units. Each convolutional layer is followed 

by a ReLU layer and a Dropout layer with a dropout rate of 0.1. All CNN models use a SoftMax 

layer at output for classification. 
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 CNN Structures. Top: CNN-7. Middle: CNN-5. Bottom: CNN-3 

 

 In order to identify the tent class, to properly train a CNN classifier model, we need to 

collect all classes appearing in the image; however, we are just interested in the tent class, and the 

training samples for the tent and non-tent classes are most likely imbalanced. We followed the 

following steps to resolve the imbalance challenge. First, we randomly sampled all training patches 

from each training class to the size of the training class with the smallest patches size, then we 

combined all selected data from all classes to train the CNN model. At the output layer, we apply 

the conversion as,   
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		P�\wbuz =
P\wbuz

P\wbuz + max(Pcyb;\wbuz)
			 (28) 

P′cyb;\wbuz =
max	(Pcyb;\wbuz)

P\wbuz + max	(Pcyb;\wbuz)
 

(29) 

 

to convert the multi-classes problem to a two-class problem. P\wbuz	and	Pcyb;\wbuz  are the 

probabilities of the tents and all other non-tents classes in the testing stage. 

P�\wbuz	and	P′cyb;\wbuz are the converted 2-classes probabilities of tents class and non-tents class. 

 

4.3.4 Mask R-CNN 

 Mask R-CNN model [10] is built on top of Regional-based CNN (R-CNN), Fast R-CNN 

and Faster R-CNN [9].  

 The main idea in R-CNN is two-stage training. In the first stage, it uses selective research 

to identify a number of bounding box candidates for the objects to detect which is also called the 

region of interest (RoI). In the second stage it uses regular CNN to extract features from each 

region independently for classification. Then it continues fine-tuning the CNN with the proposed 

region with K+1 class where K is the class number and the extra one class is for the background. 

The Non-Maximum Suppression function is used to search multiple bounding boxes for the same 

object: it will sort all the bounding boxes with confidence score and discard boxes with low 

confidence scores and then repeat this step until the remaining boxes with the highest intersection 

over union (IoU) score. 

 However, the R-CNN model is expensive and slow. On top of the R-CNN structure, instead 

of using CNN to extract features for each independent region proposal, Fast R-CNN integrate all 

CNNs to one CNN forward pass over the entire image and the region proposal to share the feature 

matrix is used for learning the object classifier and bounding-box regressor. This step greatly 
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speeds up R-CNN. So, there are two steps training in Fast R-CNN, it will firstly pre-train a CNN 

on image classification tasks, then use selective search to propose regions. Then it replaces the last 

max-pooling layer of pretrained CNN with RoI pooling layer. And then replace the last fully 

connected layer and the last SoftMax layer of K classes to K+1 class. In the last step, a SoftMax 

estimator of K+1 class will output a discrete probability distribution per RoI. And a bounding-box 

regression model which predicts offsets to the original RoI for each of K classes. 

 Faster R-CNN uses Fast R-CNN to initialize the regional proposal network (RPN) for the 

region proposal task, it only fine-tunes the RPN layers while keeping the shared convolutional 

layers. Mask R-CNN extends Faster R-CNN to pixel-level image segmentation. It added a third 

network for predicting an object mask in parallel with current network. This mask network is a 

fully convolutional network applied to each RoI to form a segmentation mask at pixel-level. Fig. 

34. 

 

 

 Summary of Models of R-CNN, Fast R-CNN, Faster R-CNN and Mask R-CNN 
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 In our experiment the network structure of Mask R-CNN model is as Fig. 35 shown. we 

used the pre-trained ResNet-50 architecture as the backbone to extract feature maps for a fair 

comparison. 

 

 

 Mask R-CNN with ResNet-50 Backbone for Tent Detection 

 

4.3.5 Data Preparation 

 Survey data from UNOSAT and satellite images from   the WV-2 satellite are used in this 

study. UNOSAT conducted refugee camp analysis by assessing satellite images collected since 

2014. The number of tents on 20 non-consecutive dates from the year of 2014 to the year of 2019 

have been reported. We used this dataset to evaluate our proposed model. The WV-2 satellite image 

dataset contains multispectral images collected in an area of 25 kilometers southwest of the Al 

Waleed along the Jordanian border side by Maxar on February 13, 2016 (Time-1) and February 
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17, 2017 (Time-2). This data has 8 channels and the size of the image is 2422x1727 pixels as shown 

in the first column of Fig. 40. 

 To train the CNN model, we created masks for 4 classes of visually observed ground 

objects from the Time-1 image as the training data for the CNN model, the four classes are: (a). 

Tents (b). Rocks (c). Sands (d). Roads, as shown in Fig. 36. We extracted patches with 

corresponding sizes to train the three CNN models. The numbers of patches we extracted are 

shown in Table 5. The numbers of patches for the four classes are not the same and the tent class 

has the least patches (around 26k). We randomly sub-sampled the other three classes to balance 

the training data. 

 

     

(a) Tents    (b) Rock    (c) Sands    (d) Roads 

 Masks of the 4 Classes for Training CNN 

 

Class 
Name 

Class ID Number of   Patches 
7*7*8 

Tents 1 26192 
Rocks 2 259319 
Sands 3 189979 
Roads 4 37907 
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 Three small areas in sizes of 141´201, 201´206 and 101´101 from Time-1 image are 

selected as training data for FCN model and Mask R-CNN model, they are as shown in the top 

row in Fig. 37. The corresponding ground truth mask for the tent class are shown in the bottom 

row in Fig. 37.  

 

   

   

 Training Data for FCN.  

 

 Another cropped area in size of 384x384 is selected from Time-1 image for model 

validation as shown in Fig. 38, where the ground truth mask was also created manually. 
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 Validation Data and its Ground Truth from Time-2  

 

4.3.6 Performance Metrics 

 Accuracy, precision, recall, F1-score, precision-recall score, and receiver operating 

characteristics (ROC) curve are computed to evaluate the performance of all of the models. 

Accuracy is simply the ratio of the correctly predicted observation to the total observations; 

precision is the ratio of correctly predicted positive observations to the total predicted positive 

observations, we use precision to show how precise/accurate of the model; recall is the ratio of 

correctly predicted positive observations to the all observations in the actual class, we use recall 

to calculate how many of the actual positives the model catches by labeling it as positive; F1-Score 

is the weighted average of precision and recall, we use F1-score to check the balance between 

precision and recall when there is an uneven class distribution. We also evaluate our model by 

ROC curve and precision-recall score. The ROC curve and area under the curve (AUC) are usually 

used as performance metrics when there are roughly equal numbers of observations for each class. 

The precision-recall score is more often used as the performance metrics when there are extremely 

imbalanced classes. 
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4.4 Model Training and Experimental Results 

4.4.1 Patch Size Determination for FCN 

 We trained the FCN model with four input image sizes of 32 × 32, 64 × 64, 96 × 96	and 

128 × 128,		on the training data and validated the trained models FCN-32, FCN-64, FCN-96 and 

FCN-128 on the validation data. The validation results are shown in Table 6. The tent detection 

maps are shown in Fig. 39. It is observed that FCN-32 has the best performance by all metrics. 

Therefore, we selected FCN-32 for the subsequent experiments. 

 

 

 Accuracy Precision Recall F1-Score P-R AUC IoU 

32 0.9654 0.6235 0.5288 0.5722 0.3503 0.7571 0.6844 

64 0.9623 0.5827 0.4871 0.5306 0.3063 0.7355 0.6643 

96 0.9595 0.5430 0.4706 0.5042 0.2787 0.7265 0.6498 

128 0.9567 0.5059 0.4399 0.4706 0.2471 0.7101 0.6347 

    

 

    

         

                     (a).                                 (b).                                 (c).                                (d). 

 FCN Tent Detection Maps in a Common Area from the Cropped Time-2 Data  
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4.4.2 Model Comparison  

 After the input block size of FCN is determined, we compared SAM, CNN-3, CNN-5, 

CNN-7 and Mask R-CNN with FCN-32 on validation data, we compare and evaluate all models 

by using average accuracies, precisions, recalls, F1-scores, precision-recall scores and average 

intersection over union (IOU) scores. The results are shown in and the results are shown in Table 

7. Threshold values of 0.15 and 0.99 were chosen for SAM and CNN to obtain the binary results. 

The tent detection maps for Time-1, Time-2 and the validation image by different models are 

shown in Fig. 40. From the results, we can observe that the FCN-32 model has the best 

performances in all metrics among all compared models. The FCN model improved AUC, IoU 

and average accuracy by 3.41%, 11.51%and 4.49%, respectively, as compared to the best CNN 

model. It also improved AUC, IoU and average accuracy by 17.46%, 16.23% and 3.54%, 

respectively, as compared to the SAM method. In addition, the FCN model achieved similar 

average accuracy and AUC as compared to Mask R-CNN, but improved IoU by 3.05%. 

 

 

 Accuracy Precision Recall F1-Score P-R AUC IOU 
SAM 0.9304 0.2037 0.2071 0.2054 0.0766 0.5851 0.5221 

CNN-3 0.9209 0.2775 0.4148 0.3599 0.1632 0.7256 0.5693 

CNN-5 0.8597 0.1537 0.6723 0.2346 0.0980 0.6856 0.4947 

CNN-7 0.8007 0.1061 0.4510 0.1740 0.0737 0.6491 0.4459 

Mask 
RCNN 

0.9570 0.5049 0.5371 0.5205 0.2913 0.7565 0.6539 

FCN-32 0.9658 0.6236 0.5288 0.5754 0.3533 0.7597 0.6844 
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 Tent Extraction Maps in Time-1 (1st row), Time-2 (2nd row) and Validation 

Images (3rd row). From the left to right in each row: The Original RGB Images, Results by 

SAM, CNN-3, CNN-5, CNN-7, Mask-RCNN and FCN-32. 

 

4.4.3 Estimation of the Number of Tents 

 According to the report by UNOSAT, a standard refugee tent is semi-circular or tunnel 

shaped with center height of 2.1 meters, width of 5 meters and length of 3.8 meters. It has 16 

square meters main floor area, plus two 3.5 square meters vestibules, for a total area of 23 square 

meters. The spatial resolution of WV-2 multispectral image is 1.84 meters so that a tent consists 

of approximately 7 pixels. We counted the number of detected pixels and the estimated number of 

tents by different models is shown in Table 8. Compared to the UNOSAT survey results and the 

ground truth data, FCN achieved the best results. In the validation image, in particular, FCN has 



 71 

 

 

 

an error of 1.55% and wins over the second-best method by a large margin (Mask R-CNN, 12.90%). 

The results as shown in Table 8.  

 

 

 Time-1-image 
2016-02 

Time-2-image 
2017-02 

Validation data 

UNOSAT 3365 6460 775*(manual) 

SAM  2643(21.25%) 5381(16.70%) 906(16.90%) 

CNN-3  5495(63.74%) 6703(3.76%) 1917(147.35%) 

CNN-5 11600(245.65%) 13724(112.45%) 3348(332.00%) 

CNN-7 19788(489.33%) 27045(318.65%) 4735(510.97%) 

Mask R-CNN 3245(3.31%) 7486(15.88%) 875(12.90%) 

FCN-32 3365(0.27%) 6672(3.28%) 763(1.55%) 

 

 

4.5 Conclusion 

 In this chapter, we proposed a fully convolutional neural network model for refugee tent 

extraction and achieved the best results as compared to the traditional SAM method, CNN models 

and the Mask R-CNN model. However, recent study suggested that the FCN model may lose the 

global context of the input image in its deep layers. We will investigate to incorporate global scene-

level context to improve FCN. In addition, we will study the impacts of cloud on tent extraction in 

remote sensing images as our future work. This proved our ideas proposed at the beginning of this 

paper: pixel-based FCN model detect and infer better than the patch-based CNN models for small 

ground objects detection in remote sensing images especially when the objects are small in size, 

irregular in shape with a very sparse distribution in large regions. Besides, the FCN model 
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tremendously reduced the complexity of collecting procedure for the training data, only the ground 

truth of the target objects is needed to be created to train an FCN model.  
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CHAPTER 5 

DATA AUGMENTATION BY GAN 

 

 RS data have a high dimensionality and a sufficiently large dataset is essential to effectively 

train a deep learning model for RS classification. In practice, data augmentation methods are 

usually used to enlarge the training dataset by rotating, scaling, flipping, and transforming. 

However, it has limited capability to capture the data distribution with background context 

information and often yields diversified data. In this chapter, we investigate a Generative 

Adversarial Network (GAN) based data augmentation model, named SinGAN, to generate training 

samples. We tested the generated data samples with the FCN network proposed in Chapter 4 and 

compared the result with traditional data augmentation methods.  

 

5.1 Introduction 

 It is very important to have large high-quality datasets to train deep models, meaning the 

dataset should not only be sufficiently large but also should cover as many data variations as 

possible.  There are many reasons that large datasets can not be obtained such as privacy or cost 

issue. Under these situations, if we would like to train or improve the performance of deep models, 

one possible approach is to generate synthetic datasets for training. There were many efforts had 

been made in the past to enlarge the training samples, such as oversampling the minority data in 

an imbalanced dataset, or generating new training samples by flipping, rotating, scaling, or adding 

noises to original data to reflect the real-world changes.  

The GAN model [117] is a deep generative model that can be trained to generated images 

from random noise. A GAN model consists of two parts: a generator and a discriminator. The 
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network structure is shown in Fig. 41. The generator captures distribution of training data and 

generates synthetic data samples. The discriminator estimates the probability that if a sample is 

from the training dataset rather than the generator. At the initial training stage, random noises are 

generated as inputs to the generator. After the generator generates a fake image, this fake image 

and the real image will be fed to the discriminator for classification. The generator is constantly 

trying to fool the discriminator by generating better fake images while the discriminator is trained 

to become better to distinguish the real and fake images. Through this two-player min-max 

adversarial training process, GAN is getting better and better in estimating the potential 

distribution of the training data. Finally, it will be capable of generating realistic images following 

a similar distribution as the training data. GAN has been widely applied in various computer vision 

applications such as super-resolution [118], image-to-image translation [119], style transfer [120], 

photo blending [121] and image inpainting [122] etc.  

 

 

  GAN Network Model 

 

 Many researchers have noticed that GANs are capable of generating new data via the 

adversarial training process and are promising solutions to tackle the lacking of training data issue. 

In remote sensing field, Ma et al. [123] proposed a data argumentation method by GAN in scene 

classification. Lin et al. [124] proposed a multiple-layer feature-matching GAN model to help the 
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classification of RS images. Yan et al. [125] used GAN for generating simulated training samples 

for ship detection. Zhang et al. [126] used GAN for simulated SAR datasets.   

 In this chapter, we proposed a GAN-based approach to generate refugee tent samples to 

augment the original data samples to furtherly improve the performance of the FCN model 

proposed in Chapter 4. Meanwhile, we compared the GAN-based data augmentation method with 

other traditional image augmentation methods. Our experiment results show that GAN improved 

the overall classification performance of the FCN model, and the IoU has been improved ranging 

from 0.2% to 1.5% with different sample sizes and input image sizes. 

 

5.2 Methodology  

5.2.1 SinGAN Model 

 SinGAN model is proposed by Tamar et al. [127] in 2019. SinGAN is an unconditional 

generative model that can learn from one single image and generates high-quality and diverse 

samples that carry the same visual content as the original image. It can be used in a number of 

image manipulation tasks such as super-resolution, paint-to-image conversion, image 

harmonization and editing through learning from a single image. The network structure is shown 

in Fig. 42. It consists of a pyramid of fully convolutional GANs to generate new samples of 

arbitrary size and aspect ratio. Each pair of generators and discriminators learns representation at 

different scales. The generator and discriminator at the lowest scale learn coarse features like 

background, and the high-level pair learn fine details like edges and corners. The input image is 

down-sampled to the corresponding size and input to the discriminator along with the generator’s 

output.  



 76 

 

 

 

 

 SinGAN’s Multi-scale Pipeline.  

 

 As shown in Fig. 43, the input to the generator at each level are the random noises with the 

generated image from the lower-level generator. Since SinGAN is generating images from a single 

image, a sliding window moves over the whole images to gathering the training samples. The input 

patch size decreases when the image input is getting bigger in the upper-level network. During the 

training, the random noises zc with the unsampled generated image  xbm/ (to the noise size) from 

the lower level are concatenated together as input to the following convolutional layers, and the 

output of the convolutional layers is concatenated again with the generated image from the lower-

level network. Then this output will be input to the discriminator along with the down-sampled 

image to the discriminator. The discriminator consists of five convolutional layers as well, but 

there is no concatenation of the real and generated image. 
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 Single Scale/Level Generation. 

 

5.2.2 Training and Loss Function 

 As shown in Fig. 43, the SinGAN network is trained hierarchically, from lower-level to 

higher-level in a stacked GAN model. Once one level of GAN is trained, it will be kept fixed. The 

SinGAN loss consists of two loss functions: the adversarial loss and the reconstruction loss,  

min
¥¦
max
§¦

ℒtsX(Gb, Db) + αℒvwx(Gb) (34)  

 The adversarial loss is used to penalize the network for matching the distribution of the 

generated samples and the distribution of original samples by calculating the distance between the 

distributions of real data and data generated by the generator. The reconstruction loss in Eq. 35 is 

used to penalize the network for generating samples that look like the original samples. The root 

mean squared error loss (RMSE) is used for calculating the reconstruction loss, 

ℒvwx =∥ Gb(0, (x
~
bm/
vwx ) ↑v) − xb ∥0 (35)  

 In the first level of SinGAN, it only has noise input, so the reconstruction loss is, 
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ℒvwx =∥ Gc(z∗) − xc ∥0 (36)  

5.2.3 Augmenting Tent Image by SinGAN 

 Since SinGAN can generate images from a single image. We use the three training images 

in section 4.3.5 to generate synthetic tent images. The original training image set is O1 as shown 

in Fig. 44(a). G1, G2 and G3 are the three sets of the GAN-generated samples, as shown in Fig. 

44(b), 44(c), and 44(d). 

 

   

(a) Original Training Samples O1 

 

   

(b)  GAN-generated Dataset G1 
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(c) GAN-generated Dataset G2 

   

(d) GAN-generated Dataset G3 

 GAN Generated Samples. (a) Original Training Samples O1, (b)-(d): SinGAN-

generated Data G1, G2 and G3 

 

5.2.4 Augmenting Tent Images by Flipping and Rotating 

 There are many traditional methods of creating new data samples such as flipping, rotation, 

scaling, and adding noises. In this section, we applied horizontal flipping, vertical flipping and 

rotating 90 degrees to the right to the original training images to augment data. To flip the image 

horizontally, we reverse the order of the columns of the image matrix. To flip the image vertically, 

we reverse the order of the rows of the image matrix. To rotate the image, we transform each row 
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of the source matrix into the column of the final image. After horizontal flipping, right rotating for 

90 degrees and vertical flipping the original training images, the augmented images results are  

shown in Table 9.  We combined all the images in Table 9 as dataset-FR. 

 

 

 Training Image -1 Training Image -2 Training Image -3 

 
 

Horizontal 
Flipping 

 

 

 

 
 

 

 
 
 

Right 
Rotating  

90 
Degrees 

 

 

 

 
 

 
 
 

 

 
 

Vertical 
Flipping 
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5.2.5 Augmenting Tent Images by Scaling and Cropping  

 Scaling images is another common image manipulation technique. Image scaling is usually 

done by scaling the images by a particular factor and cropping the scaled image to the original size. 

For example, reducing or increasing the size of an image by a factor of 2 and then cropping the 

scaled image to the original size. In our experiment, we scaled the original images by factors of 

1.5, 2.0, and 2.5, and then we cropped an area with the same sizes of the original images. Some 

augmented images are shown in Table 10. We combined all scaled images into dataset-SC. 

 

 

 Training Image -1 Training Image -2 Training Image -3 

 
 

Scaling 1.5  
and crop 

 

 
  

 

 
 

 
 

 
 
 

Scaling 2.0 
and crop 
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Scaling 2.5 
and crop 

  
 

 

 
 

 

 

 

5.2.6 Augmenting Tent Images by Adding Noise 

 Noise always presents in digital images during image acquisition, coding, transmission, 

and processing steps. Adding noises to images is also a classic approach to create new data samples 

and to improve the robustness of image classification models. In this section, we add Gaussian, 

Poisson, and salt and pepper noises to the original training datasets and then combined all images 

with added noises into the new training dataset-N. The augmented images are as shown in Table 

11.   

 

 

 Training Image -1 Training Image -2 Training Image -3 

 
 

Gaussian 
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Poisson 

 

 
 

 
 

 

 
 

Salt and 
Pepper 

 

 
 

 
 

 

 

 

5.3 Model Training and Experimental Results 

 In the model training stage, we re-train the FCN model by using different image datasets 

generated by GAN and the other traditional image translation methods in a two-stage setting. 

 In the first stage, we re-train the FCN model with the original training dataset O1 and 

gradually add GAN generated data with different sample sizes. We include one, two, and three 

times the GAN generated data into the original dataset O1. We also re-train the FCN models with 

four input sizes: 128 × 128,96 × 96, 64 × 64, and 32 × 32. The way we collect the training 

blocks in different sizes is the same as Chapter 4, we use stride 2 and sliding windows to collect 

the training samples.  

 In the second stage, we re-train the FCN model with different image datasets generated by 

traditional transformation methods:  they are dataset-FP, dataset-SC and dataset-N. A combination 

dataset dataset-C is also created by including horizontally flipped images from Table 9, scaled 
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images by a factor of 2 from Table 10, and images samples by adding Gaussian noises from Table 

11. The training samples are collected with various input sizes by sliding window. 

 In addition, a very small dataset dataset-LS which only includes 200 samples from each 

original training image is included for comparison purposes. In summary, we use the following 

training schemes to re-train the FCN model: 

• FCN_(block_size): These are the baseline models trained by the original training dataset 

O1, as shown in Fig. 44a). 

• FCN_(block_size) _LS: Models trained by 600 samples from the original training samples 

by randomly selecting 200 samples from each of the original training image. 

• FCN_(block_size) _X1: Models trained by adding extra GAN samples X1 to the original 

training samples. X1 is G1. G1 is as shown in images in Fig. 44b). 

• FCN_(block_size) _X2: Models trained by adding extra GAN samples X2 to the original 

training samples. X2 consists of G1 and G2. G1 and G2 are as shown in images in Fig. 

44b) and Fig. 44c), respectively. 

• FCN_(block_size) _X3: Models trained by adding extra GAN samples X3 to original 

training samples. X3 consists of G1, G2, and G3. G1, G2, and G3 are as shown in images 

in Fig. 44b), Fig. 44c) and Fig. 44d), respectively. 

• FCN_(block_size)_FR: Models trained by adding all training samples created from 

horizontal flipping, vertical flipping, and right rotating 90 degrees of the original training 

images, as shown in Table 9. 

• FCN_(block_size)_SC: Models trained by adding all training samples created by scaling 

and cropping the original dataset by a factor of 1.5, 2.0, and 2.5 to the original training 

images, as shown in Table 10. 
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• FCN_(block_size)_N: Models trained by adding all training samples created by adding 

Gaussian, Poisson, and salt and pepper noises to the original training samples, as shown in 

Table 11. 

• FCN_(block_size)_C: Models trained by adding extra training samples, which are 

combined by horizontally flipped images from Table 9, scaled images to the factor of 2 

from Table 10 and samples by adding Gaussian noise as shown in Table 11. 

 We trained the FCN models with the corresponding synthetic datasets and validated the 

model on the same validation image as used in Chapter 4. We evaluated the performance of the 

FCN models in terms of precision, recall, F-1 score, precision-recall curve scores, the area under 

the ROC curve (AUC) and the intersection over union (IoU) scores. Table 12-15 shows the 

validation performance matrices of the FCN models by adding different synthetic datasets with 

different input sizes.  

 

 

 Average 
Accuracy 

Precision Recall F1-Score AP 
(P-R) 

AUC 
(ROC) 

IoU Sample 
Size 

FCN_128_LS 95.62% 21.18% 0.29% 0.57% 4.39% 50.12% 47.95% 600 
FCN_128 95.67% 50.59% 43.99% 47.06% 24.71% 71.01% 63.47% 1628 

FCN_128_X1 95.75% 51.26% 44.25% 47.50% 25.11% 71.17% 63.40% 2849 
FCN_128_X2 95.72% 50.81% 44.93% 47.69% 25.22% 71.48% 63.47% 4070 
FCN_128_X3 95.81% 49.87% 48.20% 49.02% 26.28% 73.00% 64.01% 5235 
FCN_128_FR 95.83% 52.71% 38.72% 44.65% 23.07% 68.57% 62.25% 5235 
FCN_128_SC 95.97% 54.79% 41.30% 47.10% 25.18% 69.88% 63.35% 5235 
FCN_128_N 95.81% 52.05% 43.72% 47.53% 25.20% 70.95% 63.45% 5235 
FCN_128_C 95.86% 53.05% 41.16% 46.35% 24.39% 69.75% 62.98% 5235 
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 Average 
Accuracy 

Precision Recall F1-Score AP 
(P-R) 

AUC 
(ROC) 

IoU Sample 
Size 

FCN_96_LS 93.07% 8.75% 6.31% 7.34% 4.62% 51.66% 48.43% 600 
FCN_96 95.95% 54.30% 47.06% 50.42% 27.87% 72.63% 64.98% 3180 

FCN_96_X1 95.91% 53.07% 50.06% 51.52% 28.73% 74.02% 65.26% 5684 
FCN_96_X2 95.58% 49.14% 49.93% 49.53% 26.71% 73.79% 64.20% 8312 
FCN_96_X3 95.97% 53.62% 54.08% 53.85% 30.99% 75.98% 66.36% 10851 
FCN_96_FR 95.87% 53.17% 41.90% 46.97% 24.80% 70.11% 63.20% 10851 
FCN_96_SC 95.91% 53.23% 47.92% 50.44% 27.77% 73.01% 64.77% 10851 
FCN_96_N 95.92% 53.44% 47.99% 50.57% 27.90% 73.04% 64.84% 10851 
FCN_96_C 95.92% 53.84% 42.57% 47.55% 25.42% 70.46% 63.52% 10851 

 

 

 

 Average 
Accuracy 

Precision Recall F1-Score AP 
(P-R) 

AUC 
(ROC) 

IoU Sample 
Size 

FCN_64_LS 94.95% 8.83% 1.74% 2.92% 4.42% 50.46% 48.21% 600 
FCN_64 96.23% 58.27% 48.71% 53.06% 30.63% 73.55% 66.43% 5244 

FCN_64_X1 96.09% 55.19% 53.61% 54.39% 31.60% 75.82% 66.68% 9884 
FCN_64_X2 96.05% 54.58% 53.49% 54.02% 31.21% 75.73% 66.48% 14291 
FCN_64_X3 96.24% 57.03% 54.78% 55.89% 33.21% 76.46% 67.47% 18715 
FCN_64_FR 96.03% 55.47% 43.84% 48.97% 26.75% 71.12% 64.19% 18715 
FCN_64_SC 96.07% 55.61% 46.69% 50.76% 28.28% 72.50% 64.70% 18715 
FCN_64_N 96.11% 55.88% 49.93% 52.74% 30.08% 74.07% 65.92% 18715 
FCN_64_C 96.09% 56.38% 43.92% 49.37% 27.20% 71.19% 64.40% 18715 
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 Average 
Accuracy 

Precision Recall F1-Score AP 
(P-R) 

AUC 
(ROC) 

IoU Sample 
Size 

FCN_32_LS 90.46% 7.38% 10.37% 8.63% 4.66% 52.23% 47.46% 600 
FCN_32 96.54% 62.35% 52.88% 57.22% 35.03% 75.71% 68.44% 7820 

FCN_32_X1 96.43% 59.52% 55.68% 57.54% 35.07% 76.98% 68.36%  15236 
FCN_32_X2 96.42% 59.42% 55.62% 57.46% 34.96% 76.95% 68.32% 21879 
FCN_32_X3 96.44% 59.43% 56.86% 58.12% 34.97% 77.55% 68.65% 28968 
FCN_32_FR 96.26% 58.50% 47.60% 52.49% 30.12% 73.04% 65.88% 28968 
FCN_96_SC 95.91% 53.23% 47.92% 50.44% 27.78% 73.01% 64.77% 28968 
FCN_96_N 95.92% 53.44% 47.99% 50.57% 27.90% 73.04% 64.84% 28968 
FCN_96_C 95.92% 53.84% 42.57% 47.55% 25.42% 70.46% 63.52% 28968 

 

 

5.4 Conclusions 

 We compared the experiment results with additional GAN-generated samples for training 

to the results with traditional data generated by augmentation methods in terms of average accuracy, 

precision, recall, F-1 score, precision-recall, the AUC score of the ROC curve and the IoU scores. 

Our experimental results show that with additional GAN training samples, AUC scores of ROC 

curve are improved between 0.6-3.3%, recalls are improved between 1.2-7.2%, and the 

improvements of average accuracies and precisions are very limited.  

 The experimental results show that the F-1 scores are improved between 0.9-3.4%. The 

precision-recall scores are improved between 0.04-3.1%. For semantic segmentation problems, 

IoU is the most important metric. By adding GAN samples, the average IoU scores are improved 

between 0.2-1.5%.  

 The largest improvement of the FCN model is found when the input patch size is large and 

the available training samples are small such as FCN-128. The best performance of FCN is found 
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with input size of 32x32 by the largest added GAN samples dataset (X3). The IoU score is 68.65%, 

which is the highest among all trained models. 

 We found that the traditional image manipulation and transformation methods do not help 

improving the deep model training. There might be many causes, but the most important reason is 

that the traditional image transformation methods do not learn from data. As a comparison, GAN 

method does not only increase data sample sizes while keeping the characteristics of the objects to 

detect, but also learns from data distribution to generate new diversified data samples preserving 

the context information in the original images.  
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

 The overall goal of this dissertation is to investigate the framework and workflow of deep 

learning model and apply them to resolve practical remote sensing image processing problems 

such as image classification, object detection, and semantic segmentations. There are three 

research topics are proposed in this dissertation.  

 The first topic is using CNN model to tackle the hyperspectral image classification problem. 

In this research, we present a simple four layers deep convolutional neural network (CNN) model 

for soil detection by using the combination of eighty synthetic hyperspectral bands and its original 

eight multispectral bands. We applied the CNN model onto a set of high-resolution data created 

by pan-sharpening the original multispectral bands and its synthetic hyperspectral bands. By using 

the pan-sharpened synthetic hyperspectral bands, the performance of the CNN model for soil 

detection has been significantly improved [31].  

 The second topic in this dissertation is to accurately extract the refugee tents near the Syria-

Jordan border by using deep learning models. In this research, we present an FCN model to tackle 

the small ground objects detection problem and applied it to the refugee tents extraction problem. 

In this research we also compared the proposed approach with the traditional spectral angle mapper 

(SAM) method, CNNs models, and the Mask R- CNN model. The experimental results show that 

the FCN model significantly improved the overall performance than the other models [32].  

 The third topic in this dissertation is data augmentations by applying the GAN network. In 

this research, we used SinGAN, which is a hierarchically structured deep GAN model. SinGAN is 
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able to generate data from one single natural image. we compared the GAN data augmentations 

results with the other traditional image transformation methods such as flipping, rotating, scaling, 

and adding noises. The experimental results show that the GAN generated samples improved the 

IoU score of the FCN model by 0.2-1.5%. We also find that the models with finer image input size 

and larger training samples performs much better than the model with larger image input size and 

smaller training sample. The traditional image transformation methods do not help in this case. 

 

6.2 Future Work  

 Even though our proposed work and results have reached satisfactory results, for each of 

the proposed topics there are still improvements that could be made. For the first research topic in 

this dissertation, the hyperspectral RS image data provides us very rich spectral and spatial 

information. In the future, we could apply a very large deep model such as deep residual net 

ResNet-50 or ResNet-100 to continue to improve the classification results. On the other hand, the 

computational complexity to process these hyperspectral data is very high, it will be very useful if 

the spectral dimensionality could be reduced but still keeping the same information from the 

hyperspectral bands. For the second research topic in this dissertation, the FCN model has reached 

very good classification results in detecting small ground objects. However, in practical, the RS 

images are easily impacted by climate and weather such as snow and cloud. In my future work, 

further research will be focused on eliminating the impact of weather changes in the RS images 

classification. For the last research topic in this dissertation, the GAN samples improved the 

performance of the FCN model, however, to create the ground truth mask is laborious. In the future, 

I will focus on developing an end-to-end deep model by integrating GAN as a part of the 
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classification model to improve the classification performance without too much interference in 

the middle of the training process. 
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