287 research outputs found

    A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data using Self-Supervised Learning

    Get PDF
    ABSTRACT Solar energy is now the cheapest form of electricity in history. Unfortunately, signi.cantly increasing the electric grid’s fraction of solar energy remains challenging due to its variability, which makes balancing electricity’s supply and demand more di.cult. While thermal generators’ ramp rate—the maximum rate at which they can change their energy generation—is .nite, solar energy’s ramp rate is essentially in.nite. Thus, accurate near-term solar forecasting, or nowcasting, is important to provide advance warnings to adjust thermal generator output in response to variations in solar generation to ensure a balanced supply and demand. To address the problem, this paper develops a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning. Speci.cally, we develop deep auto-regressive models using convolutional neural networks (CNN) and long short-term memory networks (LSTM) that are globally trained across multiple locations to predict raw future observations of the spatio-temporal spectral data collected by the recently launched GOES-R series of satellites. Our model estimates a location’s near-term future solar irradiance based on satellite observations, which we feed to a regression model trained on smaller site-speci.c solar data to provide near-term solar photovoltaic (PV) forecasts that account for site-speci.c characteristics. We evaluate our approach for di.erent coverage areas and forecast horizons across 25 solar sites and show that it yields errors close to that of a model using ground-truth observations

    Retrieval of surface solar irradiance from satellite imagery using machine learning: pitfalls and perspectives

    Get PDF
    Knowledge of the spatial and temporal characteristics of solar surface irradiance (SSI) is critical in many domains. While meteorological ground stations can provide accurate measurements of SSI locally, they are sparsely distributed worldwide. SSI estimations derived from satellite imagery are thus crucial to gain a finer understanding of the solar resource. Inferring SSI from satellite images is, however, not straightforward, and it has been the focus of many researchers in the past 30 to 40 years. For long, the emphasis has been on models grounded in physical laws with, in some cases, simple statistical parametrizations. Recently, new satellite SSI retrieval methods have been emerging, which directly infer the SSI from the satellite images using machine learning. Although only a few such works have been published, their practical efficiency has already been questioned. The objective of this paper is to better understand the potential and the pitfalls of this new family of methods. To do so, simple multi-layer-perceptron (MLP) models are constructed with different training datasets of satellite-based radiance measurements from Meteosat Second Generation (MSG) with collocated SSI ground measurements from Météo-France. The performance of the models is evaluated on a test dataset independent from the training set in both space and time and compared to that of a state-of-the-art physical retrieval model from the Copernicus Atmosphere Monitoring Service (CAMS). We found that the data-driven model's performance is very dependent on the training set. Provided the training set is sufficiently large and similar enough to the test set, even a simple MLP has a root mean square error (RMSE) that is 19 % lower than CAMS and outperforms the physical retrieval model at 96 % of the test stations. On the other hand, in certain configurations, the data-driven model can dramatically underperform even in stations located close to the training set: when geographical separation was enforced between the training and test set, the MLP-based model exhibited an RMSE that was 50 % to 100 % higher than that of CAMS in several locations.</p

    Spatio-temporal solar forecasting

    Get PDF
    Current and future photovoltaic (PV) deployment levels require accurate forecasting to ensure grid stability. Spatio-temporal solar forecasting is a recent solar forecasting approach that explores spatially distributed solar data sets, either irradiance or photovoltaic power output, modeling cloud advection patterns to improve forecasting accuracy. This thesis contributes to further understanding of the potential and limitations of this approach, for different spatial and temporal scales, using different data sources; and its sensitivity to prevailing local weather patterns. Three irradiance data sets with different spatial coverages (from meters to hundreds of kilometers) and time resolutions (from seconds to days) were investigated using linear autoregressive models with external inputs (ARX). Adding neighboring data led to accuracy gains up to 20-40 % for all datasets. Spatial patterns matching the local prevailing winds could be identified in the model coefficients and the achieved forecast skill whenever the forecast horizon was of the order of scale of the distance between sensors divided by cloud speed. For one of the sets, it was shown that the ARX model underperformed for non-prevailing winds. Thus, a regime-based approach driven by wind information is proposed, where specialized models are trained for different ranges of wind speed and wind direction. Although forecast skill improves by up to 55.2 % for individual regimes, the overall improvement is only of 4.3 %, as those winds have a low representation in the data. By converting the highest resolution irradiance data set to PV power, it was also shown that forecast accuracy is sensitive to module tilt and orientation. Results are shown to be correlated with the difference in tilt and orientation between systems, indicating that clear-sky normalization is not totally effective in removing the geometry dependence of solar irradiance. Thus, non-linear approaches, such as machine learning algorithms, should be tested for modelling the non-linearity introduced by the mounting diversity from neighboring systems in spatio-temporal forecasting

    STint: Self-supervised Temporal Interpolation for Geospatial Data

    Full text link
    Supervised and unsupervised techniques have demonstrated the potential for temporal interpolation of video data. Nevertheless, most prevailing temporal interpolation techniques hinge on optical flow, which encodes the motion of pixels between video frames. On the other hand, geospatial data exhibits lower temporal resolution while encompassing a spectrum of movements and deformations that challenge several assumptions inherent to optical flow. In this work, we propose an unsupervised temporal interpolation technique, which does not rely on ground truth data or require any motion information like optical flow, thus offering a promising alternative for better generalization across geospatial domains. Specifically, we introduce a self-supervised technique of dual cycle consistency. Our proposed technique incorporates multiple cycle consistency losses, which result from interpolating two frames between consecutive input frames through a series of stages. This dual cycle consistent constraint causes the model to produce intermediate frames in a self-supervised manner. To the best of our knowledge, this is the first attempt at unsupervised temporal interpolation without the explicit use of optical flow. Our experimental evaluations across diverse geospatial datasets show that STint significantly outperforms existing state-of-the-art methods for unsupervised temporal interpolation

    Assessment of Renewable Energy Resources with Remote Sensing

    Get PDF
    The development of renewable energy sources plays a fundamental role in the transition towards a low carbon economy. Considering that renewable energy resources have an intrinsic relationship with meteorological conditions and climate patterns, methodologies based on the remote sensing of the atmosphere are fundamental sources of information to support the energy sector in planning and operation procedures. This Special Issue is intended to provide a highly recognized international forum to present recent advances in remote sensing to data acquisition required by the energy sector. After a review, a total of eleven papers were accepted for publication. The contributions focus on solar, wind, and geothermal energy resource. This editorial presents a brief overview of each contribution.About the Editor .............................................. vii Fernando Ramos Martins Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing Reprinted from: Remote Sens. 2020, 12, 3748, doi:10.3390/rs12223748 ................. 1 André R. Gonçalves, Arcilan T. Assireu, Fernando R. Martins, Madeleine S. G. Casagrande, Enrique V. Mattos, Rodrigo S. Costa, Robson B. Passos, Silvia V. Pereira, Marcelo P. Pes, Francisco J. L. Lima and Enio B. Pereira Enhancement of Cloudless Skies Frequency over a Large Tropical Reservoir in Brazil Reprinted from: Remote Sens. 2020, 12, 2793, doi:10.3390/rs12172793 ................. 7 Anders V. Lindfors, Axel Hertsberg, Aku Riihelä, Thomas Carlund, Jörg Trentmann and Richard Müller On the Land-Sea Contrast in the Surface Solar Radiation (SSR) in the Baltic Region Reprinted from: Remote Sens. 2020, 12, 3509, doi:10.3390/rs12213509 ................. 33 Joaquín Alonso-Montesinos Real-Time Automatic Cloud Detection Using a Low-Cost Sky Camera Reprinted from: Remote Sens. 2020, 12, 1382, doi:10.3390/rs12091382 ................. 43 Román Mondragón, Joaquín Alonso-Montesinos, David Riveros-Rosas, Mauro Valdés, Héctor Estévez, Adriana E. González-Cabrera and Wolfgang Stremme Attenuation Factor Estimation of Direct Normal Irradiance Combining Sky Camera Images and Mathematical Models in an Inter-Tropical Area Reprinted from: Remote Sens. 2020, 12, 1212, doi:10.3390/rs12071212 ................. 61 Jinwoong Park, Jihoon Moon, Seungmin Jung and Eenjun Hwang Multistep-Ahead Solar Radiation Forecasting Scheme Based on the Light Gradient Boosting Machine: A Case Study of Jeju Island Reprinted from: Remote Sens. 2020, 12, 2271, doi:10.3390/rs12142271 ................. 79 Guojiang Xiong, Jing Zhang, Dongyuan Shi, Lin Zhu, Xufeng Yuan and Gang Yao Modified Search Strategies Assisted Crossover Whale Optimization Algorithm with Selection Operator for Parameter Extraction of Solar Photovoltaic Models Reprinted from: Remote Sens. 2019, 11, 2795, doi:10.3390/rs11232795 ................. 101 Alexandra I. Khalyasmaa, Stanislav A. Eroshenko, Valeriy A. Tashchilin, Hariprakash Ramachandran, Teja Piepur Chakravarthi and Denis N. Butusov Industry Experience of Developing Day-Ahead Photovoltaic Plant Forecasting System Based on Machine Learning Reprinted from: Remote Sens. 2020, 12, 3420, doi:10.3390/rs12203420 ................. 125 Ian R. Young, Ebru Kirezci and Agustinus Ribal The Global Wind Resource Observed by Scatterometer Reprinted from: Remote Sens. 2020, 12, 2920, doi:10.3390/rs12182920 ................. 147 Susumu Shimada, Jay Prakash Goit, Teruo Ohsawa, Tetsuya Kogaki and Satoshi Nakamura Coastal Wind Measurements Using a Single Scanning LiDAR Reprinted from: Remote Sens. 2020, 12, 1347, doi:10.3390/rs12081347 ................. 165 Cristina Sáez Blázquez, Pedro Carrasco García, Ignacio Martín Nieto, MiguelAngel ´ Maté-González, Arturo Farfán Martín and Diego González-Aguilera Characterizing Geological Heterogeneities for Geothermal Purposes through Combined Geophysical Prospecting Methods Reprinted from: Remote Sens. 2020, 12, 1948, doi:10.3390/rs12121948 ................. 189 Miktha Farid Alkadri, Francesco De Luca, Michela Turrin and Sevil Sariyildiz A Computational Workflow for Generating A Voxel-Based Design Approach Based on Subtractive Shading Envelopes and Attribute Information of Point Cloud Data Reprinted from: Remote Sens. 2020, 12, 2561, doi:10.3390/rs12162561 ................. 207Instituto do Ma
    • …
    corecore