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ABSTRACT

DATA-DRIVEN CONTROL, MODELING, AND FORECASTING
FOR RESIDENTIAL SOLAR POWER

FEBRUARY 2022

AKANSHA SINGH BANSAL

B.Tech, MAHARISHI DAYANAND UNIVERSITY, ROHTAK

M.S., INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY,

BANGALORE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David Irwin

Distributed solar generation is rising rapidly due to a continuing decline in the cost

of solar modules. Most residential solar deployments today are grid-tied, enabling them to

draw power from the grid when their local demand exceeds solar generation and feed power

into the grid when their local solar generation exceeds demand. The electric grid was not

designed to support such decentralized and intermittent energy generation by millions of

individual users. This dramatic increase in solar power is placing increasing stress on the

grid, which must continue to balance its supply and demand despite the potential for large

solar fluctuations. To address the problem, this thesis proposes new data-driven techniques

for better controlling, modeling, and forecasting residential solar power.

The grid currently exercises no direct control over its connected solar capacity, but in-

stead indirectly controls it by regulating new solar connections. This approach is highly
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inefficient and wastes much of the grid’s potential to transmit solar. Instead, we propose

Software-defined Solar-powered (SDS) systems that dynamically regulate solar flow rates

into the grid and design an SDS prototype, called SunShade. Specifically, we introduce a

new class of Weighted Power Point Tracking (WPPT) algorithms, inspired by Maximum

Power Point Tracking (MPPT), capable of dynamically enforcing both hard and relative

caps on solar power, which enables the grid to decouple rate control from admission con-

trol. In contrast, to avoid grid regulations entirely, homes can also partially or entirely

defect from the grid to fully utilize their solar power without restrictions. We present a

switching architecture that enables homes to dynamically switch between a local genera-

tor, battery, and solar to co-optimize their cost, carbon footprint, switching frequency, and

reliability. We introduce switching policies that reveal a tradeoff between solar utilization

and reliability, such that higher solar utilization requires more switching, which can lead to

lower reliability.

Enabling better control of intermittent solar also requires improving solar performance

models, which infer solar output based on current environmental conditions. Recent solar

models primarily leverage data from ground-based weather stations, which may be far from

solar sites and thus inaccurate. In addition, these weather stations report cloud cover—the

most important metric for solar modeling—in coarse units of oktas. Instead, we propose

developing solar models based on data from a new generation of Geostationary Operational

Environmental Satellites (GOES-16 and GOES-17) that began launching in late 2017. We

develop physical and machine learning (ML) models for solar performance modeling using

both derived data products released by the National Oceanic and Atmospheric Administra-

tion (NOAA), as well as the satellites’ raw multispectral data. We find that ML-based

models using the raw multispectral data are significantly more accurate than both physical

models using derived data products, such as Downward Shortwave Radiation (DSR), and

prior okta-based solar models. The raw multispectral data is also beneficial since it is avail-

able at much higher spatial and temporal resolutions—∼1km2 and every 5 minutes—than
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oktas—∼25km2 and every hour. The accuracy of our ML-based models on multispectral

data is also better regardless of whether they are locally trained using data only from a par-

ticular solar site or globally trained using data from many solar sites. Since global models

can be trained once but used anywhere, they can also enable accurate modeling for sites

with limited data, e.g., newly installed solar sites.

Solar forecasting models, which predict future solar output based on environmental

conditions also help in better solar control. Accurate near-term solar forecasts on the order

of minutes to an hour are particularly important because homes and the grid must be able to

adapt to large sudden changes in solar output. Current solar forecasting techniques, which

primarily use Numerical Weather Predictions (NWP) algorithms, mostly leverage physics-

based modeling. These physics-based models are most appropriate for forecast horizons on

the order of hours to days and not near-term forecasts on the order of minutes to an hour.

While there is some recent work on analyzing images from ground-based sky cameras for

accurate near-term solar forecasting, it requires installing additional infrastructure. We in-

stead propose a general model for solar nowcasting from abundant and readily available

multispectral satellite data using self-supervised learning. Specifically, we develop deep

auto-regressive models using convolutional neural networks (CNN) and long short-term

memory networks (LSTM) that are globally trained across multiple locations to predict raw

future observations of the spatio-temporal data collected by the recently launched GOES-R

series of satellites. Our model estimates a location’s future solar irradiance based on satel-

lite observations, which we feed to a regression model trained on smaller site-specific solar

data to provide near-term solar photovoltaic (PV) forecasts that account for site-specific

characteristics.
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CHAPTER 1

INTRODUCTION

Solar energy generation has grown at nearly an exponential rate over that past 30 years,

and is now cheaper than the retail price of electricity in many locations [113]. The goal for

the U.S. Department of Energy’s SunShot initiative is for solar to satisfy 14% of U.S. elec-

tricity demand by 2030 and 27% by 2050 [23], or a factor of 10× and 20×, respectively,

greater than the 1.4% it satisfied in 2018 [24]. These rapidly falling prices and environmen-

tal concerns are in turn driving significant increases in distributed solar generation – both

residential and commercial. Nearly all these solar deployments are “grid-tied,” enabling

them to draw power from the grid when their local demand exceeds solar generation and

feed power into the grid when their local solar generation exceeds demand. However, these

grid-tied systems impose a burden on the grid to absorb a building’s energy surpluses and

make up for its energy deficits. This thesis discusses techniques for controlling, modeling

and forecasting residential solar which are important to support the increasing penetration

of solar in the grid.

1.1 Motivation

Solar has experienced an average annual growth rate of 49% in the last decade with

more than 89 gigawatts (GW) of solar capacity installed nationwide, enough to power 16

million homes [36]. This is mainly attributed to federal policies like the tax credits, de-

clining PV costs, and increasing demand for clean electricity. The electric grid was not

designed to support such decentralized and intermittent energy generation by millions of

individual users. Instead, the grid imposes a rigid top-down hierarchy where large, highly-
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regulated utilities generate (and purchase) energy to meet the demand of their customers

and maintain grid stability. To do so, utilities continuously balance electricity’s supply

and demand in real time by regulating generator power output. Since the energy demand

(or “load”) profile of individual users is stochastic, such real-time balancing is only pos-

sible because the sum of load profiles across many users tends to be smooth and highly

predictable. As a result, utilities can plan when to activate (or “dispatch”) generators in

advance to satisfy large increases in demand. Distributed solar generation at large scales

fundamentally alters this paradigm by increasing the stochasticity of user load profiles, even

when aggregating them. Solar power output can change almost instantaneously, e.g., due

to passing clouds making it stochastic and unreliable source of power. While dispatchable

generators are mechanical devices that take some time to activate and adjust their power

output, thus preventing them from maintaining high power quality when compensating for

rapid solar variations. In general, the grid faces significant operational challenges when

renewable penetration approaches 10% [122], necessitating additional energy storage or

sophisticated demand-side load management.

This increasing amount of solar generation is profoundly changing the grid’s operation

and the model of utilities. In particular, while utilities operate and maintain the distribution

network, they earn most of their revenue from generating electricity, which they currently

can do much more efficiently than individual users. However, solar generation differs from

fossil-fuel based generation in that it does not benefit as much from economies of scale.

As a result, individual homeowners can install solar on their rooftops for closer to the

same cost per watt that utilities can install large grid-scale solar farms. Even now, when

amortized over a 25-year lifetime, solar power is cheaper than retail electricity rates in

much of the U.S., assuming the solar power can be “net metered” and the utility credits

users the retail rate for surplus power fed into the grid. Net metering enables consumers

to connect solar power to the grid such that it acts as a negative load, causing their meter

to run backwards when generating a net power surplus. When combined with government
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incentives, the payback period for net metered solar is now well under 10 years in many

states. Of course, the more individual users generate their own power, the less revenue

utilities earn from generating electricity. Yet, utilities cannot simply decommission their

generators (and take a capital loss), since they must still supply the grid’s power at night

when the sun is not shining. In addition, utilities may need to alter their mix of generators

to handle increasing net metered solar installations, and their increased stochasticity, by

employing more responsive but less efficient peaking generators. These changes may in-

turn increase the cost and decrease the efficiency of grid generators.

In order to increase the share of solar in the energy mix and achieve the clean energy

goals, there is a need for better solar control, modeling and forecasting techniques.

1.2 Thesis Contributions

As described above, distributed solar creates fundamental challenges which require bet-

ter controlling, modeling and forecasting techniques. Data-driven techniques can be studied

at different granularities, right from the rooftop solar installations to weather monitoring

stations and the satellite data. We summarize our thesis contributions below.

1.2.1 Solar Control

With the rise in distributed generation and demand for energy, the grid is becoming

increasingly strained. As thousands of people are installing solar and generating their own

energy, consumers are becoming less and less dependent on the utilities for their energy

supplies. In order to control this, the state and government introduce “net metering” laws

to allow customers with rooftop solar to sell their energy back to the grid. Unfortunately

a number of states are lacking the policies to encourage solar; but many are also actively

preventing it through policies and restrictions [110]. The current approach to allocating

the grid’s available solar capacity is a static peak-based first-come-first-serve policy which

is highly inefficient, and wastes much of the grid’s potential to transmit solar. As these
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policies become more and more strict, customers are beginning to defect from the grid

either partially or completely in order to employ solar without restrictions.

1.2.1.1 Controlling Grid-tied Solar Capacity.

In Chapter 3, we propose Software-defined Solar-powered (SDS) systems to dynami-

cally control the flow rates of solar into the grid and also present an SDS prototype, called

SunShade [118]. SDS focuses not only on managing grid stability but also on fairly shar-

ing the grid’s available capacity to accept solar while maintaining grid neutrality. It does

so by introducing a new class of Weighted Power Point Tracking (WPPT) algorithms that

enforce a relative cap and eliminate the need for policy imposed static limits. The goal

of SDS systems is to enable all users to freely connect to the grid and dynamically share

its capacity to transmit solar power. This principle represents a form of grid neutrality,

akin to net neutrality, where the grid treats all solar energy contributions equally without

discriminating between users.

1.2.1.2 Controlling Off-grid Solar Capacity.

In the absence of such a system and with increasing policy regulations, we envision

solar users considering partially or entirely defecting from the grid so as to employ solar

without restrictions and have more control over their energy. The idea of energy indepen-

dence by combining solar with storage will allow consumers with rooftop solar to meet

their own energy demands without selling it back to the grid. In this regard, we present an

architecture for grid defection that enables a home to dynamically switch between a local/-

generator and solar/battery depending on its power consumption and generation in Chapter

4 [43]. We introduce switching policies that define a tradeoff between power switching and

wasted solar: more switching leads to less reliability, but maximizes the use of solar. We

further analyze the tradeoffs in terms of number of switches, solar waste, reliability, carbon

emissions and total cost.
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1.2.2 Solar Modeling

Enabling better control of intermittent solar also requires improving solar performance

models that infer solar sites’ output based on its physical and environmental characteristics.

Solar is intermittent and its output is affected by a number of factors like sky conditions,

location, time of the day, site’s elevation etc. Even passing clouds have the potential to

introduce significant fluctuations in solar energy production, by introducing sudden in-

creases or decreases, often called ramps. Recent solar models primarily leverage data from

ground-based weather stations, which are not always available for every solar site. Even if

available, these could be located at distance away from the solar sites making their readings

inaccurate. In addition, these weather stations report cloud cover—the most important met-

ric for solar modeling—in coarse units of oktas. One okta is equal to one eight of the sky

covered in cloud. These further loosely translate to fractions between 0-1 and are measured

on an hourly basis.

1.2.2.1 Satellite-based Modeling using DSR Data

The low frequency, resolution and spatial coverage of these ground-based okta measure-

ments make this metric coarse, resulting in inaccuracy which is by far the largest source

of error in solar modeling. In Chapter 5 [42] we instead develop and evaluate solar perfor-

mance models that use satellite-based estimates of downward shortwave (solar) radiation

(DSR) at the Earth’s surface, which NOAA began publicly releasing after the launch of the

GOES-R geostationary satellites in 2017. Unlike public weather data, DSR estimates are

available for every 0.5km2 area. We show that the accuracy of solar performance modeling

using satellite data and public weather station data depends on the cloud conditions, with

DSR-based modeling being more accurate under clear skies and station-based modeling

being more accurate under overcast skies.
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1.2.2.2 Satellite-based Modeling using Multispectral Data

DSR data is released only hourly and are often not available, especially under over-cast

sky conditions. While the raw multispectral data is available at much higher spatial and

temporal resolutions—∼1km2 and every 5 minutes—than oktas—∼25km2 and every hour.

Further, we observed a strong correlation between multispectral satellite data solar output

and show in Chapter 6 [41] that ML-based models using these measurements are signif-

icantly more accurate than both physical models using derived data products (DSR), and

prior okta-based solar models. We further develop both local and global ML models using

data from both GOES-16 and GOES-17. Local models are trained on data from a spe-

cific solar site, while global models are trained on normalized data from many solar sites.

This also enables accurate modeling for newly installed solar sites with limited historical

generation data.

1.2.3 Solar Nowcasting

Finally, such high resolution satellite data opens up the possibility for better forecast-

ing of solar generation. With the rise in residential solar PV installations, accurate solar

forecasts are becoming increasingly important to allow seamless integration of solar in the

energy supply. Solar forecasting models predict future solar output based on environmen-

tal conditions and are basically a two step process - predicting future weather conditions

and second translating those predictions into solar output by using solar models. Accurate

forecast can help the utility operators to anticipate the solar variations in advance and allow

them to schedule the available energy reserves while reducing the need for storage. Near-

term solar forecasts on the order of minutes to an hour are particularly important because

homes and the grid must be able to adapt to large sudden solar fluctuations introduced by

solar variations. The key challenge is to be able to predict the ramp up and down or the

small changes in solar generation in the order of minutes to an hour. Current solar forecast-

ing techniques which are primarily based on NWP algorithms, mostly leverage physics-
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based modeling. These physics-based models are most appropriate for forecast horizons

on the order of hours to days and not near-term forecasts on the order of minutes to an hour.

While there is some recent work on analyzing images from ground-based sky cameras for

accurate near-term solar forecasting, it requires installing additional infrastructure.

To address this, in Chapter 7 we discuss our self- supervised solar nowcasting models

to predict near-term solar output using live multispectral data from GOES-R satellites. Our

approach, unlike NWP-based models and ground-based sky cameras, can enable near-term

solar forecasting at any location without additional infrastructure. Atmospheric changes,

like cloud movement from one location to another over time, directly affects how the solar

generation at these sites will change. Such changes are captured in this satellite data by

processing an area around the solar site instead of using a single point value from the

satellite. We introduce CNN-LSTM models to forecast a residence’s solar output in the

future based on the satellite’s view of the surrounding area. This approach relies and builds

on leveraging the spatio-temporal properties of the satellite data. By analyzing time series

multi-channel data from these satellites at different resolutions, it is possible to indirectly

capture the atmospheric changes thus resulting in accurate near-term solar forecasts.

1.3 Dissertation Overview

We organize the rest of the dissertation as follows. Chapter 2 provides the necessary

background on solar control, modeling and forecasting that will serve as the basis for the

rest of the thesis. Chapter 3 covers Sunshade, our SDS prototype, and illustrates enforc-

ing static and dynamic solar rate control. Chapter 4 describes feasibility, cost, and carbon

emissions of grid defection. Chapter 5 details solar modeling with the use of derived prod-

ucts from satellite and compares its performance against ground-based models. Chapter 6

introduces both local and global solar models using multispectral satellite data. Chapter 7

presents our work on near-term solar forecasting using multispectral satellite data. Finally,

chapter 8 concludes the completed work and outlines possible future work.
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CHAPTER 2

BACKGROUND

In this chapter, we provide background required for various aspects of this disserta-

tion. We shed some light on the different components related to controlling, modeling and

forecasting of residential solar.

2.1 Rising Solar and its Environmental Impacts

Today, the threat to climate change is higher than ever with the dramatic increase in

carbon and other greenhouse gas (GHG) emissions. United States is on a path to achieve

zero carbon emissions by 2050 while the power grid is set to become carbon free by 2035.

This would require power systems to run on renewable energy like solar and wind which

has zero carbon waste. Presently, electric grid is the largest contributor to greenhouse gases

owning 28% of all emissions [32]. Solar energy is a renewable, zero carbon source of

energy generation widely available in every geographic region, holding enormous potential

to reduce the GHG emissions. With these growing environmental concerns and falling

prices of solar PV modules, there is an increasing interest of utilities and consumers towards

solar installations.

As per a report by the Solar Energies Industries Association (SEIA) and Wood Macken-

zie, U.S. solar installations are expected to increase by 43% this year and residential PV

solar capacity is expected to more than triple by 2024 [35]. With this increase in the in-

stalled capacity of the distributed solar, power is becoming less controllable. As per the

laws of physics, demand and supply must be balanced at all times and the energy fed into

the grid must be equal to the demand at that moment. Feeding power either higher or
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lower than required can either result in power surge or power outage, damaging millions

of connected electrical devices. This is why there is a need for accurate solar controlling,

modeling and forecasting techniques for geographically distributed rooftop solar. Residen-

tial solar can only host a certain number of panels accounting for few kilowatts of energy.

But these residential solar PV when aggregated over large scales together have the potential

to generate more electricity than a power plant. The challenge here is that these rooftop

solar are usually spread over large geographical area and governed by varying weather and

physical conditions, which in turn affects each panel’s solar output at any given time. It

hence becomes imperative to accurately control, model and predict these multitude of small

solar setups scattered over large area.

2.2 Solar Control and Storage

In 2013, the California ISO introduced ”Duck Curve” that essentially depicts the differ-

ence in electricity demand and the amount of available solar energy throughout the day.

This curve highlighted the potential of solar over-generation when the sun reaches the

zenith and how the solar drops towards the evening as the sun sets and when the elec-

tricity demand from consumers rises [33]. This breakthrough evidently showed for the first

time the problem with intermittent solar generation and how this problem scales up as the

share of solar keeps on increasing in the grid.

With the increasing penetration of solar, policies are being scaled up to match renewable

energy which now meets 22% of the global electricity demand [34]. Development of solar

PV is only possible because of these carefully crafted state and federal policies which help

towards their accelerated development. In order for the grid to maintain stability, there

needs to be a close match between the utility’s share of power and the power feeding in

from the consumer side which varies because of the ever changing weather amongst many

other factors. While the power demand and the solar generation profiles vary almost in real

time, these policies of solar admission to the grid are mostly static and vary by states. These
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policies in turn decides the market and tax pricing which in turn motivates or demotivates

people from installing solar, selling their energy to the grid or getting defected from the

grid.

2.2.1 Challenges

The challenge with solar is to provision for the time of under-generation i.e. time with

snow, rain, clouds, and after sunset and also to cater to the problem of over-generation

during the periods of high-sunshine. One of the solution in this regard is to install batteries

i.e. using batteries to store extra charge during periods of high solar production and use

them to meet the power demand during period of low solar generation. Batteries could also

eliminate the need for solar curtailment without the fear of over-generation.

Battery storage at grid level seems impractical and expensive solution as a long-term

alternative, though it still is a viable option over short-term. Peak energy demand including

heating, cooling, etc. can be as much as 20 times the energy consumed on an average

day [31]. Transitioning to these periods of high demand with these batteries will not be

as easy as with conventional generators where we can increase the fuel intake to get the

desired power output. Another problem with batteries is its sizing. Batteries are need

to store the surplus solar charge while such peaks in solar generation are only a seasonal

phenomenon leaving the batteries idle for the rest of the year. For a future powered by

renewable energy, the grid needs to become more flexible and accommodating by better

predicting, control and modeling of solar.

2.3 Solar Modeling

Traditionally, the grid operators regulated the generation schedules of the generators by

using the load profiles of the consumers. Now, with the proliferation of distributed PV, con-

sumers have become prosumers—by both producing and consuming energy. The lack of

information about distributed residential PV output and irradiance data makes it challeng-
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ing for the utilities and grid managers to predict how much demand will these prosumers

reduce or instead feed back into the grid. This ultimately makes it difficult for them to

decide how much electricity the grid should carry, which is a significant challenge. Hence,

modeling these individual rooftop solar with respect to their behavior towards changing

weather conditions, geographical location and characteristics like panel size, tilt, etc. is

extremely important. In the absence of accurate solar output models for each of these in-

dividual solar sites, distributors either apply conservative estimates or apply generalized

metrics while modeling the solar capacity. Clearly those approaches are not close to accu-

rate and in turn will affect reliable operation of the grid. Accurate solar modeling which

is not limited by historical data, or site-specific details can help in providing better solar

estimates.

2.4 Solar Predictability

Solar prediction or forecasting allows the grid operators to know in advance the solar

generation profiles under variable conditions. This does gives the utilities opportunity for

scheduling their mix of generating sources in advance. Solar forecasting is basically a two

step process - one, predicting the weather at the next time instants and two, translating

those weather predictions into solar output via solar models to predict solar generation in

the future. Accurate solar modeling and weahter predictions are both needed for accurate

solar forecast. Both over or under estimation of the solar output can lead to power surge

or power outage which the grid presently avoids by either imposing penalty charges on the

grid market or by implementing reliability curtailment where operators can scale down the

solar production to match the forecasted value. Both of these are costly ways of handling

the inaccuracies in the prediction [30].
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CHAPTER 3

CONTROLLING GRID TIED RESIDENTIAL SOLAR

In this chapter, we address the problem of solar control introduced by the large scale

penetration of intermittent solar generation. We propose SDS systems that dynamically

regulates the amount of solar power that flows into the grid by introducing fundamental

mechanisms for programmatically controlling the size of solar flows. We implement an

SDS prototype, called SunShade, and evaluate tradeoffs in the accuracy and fidelity of

these mechanisms to enforce limits on solar flows.

3.1 Introduction

The electric grid is in the midst of a profound transformation, as users are increasingly

generating their own energy locally from renewable sources rather than purchasing it from

electric utilities. This transformation is being spurred by exponential decreases in the cost

of solar modules, which have fallen 60% since 2011 [2]. Rapidly falling prices have in turn

driven significant increases in distributed solar generation. Nearly all solar deployments are

“grid-tied,” enabling them to draw power from the grid when their local demand exceeds

solar generation and feed power into the grid when their local solar generation exceeds de-

mand. However, these grid-tied systems impose a burden on the grid to absorb a building’s

energy surpluses and make up for its energy deficits.

The electric grid was not designed to support such decentralized and intermittent energy

generation by millions of individual users. Instead, the grid imposes a rigid top-down

hierarchy where large, highly-regulated utilities generate (and purchase) energy to meet

the demand of their customers and maintain grid stability. To do so, utilities continuously
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balance electricity’s supply and demand in real time by regulating generator power output.

Since the energy demand (or “load”) profile of individual users is stochastic, such real-

time balancing is only possible because the sum of load profiles across many users tends

to be smooth and highly predictable. As a result, utilities can plan when to activate (or

“dispatch”) generators in advance to satisfy large increases in demand.

Distributed solar generation at large scales fundamentally alters this paradigm by in-

creasing the stochasticity of user load profiles, even when aggregating them. While solar

power output can change instantaneously, e.g., due to passing clouds, dispatchable gener-

ators are mechanical devices that take some time to activate and adjust their power output,

which prevents them from maintaining high power quality when compensating for rapid so-

lar variations. In general, the grid faces significant operational challenges when renewable

penetration approaches 10% [122], necessitating additional energy storage or sophisticated

demand-side load management.

Due to the challenges above, states generally place hard limits (“caps”) on the collec-

tive solar capacity that may connect to the grid. However, due to the rapid growth in solar

power, users are now starting to hit these caps. For example, Massachusetts reached its

cap in the summer of 2015, which immediately halted construction on 134MW of new

solar deployments. The legislature did not pass a stop-gap bill to raise the cap until April

2016 [115]. In Hawaii, where 12% of residents have rooftop solar, utilities barred additional

residents from installing grid-tied solar for two years until the government recently inter-

vened [49]. Similar tensions now exist in Germany [133], Australia [103], and Italy [58].

The underlying reason for the caps above is that the grid exercises no control over when

and how much solar power flows into it, enabling unlimited solar power to flow in from

any connected solar-powered system, even when it might compromise grid reliability and

power quality. To address the problem, we propose Software-defined Solar-powered (SDS)

systems capable of dynamically regulating the power they let “flow” into the grid, similar

to how the Internet and other networks strictly regulate data transmission. By adaptively
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controlling the size of solar power flows, SDS systems provide the grid the necessary tools

to control solar power in real-time to balance supply and demand, thereby reducing the

need for artificial regulatory caps on solar connections. The current approach to allocating

the grid’s available solar capacity is essentially a static peak-based first-come-first-serve

policy that only approves new solar connections if the grid can handle all solar connections

operating at their peak capacity. This approach is highly inefficient, and wastes much of

the grid’s potential to transmit solar power.

The goal of SDS systems is to enable all users to freely connect to the grid and dy-

namically share its capacity to transmit solar power. This principle represents a form of

grid neutrality, akin to net neutrality, where the grid treats all solar energy contributions

equally without discriminating between users. Just as in the Internet, the rate at which users

inject energy should be dynamically regulated to maximize the grid’s available solar capac-

ity (i.e., maximize goodput), maintain the supply/demand balance (i.e., prevent congestion

collapse), and fairly share the capacity among connected users. Of course, controlling so-

lar power differs in key ways from regulating data transmission. Since data transmission

is packet-based, adjusting sending rates is simple and only requires regulating the time

between packet transmissions. In contrast, solar power is continuous and thus requires dif-

ferent mechanisms for control. In addition, the maximum “sending rate” of a solar power

flow varies continuously in real time based on physical properties, e.g., the weather and the

sun, and is not a function of an arbitrary application’s demands.

To provide a foundation for SDS systems, in this chapter we propose fundamental soft-

ware mechanisms to control the “sending rate” of solar flows. Our first SDS mechanism

enables software to directly control solar flows by placing an arbitrary absolute cap on

solar power generation, akin to a network bandwidth cap. However, as we discuss, control-

ling solar flows using absolute caps may unfairly penalize large, or optimally configured,

solar installations, e.g., by restricting the percentage of their maximum power that can flow

into the grid. Thus, we introduce a new class of Weighted Power Point Tracking (WPPT)
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algorithms, akin to weighted proportional-share allocation in networking, that enforce a

relative limit on solar output as a fraction of its (dynamically changing) maximum power

point. We implement these mechanisms in a prototype SDS system we have developed,

called SunShade. In designing SunShade, we make the following contributions.

Software defined Solar-powered Systems. We introduce Software-defined Solar-powered

(SDS) systems to enable innovation in the design of higher-level solar transmission proto-

cols to support arbitrarily high solar penetrations in the grid. We contrast SDS systems

with existing work on smart inverters and active solar curtailment, which enable specific

operational modes and not software programmability.

Solar Flow Control Mechanisms. We design two fundamental mechanisms for enabling

software to control solar flow rates, inspired by similar mechanisms in networking and

operating systems. Absolute capping enforces hard caps on solar output, while WPPT en-

forces a relative cap based on a system’s changing maximum power point. We define two

WPPT variants—model-based and search-based—and examine their tradeoffs in complex-

ity, accuracy, and performance.

Implementation and Evaluation. We implement a prototype SDS system, called Sun-

Shade, and evaluate the fidelity of the mechanisms above. In particular, we quantify the

effects of variable conditions, such as clouds, passersby, and other shading, on the fidelity

of a search-based WPPT algorithm, which must periodically deviate from its cap to dis-

cover changes in the MPP that affect the cap’s accuracy.

3.2 Background

Solar-powered buildings and homes typically connect to the grid, enabling them to feed

power into the grid and draw power from the grid as solar generation fluctuates. Such

grid-tied systems are much more efficient (and less expensive) than “off grid” installations

because they reduce (or eliminate) the need for local energy storage, which is expensive

to install and maintain. Grid-tied systems are also inherently more efficient because they
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enable buildings to exchange power to balance demand, i.e., by permitting one building to

consume surplus solar power from a neighbor. However, injecting arbitrarily large amounts

of intermittent solar energy into the grid is problematic, as utilities must offset any fluctu-

ations in solar generation to maintain grid balance and power quality, e.g., by generating

less power during solar surpluses and more power during solar deficits. Unfortunately,

installing and maintaining enough energy storage capacity at grid scales to smooth fluctu-

ations remains prohibitively expensive at high solar penetration levels, e.g., >10% genera-

tion from solar.

As a result, governments strictly regulate grid solar connections, typically by setting

a hard limit on the maximum solar capacity that may connect to the grid. These limits—

set statically through legislation—are generally low. In Massachusetts, the cap that was

hit in summer 2015 was set at 4% of peak grid load [115]. Admission control policies

for solar installations based on static peak-based capping are highly wasteful because they

prevent fully utilizing the grid’s capacity to transmit solar power. To understand why,

consider that solar-powered systems are rarely generating at peak power due to non-optimal

operating conditions, e.g., from clouds, shade from obstructions, early morning or evening

hours, non-optimal tilts/orientations, seasonal variations, etc. In fact, solar installations are

capable of generating their peak power at only a single instant over the entire year: at solar

noon on the summer solstice, assuming clear skies. Thus, generating the same amount

of solar power on cloudy days or in the winter requires energy contributions from more

solar-powered systems than on sunny summer days. Unfortunately, static peak-based caps

prevent new solar connections unless the grid can safely service all systems operating at

their peak.

Any approach to dynamically regulating solar output must ensure fairness between so-

lar systems. We define an allocation of solar flow rates as fair if over some time period

τ , the solar flows are able to contribute the same percentage of their maximum possible

generation potential to the grid. This definition of fairness normalizes for the size of the
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Figure 3.1: I-V curve for a typical solar module, and the effect of changes in lighting and
temperature.

deployment, and also incentivizes an optimal configuration. For example, physical charac-

teristics, such as non-optimal tilts and orientations and shade from surrounding buildings,

lower a deployment’s maximum generation potential and thus its fair allocation. Unfair al-

locations of solar flows are undesirable because they reduce the compensation users receive

for the solar energy they contribute to the grid, and increase users’ local energy storage re-

quirements (to store the energy they cannot contribute). This chapter narrowly focusses

on introducing new mechanisms to enforce setting proportional flow rates in SDS systems.

Using these mechanisms to globally and dynamically regulate solar flows across multiple

SDS systems to ensure fairness is outside of our scope.

3.2.1 Background

SDS systems enable software to control the size of solar power flows into the grid. Mod-

ern solar-powered systems already actively control solar power output within their inverter,

which converts the DC electricity generated by the solar modules into AC electricity that is

synchronized with the grid’s AC electricity, e.g., to the same frequency and phase. Inverters

typically implement an embedded algorithm for Maximum Power Point Tracking (MPPT)

that constantly adjusts the deployment’s operating voltage to maximize its power genera-

tion, as the current produced by solar modules varies non-linearly with voltage. However,
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existing solar inverters generally do not expose such control mechanisms to higher-level

software. As we discuss, new smart inverters support other operating modes that imple-

ment embedded control algorithms beyond MPPT, e.g., VAR control, voltage/frequency

ride-through, etc., but do not permit programmatic control by higher layers. In contrast, we

focus on exposing programmatic interfaces to leverage similar inverter control mechanisms

for regulating solar power output.

The primary factor that affects a solar deployment’s maximum possible production is its

solar insolation, i.e. the amount of solar radiation that is incident on the solar modules’ area.

The amount of solar insolation is affected by numerous variables, including the weather,

angle of the sun in the sky (which varies across the day and year), shade from neighboring

buildings and trees, modules’ tilt and orientation, etc. Given these factors, a typical solar

module is capable of operating at a range of different current and voltage levels, which

govern its actual power output. The operating region of a solar system is governed by its

I-V curve, as depicted in Figure 3.1. The figure shows a solar module’s output current

across a range of voltages (as dictated by the applied resistance), where the solar power

output is simply the product of the voltage and current. Due to the nature of the I-V curve,

the solar output power changes at different operating voltages. Specifically, since the I-V

curve is initially flat, as the operating voltage increases, the output current remains virtually

unchanged, leading to an increase in power output. However, after reaching the knee of the

curve, any further increase in operating voltage yields a corresponding reduction in current,
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and hence the power begins to drop. Thus, the solar output rises with increasing voltage up

to a point and then precipitously drops. As a result, each I-V curve has an optimal operating

voltage Vopt that maximizes its output.

Note that the precise shape of the I-V curve is dynamic and changes continuously. For

example, the maximum power point decreases as the solar insolation decreases, causing

the curve to contract along both the x-axis and y-axis as depicted. In addition, the solar

cell temperature also affects the shape of the curve, expanding and contracting it along the

x-axis. While Figure 3.1 depicts an idealized curve for a single solar module, solar systems

are typically composed of multiple modules wired (or “strung”) together and connected to

a single inverter. In this case, the I-V curve of the aggregate solar circuit is a combination

of the I-V curves of each module. Figure 3.2 shows how the combined I-V curve is a

composition of each module’s I-V curve when wiring modules in series (a), in parallel (b),

and a combination of the two (c). In particular, two modules wired in series operate at

the same current, but have additive voltage, while two modules wired in parallel operate

at the same voltage, but have additive current. The characteristics of each module may

then change independently, affecting both the output of the other modules and system’s

aggregate I-V curve. For example, two connected modules may be installed with different

tilts at different orientations, causing a shadow to cover one but not the other. If wired in

series, the module producing the lowest current restricts the current generated by the other

modules, reducing the entire array’s output.

MPPT algorithms dynamically adjust the system’s voltage to maximize power genera-

tion by operating at the “knee” of the I-V curve as the curve changes. Inverters implement

MPPT algorithms using a DC-to-DC buck-boost converter that is able to adjust output

voltage to be greater than or less than input voltage. Buck-boost converters typically use

pulse-width modulation (PWM) to vary their duty cycle, which also varies the input/output

voltage. There is a large body of prior work on developing Maximum Power Point Track-

ing (MPPT) algorithms—examples include the perturb and observe, current sweep, incre-
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mental conductance, and constant voltage ratio algorithms amongst many others. MPPT

algorithm design is well-studied and presents many tradeoffs in optimizing power accuracy,

convergence speed, implementation complexity, initialization procedures, etc. [46].

The most common MPPT algorithm is the Perturb and Observe (P&O) algorithm. This

algorithm perturbs the voltage by a small amount, and then measures the instantaneous

current and voltage to calculate the new power (Pt) and compares it to the power Pt−1

at the previous voltage. If the change in power is positive, it continues to perturb the

voltage in the same direction; if the change is negative then it reverses the direction of its

search. Simple P&O algorithms use a fixed voltage step size on each iteration, while more

sophisticated variations adapt the step size, e.g., proportional to the slope of the P-V curve

∆P
∆V

, to converge more quickly.

3.3 Controlling Solar Flows

SDS-enabled inverters use the same basic functions as MPPT to regulate solar power

flows by operating at points other than the maximum power point (MPP). For example, an

inverter could decrease the output below the MPP, or after decreasing output, could then

increase output back to the MPP. By controlling the operating voltage, an inverter can pre-

cisely control solar output up to its MPP. Note that inverters may be used in conjunction

with solar charge controllers, enabling them to either dissipate excess power when oper-

ating below the MPP (if there is no battery) or store the excess power in a battery. In the

latter case, the solar charge controller circuitry implements the MPPT algorithm.

Interestingly, while solar power is characterized as inherently intermittent, only its MPP

is intermittent. Below the variable MPP, solar inverters are capable of making rapid and

precise changes in solar output, and generally have more flexibility to rapidly and precisely

control power output than mechanical generators, which have physical limitations on the

speed at which they can increase or decrease their revolutions. As we have discussed

earlier, active control of solar power to support increased solar penetration is an emerging
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area. However, prior work focuses largely on coarse solar curtailment during times of peak

generation (akin to coarse demand response), and not on exposing mechanisms for fair,

fine-grained regulation of solar output to higher-level software.

3.4 SDS Control Mechanisms

We design two useful mechanisms to control solar flows. Our first mechanism enforces

an absolute cap on solar output, wherein the solar output is capped based on a specified

limit. Formally, this cap is specified by a tuple (Pcap, t), which imposes an upper limit

Pcap on the power for a duration t. Our second mechanism is a class of Weighted Power

Point Tracking algorithms that enforce relative caps, such that power output is capped as a

percentage of the system’s time-varying maximum output. Formally, this cap is specified by

a tuple (∆, t) which indicates that power should be limited to a fraction ∆ of the maximum

power over the duration t, where 0 < ∆ ≤ 1. Note that, since the maximum power output

is constantly changing, the absolute power generated from the relative cap also changes.

While absolute capping enforces a strict power limit, WPPT enforces a “fair” limit across

deployments with different characteristics.

Our SunShade prototype exposes a narrow interface that enables software to set and

alter either the absolute cap Pmax or the weight ∆. Note that this interface does not expose

direct programmatic control of the voltage, but rather internally determines the appropriate

operating voltage to enforce the specified power output. This is akin to software-defined

networks that expose forwarding mechanisms to an external controller in the control plane,

but do not expose direct control of the data plane’s packet processing. Exposing direct

control of voltage lowers the barrier to introducing deviant behavior into the grid, and could

enable sophisticated grid attacks. In the past, grid interconnection standards have prevented

inverters from actively adjusting their power output outside of using MPPT (see IEEE 1547-

2003 [73]). However, these standards are changing to permit the basic control functions we
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propose (IEEE 1547a-2014 [74]), as solar capacity increases and smart inverters become

more commonplace.

3.4.1 Absolute Power Capping

As discussed in the previously, the Perturb and Observe (P&O) algorithm is the most

widely used algorithm for tracking the MPP. To support absolute power capping, we adapt

the classic P&O algorithm to ensure the solar output operates at or below a specified power

limit. Algorithm 1 shows the pseudo-code for setting an absolute power cap on solar output.

Similar to the P&O algorithm, the algorithm uses the instantaneous voltage and current to

calculate the current power Pt. Power Pt is then compared to the previous power Pt−1 to

determine if there has been a change in power.

To operate at a given power cap Pcap, the algorithm simply compares Pcap to the current

power Pt. If Pt is less or more than Pcap, the voltage is perturbed to increase or decrease,

respectively, the power. To increase and decrease the magnitude of power, the instantaneous

power Pt is compared to previous power Pt−1. If the change in power is positive, the

algorithm continues to perturb in the same direction, else the direction of the perturbation

is reversed. Upon reaching the limit Pcap, the instantaneous power output then oscillates

around the limit. In this case, a bigger step size results in larger oscillations around the

limit, but faster convergence, while a smaller step size has smaller oscillations, but has a

slower convergence. As a result, a larger step size is more appropriate in scenarios where

conditions are changing rapidly, while a smaller step size is more appropriate under stable

conditions. While this algorithm uses a fixed voltage step size, we can also use an adaptive

voltage step size proportional to the difference between Pcap and Pt to converge faster after

large variations. The only external input signal required is the absolute power cap Pcap. If

the current maximum power point Pmpp is higher than the allowed limit, the system adjusts

to operate at Pcap, else it operates at Pmpp.
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Algorithm 1 Absolute capping via modified P&O algorithm.

1 i f Pcap != P
2 i f Pcap > P
3 %i n c r e a s e power
4 i f P > Pold
5 i f V > Vold
6 D = Dold − d e l t a D ;
7 e l s e
8 D = Dold + d e l t a D ;
9 end

10 e l s e
11 i f V > Vold
12 D = Dold + d e l t a D ;
13 e l s e
14 D = Dold − d e l t a D ;
15 end
16 end
17 e l s e
18 %d e c r e a s e power
19 i f P > Pold
20 i f V > Vold
21 D = Dold + d e l t a D ;
22 e l s e
23 D = Dold − d e l t a D ;
24 end
25 e l s e
26 i f V > Vold
27 D = Dold − d e l t a D ;
28 e l s e
29 D = Dold + d e l t a D ;
30 end
31 end
32 end
33 e l s e D=Dold ;
34 end

3.4.2 Weighted Power Point Tracking

Weighted Power Point Tracking (WPPT) caps the power output such that it maintains

output at a fixed fraction of the maximum power point Pmpp. Software sets the weight ∆

between 0 and 1. To strictly enforce a weighted cap at any given time, the system must

know the maximum power point Pmpp to compute the appropriate weighted power point.

Thus, in this case, the absolute power cap is Pcap = ∆ ∗ Pmpp and changes dynamically

over time. The challenge with WPPT is that the maximum power point is not well-known,

and there is a cost to finding it. We describe two approaches to determine the Pmpp below.
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After determining Pmpp, we compute the weighted cap ∆Pmpp and use our absolute capping

P&O algorithm above to maintain the weighted cap.

3.4.3 Search-based Approach

The search-based approach operates by periodically computing the actual maximum

power point Pmpp using the standard P&O algorithm (or any other MPPT algorithm). The

fidelity of the search-based approach in tracking the true weighted power point is a function

of the variability in the MPP, the convergence speed of the MPPT algorithm, and the search

interval. For example, if MPP variability is high and we search infrequently, then the

fidelity will be low, as our weighted cap will not accurately reflect the actual cap (which

is changing as a function of the MPP). In contrast, if variability is low, and we search

frequently, then we will deviate from the weighted cap in searching, and thus generate

more power than the cap dictates, and introduce spikes in the system’s power output.

Our search-based approach invokes the P&O algorithm at a configurable interval with

a specified search duration until the algorithm oscillates for multiple iterations around the

maximum power point. The algorithm then halts and returns the Pmpp. The algorithm

then uses the absolute capping algorithm to find the voltage Vcap that results in an absolute

power cap of ∆Pmpp. This voltage will change based on weather conditions and time.

The search-based approach may observe the changes in power at Vcap to determine when

the MPP has deviated from previous MPP and trigger a new search. Our implementation

supports setting a fixed search interval or an adaptive search interval that triggers a new

search once Vcap has deviated by a configurable threshold.

3.4.4 Model-based Approach

The search-based approach has accuracy limitations because it must deviate from the

true weighted cap to find the current MPP. These deviations may reduce accuracy to un-

acceptable levels under highly variable conditions that requires frequent searching. An

alternative approach is to compute the MPP based on a model of the solar system’s maxi-

24



DC - DC 
Buck-boost
Converter

PV Module

MPPT
Algorithm

VLoad
+

--

Ipv

+

--

Vpv

Grid-tied 
Inverter

Net-metering

VLoad

Utility Grid

Figure 3.3: Depiction of our SunShade simulator.

mum output at any given time. This model may be constructed either empirically based on

data collected by the inverter and weather sensors, or analytically given specifications of

the solar panels, including their type, tilt, orientation, wiring, etc.

Building an empirical model has the advantage of not requiring a priori knowledge of

the deployment, since the system behavior is learned from empirical observations. How-

ever, empirical models take time to build, as they require collecting data on the maximum

power point under many different environmental conditions. To build such an empirical

model, the inverter would use conventional MPPT to operate at its maximum power point

for a long period of time to collect current and voltage values under many different ambient

conditions with different temperatures and solar radiation levels. While the temperatures

and solar radiation levels could be estimated from a local weather station, e.g., via Weather

Underground, it is more accurate to link the inverter with external temperature and solar

radiation sensors to record actual conditions. After recording the current and voltage at

the maximum power point for many different values of temperature, solar radiation, and

time, it can use standard techniques to build a model that predicts the current, voltage, and

maximum power point for any values of temperature, solar radiation, and time [76].

The amount of time and data an inverter must collect to build an accurate model varies

with each location. For example, in San Diego, CA, where the climate is nearly constant
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year-round at 24◦C and sunny, an accurate model will take little time to build, while in a

highly variable climate, such as in the Northeast, it might take an entire year. As a result,

we focus on an approach that analytically models a solar deployment based on its specific

characteristics. While this approach requires configuring the inverter with details specific

to each deployment, it requires no extended period of operation to collect training data. In

the model-based approach, we are given the deployment specifications that dictate a model

of the I-V curve for the deployment based on solar radiation and temperature. Again,

we assume that the inverter uses external sensors to measure solar radiation, e.g., using a

pyranometer, and temperature at the location. The model then infers the MPP based on

the radiation and temperature levels. Note that no model is perfect; thus, the fidelity of

this approach is ultimately a function of the model’s accuracy. Another drawback of the

model-based approach is that it requires irradiance and temperature sensors, which add to

the cost and complexity of a solar deployment.

3.5 Implementation

We implement our SDS rate control mechanisms in simulation and in a small-scale Sun-

Shade prototype. Our simulation leverages Matlab’s Simulink library (SimPowerSystems)

for simulating a solar deployment’s output based on its electrical characteristics, irradiance,

and temperature.

Matlab includes a flexible solar cell model that we configure to match the panel from

our small-scale prototype, and an implementation of the P&O MPPT algorithm that tracks

maximum solar output as a function of solar radiation and temperature. The model shows

a close, albeit imperfect, fit to the published data provided by the manufacturer. In order

to compute the power cap Pmpp, our algorithm measures irradiance and temperature from

the sensors, which it provides as input to the model. Our simulator implements absolute

power capping and the two WPPT variants from the previous section by modifying the

existing P&O algorithm in Matlab. Our simulator takes as input, data traces gathered from
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Figure 3.4: Expansion and contraction of the I-V curve for our SunShade prototype, as
light intensity changes throughout the day.

a pyranometer that measures solar radiation, and a temperature sensor. We are also able

to generate synthetic traces of solar radiation and temperature for the simulator to test the

fidelity of the mechanisms above under arbitrary conditions. Note that Matlab simulations

are considered highly accurate and frequently used as the only means of evaluating new

MPPT algorithms in the power systems community. Figure 3.3 depicts the circuit diagram

of our SunShade simulator.

In addition to our simulations, we also construct a SunShade prototype to evaluate its

mechanisms under realistic conditions. For our prototype, we connect voltage and current

sensors between a load and a small solar panel (rated at a ideal peak capacity of 25W),

which independently measure voltage and current. Rather than employ an embedded buck-

boost converter, we use a programmable load—the BK Precision 8500 Programmable

Load—to control the panel’s operating voltage. Using the programmable load enables

rapid experimentation by allowing us control operating voltage remotely from a server via

python, rather than embedding such control into the buck-boost converter’s firmware.

Note that the programmable load is functionally equivalent to the buck-boost converter,

and uses the same PWM mechanism to vary the panel’s operating voltage. The primary

difference is that the minimum reaction time—the time between two changes in voltage—
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on the programmable load is ∼100ms due to the latency imposed by the serial connection.

We could reduce this latency to near that provided by a typical buck-boost converter, e.g.,

tens of milliseconds, by using a modern I/O interface, such as USB. Figure 3.4 shows cur-

rent and voltage from our SunShade prototype that reflect the expansion and contraction of

the I-V curve, similar to Figure 3.1 from , as the intensity of light changes over the day.

Finally, evaluating WPPT’s fidelity requires comparing its results to the actual weighted

power point dictated by the real MPP. To support such comparisons, we construct an addi-

tional parallel prototype to run MPPT that uses the same solar panel as SunShade. We then

place the two systems directly adjacent to each other so they are subject to nearly identi-

cal solar conditions. Figure 3.5 shows a picture of our SunShade prototype with its key

components labeled. The algorithm logic runs on a Raspberry Pi, which connects to both

an external current sensor—to read changes in current—and to a programmable load to

programmatically alter the solar panel’s operating voltage. To support model-based WPPT

with sensors, our prototype also includes a pyranometer (for sensing solar radiation) and a

temperature sensor.

3.6 Evaluation

We first evaluate the performance and fidelity of SunShade’s mechanisms in simulation,

as our simulator is able to support a much wider range of experimentation, i.e., covering

a range of conditions, compared to our prototype. We then examine the performance and

fidelity of our SunShade prototype. To evaluate SunShade’s fidelity, we use the Normal-

ized Root Mean Squared Error (NRMSE), which is a common metric for quantifying the

difference between two time-series. We compute the NRMSE between SunShade’s capped

values and the ideal values. In this case, an NMRSE closer to one is better, as it indicates

the two time-series are similar. The equation for NMRSE is below, where || denotes the

2-norm of the time-series vector.
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Figure 3.5: Depiction of our SunShade prototype.

NRMSE = 1− ||actual − estimated||
||actual −mean(estimated)||

(3.1)

3.6.1 Simulation Results

Figure 3.6 demonstrates SunShade’s performance in simulation using absolute power

capping on a cloudy day. In this case, the clouds are not strong enough to cause the panel

output to drop below the cap for most of the middle part of the day. As a result, the sys-

tem has a near-steady 100W power output with minor oscillations around 100W due to the

P&O-based capping algorithm that constantly perturbs voltage searching for the cap. As

expected, absolute capping is relatively straightforward as it requires no external knowl-

edge about the MPP. In contrast, WPPT is more challenging, as it requires a prediction (or

search) of the MPP.
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Figure 3.6: SunShade capping the absolute power of a solar panel to 100W.
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Figure 3.7: Example of model-based weighted power capping at 80% of the MPP.

Figure 3.7 shows the performance of model-based WPPT (relative capping using sen-

sors) at 80% of the MPP in simulation. Since our model, as with most models, is most

accurate when the sun is shining, the 80% cap is a near perfect reflection of 80% of the

MPP in real-time. Figure 3.8 shows the same model-based weighted power capping at

80% on a cloudy day with significant variations in power. The fidelity of WPPT is slightly

less (in terms of NRMSE) under cloudy conditions, as the model may be less accurate and

there is more time spent searching for the weighted cap. Likewise, Figures 3.9 and 3.10

show the performance of the search-based algorithm (relative capping using no sensors) for

the same simulated days as above. In this case, we conduct a search at a fixed interval every
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Figure 3.8: Example of model-based weighted power capping at 80% of the MPP.

15 minutes. The results show that the search-based algorithm frequently deviates from the

relative cap to find the MPP in order to reset the cap.

Table 3.1 shows the NMRSE for each of the mechanisms. The results show that abso-

lute power capping has the highest fidelity, i.e., is closest to the ideal power time-series,

since it is the simplest mechanism. In addition, weighted power capping using an accu-

rate model is close to the performance of absolute capping, since it is able to accurately

adjust the power cap in real-time without deviating from it. The degradation in fidelity of

the approach in our simulations stems primarily from searching for the cap, similar to how

MPPT algorithms must search for the MPP. Finally, the last row shows that the NRMSE

for search-based WPPT is the lowest for both the sunny and cloudy day. The search-based

approach on the sunny day is only slightly lower than the other approaches, despite con-

ducting a search every 15 minutes. However, on the cloudy day the performance is less than

the other algorithms, as the 15 minute search interval is too long relative to the frequency

of environmental variations.

While the experiments above demonstrate the behavior of our power capping mecha-

nisms for representative sunny and cloudy days, Figure 3.11 demonstrates how the fidelity

of capping changes for the different mechanisms as the frequency of variations increases. In

this graph, we subject SunShade to synthetic power fluctuations that increase in frequency
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Figure 3.9: Example of search-based WPPT at 80% MPP on a sunny day.
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Figure 3.10: Example of search-based WPPT at 80% MPP on a cloudy day.

along the x-axis. Thus, the higher the frequency on the x-axis the more variance in the

power output of the solar panel. The graph shows that for both absolute power capping and

model-based WPPT (relative capping using sensors) are much less sensitive to variations

than the search-based WPPT (relative capping using no sensors).

3.6.2 Prototype Results

Due to the complexity of modeling a solar module, we use our SunShade prototype to

primarily evaluate the search-based WPPT algorithm. Figure 3.12 shows power measure-

ments from our SunShade prototype running over a three hour period on a relatively sunny
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Algorithm Sunny Cloudy
Absolute .9888 .9843
WPPT (model-based) .9874 .9826
WPPT (search-based) .9677 .8628

Table 3.1: NRMSE comparison for sunny and cloudy weather conditions
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Figure 3.11: NRMSE for periods with different levels of variation.

day. The graph includes results from our two systems running in parallel: one running the

search-based WPPT (in black) and one running a typical P&O MPPT algorithm (in red).

From the MPPT measurements, we compute the ideal WPPT value. In this case, we set

the WPPT weight ∆ to be 0.5 or 50% of the maximum value. As the graph shows, WPPT

periodically searches (every 15 minutes here) for the MPPT to set a new WPPT weight,

causing its power output to increase until it converges to the maximum power point, and

then to decrease.

At some time periods, clouds cause the WPP to diverge from the ideal between a search

interval. For example, near 11am there are passing clouds that cause the MPPT to decrease.

During this time period, the WPP also diverges more from the ideal between each search

interval. In contrast, after 11:30am, there is little change in the MPP, and thus the WPP

tracks the ideal WPP nearly perfectly. This experiment also stressed our WPP implementa-

tion due to people passing by the prototype and briefly shading it. This shading is evident in
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Figure 3.12: WPPT of SunShade in a real deployment compared with ideal WPPT based
on true MPPT

the graph from the periodic dips in both the MPPT and the WPPT. Since these dips caused

power output to drop to near zero, they affected both the MPPT and WPPT algorithm even

within a search interval. In these cases, WPPT was unable to maintain its power cap due

to little available power, causing it to match the MPPT algorithm even without searching

for the new MPPT. Note that in a few cases, the passersby shaded the two adjacent panels

unevenly, causing only one of them to drop its output.

In addition to the illustrative experiment above, we also examine the impact of changing

the search interval, voltage step size, and weight on the fidelity of WPPT compared to the

ideal WPPT. Figure 3.13 shows how the Root Mean Squared Error between WPPT and

the ideal WPPT differs as a function of the search interval, which ranges from 30 seconds

to three minutes. For each datapoint, we run the WPPT algorithm for 15 minutes with a

default voltage step size of 0.5, a default interval of one minute, and a default weight of

50%. Each graph then adjusts one dimension and observes the effect on the RMSE. The

proper search interval is a function of the current conditions and the variability of solar

output. Under high solar variations, a smaller interval is better, as the ideal weighted cap is

changing frequently, while under near constant solar output, a longer interval is better since

the MPP is not changing. Here, as the search interval increases, the error also increases,

since the weather conditions during this experiment were partly cloudy.

Figure 3.14 then plots the RMSE as a function of the weight setting. Since lower

weights deviate more from the MPP, they take longer to search for the MPP and deviate
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Figure 3.13: The RMSE between the ideal WPPT and search-based WPPT as a function of
the periodic search interval.

more from the ideal WPP. The graph demonstrates this trend as the lower the weight setting,

the higher the RMSE for our WPPT tracking algorithm. One way to address this issue for

lower weights is to save the previous MPP value and immediately start searching from

the previous value, rather than from current voltage setting. Of course, this approach is

not ideal during highly variable conditions, where the MPP might change significantly.

Finally, Figure 3.15 plots the voltage step size as a function of WPP. Similar to the interval

above, the tradeoff in the step size is dependent on the conditions. Under highly variable

conditions that require more frequent searching, a larger step size is more desirable as

it makes each search faster. Even though the larger step size decreases accuracy, since

conditions are highly variable this is outweighed by the faster search time. In contrast,

under stable conditions that require fewer searches, a smaller step size is better, since it finds

a more accurate weight, which is important because searches occur infrequently. Here,

since conditions were variable, we see that, as we increase the voltage step size, the RMSE

increases.
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Figure 3.14: The RMSE between the ideal WPPT and search-based WPPT as a function of
the weight.

3.7 Related Work

While prior work has also advocated applying Internet design principles to the overall

electric grid [69, 81], SDS systems focus narrowly on applying these design principles to

solar systems for multiple reasons: in particular, solar power is the predominant source of

distributed generation, is growing rapidly, and is programmatically controllable. Since so-

lar cells are silicon-based semiconductors, their output can be programmatically controlled

between zero and their maximum output based on the intensity of light.

SDS and SunShade is related to prior work on active solar power curtailment. However,

this chapter primarily focuses on sensing and responding to specific situations where an

inverter may need to reduce or eliminate solar power output. For example, all grid-tied

inverters are able to sense a power outage and reduce output to zero to prevent energizing

downed power lines. In addition, there is significant prior work on reducing solar power

output during over-voltage situations [86,88,125–127]. This research differs from our work

in that it focuses on specific algorithms and policies embedded in the inverter that respond

to specific situations. Instead, our goal is to expose programmatic interfaces to fundamental

mechanisms for rate limiting solar power. As a result, SDS decouples mechanism from the
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Figure 3.15: The RMSE between ideal and search-based WPPT as a function of the voltage
step-size.

policy: while its mechanisms could be used to cap power in response to increased voltage,

they could also be used in other contexts.

Recent advancements in smart solar inverters have also recognized the potential benefits

of controlling solar power to support grid operation [128]. In contrast, similar to TCP, SDS

focuses, not only on managing solar generation to support grid stability, but also on fairly

sharing the grid’s available capacity to accept solar power with the goal of maintaining grid

neutrality. In addition, prior work typically focuses on low-level power systems and power

electronics issues. However, the introduction of smart inverters with sophisticated controls

is raising the grid’s level of abstraction. Similar to the Internet, we expect the grid to evolve

into a layered architecture, where the physical layer (layer 2) addresses challenges in power

systems and electronics and the higher layers address challenges in capacity management,

fair-sharing, quality-of-service, etc. This chapter demonstrates mechanisms necessary to

address these higher-level problems.
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3.8 Conclusions

This chapter proposes Software-defined Solar-powered (SDS) systems to control the

flow rates of solar power into the grid. The goal of SDS systems is to eliminate the need for

policies that artificially cap the number and size of solar deployments that can connect to

the grid, and instead dynamically rate- limit them if they exceed capacity in real time. To

provide a foundation for SDS systems, we present two fundamental software mechanisms

to control solar flow sending rates, including an absolute capping mechanism and a class

of WPPT algorithms that enforce a relative cap. We implement a prototype SDS system,

called SunShade, and evaluate the fidelity of these mechanisms for controlling solar flow

rates, and their tradeoffs in terms of accuracy and responsiveness. In the next chapter we

discuss our contributions towards controlling off-grid solar.
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CHAPTER 4

CONTROLLING OFF GRID RESIDENTIAL SOLAR

As we discussed in the previous chapter, the limitations imposed by the government to

limit the new grid connections are likely to become more restrictive over time in many areas

as solar disrupts the utility business model. Thus, to employ solar without restrictions, users

may increasingly need to defect from the grid. Unfortunately, batteries alone are unlikely

to become cost-efficient at enabling grid defection for the foreseeable future. To address

the problem, we explore using a mixture of solar, batteries, and a whole-home natural gas

generator to shift users partially or entirely off the electric grid. In this chapter, we assess

the feasibility and compare the cost and carbon emissions of such an approach with using

grid power, as well as existing “net metered” solar installations.

4.1 Introduction

Distributed solar generation on rooftops has been rising rapidly due to a continuing

decline in the cost of solar modules. Solar is already the fastest growing segment of U.S.

energy generation, with capacity increasing by 40.5% in 2017 alone and accounting for

2% of U.S. generation, and much more in some states, including California (15%), Hawaii

(12%), Nevada (11%), and Vermont (12%) [135]. Worldwide, solar capacity increased

50% in 2018 alone [130]. The rapid rise is due to the falling costs of solar modules,

which are decreasing much faster than forecasted, and do not appear to be abating any

time soon [114]. Thus, many expect solar power to become the dominate source of elec-

tricity by the end of this century [114]. Policies in some states are accelerating this trend.
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For example, California recently instituted a policy that requires new buildings to include

rooftop solar [101].

The increasing amount of solar generation will profoundly change the grid’s operation

and the business model of utilities. In particular, while utilities operate and maintain the

distribution network, they earn most of their revenue from generating electricity, which they

currently can do much more efficiently than individual users. However, solar generation

differs from fossil-fuel based generation in that it does not benefit as much from economies

of scale. As a result, individual homeowners can install solar on their rooftops for closer

to the same cost per watt that utilities can install large grid-scale solar farms. Even now,

when amortized over a 25-year lifetime, solar power is cheaper than retail electricity rates

in much of the U.S., assuming the solar power can be “net metered” and the utility credits

users the retail rate for surplus power fed into the grid. Net metering enables consumers

to connect solar power to the grid such that it acts as a negative load, causing their meter

to run backwards when generating a net power surplus. When combined with government

incentives, the payback period for net metered solar is now well under 10 years in many

states.

Of course, the more individual users generate their own power, the less revenue utilities

earn from generating electricity. Yet, utilities cannot simply decommission their generators

(and take a capital loss), since they must still supply the grid’s power at night when the

sun is not shining. In addition, utilities may need to alter their mix of generators to handle

increasing net metered solar installations, and their increased stochasticity, by employing

more responsive but less efficient peaking generators. These changes may in-turn increase

the cost and decrease the efficiency of grid generators. Thus, state governments and utility

commissions typically place tight restrictions on users’ ability to connect solar to the grid,

as well as the compensation they receive for the energy it generates.

These restrictions vary widely by state. For example, in Massachusetts, the state places

a hard cap on connected solar capacity under a state-sponsored incentive program. Upon
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reaching the cap, the legislature must pass a new law to raise the cap, and update the

incentives, e.g., generally by steadily decreasing them over time. The process of drafting

the legislation is highly political and involves negotiations among multiple stakeholders,

including legislators, utilities, solar installers, environmental groups, etc. The last round of

negotiations after hitting the cap in 2016 took more than 9 months during which time new

installations were prevented from connecting to the grid [115]. Other states have a similar

process. For example, Hawaii prevented residents from connecting solar for 2 years due to

similar negotiations [49, 95].

While Massachusetts and Hawaii offer incentives to install and connect solar, some

states actually penalize consumers for connecting solar. For example, Alabama requires

residential customers with solar to either pay a fee of $5/kW per month of installed solar

capacity or pay 6× the standard electricity rate during peak summer hours [102]. In ad-

dition, unlike Massachusetts, Hawaii, and many other states, which credit consumers the

retail rate for their surplus solar power, Alabama credits them 3-4× less than the retail rate.

As a result of these solar disincentives, Alabama currently has only 48 residential solar

customers statewide [102]. Many other states have similar policies that discourage solar

adoption.

Clearly, the policies above directly influence solar energy’s rate of growth. As solar

penetration rises, utilities are likely to negotiate more strongly to reduce solar incentives,

or even create disincentives, to preserve their revenue and business model, especially in

states where utilities hold more political sway. Even in states, such as Massachusetts, that

offer generous solar incentives, these incentives are decreasing over time as solar adoption

increases, impacting utility revenue and operational costs. As these incentives decrease,

we envision solar users considering partially or entirely defecting from the electric grid.

Grid defection would enable users to install as much solar as they wish without limitations.

Of course, the problem is that users can no longer rely on the grid to balance electricity’s

supply and demand, requiring them to store excess solar power and make up for deficits in

41



solar power using batteries. However, even if a solar-powered home consumes net zero en-

ergy over a year, much of the energy is generated during the summer months, which leaves

large deficits on many winter days. Installing enough battery capacity to shift summer solar

generation to make up for winter deficits would be prohibitively expensive, likely requiring

a battery with greater than 1MWh capacity for the average U.S. home.

Instead, we envision the likely path for grid defection to be using a mix of solar power,

batteries, and a whole-home natural gas generator. The cost of generating power from

natural gas generators has rapidly decreased due to the steep drop in natural gas prices

over the last decade. In contrast, utilities are locked into multi-decade investments in large

coal plants that are less efficient and incur high fuel costs. Grid defection differs from

prior work on off-grid buildings, which does not consider using backup generators, since

it largely focuses on remote regions not connected to gas infrastructure. In exploring the

feasibility, cost, and carbon emissions of defecting from the grid, we make the following

contributions.

Power Generation Tradeoffs We analyze tradeoffs of using different forms of generation

and storage, including grid power, natural gas generation, solar power, and batteries, in

terms of their average costs, carbon emissions, lifetime, reliability, and operational con-

straints .

Grid Defection Architecture We present an architecture for grid defection. The archi-

tecture enables a home to dynamically switch between a local/generator and solar/battery

depending on its power consumption and generation. We define switching policies that

capture a tradeoff between power switching and wasted solar: more switching leads to less

reliability, but maximizes the use of solar energy. We then compare the cost and carbon

emissions of grid defection for representative home with using grid power based on current

cost estimates based on policies from multiple states .

Implementation and Evaluation We implement a trace-driven simulator to evaluate the

cost and carbon emissions of grid defection for a wide range of homes that differ in their
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Generator CapEx ($) OpEx ($/kWh) Life (years) CO2

Grid Power 0 0.10-0.32 ∞ 0.45
Natural Gas 7,656 0.187-0.374 �10 0.45-0.90
Solar 21,980 0 25 0
Battery 4,550 0 10 0

Table 4.1: Summary of current CapEx, OpEx, lifetimes, and carbon emissions (in kg-
CO2/kWh) of different generation options for grid defectors.

power consumption, solar generation, battery power and energy capacity, and generator

capacity.

4.2 Background

To assess the feasibility of grid defection, we first need to understand the cost and

carbon emissions of different forms of energy generation and storage, including grid power,

local natural gas generation, solar power, and small-scale batteries.

4.2.1 Grid Power

The cost and carbon emissions of grid power are highly dependent on location, the local

utility and its mix of generation sources, and the electricity rate structures, e.g., flat rate,

time-of-use, peak demand charges, etc. The Energy Information Administration (EIA)

estimates 62.7% of electricity generation comes from fossil fuels (coal, oil, and natural

gas), 20.0% from nuclear, 17.1% from renewables, and 0.3% from other sources [13].

The total estimated generation from these sources was 4,015 billion kWh in 2017 with

total associated CO2 emissions being 1,821 million metric tons [11]. For this chapter, we

translate these averages to our own carbon emission estimate of 0.45 kg-CO2 per kWh for

grid power. Similarly, average grid electricity cost for residential users varies widely by

region from a high of $0.32/kWh in Hawaii to a low of $0.10/kWh in Washington, with an

average of $0.13/kWh [9].
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4.2.2 Whole-Home Natural Gas Generator

Estimating the cost of a whole-home natural gas generator is more challenging than

grid power. Standby generators capable of powering a home are increasingly common to

provide power during grid outages. These generators are widely available at local home

improvement stores at low cost. For example, a 11kW generator with an automatic transfer

switch (ATS) currently costs ∼$3100 [6]. These generators connect to a home’s electrical

panel via the ATS, which is able to sense a power outage, start the generator, and then

automatically switch the home’s power source from the grid to the generator. There is

typically a 30 second delay between sensing an outage and switching to generator power,

since the generator requires some time to start up after sensing an outage. The ATS also

senses when grid power returns and automatically switches home power back to the grid,

and then shuts down the generator. There is typically no loss of power when switching

from the generator back to the grid. The generator connects directly to a home’s natural

gas pipeline, so there is no need for fueling the generator.

Unfortunately, standby generators are designed to only provide power for roughly 200

hours per year, or 3000 hours over their lifetime. In contrast, prime power generators are

designed to provide reliable power continuously with an estimated lifetime for a natural gas

microturbine being 50-80k hours, or 6-9 years continuous operation. Of course, since grid

defectors will not operate generators continuously, they should last significantly longer.

Currently, there are no home-scale (<20kW) prime power natural gas generators on the

market to provide a cost estimate, which is currently an impediment to grid defection. As

a result, we use the EIA estimate of $696 per kW of installed capacity for a prime power

natural gas generator [10]. Thus, we estimate a 11kW prime power generator would cost

$7,656 to install. We view this estimate as conservative, since EIA is a more expensive

synchronous generator, which grid defectors would not require.

In addition to its capital cost, the generator also requires natural gas. The average

price of natural gas in 2017 was $10.98 per thousand cubic feet, although this price varies
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throughout the year [12]. Generator efficiency varies based on load, and ranges from 10%-

40% efficient, with higher loads being more efficient. Unfortunately, most homes operate

at low load levels <1kW most of the time relative to their peak load, resulting in lower

efficiencies near 10-20% [4]. This yields an average cost of $0.187-0.374/kWh of delivered

electricity. Since this price is slightly above grid power prices, defection to a natural gas

generator is not economically feasible. The carbon emissions of natural gas when burned

as a fuel are 5.3 kg CO2 per therm (or 29.3 kWh at 100% efficiency). At 10-20% efficiency,

this translates to 0.45−0.90 kg-CO2/kWh. Thus, grid power is slightly cleaner and cheaper

than a standalone natural gas generator due to operating its generators at higher load levels

that are more cost- and carbon-efficient.

4.2.3 Solar Power and Batteries

Solar power costs also vary widely by region based on the amount of sunlight. The

average Levelized Cost of Energy (LCOE) for solar in the U.S. for residential systems

is estimated at $0.129-0.167/kWh without any government subsidies [98], although the

precise cost is a function of location and size. LCOE represents the net present value of

the unit cost of electricity over a solar installation’s lifetime, including the hardware cost

of the modules and inverters, as well as the labor cost to install the system. Solar’s LCOE

is steadily declining with the Department of Energy’s goal as part of the SunShot initiative

to reach $0.03/kWh by 2030 [23]. The LCOE amortizes solar’s capital cost based on the

energy it will generate over its lifetime, which is typically estimated at 25 years (based on

manufacturer warranties). The capital cost of solar is currently estimated at $3.14 per watt

installed, which translates to $31,400 for a system with 10kW rated generation capacity [3].

We reduce this by 30% based on the federal tax credit, resulting in a capital cost of $21,980.

Of course, the operational cost of solar is effectively zero as it requires no fuel. Solar

generation has zero carbon emissions.
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Unfortunately, LCOE assumes that all energy is used regardless of when it is generated.

Of course, solar generation varies over each day and throughout the year. To fully utilize

solar without using the grid requires battery-based energy storage. The Tesla Powerwall

2.0 costs $6500 with installation and a 10-year warranty, is designed for daily charging

and draining in conjunction with solar, and has a capacity of 14kWh with a round-trip

efficiency of 89% [8]. As above, the Powerwall benefits from the 30% federal tax credit,

resulting in a capital cost of $4,550. However, the Powerwall has a power constraint of 5kW

continuous power and 7kW peak, which is not large enough to concurrently run high-power

appliances, such as an air conditioner, clothes dryer, and electric oven. In addition, solar

plus 14kWh battery capacity is not nearly enough capacity to defect from the grid, even

for a net zero home. Net zero homes at higher latitudes, as in the United States, generate

much more energy during the summer than in the winter. Thus, homes must either install

enough batteries to shift summer generation to the winter, e.g., 1MWh or 71 Powerwalls,

or over-provision solar to generate enough power over the winter. Either case requires

over-provisioning, causing excessive capital costs for solar or batteries.

Summary Table 4.1 summarizes our cost and carbon emissions estimates for grid power,

local natural gas, solar, and battery. The natural gas estimate is based on the 11kW prime

power natural gas generator described above, the solar estimate is based on a 10kW solar

installation, and the battery estimate is based on the Tesla PowerWall 2.0 with 14kWh

capacity.

4.3 Grid Defection Architecture

Figure 4.1 depicts our grid defection architecture, which includes two power sources:

a battery charged by a rooftop solar array, and a whole-home natural gas generator. The

power sources connect to a smart ATS that is able to programmatically switch the home’s

power between the sources. While switching the power source from a battery to the gener-

ator requires some delay to start-up the natural gas generator, we assume this delay is brief,
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e.g., 1 minute, such that the battery can provide power over this time to prevent power

losses at switch-over points. We assume the battery charges from solar, and not the natural

gas generator, as charging the battery from the natural gas generator is inefficient. Func-

tionally, our smart ATS is similar to those for backup standby generators already in use.

The primary difference is that it requires a policy to determine when to switch between the

two power sources.

The switching policy presents a tradeoff between minimizing the wasted solar power,

and minimizing the switches between sources. We consider a few simple policies.

Minimizing Switches. Minimizing switches is important, since it decreases wear and tear

on the generator, as frequent generator start-ups and shutdowns can reduce its lifetime and

reliability. A switching policy that minimizes switches always waits until the battery is

at full capacity before switching to the battery, and then waits to switch again until the

battery is fully depleted. The problem with this policy is that it has the potential to waste

solar energy. In particular, when the battery is at full capacity, and solar generation exceeds

our power consumption, then there is no additional capacity to store surplus solar, and we

must shed it. Solar charge controllers shed solar by increasing the applied voltage, which

reduces the current and the resulting solar power generated to 0 [118]. As a result, waiting

until the battery is full to switch increases the likelihood of wasting solar energy, especially

in the summer when generation may significantly exceed consumption.

Minimizing Solar Waste. In contrast, we minimize solar waste by always switching to

the battery whenever it stores any excess solar power. This policy consumes solar energy

whenever it is generated, significantly increasing the number of switches as we frequently

switch to and from the battery and its state-of-charge remains near empty. In particular,

cloudy days may incur numerous switches over the day.

Balanced Policy. We also examine a balanced switching policy that takes advantage of

the regularity of solar energy, and switches based, in part, on the net rate of generation/-

consumption rather than the battery’s state-of-charge. In particular, if there is any excess
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Figure 4.1: Grid Defection Architecture

power in the battery once the sun sets, we drain the battery completely before switching to

the natural gas generator. In the morning, we switch back to using the battery after the sun

rises (assuming we depleted the battery overnight) once the rate of solar generation exceeds

our rate of consumption. Our intuition is that the rate of solar generation will increase over

the day, even when cloudy, such that once the generation exceeds consumption at the start

of the day, it is likely to continue to exceed it until the afternoon.

Our intuition above also exploits typical electricity usage patterns, which experience

peaks in the morning and evening (due to to the use of high-power kitchen appliances),

and a lull in usage during the middle of the day. Once switching to the battery, we only

switch back to the generator once the battery’s capacity is depleted. We switch back to the

battery again once generation exceeds consumption, which generally does not occur until

the next day. Of course, our system must also switch when exceeding the power limit of

the power sources. For our battery, unless otherwise specified, we use a 7kW limit based

on the Powerwall’s specifications, such that we switch to the generator if power exceeds

7kW. Likewise, our generator has a 11kW limit, such that consuming greater than 11kW

triggers an outage that deactivates appliances.
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Figure 4.2: Operational and amortized capital cost for different scenarios in $/year.

4.4 Evaluation

4.4.1 Cost and Carbon Emissions Analysis

Figure 4.2 shows the results for the operational and amortized capital cost (over 25

years) on the y-axis, and the different power scenarios and switching policies on the x-

axis. We view these results as conservative, as they assume current costs are static with no

technological improvements. As shown, full grid defection using a residential battery, such

as a Tesla Powerwall, is more expensive than using grid power, while using grid power with

net metering offers the cheapest option. However, as discussed earlier, grid power with

net metering is likely to be disincentivized over time. Some states already enforce such

disincentives that make net metered solar much more expensive than the current results.

Under such scenarios, users may be forced to defect from the grid to use local solar energy.

The graph also shows the tradeoff between the different switching policies with the policy

that minimizes solar waste (and maximizes switching) resulting in lower costs than the

policy that minimizes switching. The balanced policy from has a similar cost as the policy

that minimizes solar waste by maximizing switching.

The graph also shows an alternative where users leverage the battery in an EV rather

than purchase a separate battery. In this case, we assume a battery capacity of 75kWh

equivalent to the capacity of a Tesla Model 3 with extended range. If we exclude the cost

of the EV from the system’s capital costs, then this scenario already offers lower costs (by

17.6%) than using grid power. Thus, as EVs become more prevalent, the incentive for
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Figure 4.3: Carbon emissions from the same scenarios as in Figure 4.2 for cost.

grid defection increases, especially if solar net metering policies become less attractive.

Finally, given that full grid defection is still more costly than using grid power, we analyze

an approach that keeps solar disconnected from the grid by switching between the grid

and a solar-powered home battery. This approach, labeled grid+battery above, essentially

removes the natural gas generator and uses the grid as a backup source of power. We apply

the same switching policies from the previous section, and find that this partial defection

approach also results in lower costs than using grid power in both cases.

Figure 4.3 then shows the equivalent graph for average carbon emissions over the same

period under the same scenarios. As before, the graph shows each scenario on the x-axis

and carbon emissions on the y-axis. As shown, even though the natural gas generator incurs

slightly more carbon emissions than grid power, our grid defection scenarios use it much

less than grid power resulting in a significant decrease (by 45.4%) in carbon emissions.

Note that carbon emissions when using net metered solar are only ∼20% lower than with

grid-only because net metering still requires importing a significant fraction of grid power,

especially in the winter. As before, using the grid as a backup power source by partially

defecting with a solar-powered battery results in even lower carbon emissions, since the

grid’s carbon emissions are less than those of the natural gas generator. Finally, using the

EV as a backup battery results in the lowest carbon emissions, since the size of the EV

battery is much greater than the 14kWh Tesla Powerwall. Note that carbon emissions show

a different trend than cost, with the grid having significantly more carbon emissions. Thus,
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Figure 4.4: Price Comparison for Different States

if governments were to price carbon emissions, the financial incentive for grid defection

would likely increase.

Figure 4.4 differentiates the incentive for grid defection in different states based on

their solar (dis)incentive policy for that state. Since Alabama and Nevada’s policies do

not incentivize solar, the cost of net metering solar in Alabama and Nevada is more than

in Massachusetts. Interestingly, a higher cost for net metering solar implies a stronger

incentive to defect from the grid. That is, the cost of net metered solar in these states is

closer to the red line that indicates the cost of grid defection.

4.4.2 Solar Waste Analysis

We compared the solar energy waste using the default 14kWh battery capacity for the

different policies from, including minimizing switching (Min), minimizing solar waste

(Max) and the balanced policy, assuming full grid defection. We found the following

amount of solar waste for these three policies: Min (6483 kWh), Balanced (5327 kWh) and

Max (5300 kWh). We see that the minimum switching results in the highest solar waste,

since it always waits for the battery to be full before discharging. Thus, upon switching to

the full battery, if the rate of generation exceeds the rate of consumption, the excess cannot

be stored in the battery and will thus be wasted. In contrast, the maximum switching and

balanced policies have close to the same solar waste, since these policies focus on maxi-
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Figure 4.5: Percent Demand Met by Different Sources

mizing solar usage by always immediately switching to consume solar when it is available.

In this case, all the policies waste a significant amount of solar, which demonstrates that a

larger battery may be cost-effective.

Figure 4.5 then shows the percentage of demand met by the grid, battery, and natural

gas generator under both partial grid defection (when using the grid as a backup source of

power) and full grid defection (when using the natural gas generator as a backup source of

power). In both cases, we focus on the maximum switching policy. The graph shows nearly

40% of the demand cannot be met by solar energy even though more than that amount of

solar energy is being wasted – due to the asymmetry in solar generation between summer

and winter.

4.4.3 Impact of Battery Size

Based on the results above, we also examined the impact of battery capacity on solar

waste by increasing the capacity from 7kWh to 77kWh, assuming the same amount of solar

generation and demand. Figure 4.6 compares the amortized cost and carbon emissions for

these different battery capacities. As we increase the battery size, the carbon emissions

decrease due to less use of the natural gas generator to satisfy demand. However, a battery
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Figure 4.6: Amortized cost and carbon emissions as battery capacity increases.

capacity of 28kWh minimizes the amortized cost, where the increase in capital costs from

the battery is more than offset by using it to reduce solar waste, which reduces the operating

costs. The optimal amortized cost is closer to the grid power costs. In this case, full grid

defection incentivizes the use 2 Powerwall batteries.

4.4.4 Impact of Aggregating Homes

We also considered the benefits of aggregating homes into small clusters, which are

able to share solar energy and natural gas generation. These small clusters are akin to mi-

crogrids. To simulate this, we used data from multiple homes in different regions. For a set

of homes, we create a cluster by aggregating the demand across the homes and aggregating

their solar installations. We found that when considering multiple homes it is also impor-

tant to consider the size of the solar installation and the capacity of natural gas installation,

in addition to the battery size. We thus find the optimal feasible configuration of battery

size, solar installation, and natural gas generator capacity to minimize the cost. The solar

installation capacity is found by scaling (from (0, 1]) the combined available installation

for the set of homes considered.

Figure 4.7 shows the effect of clustering 5 different homes in the states of Texas, Mas-

sachusetts and California, that have similar usage and solar generations. We observe that

in comparison to a single home, a cluster of homes show a more competitive reduction
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Figure 4.7: Cost Per Unit Power for Grid vs. Total Grid Defection with optimal configura-
tion for aggregation of homes in different states of USA

in cost for full grid defection in comparison to using grid power. This is because we are

not scaling the parameters linearly in proportion to the number of homes. For instance,

the optimal parameters for a cluster of 5 homes in MA was found to be a 42kWh battery,

solar scaling 0.6× combined solar installation of 5 homes, and 33 kWh capacity of natural

gas. Thus, these 5 homes are able to multiplex the available energy more effectively than

any single home and also benefit from the smoothing of demand and generation due to the

aggregation.

Hence we can conclude that aggregating even a small number (5) of homes makes

grid defection more feasible as compared to a single home. In particular the cost for grid

defection for a cluster of 5 homes in MA is more favorable than the utility cost in MA.

Above, we ensured continuous power with no outages. However, if we permit some

power outages, we can significantly reduce costs. To see how much, for a cluster of 15

homes, we calculate the amortized cost ($/kWh) for different percent of energy availability

in Figure 4.8. We also show the flat rate utility price for three states, which have different

grid costs. This shows that full grid defection could be cheaper than the grid cost if we

allow for lower energy availability. We can see from the figure that at 75.75% energy

availability, the $/kWh is lower than the utility rate in MA and CA, while at 95.60% energy

availability the $/kWh is still lower than the utility rate in MA. The graph also shows that
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Figure 4.8: Amortized Cost vs % Energy Availability for a 15 home cluster

states with higher grid prices, such as MA, are closer to incentivizing grid defection than

states, such as TX, with lower grid prices.

4.5 Related Work

Battery prices are dropping rapidly, which has made it already economical for many

commercial customers to reduce their peak consumption levels. Grid defection is begin-

ning to make economic sense both in industrial and residential sectors due to these drops in

battery costs and studies have predicted that grid defection may become a viable option in

only a few years [62]. Recent work [70,121], similar to ours, compares a grid-tied residen-

tial solar system with an off-grid solar-plus-battery system at locations in the United States,

and estimates the costs and carbon emissions. However, this chapter does not consider the

use of a natural gas generator. Prior work also examines optimizing energy storage capacity

and load scheduling to improve reliability in islanded operation in residential sectors [67],

which we leverage in our analysis. Of course, our work does not consider the impact of

grid defection on grid power costs. Prior work studies the implications of widespread dis-

connection from the grid using only solar [82] and examines policies to grid operators

develop other sources of revenue rather than increasing energy prices.
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4.6 Conclusions

The declining cost of solar generation is leading to an increase in grid solar capacity.

However, this is also leading to utilities restricting access to connect solar to the grid, and

reducing the compensation for it. As a result, in the future, the most viable way to use solar

energy may be to defect from the grid. Thus, in this chapter, we proposed an approach for

total grid deflection for residential homes using a combination of solar with/without bat-

tery, natural gas and electric vehicles. We presented different policies for smart switching

between these power sources with tradeoffs in terms of number of switches, solar waste,

reliability, carbon emissions and total cost. We analyzed these tradeoffs using a trace driven

simulator for a single home as well as a cluster of homes. For these scenarios we consid-

ered homes from Massachusetts, California and Texas and compared the feasibility of grid

versus total grid defection. Our analysis indicates that, based on the net metering policies

in different states, complete grid-defection is financially attractive for a cluster of homes—

even currently—in some states, and in all cases yields less carbon emissions. In the next

chapters, we discuss solar modeling using various ground-based and satellite-based ap-

proaches that can enable better solar control.
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CHAPTER 5

MODELING SOLAR PERFORMANCE MODELS USING
DERIVED PRODUCTS FROM SATELLITE

In order to have better control over solar, we also need accurate solar performance mod-

els that infer solar power output in real time based on the current environmental conditions.

These are an important prerequisite for many advanced energy analytics. In this chapter,

we develop and evaluate solar performance models that use satellite-based estimates of

downward shortwave (solar) radiation (DSR) at the Earth’s surface, which NOAA began

publicly releasing after the launch of the GOES-R geostationary satellites in 2017.

5.1 Introduction

Solar energy generation has grown at nearly an exponential rate over that past 30 years,

and is now cheaper than the retail price of electricity in many locations [113]. The goal

for the U.S. Department of Energy’s SunShot initiative is for solar to satisfy 14% of U.S.

electricity demand by 2030 and 27% by 2050 [23], or a factor of 10× and 20×, respectively,

greater than the 1.4% it satisfied in 2018 [24]. Reaching these targets will require improving

solar performance models, which infer solar power output in real time based on current

environmental conditions. These models are a prerequisite for a wide range of energy

analytics, including solar forecasting, energy disaggregation, and grid simulations, that are

necessary for grid operations and planning to accommodate higher solar penetrations.

To address the problem, recent work develops sophisticated data-driven modeling tech-

niques that automatically derive a solar performance model for small-scale sites from pub-

lic weather data, and thus are more scalable than prior manual approaches [44, 52, 53, 85].
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Once built, the model estimates a site’s solar output at any time given the current weather

conditions. Such data-driven models are highly accessible and useful for modeling any

solar site in the U.S., as they rely only on well-known physical models of solar generation

and public weather station data that is released in real-time for every location in the U.S.

by the National Weather Service (NWS).

Unfortunately, using public weather station data has two primary drawbacks: not all

solar sites are near a public weather station, and public weather station data generally quan-

tifies cloud cover—the most significant metric that affects solar—using highly coarse and

imprecise measurements [14, 15]. This measurement is in oktas and is often taken using a

circular sky mirror placed on the ground that divides the sky into eight equal slices, such

that the number of slices that contain a cloud translates to the number of oktas. The NWS

then quantifies cloud cover using textual descriptions that map to a specific range of ok-

tas. For example, “scattered clouds” maps to 3-5 oktas [14]. The imprecision of cloud

cover measurements is by far the largest source of inaccuracy in large-scale data-driven

solar performance modeling. Of course, while more accurate cloud cover measurements

are possible using a pyranometer, which directly measures solar irradiance at the Earth’s

surface, only a few public weather stations include pyranometers.

Recently, National Oceanic and Atmospheric Agency (NOAA) in the U.S. has begun,

as of 2018, releasing data products derived from a new generation of remote sensing geo-

stationary satellites—the GOES-R series [18]. One of the secondary data products is the

Downward Shortwave Radiation (DSR) that is incident at the Earth’s surface, which esti-

mates both the direct and diffuse solar radiation. Thus, DSR estimates the solar radiation

available at the surface to generate solar power [16]. DSR is derived from the raw satel-

lite data using a state-of-the-art algorithm that analyses the reflectance measurements of

GOES-R’s Advanced Baseline Imager (ABI) [5]. These DSR estimates account for cloud

albedo, or the solar radiation reflected by clouds, and atmospheric conditions, and are avail-

able for any 0.5-2km2 area within the satellite’s view.
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In contrast, the distance between a solar site and the nearest public weather station

varies widely, and can be up to dozens of kilometers. In addition, unlike coarse okta

measurements, DSR is a fine-grained measurement. Thus, using satellite data for solar

performance modeling has the potential to address the drawbacks of public weather station

data. However, satellite data also has drawbacks. While public weather station measure-

ments are taken at the surface and represent ground truth, satellite measurements are taken

from geostationary orbit, which is 35, 800km above the Earth’s surface. Satellites also can

only measure the solar radiation reflected by the top of clouds, but cannot accurately as-

sess cloud depth, height, or temperature, all of which affect the radiation that reaches the

Earth’s surface. As a result, unlike public weather station data, satellite data does not rep-

resent ground truth. Thus, while oktas provide coarse but direct measurements of surface

radiation, satellites provide fine-grained but indirect measurements.

In this chapter, we develop and evaluate a solar performance model that uses DSR, and

compare it to a similar modeling framework that uses oktas. In doing so, we show how

to integrate satellite data into an existing data-driven solar performance model from prior

work [44], and examine multiple model variants that i) incorporate satellite data in lieu of

public weather station data, and ii) use a combination of both. We will make our satellite-

based modeling framework publicly available along with a solar and DSR dataset from

nearly 50 sites that we have curated as part of our evaluation. To the best of our knowledge,

this is the first use and evaluation of DSR for solar performance modeling, in part, because

NOAA only began making this data product available in 2018.

This chapter identifies strengths and weaknesses in using DSR satellite data for so-

lar performance modeling. In particular, and contrary to our intuition, we find that using

satellite-based DSR measurements does not improve the accuracy of solar performance

models compared to using public weather station data. While DSR estimates provide

slightly better accuracy during mostly clear skies, the estimates are much worse under

overcast conditions. In most cases, DSR measurements are not even available during over-
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cast periods due to these known limitations in accuracy under these conditions [5]. Thus,

despite DSR’s promise in other areas, especially long-term climate modeling, using public

weather station data for solar performance modeling yields similar accuracy and is much

more accessible. We do show that a hybrid approach that strategically uses satellite DSR

data during mostly clear skies can modestly increase accuracy. In performing our data

analysis, we make the following contributions.

Satellite Data Background. We present background on the GOES-R series of satellites

and the DSR data product, including its availability, accessibility, and ground truth accu-

racy. We also curate a new dataset that consists of hourly readings of solar generation,

cloud cover in oktas, and DSR estimates for each of the 47 solar sites we analyze in our

evaluation.

Exploiting DSR for Solar Performance Modeling. We show how to modify an exist-

ing data-driven solar performance model that uses cloud cover measurements from public

weather stations to instead use satellite-based DSR measurements. We then illustrate salient

differences between okta- and satellite-based measurements for a representative solar site.

We define multiple model variants that combine satellite and okta data in different ways to

understand their strengths and weaknesses.

Implementation and Evaluation. We implement the solar performance models above and

evaluate them across the 47 solar sites in our dataset. Our evaluation shows that a physical

model that uses okta-based measurements yields similar accuracy as using satellite DSR

data, and that a hybrid approach can offer a modest improvement in accuracy.

5.2 Background

We provide background on measuring the impact of clouds using DSR and oktas, as

well as on data-driven solar modeling.
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5.2.1 Satellite-based DSR

There has been significant prior work on inferring solar irradiance incident at the Earth’s

surface using satellites. Much of this work, including the Heliosat family of algorithms [47,

48,108], infers solar irradiance from visible satellite imagery, assuming a pixel’s intensity is

related to cloud cover. In contrast, GOES-R satellites include an Advanced Baseline Imager

(ABI) that takes images of the Earth across 16 different spectral bands, which include

two visible channels, four near-infrared channels, and ten infrared channels [20]. These

16 bands compare to only 5 bands from the previous generation of weather satellites and

offer 4× greater spatial and 5× greater temporal resolution [19]. Specifically, the spatial

resolution of contiguous U.S. (CONUS) is 0.5-2km2 and the temporal resolution is every

five minutes.

NOAA publicly releases the raw spectral data in near real time, as well as a large num-

ber of higher-level data products derived from this raw data. The raw data only began being

released in 2018 (for GOES-16) and 2019 (for GOES-17) with higher-level data products

being released later. This chapter focuses specifically on a Level 2b+ data product that esti-

mates the downward shortwave radiation (DSR) at the Earth’s surface [16], which includes

the ground-level direct and diffuse solar radiation in the visible, infrared, and near-infrared

spectrums. Solar cells convert some fraction of DSR to electrical power based on their

physical characteristics, e.g., power conversion efficiency, temperature coefficient, tilt, ori-

entation, etc. DSR derives from a sophisticated physical model built on lower-level data

products, e.g., for cloud optical depth, particle size, height, etc., that estimates cloud albedo

and the atmosphere’s composition, and represents the state-of-the-art in estimating radia-

tion at the Earth’s surface. That said, the DSR documentation quantifies its accuracy, which

can vary widely depending on many factors, including the cloud characteristics, solar zenith

angle, and latitude [16].
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Figure 5.1: Depiction of bounding solar generation using Equation 5.2.

5.2.2 Ground-level Cloud Cover Measurements

Prior work on data-driven solar performance modeling combines clear sky solar irra-

diance models with ground-level cloud cover measurements in oktas, which are publicly

available, to infer surface irradiance. Public weather stations typically report cloud cover

as one of five weather strings, including clear skies (CLR), few clouds (FEW), scattered

clouds (SCT), broken clouds (BKN), and overcast skies (OVC). These strings map directly

to specific ranges of okta values [14]. Specifically, CLR maps to 0-1 oktas, FEW maps to

1-3 oktas, SCT maps to 3-5 oktas, BKN maps to 5-7 oktas, and OVC maps to 7-8 oktas.

Prior work captures the relationship between cloud cover measured in oktas, and the clear

sky index (CSI), which is the ratio between the actual irradiance at the surface divided by

the irradiance at the surface under clear skies. For example, in prior work, Kasten and

Czeplak derived the empirical model below, which is widely used in textbooks [80].

CSI = 1− 0.75× n3.4 (5.1)

Here, n represents the fraction of cloud cover, e.g., by taking the midpoint of the okta

range and dividing by 8. Chen et al. recently refined this empirical model using a much

larger dataset [52]. Note that clear sky solar irradiance is a deterministic function of loca-

tion, i.e., latitude and longitude, and time, and can thus be accurately estimated without any

external inputs [92]. There are many software libraries, such as pysolar [1] and pvlib [38],

62



that compute the clear sky solar irradiance given a location and timestamp. Thus, we can

infer ground-level solar irradiance simply by multiplying the clear sky solar irradiance by

the CSI from Equation 5.1 above, which is based on the cloud cover reported by public

weather stations.

5.2.3 Modeling SURFRAD Data

While we talked about DSR and Okta and their role in modeling solar irradiance, there

is another very important ground irradiance measurement vis Surface Radiation Budget

Network or SURFRAD. SURFRAD was etablished in the year 1993 through NOAA with

a mission is to support climate research with long-term measurements of surface radiation

budget over the United States. Currently there are eight SURFRAD stations across United

States operating over climatologically diverse regions in the United States. Data from

these SURFRAD stations are distributed in near real time by anonymous FTP and the

World Wide Web. The frequency of data availability from these SURFRAD stations is

1 minute average and it contains a large number of variables including but not limited to

downwelling/upwelling global solar, direct-normal solar and net solar. These SURFRAD

stations although record very accurate measurements, cannot be used to create general solar

models because of being localized and site-specific.

5.2.4 Data-driven Solar Performance Modeling

This chapter builds on a simple data-driven solar performance modeling approach from

prior work to quantify the accuracy of using satellite DSR estimates to infer solar genera-

tion [44, 52, 53]. We briefly summarize this approach, which we show how to modify in to

incorporate DSR estimates. As input, the approach only requires a site’s location and some

historical generation data. The approach leverages the fact that a solar site’s generation

is always bounded by its maximum generation Pmax(t) described by the physical model

below.
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Pmax(t) = Iclearsky(t)× k × (1 + c× |Tbaseline − Tair(t)|)×

[cos(90−Θ)× sin(β)× cos(Φ− α) + sin(90−Θ)× cos(β)] (5.2)

Here, Iclearsky(t) is the clear sky solar irradiance at time t, and k is the solar site’s effi-

ciency parameter, which is a product of its size and solar conversion efficiency. Since solar

conversion efficiency is a function cell temperature, the model multiplies k by an additional

term. Here, c is the solar modules’ temperature coefficient, while Tbaseline represents the

baseline temperature when the conversion efficiency is k. Solar efficiency varies linearly

with temperature, so the model multiplies the absolute value of the difference between the

current temperature Tair(t) and the baseline by the temperature coefficient. Typical values

of c are ∼0.5%, such that efficiency increases this amount for every 1C drop in tempera-

ture. Finally, the lower term captures the impact of solar geometry: Θ and α represent the

Sun’s zenith and azimuth angles, respectively, while β and Φ represent the solar modules’

tilt and orientation angles, respectively. These solar angles are a function of location and

time, and can be computed using a library.

Prior work describes an efficient method for searching for values of k, c, Tbaseline, β,

and Φ in the equation above that yield the closest upper bound on the historical generation

data [44]. The insight is that under clear skies, solar generation should conform to the

model above (for some constant values of k, c, Tbaseline, β, and Φ), while under cloudy

skies, solar generation should be strictly less than the model above. Figure 5.1 depicts an

example of bounding generation data using Equation 5.2.

After bounding the equation above to the data, we can compute Pmax(t) at any time t.

The model then leverages the relationship below, which follows directly from Equation 5.2.

Pactual(t)

Pmax(t)
∼ Iactual(t)

Iclearsky(t)
= CSI (5.3)
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To understand the relationship, observe that the only change in Equation 5.2 when

computing actual solar output under cloudy skies is that we must replace Iclearsky(t) with

the actual solar irradiance under cloudy skies (assuming no change in temperature). All

other parameters are independent of the cloudiness. As a result, when dividing Pactual(t)

by Pmax(t), everything on the right side of Equation 5.2 cancels out, which simply leaves

Iactual(t)/Iclearsky(t) or the clear sky index CSI.

Thus, given a model of Pmax(t) and the CSI, we can infer Pactual(t) by simply multi-

plying the CSI by Pmax(t).

5.3 Satellite-Based Solar Performance Modeling

We show how to use the data-driven solar modeling framework from the previous sec-

tion to leverage both oktas and DSR, as well as a hybrid approach that uses both. Im-

portantly, we use the same approach described earlier for each of these solar performance

models, but where the clear sky index (CSI) is computed from different sources. In par-

ticular, satellite-based modeling computes the CSI using DSR data, while the okta-based

approach computes it from the improved Kasten-Czeplank model [52]. As a result, any

differences in modeling accuracy are only due to changing this input. In addition, since

these models derive directly from the physical relationships inection, they do not take into

account any site-specific characteristics. Thus, for comparison, we also develop solar per-

formance models using machine learning (ML) that can learn site-specific characteristics.

5.3.1 Satellite-Based Models

Our satellite-based model is simple: to derive CSI, we take DSR directly from NOAA

and divide it by a solar site’s clear sky irradiance based on its location and time using

a clear sky model. Note that this is a purely physical model that does not perform any

regression to learn the relationship between DSR and solar output. Figure 5.2 shows the

clear sky irradiance and DSR at a particular site. The graph shows DSR in watts per meter
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Figure 5.2: Relationship between DSR and clear sky irradiance

squared (W/m2) and the corresponding clear sky irradiance over a representative clear day.

The graph demonstrates that the clear sky irradiance is a strict upper bound on the DSR,

such that the values are close when the sky is clear as expected. Interestingly, the values

are nearly equal at solar noon, while the clear sky irradiance is slightly greater than DSR

before and after solar noon.

Figure 5.3(left) shows the relationship between normalized DSR, or DSR/Iclearsky,

and normalized solar generation, or Pactual/Pmax, across many locations. The graph shows

the normalized DSR on the x-axis and the normalized solar generation on the y-axis. As the

graph shows, the the relationship is roughly linear, albeit noisy. This noise is largely due

to inaccuracy in the DSR measurement, but may also result from unaccounted variables in

our model, such as the presence of shading and topography at a solar site. We evaluate this

relationship more fully for DSR in evaluation. A benefit of this approach, as discussed ear-

lier, is that DSR is available every 0.5-2km2, and thus provides more precise measurements

than weather stations.

5.3.2 Oktas-Based Models

In our oktas-based model, we compute the CSI using the ground-level cloud cover

measurements provided by public weather stations. In this case, we use the mapping of

each weather string—CLR, FEW, SCT, BKN, and OVC—to an oktas range. Since the
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Figure 5.3: Scatter plot of normalized solar generation versus normalized satellite DSR
(left) and okta-based measurements (right) across many solar sites.

NWS only specifies a coarse range for these values [14], we simply use the average of

each range and map it to a number when computing the CSI. As explained above, we use

this okta value for CSI in our data-driven solar model to infer the solar output. Again,

this is a pure physical model that does not require learning a model from generation and

weather data that is specific to a site. Figure 5.3(right) shows the relationship between

oktas and the actual CSI for a particular location. Here, the x-axis is the ground-level

cloud cover measurements (okta) and the y-axis is the actual CSI derived from the solar

data (as discussed in background). The graph shows that the okta-based measurements,

while also noisy, do roughly follow the expected trend of the empirical models defined

in prior work [52, 80]. In this case, the increased noise is largely due to the coarseness

and imprecision of okta-based cloud cover measurements, which are derived from weather

stations that are an unknown distance from each site.

5.3.3 Hybrid Model

As we show in evaluation, the satellite-based DSR model tends to be much less accu-

rate than the oktas-based model when the cloud conditions are broken (BKN) or overcast

(OVC), and slightly more accurate otherwise. The DSR documentation explicitly states this

limitation of DSR, and, as a result, often does not even provide DSR readings when skies

are cloudy [5]. To address this problem, we also design a hybrid solar performance model
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that leverages both oktas and DSR. This model uses the ground-level public weather station

data as a filter by using the observed cloud cover to decide whether to use the satellite-based

model or the oktas-based model. When the ground-level observation is CLR, FEW, or SCT,

we use the satellite-based model (as described above), while we use the oktas-based model

when the ground-level observation is BKN or OVC. This approach combines the best at-

tributes of both models.

The satellite-based, oktas-based, and hybrid models above all use physical models that

are general and applicable to all solar sites. We also develop machine learning (ML) models

that are specific to the characteristics of each site. ML models naturally capture unmodeled

variables that are unique to each site, such as shading, which our physical models above

cannot capture. However, one drawback of ML models is that they require sufficient data

for training. Since some characteristics, such as shading, change throughout the year due

to the seasons, this may require multiple years of data for solar models.

We train our ML models based on historical energy generation from each solar site.

As with the hybrid model, these models combine DSR and oktas as input variables, as

well as the clear sky irradiance and time-of-day/year. The dependent output variable is

the site’s actual solar generation under these conditions. We train our ML models using

data from all of 2018, and use the data in 2019 for testing. Since DSR from the GOES

satellites only recently became available, this is the maximum amount of training and test

data that is available. In addition, since we train our ML models on each site individually,

they implicitly incorporate site-specific physical characteristics that affect solar generation,

which the physical models above do not, including the site-specific impact of non-ideal

solar geometry (i.e., different panel tilts and orientations) and shading. The ML models

are purely a black box and do not incorporate any of the physical models above in their

training.

We evaluate two different common ML models: decision tree and support vector ma-

chines (SVMs). Decision trees are a flow chart-like structure where each internal node rep-
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resents a test on a feature for classification and each leaf node represents a class label, while

the branches represent features responsible for the class labels. In our decision tree, we

used 10-fold cross-validation to select the tree depth from a maximum depth of 20 to avoid

over-fitting. We also compare with SVMs, which attempt to fit as many datapoints with the

kernel function while limiting margin violations. Under SVM with regression, we define

a margin of tolerance (ε), a regularization co-efficient C, and use the radial basis function

(RBF) as the kernel. The tolerance ε and co-efficient C are estimated using 10-fold cross-

validation in the following range: ε ∈ {0.01, 0.05, 0.1, 0.2} and C ∈ {1, 10, 100, 1000}.

For both ML models, we also add the hour of the day as an additional feature.

5.4 Implementation

We implemented the solar performance models as a python module, which we have

publicly released We use python’s scikit-learn ML library to build the ML models in the

previous section. We also used the numpy and pandas python packages to decode the

NetCDF-formatted satellite data described below. Our module only requires a site’s lati-

tude and longitude as input, which it uses to compute clear sky irradiance using pysolar [1],

a python library for simulating the solar irradiance at any point on Earth at any time. Sim-

ilarly, our module programmatically fetches current and historical hourly temperature and

cloud cover data from Weather Underground, a commonly used online weather website

that maintains historical weather archives. Given a location, Weather Underground auto-

matically determines the nearest weather station to that location. We also have access to

two years of solar generation data from 47 homes. While we do not have physical access

to all 47 homes, we can visibly observe many of their physical characteristics, e.g., size,

shading, tilt, orientation, etc., in satellite imagery.

We use a web service provided by NOAA to access the satellite DSR data. Currently,

users must download NetCDF-formatted files from an FTP server or via Amazon S3 buck-

ets, as NOAA does not offer access to it via a web service with a programmatic interface.
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NetCDF is a common machine-independent data format for array-oriented scientific data.

Users submit requests for data products, such as the ABI L2+ DSR product for the GOES-

16 satellite, via NOAA’s Archive Information Request System (AIRS) for up to 30 days.

Once approved, NOAA sends the user a link via email to download the requested files (typ-

ically within an hour). Each file includes data for the entire contiguous U.S. for a single

hour. As a result, our python module must decode the NetCDF data, and extract the DSR

value for the sites of interest based on their latitude and longitude. Since extracting the

DSR value for a site from the NetCDF file is non-trivial, we describe the process below.

Extracting Satellite Data. To extract a site’s DSR, we must project the data file onto a

geographic map. There is a summary option in each NetCDF file that gives all the vari-

ables available in the file. Specifically, the variable goes imager projection is essential for

converting (x, y) coordinates for latitude and longitude in degrees to radians. Our python

module uses this variable to extract the satellite sweep, longitude, and satellite height. The

projected x and y coordinates equal the product of the scanning angle (in radians) and the

satellite height.

Following this projection, we can extract the latitude-longitude pairs in the form of a

matrix from the NetCDF file. We calculate the nearest pair of coordinates from this matrix

with our specified location using the Vincenty formula [131], which calculates the distance

between two points on the surface of a spheroid. For the nearest computed location, we

then extract the corresponding DSR value for the latitude-longitude pair.

As with the weather data, the satellite DSR is released hourly. Thus, we focus on

solar performance modeling at an hourly resolution. Our python module combines the

hourly temperature, cloud cover, satellite DSR, and solar generation for each location into

a tabular format, e.g., a CSV file, with a corresponding timestamp for each reading. These

data sources are stored in many different formats, particularly with different timestamps

and time zones. As a result, our python module normalizes all timestamps and time zones

to UTC time. Since our models currently do not account for snow, we focus on periods
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with no snow: May to October in 2018 and 2019. Incorporating snow is future work. Our

primary metric is the Mean Absolute Percentage Error (MAPE) between our models and

the ground truth, where a lower MAPE indicates less error.

MAPE =
1

n

n∑
t=0

|St − Pt
St

|

Here St and Pt are the ground truth and model-inferred solar generation, respectively,

at hour t, and n is total number of hourly data points. We use MAPE because it is an

intuitive metric that is comparable across solar sites of different sizes. However, note that

MAPE is highly sensitive to periods of low absolute solar generation. For example, if solar

generation for a 10kW site is only 10W early in the morning, and our model infers 40W, we

record a 400% error, even though the 30W error is only 0.3% of the site’s capacity. Thus,

when evaluating any single solar site, an absolute error metric, such as the Mean Absolute

Error (MAE) or Root Mean Squared Error (RMSE) may be more appropriate. However,

since our primary focus is comparing across sites with different sizes and characteristics,

we continue to use MAPE, and mitigate its drawbacks by focusing on the 10am-3pm time

period to eliminate periods that always have low absolute generation. Our primary focus

is on the relative difference between the MAPEs of models in design and not the absolute

value.
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Figure 5.4: Availability of DSR data product across our 47 solar sites.
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Figure 5.5: DSR availability under different cloud conditions.

5.5 Evaluation

We evaluate our solar performance model using DSR on 47 solar sites. Unfortunately,

however, DSR is unavailable during periods when its physical model is too uncertain [5].

On average, across our 47 sites, DSR is only available 55.4% of the time, although this

differs across sites. Figure 5.4 shows the data availability across all 47 sites with a horizon-

tal line at the 55.4% average. Figure 5.5 shows DSR’s unavailability under different cloud

conditions, and shows that this unavailability is higher during clear and overcast skies.

This unavailability is currently a drawback to using DSR, especially during overcast skies

as modeling solar performance is most important during these periods. Given this lack of

availability, we restrict our analysis below to only those periods where DSR is available.

SURFRAD Stations. SURFRAD is a more accurate measurement of ground DSR, but

is scarcely available at only few locations (8 location in the U.S.), we picked solar sites

close to one of the SURFRAD stations which is in Colorado, Boulder. We analyzed MAPE

values for solar generation inference from using SURFRAD values for the sites closer to

the Colorado SURFRAD station. As shown in Figure 5.6, on the x-axis we have solar

sites in the order of increasing distance from the SURFRAD station. We observe that as

the distance of the solar site from the SURFRAD station increases, the SURFRAD result

become less and less accurate. While the solar site location closest to the SURFRAD site

has highly accurate and better results, even when compared to Oktas. We can see that site 1,

which is closest to the SURFRAD site, has the lowest MAPE for using SURFRAD directly
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Figure 5.6: MAPE result with SURFRAD Data.

while as we move on to site 3 and site 4 which are further away from the SURFRAD

site, the MAPE for SURFRAD increases. Having information from the SURFRAD site

is as good as having an irradiance sensor next to the solar site, if the site is close to the

SURFRAD station. But since SURFRAD data is only limited to 8 sites across whole

United States, and it’s accuracy decreases with distance from the site, it is not useful across

all geographical locations.

Physical Models. We first analyze the MAPE for our satellite-based, okta-based, and hy-

brid models from sec:design. Since these are physical models and do not require training,

we can use the entire two-year dataset to evaluate their accuracy across all 47 sites. Fig-

ure 5.9 shows the overall results, as well as the MAPE under different cloud conditions.

We find that, overall, the hybrid approach slightly outperforms the okta-based approach,

and, surprisingly, the DSR approach performs the worst. As shown, the inaccuracy of the

satellite-based DSR approach is due to its low accuracy during overcast conditions.

To emphasize the point, Figure 5.7 shows the MAPE under overcast cloud conditions

for all 47 sites, and demonstrates that this performance for DSR is consistent across almost

all of the sites with some sites reporting MAPEs in excess of 100% using DSR. However,
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as shown in Figure 5.5, since there are few overcast time periods where DSR is available,

this inaccuracy does not contribute a significant amount to the overall results. Under all

other cloud conditions, we observe a similar accuracy across the three techniques. Since

our hybrid approach uses DSR when skies are not overcast and the okta-based approach

otherwise, it slightly outperforms the pure okta-based approach. While our focus is on

the relative difference between the models, the absolute MAPEs we find are similar to the

okta-based models evaluated in prior work [52].
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Figure 5.7: MAPE for satellite-based and okta-based models under overcast cloud condi-
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Machine Learning Models. For our ML models, we use 2018’s data for training and 2019

for testing our decision tree (DT) and support vector machine (SVM) regression models.

Figure 5.8 shows the overall MAPE for both our physical and ML models in 2019 under all

cloud conditions, only overcast conditions, and all cloud conditions except overcast. We

separate out overcast conditions since they are the most challenging conditions to model.

We see that the ML models do not significantly improve upon our hybrid physical model,

which does not require training. Overall, the hybrid model performs the best in all three

cases, and is slightly better than the oktas-based model. The DT and SVM models actually

perform worse than the satellite-based DSR model in overcast conditions. This poor per-

formance may be due to the lack of training data in our dataset, as prior work uses multiple

years of training data. Since DSR has only been available for two years, there is limited

data available for training our models.
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Key Point. The key takeaway point of our evaluation is that the current DSR data prod-

uct released by NOAA, which represents the state-of-the-art in satellite-based estimates of

surface irradiance, does not substantially improve solar performance modeling when com-

pared with using okta-based measurements from weather stations. While DSR is slightly

more accurate under non-overcast cloud conditions, it is significantly less accurate under

overcast skies. In addition, DSR is also frequently unavailable, which is a significant draw-

back.

5.6 Related Work

Solar performance modeling that infers a site’s solar generation from its location, time,

physical characteristics, and weather is a foundation for performing a wide range of solar

analytics. There has been significant prior work on solar modeling and forecasting. Recent

work on data-driven modeling develops techniques to automatically derive solar perfor-

mance models for small-scale sites using public data, such as aerial imagery and weather

data and thus are more scalable than prior manual approaches [44,52,53,85]. Using satellite

data to infer ground-level irradiance has also been well-studied. For example, the Heliosat

algorithm [75] is nearly 30 years old and uses visible satellite imagery to infer the global

horizontal irradiance based on cloud cover. Our work differs from this and other work

on this topic by specifically evaluating NOAA’s DSR data product derived from the new

generation of GOES satellites. These satellites were not launched until late 2017 and this
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Figure 5.9: MAPE for satellite-based, okta-based, and hybrid model 2018-19.

data product did not become available until 2018. While recent work has compared DSR

to ground-level irradiance measurements [66], we know of no work that has evaluated it

for solar performance modeling.

5.7 Conclusions

We evaluate the use of DSR estimates from the new generation of GOES satellites for

use in solar performance modeling. We show how to leverage DSR for solar performance

modeling and compare it with okta-based and ML-based models. We show that the accu-

racy of satellite-based models depends on the cloud conditions. Surprisingly, our results

show that pure satellite-based modeling yields similar accuracy as pure okta-based model-

ing with a hybrid approach that uses both showing only a modest improvement in accuracy.

We also show that ML models are less accurate than physical models, although this may

be due to limited training data. In the next chapter,we explore the use of raw multispectral

satellite data for solar modeling, rather than the secondary-level DSR data product, espe-

cially given DSR’s high unavailability. By comparison, the raw multispectral satellite data

is always available at a higher resolution (roughly every 5 minutes).
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CHAPTER 6

MODELING SOLAR PERFORMANCE MODELS USING
MULTISPECTRAL SATELLITE DATA

As we mentioned in the previous chapter, developing accurate solar performance mod-

els is increasingly important as the grid’s solar capacity rises. The most significant error

in existing models is inaccurate estimates of clouds’ effect on solar output, as cloud for-

mations and their impact on solar radiation are highly complex. We observed a strong

correlation between multispectral satellite data from GOES and solar output, and show in

this chapter that training ML-based solar performance models directly on new multispectral

satellite data can yield higher accuracy than existing physical models. We further develop

both local and global models that are more accurate than prior approaches.

6.1 Introduction

Grid-connected solar capacity continues to grow exponentially at roughly a 20-30%

increase per year [25]. This is in line with Swanson’s law, which observes that the price

of solar PV modules tends to drop 20% for every doubling of production volume [120].

This increase in solar capacity is expected to continue for the foreseeable future with solar

power expected to satisfy 25% of global electricity demand by 2050 [23]. Of course, solar’s

potential is much higher as enough sunlight strikes the Earth’s surface in only 1.5 hours to

satisfy the world’s annual energy consumption [51]. This dramatic increase in solar power

is expected to place increasing stress on the electric grid, which must continue to balance

supply and demand despite large potential fluctuations in solar power generation that are

geographically distributed.
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The underlying reason is the mismatch in activation time between solar modules and

conventional thermal generators. While solar modules are always active and ramp power

up and down nearly instantaneously as clouds pass by, conventional generators may take

anywhere from tens of seconds to days to activate depending on their size. As a result,

under large solar penetrations, utilities keep many conventional generators active as spin-

ning reserve to quickly offset any dips in solar power. This is both expensive and highly

energy-inefficient, and akin to indefinitely maintaining an idling car that is only driven pe-

riodically for short distances. While batteries can mitigate some of this inefficiency, they

are unlikely to eliminate it at the grid level in the near future due to both high cost and the

limited supply of lithium on Earth [72].

A complementary approach to improving grid operations is to improve the accuracy

of current and projected solar power output. Solar performance models infer one or more

sites’ solar output based on their physical and environmental characteristics, and are a

basis for a range of solar analytics, including short- and long-term forecasting [50], re-

source estimation [17], fault detection [7,22], and disaggregation [54,94]. In general, solar

power is a well-known function of a module’s physical characteristics, e.g., type, wiring

topology, inverter, tilt, orientation, location, elevation, etc., and its environment, primarily

the time of day, day of year, temperature, and cloud cover. There are many “white box”

modeling frameworks, such as PVlib [38] and the U.S. Department of Energy’s System

Advisor Model (SAM) [63], that enable users to configure their physical and environmen-

tal characteristics to estimate solar output. There has also been recent work on “black box”

data-driven modeling, such as Solar-TK [44,52], which automatically derive physical char-

acteristics from data, and uses them to estimate solar output based on current or forecasted

environmental characteristics.

Unfortunately, the accuracy of these frameworks in estimating solar power is only as

good as their input. In general, white-box approaches, such as PVlib and SAM, assume the

components of ground-level solar radiation are well-known, e.g, global horizontal irradi-
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ance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance (DHI). Solar

performance modeling is highly accurate given accurate estimates of ground-level solar ra-

diation, derived from either a pyranometer [38] or a nearby solar site. Unfortunately, high

fidelity solar radiation data is not widely available at most sites. Thus, prior black-box

approaches have estimated ground-level solar radiation using cloud cover estimates com-

monly reported by weather stations [52, 54]. Unfortunately, the frequency, resolution, and

spatial coverage of these cloud cover estimates are coarse and imprecise, which results in

significant inaccuracy. Importantly, this inaccuracy in estimating the effect of cloud cover

on ground-level solar radiation is by far the largest source of error in solar performance

models that estimate solar output.

An alternative approach for inferring cloud effects is to use data from satellites. For

example, the Heliosat family of algorithms were first introduced in the late 1980s and have

been updated since then [47]. These algorithms analyze satellite images in the visible

light spectrum, and estimate a “cloud index” by comparing a pixel’s actual value with the

value it would have under a clear sky. These algorithms generally use physical models

that are calibrated from empirical observations of a location, and have grown increasingly

more complex as satellite sensors have grown more sophisticated. In particular, the latest

generation of U.S. satellites (GOES-16 and GOES-17) include a sensor—the Advanced

Baseline Imager (ABI)—that takes images of the Earth with 16 spectral bands, including

two visible channels, four near-infrared channels, and ten infrared channels. The ABI

is capable of imaging the entire continental U.S. (CONUS) at resolutions ranging from

0.5− 2km every 5 minutes.

The U.S. National Oceanic and Atmospheric Administration (NOAA) began releasing

both raw data and derived data products from the GOES-16 and GOES-17 in early 2019.

As a result, there is now enough raw channel data available to learn solar performance

models using machine learning (ML). In this chapter, we show how to develop both local

and global solar performance models using ML on multispectral satellite data. Local solar
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performance models are trained on data from a specific solar site where the input features

include multispectral data and the output is solar power generation, while global models

are trained on normalized data from many solar sites. As we show, local models are more

accurate, but require local data from each new site for training, while global models are

less accurate, but do not require any local data for training.

We compare our ML models above with existing calibrated physical models using both

ground-level weather readings and NOAA’s estimates of downward shortwave radiation

(DSR). The latter estimates also derive from multispectral data, but using a physical model,

and represent the state-of-the-art for physical modeling of surface radiation from satellite

data. This chapter differs from prior work on estimating solar radiation in that we focus on

end-to-end solar performance models that estimate the solar power generation of a partic-

ular site (at a specific location and time) using widely available environmental data. Most

prior work, including PVlib and SAM, instead decouples estimating surface solar radiation

from estimating solar power output based on its physical characteristics, e.g., efficiency,

tilt/orientation, shading, temperature coefficient, etc., given surface solar radiation. We fo-

cus on end-to-end modeling because it is simpler, and there is less need for decoupling

when using ML, as ML training is capable of jointly learning the solar radiation and the

effect of a site’s physical characteristics.

Our hypothesis is that training ML-based solar performance models on new multispec-

tral satellite data can yield higher accuracy than existing physical models that use either

multispectral satellite data or ground-level cloud cover readings. In evaluating our hypoth-

esis, we make the following contributions.

Analyzing Multispectral Satellite Data. We analyze existing multispectral satellite data,

and its derived data products, from GOES-16 and GOES-17 that are being made publicly

available. We compile a dataset composed of solar generation every 5m-1hr from 29 solar

sites at known locations, along with the value of the 16 spectral bands every 5m-1hr, DSR
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estimate, temperature, and ground-level cloud cover reading, e.g., clear, scattered, broken,

overcast, etc.

ML-based Solar Performance Models. We develop approaches for training both local

and global ML models using multispectral satellite data, and compare them with prior

approaches that use calibrated physical models. The local models are simple, and trained

on a dataset that includes multispectral data as input features and solar generation as the

dependent output variable. Instead, the global model requires normalizing each site’s solar

output to enable training a consistent model across multiple sites.

Implementation and Evaluation. We implement both our ML-based models and existing

models and evaluate them on up to 2 years of multispectral data (the maximum that has been

released) from the 29 sites. We show that ML-based solar performance models based on

multispectral data are much more accurate than weather or DSR-based models, improving

the average MAPE across 29 solar sites by over 50% for local models and 25% for global

models.

6.2 Background Estimates

Our problem is to develop a solar performance model that infers solar power output for

a specific location, time-of-day, and day-of-year given historical solar power output, and

the location’s environmental data at the same time. Below, we discuss prior approaches

that use physical models, but with different types of environmental data as input. We then

detail the characteristics of the data sets we use for our learning approach, including the

raw channel data gathered by the GOES-16 and GOES-17 satellites.

6.2.1 Prior Approaches

White-box Modeling. Solar performance modeling is a mature area with detailed physi-

cal models available that can accurately estimate the power output of a solar system. These

models describe how the system’s environment (e.g., due to temperature, cloud cover, etc.),
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physical characteristics (e.g., wiring topology, conversion efficiency, conversion losses,

etc.), and location (e.g., time-of-day, day-of-year, elevation, shading, etc.) affect solar

power. White-box modeling frameworks, such as PVlib [38] and SAM [63], require users

to configure virtual solar systems that include these details—down to the type of hard-

ware and surface irradiance—and then uses the available physical models to provide a

solar estimate. Since solar systems are often highly complex, and surface-level irradi-

ance measurements are often not available, recent work has also explored data-driven ap-

proaches to learning the parameters of the physical models solely from historical solar

power data [52, 54].

Data-driven Modeling. Data-driven solar modeling approaches estimate surface irradi-

ance by combining well-known clear sky models [27, 96] with simple cloud cover mod-

els [52, 80]. Clear sky models accurately estimate surface irradiance based on the Sun’s

position in the sky, which is deterministic for a given location at a given time-of-day and

day-of-year. Simple cloud cover models then translate basic weather station readings of

cloud cover, which are made available by the National Weather Service (NWS) for ev-

ery location in the U.S. These cloud cover readings are coarse observations in units of

oktas, where 1 okta represents one-eighth of the sky being covered by clouds. The mea-

surements are typically made by placing a circular sky mirror divided into eight slices on

the ground, such that any slice that reflects a cloud is 1 okta. Okta-based measurements

are typically reported as common string values, such as “clear,” “scattered,” “broken,” and

“overcast.” Simple data-driven solar modeling uses the reported oktas to estimate a cloud

index, which captures the percentage reduction in the clear sky irradiance due to cloud

cover. Clearly, measuring cloud cover using oktas is highly imprecise, and thus represents

the largest source of error in simple data-driven solar modeling.

Clouds formations are highly complex, and have different impacts on solar radiation

depending on their height in the sky and composition. In addition, other atmospheric prop-

erties, such as water vapor and aerosol particles, can affect the absorption and scattering of
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ABI Band Central Wavelength
(µm)

Spatial Resolution
(km) Type

1 0.47 1 Visible

2 0.64 0.5 Visible

3 0.86 1 Near-Infrared

4 1.37 2 Near-Infrared

5 1.6 1 Near-Infrared

6 2.2 2 Near-Infrared

7 3.9 2 Infrared

8 6.2 2 Infrared

9 6.9 2 Infrared

10 7.3 2 Infrared

11 8.4 2 Infrared

12 9.6 2 Infrared

13 10.3 2 Infrared

14 11.2 2 Infrared

15 12.3 2 Infrared

16 13.3 2 Infrared

Table 6.1: Wavelength for 16 channels of GOES-16 and -17 [26].

solar radiation. These complex effects simply cannot be captured by okta measurements

that only range from 1-8.

Satellite-based Modeling. An alternative approach is to estimate a similar cloud index, and

surface radiation, using satellite images taken from space. Even early satellite-based im-

agers were capable of more precision than okta-based measurements. The Heliosat method
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was first introduced in the late 1980s [47, 48, 108] to estimate a similar cloud index from

visual images of the Earth’s surface, and has been improved upon multiple times as satel-

lites have improved. The basic idea is that the more light clouds reflect back in satellite

images, the less light reaches the surface. Thus, in visual images, darker pixels represent

higher surface irradiance, and lighter pixels represent lower irradiance. Of course, the phys-

ical models are highlly complex, as different locations have different ground reflectivities,

which can change over time, e.g., due to foliage, snow, roadways, etc. Thus, Heliosat,

and methods derived from it, use complex physical models to translate satellite measure-

ments into a surface radiation estimate. The latest methods go well beyond using simple

clear sky models, and account for atmospheric changes even under clear skies, such as the

Linke turbidity factor. However, many of the latest methods are proprietary, as large-scale

solar radiation data is becoming an increasingly valuable commodity for a wide range of

applications beyond solar energy modeling [29, 30].

Satellite-based methods also necessarily change as new satellites are launched with

new and more advanced sensors. The GOES-16 and GOES-17 are the latest generation

of weather satellites launched by the U.S. GOES-16 and GOES-17 became operational in

2017 and 2018, respectively, and cover different regions. GOES-16 covers the east region

of the U.S. and GOES-17 covers the west coast and much of the Pacific ocean. The GOES

satellites record 16 spectral bands (or channels) for the continental U.S. every 5 minutes

at a high spatial resolution (1-2km depending on the channel). By contrast, Heliosat was

originally developed for visual images in a single spectral band, while the previous gen-

eration of satellites recorded only 5 spectral bands at 15 minutes resolution. Importantly,

NOAA makes the satellite data publicly available for download [28]. In addition, NOAA is

developing numerous higher-level data products based on the raw spectral data. In partic-

ular, the Downward Shortwave Radiation (DSR) product represents the state-of-the-art in

estimating surface radiation from satellite data using physical models. The theoretical basis

and algorithm for the DSR physical model is described in a 125-page white paper released
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Figure 6.1: Relationship between solar generation at a site, and the values of channels 1, 2,
and 3 at the same location.

by NOAA [5]. These DSR estimates are made publicly available hourly, and can be used

as input directly into white-box or data-driven models for solar output (or by using it to

compute a cloud index). Unfortunately, DSR’s physical model cannot often not compute

its value under overcast sky conditions, and thus often has missing data points [5].

6.2.2 Spectral Data Characteristics

Table 6.1 shows the centerpoint of spectral bands recorded by GOES-16 and GOES-17,

and their wavelengths. Solar cells generate power from wavelengths in the range 0.38µm

to 0.75µm, which are described by channels 1 and 2 and part of channel 3. However, while

not directly relevant, the other channels may also embed important information about the

characteristics of clouds and the atmosphere that could indirectly reveal information about

solar generation. A full description of the channels, and what they are capable of sensing,

is outside the scope of this chapter. Since we focus on using ML rather than physical

modeling for developing our models, the precise meaning of the different channels is not

as significant. We simply treat channel data as a “black box” for learning.

Figure 6.1 gives some intuitive sense of the relationship between channel values and

a site’s solar output on a sunny day with no clouds. The left y-axis shows a site’s solar

output over a day normalized by the maximum solar output over the day. The right y-
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axis then shows the channel values for the same location (within 1km2 area), which are

in Wm−2µm−1. As shown the channel values follow a similar trend. The relationship

with higher channels does not exactly follow the same trend, since they measure longer

wavelengths of irradiance that capture properties not reflected in solar output.

/sectionML-Based Solar Models We present both local and global ML solar perfor-

mance models using GOES satellite imaging data. Local models are trained for each indi-

vidual solar site using its own data, and only apply to one site. In contrast, global models

are trained on data from many solar sites, and are applicable to any new solar site even if

data for the site is not available in the training set.

6.2.3 Local ML Models

Our local ML solar performance model is simple: the input features are time-series data

of the 16 channel values for a particular solar site location and the location’s ambient tem-

perature, while the dependent output variable is the average power generated by the solar

site over the same time intervals. The channel values indirectly quantify the surface irra-

diance, while the temperature is necessary because solar cell conversion efficiency varies

with the cell temperature. In general, for every 1◦C increase in cell temperature, the effi-

ciency of converting solar irradiance to electrical energy decreases by ∼0.5%. While we

assume a solar site’s location is known, and used to determine the associated channel values

and temperature, prior work shows how to extract an accurate location directly from solar

power data at one-hour or less time resolution [55]. We discuss in detail the process of ex-

tracting the 16 channel values for a location from the GOES satellite’s NetCDF-formatted

data files in Section. We simply retrieve the temperature from Weather Underground, a

popular online weather website. Finally, we retrieve solar power data remotely from web-

based solar monitoring systems. We have archived multiple years worth of 5 to 15 minute

resolution average solar generation data from 29 solar sites.
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For each solar site, we curate a training dataset with the timestamp, 16 channel values,

temperature, and average solar power generation. We then train an ML model using a

support vector machine (SVM). While we could use any ML regression model for training,

SVMs have been used for solar modeling in the past, and shown to have higher accuracy

than other regression models. SVM is well-suited for a variety of reasons. In particular,

it is a non-linear model and our input variables do not have a linear relationship, and we

have multiple input features with different magnitudes, units, and ranges. For our SVM,

we select a specific error range by setting the margins and a radial function. We define

a tolerance margin (ε), a regularization co-efficient C, and use the radial basis function

(RBF) as the kernel. The tolerance ε and co-efficient C are estimated using 5-fold cross-

validation on the training data in the following range: ε ∈ {0.005, 0.01, 0.05, 0.1, 0.2}

and C ∈ {1, 10, 102, 103, 104, 105, 106}. For our basic model, we perform 5-fold SVM

regression for each site individually to evaluate its performance. We use 5-fold evaluation

to get a more robust estimate of the performance. We call this a local model because the

model is trained separately for each solar site.

A key benefit of our approach above compared to both prior ML-based solar models

and prior physical models is its simplicity. We apply a standard ML regression model to a

simplistic dataset composed of only three input feature types—timestamp, channel values,

and temperature—without using any domain-specific knowledge. As a result, the approach

is purely a “black box” that requires only gathering and curating the datasets for training.

In contrast, prior ML approaches to solar modeling are much more complex, and not pure

black box approaches, because they lack the data necessary to directly infer surface level

irradiance [76, 116]. As a result, these approaches must use time and cloud conditions to

indirectly estimate surface irradiance. These methods also often mix ML with numerous

physical models that describe the effect of temperature, solar geometry, location, and time

to improve accuracy. While doing so improves accuracy and reduces the training data

necessary to learn the model, it also increases model complexity.
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As we have shown earlier, our simple local ML solar performance models, which in-

clude no physical models, are significantly more accurate than these prior approaches. The

largest source of error in prior approaches stems from the inaccurate measurements of the

effect of clouds, which satellite data improves upon. Our ML approach is also able to learn

the effects of the physical models above, which mitigates the advantage of using these

models.

6.3 Global Model

The local ML models above must be trained for each individual solar site, which re-

quires acquiring sufficient training data to learn the model. In general, roughly one year of

training data that captures all of the Sun’s positions in the sky across the year is necessary

to learn an accurate model. As a result, local ML models have some significant practical

limitations. To address this problem, we also develop a global ML model that uses satellite

data. Global models, once trained, can be applied to any solar site without retraining the

model. These models are less accurate than the local ML models above, but still more ac-

curate than prior approaches that do not use GOES satellite data for estimating the effect of

clouds on surface irradiance. The primary reason for the degraded accuracy is that global

ML models can conflate the effects of many characteristics that are unique to each solar

site when training, including each site’s unique shading behavior, geometry (i.e., tilt and

orientation), temperature coefficient, wiring topology, inverter type, conversion efficiency,

etc. However, as mentioned above, since the effect of these differences is small compared

to the effect of inaccurate cloud cover estimates, global ML models are able to maintain

higher accuracy than prior approaches.

To develop our global models, we train our models not from data from a single site, but

using data from many sites. That is, we combine the training sets for individual sites above

together into a large dataset. The only change we make is to the dependent output variable,

which in the local models is the solar power output in watts. Since solar sites have different
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sizes, and thus different solar outputs, we must normalize this power by the maximum

power a site is capable of producing at the given time. To do so, we adopt an approach

from prior work [54] that bounds a site’s solar power curve using the solar irradiance curve

from a clear sky model. Prior work shows that this method requires few datapoints, and

yields an accurate model of a solar site’s maximum solar output under clear skies at any

time. Dividing solar power by the maximum generation yields a normalized output across

sites in the range [0, 1]. We then train the global ML model using the same approach as

above.

6.4 ML Model Variants

In addition to defining the basic local and global ML models above, we also experi-

mented with many model variants, which we present the results of in. We describe these

variants below.

Varying Resolutions. The spectral satellite data is made available every 5 minutes, en-

abling us to train models at any resolution greater than 5-minutes. By contrast, DSR and

ground-level cloud cover observations are typically reported only every hour. Thus, for

comparison, we train our ML models at multiple different time resolutions, including 5

minutes, 15 minutes, and 1 hour. Similarly, for comparison, we increase the resolution of

DSR and ground-level cloud cover readings by simply assuming that every 5 or 15 minute

interval within an hour has the same value.

Varying Channels. We compare the accuracy of using different numbers of channels.

While in our basic model, we use all 16 channels, we also examine the accuracy of us-

ing only the first 3 channels that corresponds to the visible region and directly senses the

wavelengths converted to solar power.

Multi-Satellite Models. While GOES-16 targets the eastern portion of the U.S. and GOES-

17 targets the west coast and Pacific ocean, they both capture data from the entire continen-

tal U.S. from different angles. Thus, we augment our basic models above, which primarily
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use GOES-16 data since most of our sites are in the eastern part of the U.S., to use both

GOES-16 and GOES-17 data. This provides data from two different vantage points in

space for the same location. To do so, we simply augment our model above to also include

the 3 channels of data from GOES-17.

6.5 Implementation

We implemented our satellite-based ML models using multispectral data in python,

along with two competing approaches that apply physical models to ground-level cloud

cover readings and DSR. We summarize these competing approaches more below. We used

python’s scikit-learn ML library to train the SVM and other regression models. We collect

hourly temperature and ground-level cloud cover readings from Weather Underground, a

popular online weather site. For the physical modeling approaches, we use the pysolar [1]

library to derive a site’s clear sky irradiance based on its location and time. We collect

solar power data from 29 sites remotely via their energy meter API. We initially gathered

data from 75 sites and filtered sites where we could not verify the solar array in satellite

imagery, e.g., from Google, did not have minute-level solar data available, or did not have

2 years worth of solar data. This left us with the 29 sites across U.S. which we analyze.

The GOES-16 and GOES-17 multispectral data is made available by NOAA as netCDF

files downloaded from Amazon S3 buckets. We use a script to recursively download the

data for specific dates each year along with the description of the ABI product, bucket, and

the satellite name. The size of each 5 minute netCDF file is in the range of ∼75MB, which

requires nearly 16 terabytes to store two years of data from one satellite. Each 5 minute

file includes data for all locations. To minimize storage requirements, we filter each file as

we download it to extract only the channel data for the locations we are interested in, and

discard the rest. The DSR data is also made available by NOAA in the form of netCDF

files, but using a different mechanism, which currently requires manually submitting a

request and then receiving an FTP link for download. Table provides a summary of these
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data sources, their units, and their maximum resolution. In our experiments, we compare

accuracy of the models at resolutions coarser than the maximum.

The netCDF files for multispectral and DSR data require some processing to filter

out the data for the location of interest. Specifically, our python module reads the im-

ager projection variable to convert (x, y) degree coordinates for latitude and longitude to

radians. We then search the file for the latitude-longitude pair that is closest to our location

of interest. Since these are geostationary satellites, their rotation matches that of the Earth,

enabling us to look at the same part of the file each time. Thus, we read a file and first create

a list of closest latitude longitude pair using the Vincenty formula [131], which calculates

the distance between two points on the surface of a spheroid. This is done to reduce the

computational resources so that the process of finding the nearest location is not repeated

for each 5 minute file.

6.6 Physical Modeling Approaches

For comparison, we implemented two physical modeling approaches discussed in .

These approaches are distinguished by the input data they use to estimate the effect of

cloud cover on surface irradiance. We summarize these approaches below.

Okta-based Approach. This approach is described in prior work [52] and uses ground-

level cloud cover readings in oktas to capture the atmospheric and cloud effects on solar

power output. In particular, the approach uses a simple formula originally developed by

Kasten-Gzeplank [80] to translate an okta-based cloud cover reading into a cloud index,

which quantifies the percentage reduction in surface irradiance due to clouds. The ap-

proach then essentially multiplies this cloud index by a solar site’s estimated maximum

output at a given time. This maximum output is modeled in the same way as in our global

model by finding the tightest upper bound on the data using a parameterized solar curve

from the clear sky model. The tightest upper bound is used instead of a best fit, since the

maximum solar generation is dictated by the clear sky model’s solar curve. The parameters
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applied to the solar curve include an efficiency constant, which captures the solar site’s

conversion efficiency at 25◦C, a temperature coefficient constant, which captures the effect

of temperature on efficiency, and constants that capture the solar geometry (e.g., tilt and

orientation angles). The approach searches for the parameters that dictate the tight upper

bound, which provides an accurate model of a site’s maximum solar output. More details

are available in prior work [52, 54].

DSR Approach. This approach uses the same physical model as above, but instead of

using oktas to compute a cloud index uses the DSR value computed from the GOES-16

satellite. As mentioned in , this DSR value is computed from the channel data using a

sophisticated physical model [5], which yields an estimate of the surface radiation. We

divide this DSR estimate for a location by the clear sky irradiance to yield a similar cloud

index as above, and apply it in the same way. Note that DSR is often not made available,

as certain conditions prevent it from being computed accurately, especially under overcast

skies. In addition, the DSR technical report [5] evaluates its accuracy for estimating surface

radiation and highlights that its accuracy degrades as the cloud cover increases, which are,

unfortunately, exactly the times when solar performance modeling is most important.

Both approaches above are deterministic physical models that require calibration, e.g.,

by fitting known model function parameters to data, and do not require black-box ML

training of unknown models. Calibrating parameters for well-known physical models is an

advantage compared to using ML to learn these models. Figure 6.2 captures the different

inputs, and data processing steps for our ML model and these two physical models.

6.7 Evaluation

We evaluate our ML-based multispectral model and compare it to the physical models

described above, on 29 sites across two years, which is currently the maximum data avail-

able from the satellites. We use two primary metrics in our evaluation: the Mean Absolute

Percentage Error (MAPE) and the Capacity Error Percentage (CEP). The MAPE is com-
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Figure 6.2: Diagram of data inputs for different solar performance modeling approaches
we implement and evaluate.

puted as below, where St and Pt are the ground truth and model-inferred solar generation,

respectively, at time t, and n is total number of temporal data points. The MAPE quantifies

the average percentage error across time.

MAPE =
1

n

n∑
t=0

|St − Pt
St

|

We use MAPE because it is an intuitive metric that is comparable across solar sites of

different sizes and configurations. However, MAPE is highly sensitive to periods of low

absolute solar generation. For example, if solar generation for a 10kW site is only 10W

early in the morning, and our model infers 40W, we record a 300% error, even though

the 30W error is only 0.3% of the site’s capacity. As a result, MAPE can be significantly

affected by these large percentage errors that are actually small and insignificant absolute

errors. Thus, we pair the MAPE metric with an absolute error metric, called CEP, that

places less weight on these small absolute errors. We define CEP below as the absolute

difference in watts between the actual (St) and inferred solar generation (Pt) divided by a

site’s maximum observed capacity (Smax). We use CEP instead of other absolute metrics,
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Figure 6.3: Performance comparison across the 29 sites. Data consists of only summer
months and the middle of the day. Channel data shows consistently better performance.

such as the Mean Absolute Error (MAE) or Root Mean Squared Error (RMSE), because it

is expressed as a percentage and thus is still comparable across solar sites of different sizes.

CEP =
1

n

n∑
t=0

|St − Pt
Smax

|

6.7.1 Performance of Local Models

We use 5-fold validation in all the experiments. This splits the entire data for each site

into 5 sets each of which is used in turn as a test set and the remaining data as the training

set. For each site, we compute the average MAPE and CEP for all 5 of the test sets and

report the average with standard deviation. We use data from 2018-2019 for all evaluations

except where specified.

Analysis on Individual Sites. We first study the performance of the proposed ML model

using multispectral satellite data on all 29 solar sites. For this analysis we consider only

summer months, May-September, and the middle of the day time period, 10am-3pm. This

targets evaluation for sunny periods which are prone to less fluctuations and is the common

time period used in evaluation in prior work [44, 52]. The results are shown in Figure 6.3,

which shows the MAPE for all the individual sites in inferring solar generation over 15 and

60 minutes time resolution. Note that Okta is only available at a 60 minute resolution and

the 15 minute resolutions are obtained by treating the Okta value as constant over the 60

minute period. On the x-axis, we have the different sites in the order of increasing MAPE
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under 60 minutes resolution, and the y-axis is the MAPE. For each site on the x-axis, we

have four comparisons showing the performance of the Channel and Okta model under 15

and 60 minutes time resolution. The average for the local model across all these sites are

shown as flat lines for all the 4 cases.
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Figure 6.4: Performance comparison of local model under different time-periods. Average
over 29 sites is shown. Left shows comparison using MAPE and right using CEP.

We can see that the performance of these models is consistent across all these sites with

the percentage error being the lowest for our Channel model. At 60 minutes resolution,

which is the minimum resolution for Okta, we observe significantly better solar inference

using the Channel model. On average across the sites at 60 minutes resolution, the Channel

model gives a MAPE of 18.9% compared to 39.4% from Okta model. At 15 minutes

resolution, the Okta performance worsens as expected. The Channel model still performs

well with a slightly higher MAPE compared to the performance at 60 minutes resolution.

Averaged across the sites at 15 minutes resolution, the Channel model yields a MAPE of

22.6% compared to 42.8% from Okta.

CEP and Performance under Different Conditions. We now analyze the performance

for the models under different time periods throughout the year. The averaged result across

the sites is shown in Figure 6.4. Summer refers to May-September and mid-day refers to

10am to 3pm. Again, we consider both 15 and 60 minute time resolutions. The trend is the

same with 60 minutes Channel Model showing the lowest error and 15 minutes Okta Model

showing the highest error under all scenarios. We can also see that the errors are lowest in

95



the case of summer months and middle of the day time period because this eliminates the

period of low solar generation, to which MAPE is sensitive. This is followed by summer

months and full day time-period. This period includes data from sunrise to sunset for these

summer months, thus eliminating the possibility of snow but still keeping the rainy and

cloudy time periods. Furthermore, we can see that when we include the data for the whole

year the MAPE further increases. Note that these are the averages across all the sites and

contain the mix of sites with snow periods and sites with no snow throughout the year.

In all these cases we observe that the Channel Model performs better by almost 50% in

comparison to the Okta Model.

Since MAPE is very sensitive to periods of low solar generation, which will be frequent

when the entire year is considered, we also analyze the performance with respect to the

more balanced Capacity Error Percentage (CEP) metric in Figure 6.4 on the right. Since

CEP is normalized with respect to the maximum solar generation for each site, we see that

the percentage numbers are considerably lower and performance is comparable for summer

mid-day and whole year. For instance, Channel model yields a CEP of 6.7% in the best case

sunny scenario and 7.8% across the entire year. Moreover, Channel still leads to substantial

error reduction compared to Okta.

DSR Comparison. To evaluate the performance of DSR with the Okta and Channel model,

we show the comparison across 2 years worth of data in Figure 6.5. We have again used

summer months and middle of the day to show the average results across sites under each

model. The number of data points used in this evaluation differ from the other graphs

because of the low availability of DSR data. The time periods where DSR value was not

available were dropped so as to have the comparison of Okta and Channel model on the

same set of points as the DSR. DSR data is only 40% available as compared to the data

from the weather station. Interestingly, we find that the DSR performs comparable to the

Okta model. DSR analysis has been studied in the past [42].

96



 0

 20

 40

 60

 80

 100

Channel

Model

Okta

Model

DSR

Model

M
A

P
E

 (
%

)

18.92%

40.36% 43.15%

 0

 20

 40

 60

 80

 100

Channel

Model

Okta

Model

DSR

Model

C
E

P
 (

%
)

6.82%

17.13% 17.24%

Figure 6.5: Performance comparison of Okta, DSR and Channels. Average across 29 solar
sites over summer months and middle of the day is shown. Left shows comparison using
MAPE and right using CEP.

Varying Channels. We also evaluate the performance of using the first three channels

from GOES-16 versus using all 16 channels. The first three channels correspond to blue,

red and veggie (green) bands and together form the visible region. Also we have seen from

Figure 6.1, how the first three bands relate to the actual solar output at any given time.

The higher channels correspond to higher wavelengths and indirectly contribute to the so-

lar output by embedding information about cloud cover, water vapor, etc. For example,

channel 6 and channel 11 have information about cloud particle size and cloud-top phase.

Thus, it can be important to look at all the channels while modeling the solar output. In

Figure 6.6, we have shown this comparison across different time periods. We can see here

that the performance of 3 channels is slightly better than 16 channels when only summer

months are analyzed. However, when considering the full year data, 16 channels perform

slightly better. This is because summer months only capture the peak of solar generation

data while under whole year we have different weather conditions ranging from snow to

rain and cloudy periods. At those time periods, using all the16 channels gives better per-

formance.

Multi-Satellite Models. We also analyze the performance when data from both GOES-

16 and GOES-17 satellites are combined. As discussed before, the two satellites provide

different view points of the same location from space and can provide complimentary infor-
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Figure 6.6: Performance comparison of first 3 channels versus 16 channels from GOES-16.
Average MAPE across sites is shown.

mation. Figure 6.7 shows the results, comparing both MAPE (on left) and CEP (on right).

We have used year 2019 data for this evaluation as GOES-17 data is only available since

2019 [21]. We also evaluate here the performance for the models at 5 minute resolution

on this data as the energy meter at the solar sites only store minute-level data for the most

recent year. We see that combining the GOES-16 and GOES-17 data further improves the

performance for the Channel model indicating that the two satellites provide complimen-

tary information. For instance at 60 minutes resolution, using the combination of satellites

improves MAPE from 19.3% to 13.7%. Moreover, even at 5 minute resolution, we observe

good performance from the Channel models compared to the Okta model.

Comparing Different Regression Models. While we used SVM regression model in all of

the analysis, we also compared different ML based models like decision tree regression, a

simple linear regression, and SVM regression. Additional parameters, like the decision tree

depth, were also estimated using 5-fold validation on the training data. Figure 6.8 shows

the performance of these models. In this case, we perform the evaluation for 15 minute and

60 minute resolution. We can see from the graph that on both 15 and 60 minutes, SVM is

performing best and has the highest accuracy, i.e., lowest MAPE. It is also evident that even
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a simple regression model performs generally well indicating a strong direct relationship

between the channel data and the solar generation.

6.7.2 Performance of Global Models

We now move to the evaluation of the global model. While the local Channel model

performs significantly better, it has the downside that it requires at least a year’s worth of

site-specific data for training. The global model, discussed earlier, overcomes this limita-

tion and builds a general model that is applicable to any new site as long as we have one

day’s worth of data to calculate the site’s physical parameters for maximum solar genera-

tion profile [52, 54]. We again use 5-fold validation for all evaluations. This now splits the

entire data based on the sites, so that each fold consists of 1/5th of the sites. Each fold is

then used in turn as a test set and the remaining sites as the training set. For each fold, we

compute the average MAPE and CEP across the sites in that fold and report the average

with standard deviation.

In Figure 6.9 (left) we have shown our results for the global models. The data for these

models are again at 60 minutes resolution for the summer months and middle of the day.

The left graph covers only the GOES-16 satellite and hence hourly data of two years. We

can see on the y-label the error percentages in the form of MAPE while the x-axis contains

the local and global model results. The local model is the individual site-specific model
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Figure 6.8: Performance comparison of different machine learning models.

evaluated previously and reproduced here for comparison. Note that the local model error

is the average across all sites, where some data for each site was used in training the local

model while the global model error is on new sites whose data was not used for training

the global model. From the graph on the left, we can see that the Okta model has same

performance under both local and global setting since it does not learn anything from the

data. Comparing the global models, the Channel model still outperforms Okta by a large

margin. The error of the global Channel model is higher than the local model. This is

expected as the global model does not use any data from the test sites during training and

hence will miss site-specific physical parameters, such as shading and location, which are

modeled implicitly by the local model.

In Figure 6.9 (right), we have compared the performance of using data from only

GOES-16 with the performance of using the combination of GOES-16 and GOES-17 satel-

lites. Note that this only uses year 2019 data. We can see again that the combination model

performs better but improvement is not as high as in the case of local model.
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6.8 Related Work

This chapter differs from the prior work in multiple ways. First, we use data from the

latest generation of U.S. satellites (GOES-16 and GOES-17) launched within the last two

years, which includes 16 spectral bands instead of a single band in the visible spectrum.

These 16 spectral bands include 3 bands that directly translate to solar generation. This

data has much higher temporal and spatial resolution than prior satellites. Second, we do

not use any physical models as part of our approach, and instead learn black-box machine

learning models. As a result, our approach is highly accessible to those outside atmospheric

sciences, which has generally been the domain of solar forecasting. We also use publicly

available data from NOAA, so replicating our approach is possible for other researchers.

We compare our ML models with a physical model of surface radiation provided by NOAA

as a higher level data product called Downward Shortwave Radiation (DSR) [5]. Finally,

this chapter also differs from prior work in that we focus on end-to-end modeling of solar

power, rather than decoupling models of solar irradiance and solar power generation (given

the irradiance). This approach is also more accessible, as real-time solar radiation esti-

mates are not widely available, even though they are required as input to popular modeling

frameworks, such as PVlib and SAM.
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6.9 Conclusion

In this chapter, we evaluate the performance of using multispectral channel data for

solar modeling from the new range of GOES-r series of satellite(s) that cover the east and

west CONUS domain of North America. We compare the performance of these channels

with conventional ground-level okta-based measurements and a secondary satellite prod-

uct, DSR, at different time granularities and at different times of the year. Our results show

that the multispectral channel data performs better as compared to okta-based cloud mea-

surements and DSR-based approaches by over 50% for local models and 25% for global

models. Prior approaches were compared at one hour time granularity and only during

sunny conditions whereas we compare our models at finer granularities of 5 and 15 min-

utes under different conditions throughout the year, with improved results. We also show

the merits of combining data from GOES-16 and GOES-17 satellites.

Overall, our results show a strong correlation between satellite data and solar output,

and lays a foundation for future work on using multispectral data for solar performance

modeling. In the future, this opens up avenues to explore satellite data for better forecasting

of solar generation at minute-level resolutions, creating self-supervised solar nowcasting

models, to further improve global models using multispectral data, and constructing hy-

brid models which incorporate both satellite and ground-level measurements for improved

performance. We study some of these in the next chapter.
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CHAPTER 7

SOLAR NOWCASTING USING SELF-SUPERVISED LEARNING
ON MULTISPECTRAL SATELLITE DATA

As we have discussed in the previous chapters, solar energy is now the cheapest form

of electricity in history. Unfortunately, significantly increasing the grid’s fraction of solar

energy remains challenging due to its variability, which makes balancing electricity’s sup-

ply and demand more difficult. While thermal generators’ ramp rate—the maximum rate

that they can change their output—is finite, solar’s ramp rate is essentially infinite. Thus,

accurate near-term solar forecasting, or nowcasting, is important to provide advance warn-

ing to adjust thermal generator output in response to solar variations to ensure a balanced

supply and demand. In this chapter, we discuss self-supervised solar nowcasting models

using multispectral satellite data and evaluate our approach for different coverage areas and

forecast horizons across 25 solar sites.

7.1 Introduction

Solar is now the cheapest form of electricity in history. As a result, the U.S. Energy In-

formation Administration (EIA) projects that the share of renewable energy from solar and

wind in the grid will double to almost 42% by 2050 with solar poised to account for nearly

80% of this increase [60]. This dramatic increase in solar generation is also necessary

to mitigate the negative environmental and economic consequences of climate change due

to carbon emissions from thermal generators. Unfortunately, significantly increasing the

grid’s fraction of solar energy, e.g., beyond 50%, remains challenging due to its variabil-

ity, which makes balancing electricity’s supply and demand more difficult. While thermal
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generators’ ramp rate—the maximum rate they can change their output—is finite, solar en-

ergy’s ramp rate is essentially infinite. As a result, to maintain the grid’s frequency and

voltage within a narrow range, utilities will require accurate near-term forecasts of solar

generation that provide advance warning to compensate for any changes, either by adjust-

ing thermal generator output or using demand response.

To address the problem, this chapter develops a general model for near-term solar fore-

casting, or nowcasting, from multi-spectral satellite data using deep learning. Specifically,

we make use of real-time data obtained from the GOES-R series of satellites, in particular

GOES-16. This satellite observes the continental U.S.A in sixteen spectral bands of light,

generating rich spatio-temporal data at an unprecedented temporal and spatial resolution:

every five minutes for every 0.5-2km2 area. This data presents an untapped opportunity

for solar nowcasting at the continental scale using data-intensive deep learning techniques,

which have as yet been limited to sky-imagery data [100, 117, 136, 137] collected using

“site-specific” specialized hardware, which inhibits their applicability. In particular, we

utilize the intuition that the first three spectral bands of light, corresponding to the visible

region, capture information about the solar irradiance and cloud cover at the observed area.

Thus, we propose to learn a global deep autoregressive model, i.e., a model that predicts

the next observation in a sequence, directly from the raw satellite observations to capture

the statistical patterns that are indicative of future solar irradiance.

Our intuition is similar to that of prior work on solar nowcasting using cloud motion

vectors. Clouds are the primary reason solar sites’ output drops from its clear sky potential,

which is largely deterministic based on the ambient temperature, time-of-day, day-of-year,

and location. While cloud movements are a function of complex non-linear atmospheric

dynamics over long time periods, their movements are more predictable over short peri-

ods [57, 89]. Thus, solar forecasting over long periods, e.g., a few hours to days, requires

Numerical Weather Prediction (NWP) models [107] that use physical atmospheric models

to account for non-linear dynamics. In contrast, solar nowcasting over short time periods
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can be easier to model due to the larger influence of more recent changes. In particu-

lar, prior work on solar nowcasting has focused on programmatically identifying clouds in

satellite or sky images to determine their size, direction, and velocity [57, 89]. Solar now-

casting can use such cloud motion vectors to forecast solar output based on the direction

and velocity of clouds. Our approach has a similar intuition, but instead of directly iden-

tifying cloud motion vectors for which there is no training data, we train a deep learning

model that takes as input historical spatio-temporal satellite observations of a region to in-

fer how spectral satellite data is changing over time and space. Changes in this spectral data

implicitly capture cloud movements, as clouds reflect more light, which satellites capture

in the spectral data.

Based on our intuition above, we develop self-supervised deep learning models using

convolutional neural networks (CNNs) and long short-term memory networks (LSTM) to

forecast the next satellite spectral values at the solar sites of interest. These models require

historical spectral satellite data over a region surrounding the site as input. We analyze and

quantify model accuracy based on both the amount of temporal data, i.e., how far in the

past, and the size of the region, i.e., how large of a region, used as input for forecasting

15 minutes in the future. As we show, the more distant the forecast horizon, the larger the

historical data and spatial region required, and the lower the accuracy. However, there are

rapidly diminishing returns in accuracy improvement, and significant increases in training

time and resources, once the historical data and spatial region reach a certain size. We

then apply a simpler regression model to infer a specific site’s solar output from its spec-

tral forecast data obtained from the self-supervised CNN-LSTM model. We compare our

solar nowcasting models with both the accuracy of this model, which infers solar output

based on current conditions, as well as a persistence model that assumes that the future

power remains unchanged over the forecasting horizon, which also serves as the baseline

for comparisons.
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Importantly, we condition our analysis above based on the magnitude and frequency of

changes in solar output at a given location. Put simply, if a location, such as San Diego,

California, U.S.A., is rarely cloudy, then a simple persistence approach that predicts near-

term solar output never changes will be highly accurate. Even in highly variable climates,

solar output often does not change much over short time periods of 5-30 minutes, which

makes simple persistence models appear highly effective. However, accurately forecast-

ing “big” changes in solar output is most important for grid operations, as these are the

changes that require an active response. As a result, we specifically focus on the accuracy

of forecasting “big” near-term changes in solar power. As we show, the larger the change in

solar output, the larger the improvement in accuracy between our deep learning approach

compared with others.

Our hypothesis is that solar nowcasting using deep learning models trained on multi-

spectral satellite data is both more general and more accurate than prior solar nowcasting

approaches, especially at forecasting large changes in solar output. In evaluating our hy-

pothesis, we make the following contributions.

Satellite Data Compilation. We compile a large-scale dataset for 25 solar sites that in-

cludes their average solar power generation, ambient temperature, and satellite data across

16 spectral channels for their surrounding region (up to 10km away) every 5 minutes for a

year-long period. We use this dataset to train and test our deep learning models, and plan

to publicly release it.

Self-supervised Models on Satellite Data. We develop self-supervised deep learning

models trained on spectral satellite observations that use convolutional neural networks

(CNNs) and long short-term memory networks (LSTM) to forecast the future observations.

These models utilize the spatio-temporal observations across all 25 sites (analyzed in this

work) for large-scale training. We analyze the importance of both spatial and temporal

components, and also compare with other simpler machine learning methods for such self-

supervised modeling.
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Figure 7.1: GOES-16 (left) and GOES-17 (right) coverage area. We use GOES-16 satellite
data as it observes the continental U.S. covering all the 25 solar sites considered in this
work.

Deep Solar Nowcasting Models. We demonstrate the utility of self-supervised models for

solar nowcasting, which depends on factors like solar irradiance and cloud cover. These

models use the forecasted spectral data from the self-supervised model as input to a separate

site-specific regression model that predicts a specific site’s solar output at 15 minutes in the

future from current spectral satellite data. This regression incorporates the effect of physical

site characteristics, such as module area, tilt, orientation, and tree cover, on solar output.

Implementation and Evaluation. We implement our models above in python using Ten-

sorflow [37], and train them on a GPU cluster. Given the size of the datasets and complexity

of our models, training each model requires∼86 GPU-hours. We evaluate our approach for

different coverage areas and forecast horizons across the 25 solar sites, and show that our

approach yields errors close to that of a model that uses ground truth observations. We also

show that our deep learning models are much more accurate at identifying “big” changes

in near-term solar output.
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Figure 7.2: GOES-16 (left) and GOES-17 (right) coverage area. We use GOES-16 satellite
data as it observes the continental U.S. covering all the 25 solar sites considered in this
work.

7.2 Background

The GOES-R series of geostationary satellites started launching in late 2017, and now

provides remote sensing data from 16 spectral channels that comprise different ranges of

wavelengths of light, as well as numerous secondary derived products, such as estimates of

downward shortwave radiation (DSR). Note that solar PV only generates power from the

first 3 of these spectral channels, which are mostly in the visible range of light. As a result,

our work only trains models on these first three channels. GOES-16 covers the entire U.S.,

while GOES-17 provides additional coverage for the Western U.S. and the Pacific ocean,

as shown in Figure 7.1. Thus, we will use data from GOES-16 as it covers all the solar sites

used in this work. The data has both high temporal and spatial resolution, including new

spectral readings every 5 minutes for every 0.5-2km2 area in the U.S., and is made publicly

available in near real time. The data is a rich source of information about the environment

and climate that is useful for a wide range of applications. Solar forecasting is a particularly

compelling application, since solar output correlates directly with the amount of light (of

certain wavelengths) that reaches the ground.
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7.2.1 Prior Work

Traditionally, solar forecasts depend on some measure of cloud cover to assess the effect

of clouds on solar output. Cloud cover is commonly measured by weather stations in units

of “oktas,” where 1 okta means that one-eighth of the sky is partially covered by clouds.

Oktas are measured at ground-level using sky mirrors. Unfortunately, oktas are a coarse

and imprecise measure of cloud cover that is typically released by weather stations every

hour. In addition, not every solar site is located near a ground-level weather station that

reports oktas. Thus, even though cloud cover measurements in oktas are widely available,

this data remains an unreliable and inaccurate basis for solar forecasting.

A better basis for solar forecasting is direct ground-level readings of solar irradiance.

The U.S. operates the Surface Radiation Budget Network (SURFRAD) [39] within the

U.S., which measures and records ground-level solar irradiance at different monitoring

sites. These monitoring sites operate in collaboration with the National Oceanic and At-

mospheric Administration (NOAA) that also release values of Downward Shortwave Ra-

diation (DSR). Unfortunately, while SURFRAD measurements are precise, they are not

widely available, as there are only eight SURFRAD sites maintained in the entire U.S.

As a result, we cannot use SURFRAD data as a basis for solar forecasting models. Fi-

nally, NOAA releases derived data products from raw GOES spectral data, including DSR

[16], which is an estimate of ground-level solar irradiance. Unfortunately, satellite-based

estimates of DSR are only released every hour and are often not released during cloudy

conditions (when they are most important) [5]. As a result, satellite-based estimates of

DSR are also not a reliable basis for solar forecasting. Instead, our work leverages a ML

regression model that infers solar output directly from the spectral data, specifically using

the channels in the visible range, as the basis for solar forecasting.

Recent work [38,41,42,45,52] has focused significantly on solar performance modeling—

inferring current solar output from current environmental conditions—but not forecasting.

Solar forecasting is a much more challenging modeling problem, since it must infer, not
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only how spectral data correlates with a site’s solar output, but also how the spectral data

will change over time based on the movements of clouds. Accurately forecasting hours, or

days, in the future is challenging because of non-linear atmospheric dynamics that affect

cloud movements, and which are not directly captured by GOES data. Such long-term fore-

casting on the order of multiple hours or days instead require Numerical Weather Prediction

(NWP) algorithms [107] that leverage non-linear physical models of the atmosphere, and

require more inputs beyond spectral satellite data.

On the other hand, near-term solar forecasting from satellite data is more tractable,

since over short time periods, cloud movements are more heavily impacted by recent phe-

nomenon. As a result, models that incorporate historical spectral data across a region have

the potential to track changes in the data over time as they move across a region. Prior

work on cloud motion vectors [89, 90] has taken this approach in identifying clouds and

tracking cloud movements to assist solar nowcasting. However, they largely use physical

models, and do not leverage either the latest multispectral data from GOES-R or recent

advancements in forecasting using deep learning. The higher resolution data offered by

GOES-R admits more accurate, localized, and near-term forecasts compared to prior work

based on coarser and less precise data. Similarly, recent advancements in deep learning

offer a more automated “black box” approach that does not require manually calibrating

physical models for specific data sources or solar sites.

Finally, another line of research [97, 100, 117, 136, 137] utilizes sky-images collected

from specialized cameras installed directly at the solar site that continuously capture images

of the sky at frequent time intervals. Since this requires specialized hardware to be installed

at each solar site of interest, this severely limits the applicability of such models. Indeed,

prior work on such methods has only considered a very small number of solar sites in

their study, for instance, a maximum of only 2 solar sites in [97, 100, 117, 136, 137]. In

contrast, our work utilizes satellite data that is readily available for any location and thus

our approach is applicable to any site in the continental U.S.A. We will demonstrate the
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utility of our solar nowcasting models on 25 solar sites, an order of magnitude larger than

that considered in any of these prior methods.

7.2.2 Basic Methodology

As we discuss in the design section, our approach breaks the solar nowcasting problem

into two steps: (1) learning a self-supervised model on the raw satellite data across all sites

of interest, and (2) modeling the future solar output at a particular solar site by utilizing

predictions from the self-supervised model. The self-supervised model combines a con-

volutional neural network (CNN) with a long short-term memory (LSTM) for time-series

forecasting of spatial multispectral satellite data. CNNs are typically used for analyzing

spatial imagery. Multi-spectral satellite data across a region of some size at any moment in

time is akin to an image, where the spectral data is equivalent to a pixel value. In contrast,

LSTMs have feedback connections that make them well-suited for forecasting temporal

data, but cannot be directly applied to spatial data. Thus, combined CNN-LSTMs are use-

ful when the input data has both a spatial and temporal structure, as in solar nowcasting.

Specifically, given a sequence of spectral data covering some area over some number of

previous time steps, the self-supervised model is trained to predict the value of the spectral

data at the center location corresponding to the solar site’s location in the next time step. In

our case, we focus on time-steps of 15 minutes in particular. Note that this a self-supervised

model as it only makes use of the raw spectral data to predict subsequent samples in that

datastream that is already captured by the GOES-16 satellite and does not require any

site-specific PV generation data from installed solar sites. This is akin to self-supervised

models in ML literature, for instance, language models [104] that predict the next word in

a sentence or general auto-regressive models that predict future samples in a sequence [99].

These models can be further specialized to specific supervised tasks of interest.

In order to enable site-specific solar nowcasting, the predictions of the future spectral

data at the site’s location from the self-supervised model can then be fed to a regression
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Figure 7.3: Cumulative Distribution Function of changes in solar output at 5, 15 and 60
minute frequency over one year for a representative solar site. Note that a majority of times
solar hardly changes between instants (value at 0) and thus modeling the occasional abrupt
changes is crucial.

model that infers a site’s solar output from given spectral data. These models are capable

of incorporating site specific information that affects solar output from current conditions,

such as a site’s size, orientation, tilt, and shading from obstructions, as we discuss in the

design section.

We evaluate our solar nowcasting models above in the evaluation section across 25

solar sites over a year. Our evaluation particularly focuses on the accuracy of our models

to predict large changes in solar output over short time periods. These are the changes

that are potentially most disruptive to solar-powered systems, including the electric grid.

In addition, evaluating solar nowcasting over all time periods obscures the problem, since

solar output often does not change much within a 5-15 minute period. As a result, a simple

persistence model that predicts solar output never changes over 5-15 minutes are highly

accurate when averaged over many time periods, even though they are highly inaccurate,

by definition, when any change in solar output occurs. Figure 7.2 illustrates this point

by showing the change in solar output every 5 minutes, as well as the first three spectral

channel values, over a day for a particular solar site. As shown, most of the time, neither

the solar output nor the channel value changes significantly. However, there are a few times

within the day that experience significant changes. These significant changes are the ones
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Figure 7.4: Overview of our complete pipeline. Multispectral satellite data from 25 sites
across U.S. is collected. Sequences of observations at a site, comprising of first 3 channels
from the satellite (visualized in middle) are input to a CNN-LSTM model that is trained
to predict the observation at the center (red pin) for the next time step (t + 1). An auto-
regressive SVR takes the predicted channels and previous solar output as well as previous
temperature to predict the solar output at next step.

that are most important to accurately predict, as they have the most potential to disrupt

solar-powered systems and the grid. This graph also demonstrates the correlation between

the spectral channel values sensed by the satellite and a site’s solar output: they tend to rise

and fall in tandem, although the magnitude of the increase and decrease varies over time.

Figure 7.3 then shows a Cumulative Distribution Function (CDF) of the change in solar

at 5, 15, and 60 minute periods. This graph shows that, as expected, there are fewer large

changes in solar output at small intervals, and the size of the changes are generally larger

over longer periods. Thus, accurately predicting the few large changes can be a challenging

problem. As a result, we condition our evaluation in the evaluation section on the accuracy

of predicting changes in near-term solar output above a specified magnitude. Moreover,

note that at 5-minute interval, close to 80% of the data (value at 0) have no change in solar

in subsequent time steps. Thus, we choose a 15-minute interval for our study, so that there

will be more instances with non-trivial changes in solar.

113



7.3 Solar Nowcasting Model Design

In this section, we describe our methodology in developing a solar nowcasting model

using multispectral satellite data. Figure 7.4 shows an overview of our modeling approach.

We first describe our neural network model for self-supervised learning on raw satellite

observations, and then describe a simple auto-regressive model for forecasting satellite

channel values that can leverage forecasts from the self-supervised model. We then feed

these forecasted channel values into a regression model that infers a site’s solar output.

Given a set of solar sites of interest, we consider an area of w×w around each site, and

extract the 3 visible channels of satellite data from the GOES-16 satellite. Note that each

location l within the area is described by a 3-tuple of channel values. We denote each such

3D image of dimensions (w × w × 3) at a location l observed at instant t as I(l)
t . We then

extract a temporal sequence of these images over time from the satellite, with the target site

l always at the center of the image as this is a geo-stationary satellite. This data effectively

has four dimensions described by the 2D area (length and width), three channel values, and

time. We vary both the area and the amount (and resolution) of historical data we use for

training in our models, as the optimal values depend on a location’s climate and the target

forecast horizon. For example, we could use the previous 4 satellite images for a region of

size w with an interval of 15 minutes between images, or the last hour of changes in the

spectral data. Larger areas and longer historical time periods increase the training data size,

which increases the computational overhead of training. As we discuss, however, there are

diminishing returns with respect to improvements in accuracy as these values increase.

7.3.1 Spatial Modeling using Convolution Neural Network (CNN)

Data from the first three channels over an area from the satellite forms a 3D image I(l)
t

that we first process using a Convolution Neural Network (CNN) to extract spatial features

from the image. A CNN model [84] is the standard neural network architecture used for

modeling visual imagery and extracting visual features. CNN models comprise of trainable

114



convolution filters and pooling operations that together extract spatially invariant features

from images. We use multiple layers of convolution filters followed by max pooling layers.

The exact CNN architecture is described in the implementation section. The output of

processing the image with the CNN model is a k-dimensional feature vector:

v
(l)
t = CNN(I

(l)
t ; θ)

where θ represents trainable parameters of the CNN model and v(l)
t is the extracted d-

dimensional spatial feature vector for location l at time t. Note that the CNN is trained

to extract spatial features that help model the temporal dynamics of the satellite data as

explained subsequently.

7.3.2 Temporal Modeling using Long Short-Term Memory (LSTM)

Short-term forecasting of solar power needs to take into account the recent history of

changes to solar irradiation at the surface and how it will evolve in a short span of time.

We use long short-term memory networks (LSTM) [71] to capture the evolution of the per-

instant spatial features extracted from the CNN over time, which is crucial for predicting

future satellite channel values. The LSTM is a prominent neural architecture used for

modeling sequences of data and is also often employed in time-series forecasting. LSTM

makes use of a cell state, that is an internal memory summarizing the previous history at

a given time, and a hidden state that’s the output of the current time step. Multiple gating

mechanisms update the cell state by combining it with the current input and the previous

hidden state. In our case, the LSTM update at step t is summarized as:

s
(l)
t , h

(l)
t = LSTM(s

(l)
t−1, h

(l)
t−1, v

(l)
t ;φ)

where φ are the LSTM trainable parameters, st is the LSTM cell state, ht is the hidden

state, and v(l)
t is the CNN spatial feature vector at time t for location l. Thus recursively
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reapplying the same function at every time-step, the LSTM models the evolution of the

input features over time.

After processing a sequence of T images through the CNN and LSTM, for instance

the satellite imagery over the previous one hour, the final hidden state hT of the LSTM

summarizes the entire sequence. This state is passed through a dense layer with sigmoid

output units to predict the value of the visible channels at the site’s location for the next

step:

Ĉ
(l)
T+1 = σ

(
Wh

(l)
T

)
where W is a (3 × k) matrix with k being the hidden state dimension and Ĉ(l)

T+1 are the

predicted values of the 3 channels of satellite at the next time instant.

7.3.3 Training CNN-LSTM Model

The CNN-LSTM model is trained end-to-end in an auto-regressive manner. That is,

given the sequence of past images we use the model to compute the predicted values for

the next instant and use mean-squared error with respect to the true future satellite values

as the loss function:

min
θ,φ

∑
l,T

∥∥∥Ĉ(l)
T − C

(l)
T

∥∥∥2

where C l
T is the ground-truth satellite observations for all 3 channels at time T and

location l, Ĉ l
T is the prediction from the CNN-LSTM model as described above, and ‖·‖

represents the euclidean norm. Note that the prediction is a function of both the CNN

spatial extraction model and LSTM temporal extraction model such that backpropagation

optimizes the parameters of these models to extract features that can predict future observa-

tions well. Thus, using widely available satellite data, we train CNN spatial extraction and

LSTM temporal models to capture the dynamics of the multi-spectral satellite data. Note

that, in our evaluation, we only train one global model by combining satellite data across

multiple sites. This enables modeling of shared statistical properties across sites rather than
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overfitting to the peculiar characteristics of an isolated site. Moreover, this also provides a

large amount of data for learning a useful CNN-LSTM model which typically do not work

well with small datasets.

The drawback of global modeling is that it does not account for unique aspects of any

specific location’s climate. A local model trained only on data from a specific location is

capable of identifying such unique attributes to improve accuracy. For example, in some

locations, winds may typically move west to east, while in others, they may typically go

in the other direction. However, training our models requires a significant amount of data,

and, since the GOES-R satellites only began releasing data a few years ago, there is not yet

a large volume of data available for training and testing on any single location. In addition,

a global model is beneficial because it does not require re-training, and can be applied to

any location.

7.3.4 Forecasting Solar Output

As we discussed earlier that the GOES visible bands are highly correlated with so-

lar irradiance at the surface, this allows accurate inference of solar power output through

machine learning models trained on historic generation data with GOES visible bands as

inputs. We seek to utilize the same relationship (see Figure 7.2) for solar forecasting by

using deep neural networks to implicitly model the short-term changes in the values of the

visible bands of GOES.

We use the CNN-LSTM model from the previous section to forecast future values of

the visible channels which in turn will help in predicting solar generation, owing to this

relationship between channel value and solar generation.

Given a trained CNN-LSTM model that can generate future satellite observations at a

given site, we leverage these predictions in a model for solar power forecasting at any solar

installation site of interest. We leverage this relationship between visible bands and solar

irradiance by considering the following auto-regressive model for forecasting near-term
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solar output:

P
(l)
t+1 = f(P

(l)
t , C

(l)
t+1, T

(l)
t ) (7.1)

where Pt is the solar power generated, C(l)
t are the satellite channel values and T

(l)
t is

the temperature at time t. f(·) is a regression model, such as support vector regression,

that models the relationship between the input and output variables using historical data.

Temperature is an important component of solar generation as solar panel efficiency is

sensitive to the surrounding temperature [52]. Note that we use C(l)
t+1 instead of C(l)

t in

(7.1). A major component of change in Pt+1 from Pt is captured in the change in Ct+1

from Ct. This complex relationship is modeled using our CNN-LSTM model, described

above, which allows us to predict an estimate Ĉ(l)
t+1, which is an estimate of true channel

values at t+ 1 for the auto-regressive model in (7.1).

The regression model for solar nowcasting in (7.1) is trained using current satellite

observations. That is, f(·) is trained using the ground-truth satellite observations at t + 1

time-step (C(l)
t+1), historic solar output at the location l, and the historic temperature data at

location l. This step does not require the use of the CNN-LSTM model. This is required to

train an accurate auto-regressive model that, given true satellite observations, can learn to

correctly infer future solar output. Once the regression model is trained, instead of using

true future satellite observations, which are unavailable, we replace it with estimates from

the CNN-LSTM model (Ĉ(l)
t+1) to provide forecasts.

7.4 Implementation

7.4.1 Satellite Data and Solar Sites

The GOES-16 multispectral data is made publicly and freely available by NOAA as

netCDF files hosted on Amazon S3 buckets. We use a script to recursively download

the data for each date each year along with the description of the ABI product, bucket,

domain, and the satellite name. The size of each 5 minute netCDF file is in the range

of ∼75MB, which requires nearly 16 terabytes to store two years of data from a single
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GOES-R satellite. Each 5 minute file includes data across 16 spectral bands covering the

entire American subcontinent. To minimize storage requirements, we filter each file as we

download it to extract only the relevant channel data for specific area around the locations

of interest, and discard the rest.

The netCDF files for multispectral data require some processing to filter out the data for

the location of interest. Specifically, our python modules read the goes imager projection

variable to convert (x, y) degree coordinates for latitude and longitude to radians. We then

search the file for the latitude-longitude pair that is closest to our location of interest. Since

these are geostationary satellites, their rotation matches that of the Earth, enabling us to

look at the same part of the file each time. Thus, we read a single netCDF file and first

create a list of the closest latitude-longitude pairs using the Vincenty formula [131], which

calculates the distance between two points on the surface of a spheroid. This is done to

reduce computational resources so that the process of finding the nearest location is not

repeated for each 5 minute file.

For all of our analysis, we use data for 25 solar sites across two years. Satellite data for

the continental U.S. is extracted for the 2019 year. We restrict modeling to a 10× 10 win-

dow around the 25 solar sites which constitutes the training data for the CNN-LSTM model

for compute efficiency. The 10 × 10 window covers an area of approximately 10km2. We

average observations in a 15-minute window, which reduces the sequence length for model-

ing and noise in the data by reducing the number of missing observations and sensor errors.

Solar sites used in this work can be seen in Figure 7.4 and are uniformly spread across the

continental U.S., including the two coasts and central regions. Since solar modeling only

makes sense during the day time, we restrict the satellite data to be from 9am in the morn-

ing to 5pm in the evening based on the local time of the solar sites. This yields more than

300,000 5-step sequences of 10× 10 images (with 3 channels) at intervals of 15 minutes.

We use 5-fold validation in all the experiments, splitting by day so that test sets have

entire days held out for evaluation. This is done for both types of evaluation: evaluating
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channel prediction models and evaluating end-to-end solar nowcasting. Table 7.1 shows

the training, validation, test split of these satellite observations used in this work.

Solar generation data from the energy meters for the same 25 sites and temperature data

from the weather station are obtained from years 2018-19. We restrict generation data to

be from 9am to 3pm every day, which is the peak duration of solar generation.

7.4.2 Model Hyper-Parameters and Metrics

CNN model comprises of 2 blocks of convolutions, where each block contains 2 con-

volution layers with 32 filters of size 3×3 and ReLU activation followed by a max-pooling

layer of size 2 × 2. This is followed by two dense layers with hidden dimension k = 256

and ReLU non-linearity between layers. We use a one layer LSTM that takes these 256

dimensional inputs and has a hidden state dimension of 64. Hyper-parameters for this and

other ML models considered (decision tree and random forest) were determined using the

validation set.

We use three metrics to evaluate the performance of our channel forecasting models

and end-to-end solar forecasting models. Mean Absolute Percentage Error (MAPE), which

quantifies the average percentage across time.

MAPE =
1

n

n∑
t=0

|At − Pt
At

| MAE =
1

n

n∑
t=0

|At − Pt|

Here, At and Pt represents the actual and predicted values. MAPE, which is often used

to quantify the performance in prior work [134], is an intuitive metric and is comparable

across solar sites of different installation sizes and configurations. However, it is sensitive to

periods of low absolute solar generation and can be significantly affected by small absolute

errors. We also used mean absolute error (MAE) to quantify the error in channel modeling

given that the first three channels are reflectance values in the range of 0 to 1. In the graphs,

we use AE times 100 to plot unless otherwise stated. We also use Capacity Error Percentage

(CEP) to quantify the errors of the end-to-end solar forecasting models that we proposed
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Data Sets Number of points Number of days in a year

Training 236375 262

Validation 27040 30

Testing 65258 73

Table 7.1: Total number of sequences as well as the number of days of the year that com-
prise training, validation and testing for the CNN-LSTM model.

in the previous chapter. We define CEP as the as the absolute difference in watts between

the actual and forecasted solar generation divided by a site’s maximum observed capacity

(Amax).

7.5 Evaluation

In this section, we evaluate our proposed CNN-LSTM for deep auto-regressive mod-

eling on satellite data and its utility for end-to-end solar nowcasting. First, we evaluate

the efficacy of the CNN-LSTM model for predicting future values of satellite channels for

a given location. We consider our evaluation along spatial and temporal axes, as well as

consider alternative ML models. Then, we utilize the trained CNN-LSTM model obtained

from that analysis for solar nowcasting at the site locations. We use the following termi-

nology throughout the evaluation:

Persistence Model: Since all the models considered here predict values for the next in-

stant, typically 15 minutes in the future, a natural baseline is one that assumes there will be

no change in the predicted quantity also termed as the persistence model. As we discussed

earlier, solar output often changes in small, abrupt bursts and thus a large fraction of the

time there is negligible change in near term solar output (see Figure 7.3). Thus, improving

over this persistence model prediction is difficult and is of interest in this work.

121



Tolerance: As across the year, changes in solar (and hence satellite observations) over short

durations like 15 minutes are often negligible, we perform all of the analysis in buckets of

varying threshold over subsequent changes. That is, we take a tolerance δ and consider only

points xi where subsequent changes were at least δ: {xi| |xi−1 − xi| ≥ δ}. We evaluate all

models over a range of different values of δ to provide a sense of how they perform over

both small and big, sudden changes in solar. Table 7.2 lists the fraction of points in the

validation data for each tolerance value considered.

Forecast Skill Score: We also use ”forecast skill score” (SS) to compare the performance

between various methods, which is also used in prior work [134, 136], given by:

SS =

(
1−
Eprediction
Ebaseline

)
∗ 100%

Here, E is the error metric used to evaluate performance for every model. If the pre-

diction model performs equally well as the baseline model, the skill score will be 0. A

higher skill score thus means that the prediction model outperforms the baseline model.

We will use the skill score to compare the performance between different models. For the

skill score, the baseline is always the persistence model as presented above.

Tolerance % of points C01 % of points C02 % of points C03

0 100 100 100

0.01 65.24 68.33 80.56

0.02 47.32 49.95 64.54

0.05 22.0 24.34 35.39

0.10 8.38 9.63 13.29

Table 7.2: Variation in number of data points with respect to different tolerances for differ-
ent channels.
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Figure 7.5: MAE for different ML models used to predict the next instant channel values
from current instant. CNN model has the lowest error.

7.5.1 Evaluating ML Models for Spatial Modeling

In this section, we consider different choices of ML models for spatial modeling and

evaluate their utility compared to using CNN. We also consider choices like the spatial

area and its effect on predicting future channel values. For this purpose, we consider three

standard ML models: (1) Decision Tree, (2) Random Forest, and (3) Convolution Neural

Network (CNN). Note that we only analyze next step predictions given current data (that

is a lag-1 time-series models) and consider longer history temporal modeling in the next

section. We only show results for channel 1 to avoid repetition as results for other channels

are qualitatively similar. To train our decision tree and random forest models, we flatten

the w×w spatial satellite observation into a vector of size w ∗w that is input to the model.

Figure 7.5 shows the mean absolute error (MAE) for all three models at different toler-

ances. Here all models are trained over a 10 × 10 area around each solar site and predict

the satellite observations in the next 15 minutes. The point of this graph is to show how

the accuracy of a deep learning approach improves relative to that of simpler non-spatial

models as the size of the subsequent change increases. At 0, which represents all of the

data points, the CNN model is only marginally better than the other models. However, this
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Figure 7.6: MAE for models trained/evaluated at different time intervals. At larger intervals
(30-60 minutes) forecasting becomes increasingly harder.

occurs primarily because most of the time there are only small changes in solar over short

time periods, as evident from the low error of the persistence model. As we increase the

size of the changes we examine, we see that the persistence model predictions, which as-

sume the past is the same as the future, become increasingly worse, while the CNN model

remains the best and improves over the other models by a large margin.

Figure 7.6 shows the effect on forecast error for models trained and evaluated at in-

tervals of 5, 15, 30 and 60 minutes. We use the random forest model for this evaluation

as training a CNN for every setting is expensive. As expected, predicting further into the

future is less accurate, since more changes occur. This discrepancy in accuracy is most

evident at 0 tolerance when we include all data points. This occurs because there are few

changes in solar output over 5 minutes on average, while on average there are much more

significant changes over 60 minutes, including changes due to movement of the sun in the

sky. As we increase the tolerance to assess the accuracy of predicting larger changes, as

expected, the error increases. However, interestingly, the discrepancy in error actually de-

creases. That is, the error in predicting a large change 30-60 minutes in the future is more

similar to predicting a large change 5-15 minutes in the future.
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Figure 7.7: Effect of spatial area on forecast MAE for different models. Using larger area
improves forecast for all models and CNN trained using (10× 10) area is better.

Figure 7.7 then compares the effect of using different sizes of spatial area, focusing on

the two best models from Figure 7.5. We train models with areas of 1×1 (i.e. just the site),

3× 3, 5× 5 and 10× 10. The graph shows that increasing the spatial area around the site

used by the model results in a large improvement in accuracy. We see that using 10 × 10

area gives best results, and it is much better than not considering any surrounding area from

the site (1× 1). Moreover, using the CNN model results in much better spatial processing

and improved results over variants of random forests.

7.5.2 Evaluating CNN-LSTM Models for Spatio-Temporal Modeling

We now add the LSTM on top of the 10× 10 area CNN model and utilize the previous

timesteps as input to the CNN-LSTM model. In this case, we use 4 steps, which means

we train the model on a dataset that includes the 4 previous 10× 10 spatial regions, corre-

sponding to the past 1 hour of spatial observations. The overall results are shown in Figure

7.8, comparing the CNN-LSTM model with a single step CNN model using 10×10 spatial

area. The use of the LSTM drastically improves the results in terms of accurately predict-

ing large changes. Similar to the previous graph, when evaluating across all of the data
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Figure 7.8: CNN-LSTM performance at forecasting next instant channel values. Com-
pared to not using previous temporal history (CNN one step), CNN-LSTM leads to signif-
icant error reduction on predicting large changes (tolerance> 0) and retains overall better
performance compared to persistence model (tolerance= 0).

(tolerance 0), the improvements over single step CNN are not significant because most of

the time there are only small changes in solar output. However, the advantage of the CNN-

LSTM becomes apparent when we look at predicting any significant change larger than 0

(tolerance 0.01) and as we increase the threshold of the changes we look at, we observe that

our model that covers a 10× 10 area and combines a CNN-LSTM leads to larger reduction

in errors.

We next evaluate the performance of CNN-LSTM variants in forecasting next time in-

stant channel values. We explore the following temporal variants: CNN using 1-step static

image, CNN-LSTM using 1-step static image, CNN-LSTM using 2/3/4 steps of images

in the past. Figure 7.9 shows our results compared with the precision model predictions.

Incorporating multiple steps of information in CNN-LSTM is better than using the current

static image for forecasting, showing the utility of a deep auto-regressive approach. We

find that using 3 or 4 steps, i.e., 45 minutes or 60 minutes in the past, perform comparably.

Notably, using even just 2 steps leads to a marked reduction in error. This signifies that the

model is likely able to infer temporal changes in the satellite data, such as cloud movement,

for better prediction.

126



 0

 2

 4

 6

 8

 10

 12

 14

 16

0 0.01 0.02 0.05 0.10

M
A

E
*1

0
0

Tolerance

Persistence Model
CNN 1 step

CNN+LSTM 1 step
CNN+LSTM 2 step
CNN+LSTM 3 step
CNN+LSTM 4 step

Figure 7.9: Comparison of CNN-LSTM models using varying amounts of previous tem-
poral information. Note that using 3-4 steps is better than using lesser steps. There is a
marked reduction in error when using more than 1 step in the model.

7.5.3 End-to-End Solar Nowcasting

The end goal of this work is to use these channel predictions and translate them into an

end-to-end solar nowcasting model. In this section, we evaluate the utility of our models for

this purpose. Since we want a clear comparision of the benefit of using the self-supervised

CNN-LSTM model for solar nowcasting, we use the CNN-LSTM model as a fixed model in

the nowcasting part. That is, after the self-supervised learning on raw satellite observations,

this model is fixed and not trained further on any site-specific data from the solar installation

sites. This enables us to precisely understand the contribution of the predictions from the

self-supervised model in solar nowcasting–if the predictions are useful, it will improve

nowcasting results over using a persistence baseline’s prediction. Moreover, this enables

faster computation and cheaper memory overhead as the expensive CNN-LSTM model is

not trained on each of the many solar sites.

We use the SVR auto-regressive model, discussed in the solar forecasting section, to

forecast 15-minute ahead solar generation. We consider 4 different models to evaluate

forecast at time t:

(1) Persistence model: this is again a simple past predicts the future baseline;

(3) CNN-LSTM-SVR: an SVR model using the predictions of CNN-LSTM, that is the fore-
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Figure 7.10: End to end solar forecasting on 10x10 km area, averaged over 25 solar sites
over 15 mins. Performance for summer months (May-September) is shown on left and
for the full year on the right. Using the predictions from the CNN-LSTM model leads to
solar output forecasting with error close to that of using the current satellite observations.
Compared to precision model forecasts, this approach is consistently better, specially at
predicting when there will be large changes in solar (≥ 5%).
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Figure 7.11: CEP for end to end solar forecasting on 10x10 km area, averaged over 25
solar sites over 15 mins. Performance for summer months (May-September) is shown on
left and for the full year on the right. The performance of CEP is similar to that of MAPE
where the predictions from the CNN-LSTM model leads to solar output forecasting with
error close to that of using the current satellite observations.

casted channel values from past values (Ct−1,Ct−2,Ct−3) from the self-supervised CNN-

LSTM model;

(3) SVR(Ct−1): using the persistence model on satellite observations, Ct−1, as the forecast

input to SVR instead of CNN-LSTM forecast, this should be an upper-bound on the error

only if the CNN-LSTM model produces useful forecasts;

(4) SVR(Ct): this is a lower-bound on the error that uses the ground-truth satellite ob-

servation at the future instant and is not a feasible forecast as Ct is unavailable ahead of

time.
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Note that SVR(Ct) uses the current satellite observations to make predictions. This is

a lower-bound on the error of the model given a particular site with some historical data

when using SVR auto-regressive models. Estimates of satellite channel values, Ĉt from

a model using previous instants observations, will be useful if they lead to an accuracy

that is closer-to this performance of using the actual observations. Similarly, SVR(Ct−1)

corresponds to using persistence model predictions as the future satellite channel estimates,

assuming no change in values, and will be an upper bound on the error. Model error should

be below this value for the model to be useful for solar nowcasting.

Our results are shown in Figure 7.10, and consider both scenarios of only summer

months and the whole year. We include both scenarios, as typically forecasting is easier

over summer months, due to largely sunny days, and more difficult over the rest of the

year, due to phenomenon like rain, clouds, and snow. The performance of forecasting

solar using CNN-LSTM is close to using the ground truth channel values from the future

in the model, an upper-bound, hence showing that the approach is useful and accurate

for solar forecasting. We have further split the performance of these models into percent

changes between successive solar generation values, as shown on the x-axis, where 0 means

any change and includes all the values, whereas as 5% means a change of at least 5% in

subsequent values and so on. We can also compare the results in the left and right plots

of Figure 7.10 in that they both show similar trends but only differ in the MAPE, which is

higher for a full year and a little lower for only summer months. Interestingly, we find that

these models are not drastically worse when evaluating over non-summer months, which

indicates that the models capture rich spatio-temporal phenomenon from the satellite data

for accurate modeling. Alternatively, we have also shown the results from the CEP metric

on the same data in Figure 7.11. The performance of CEP is similar to that of MAPE, thus

showing the usefulness of the forecasting model.

Skill score is a popular metric used to understand the performance of solar forecasting

models. For solar nowcasting, the persistence model is the default baseline model that is
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Figure 7.12: Forecast skill score distribution over summer months and full year, along with
the distribution of the number of instances at different tolerances.

used in prior work [97,119,134,136]. Figure 7.12 shows the average of the skill score across

all the 25 sites at different tolerances. In addition, we show the distribution of the number

of data points available for evaluation at the various tolerances through a histogram. We can

see that the solar nowcasting model improves over the persistence baseline yielding average

skill score in the range of 14-19%. We see that over full year, forecasting skill improves

as we increase the tolerance of subsequent changes and then drops a bit at predicting very

large changes of more than 5%. Interestingly, skill score is consistently high at predicting

very large changes during summer months.

Figure 7.13 then shows the distribution of forecast skill across the 25 solar sites. We can

see that the skill varies widely across solar sites, from 14%-27% across the 25 sites. These

variations are expected as different sites have different characteristics contributing to errors,

including differences in installation capacities, shading from nearby buildings or trees, and

widely different climates (snow vs sunny). In particular, note that prior work on solar

nowcasting using sky-camera imagery has found that state-of-the-art nowcasting models

using deep learning have a skill in the range of 10%-20% [97, 119], as evaluated on only

1 or 2 solar sites (typical in sky-camera nowcasting research). The results in Figure 7.13
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Figure 7.13: Forecasting skill score of all the 25 solar sites at 5% tolerance for the full year.

show that our results are competitive or better, while being highly scalable and cost efficient

as they don’t require installation of specialized hardware at each solar site of interest.

7.6 Related Work

Forecasting solar PV output is akin to forecasting solar irradiance, since the former

strongly correlates with the latter [106]. Numerical Weather Predictions (NWP) algo-

rithms [56, 64, 91, 123], that mostly leverage physics-based modeling, are often used for

solar irradiance forecasting. These physics-based models are most appropriate for forecast

horizons on the scale of hours to days, and not near-term forecasts on the scale of minutes

to an hour [68, 134]. Over long-term horizons, the complex and non-linear evolution of

climate patterns can be difficult to model, requiring knowledge of climate processes and

the history of many atmospheric events over time that can cause subtle changes.

On the other hand, at shorter time scales of 5 to 60 minutes, machine learning ap-

proaches have the potential to implicitly model local changes directly from observational

data [109, 134]. While there is recent work on analyzing images from ground-based sky

cameras [100,117,136,137] for near-term solar forecasting, it requires installing additional

infrastructure at the site. Another alternative is based on estimating cloud motion vec-

tors [57,89,90] from satellite images, however ML approaches that more directly model so-

lar irradiance tend to perform better [42, 83]. Our approach differs from recent approaches
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in solar nowcasting by forecasting solar irradiance values from multispectral satellite data

using a combined CNN-LSTM, which can forecast changes in spatial features over time.

We then combine these solar irradiance forecasts with a model that predicts a site’s solar

output from solar irradiance.

Our approach is a self-supervised approach, where we directly use abundant satellite

data for modeling. Such methods have gained increasing popularity in computer vision re-

cently [78]. While such methods have been widely successful, their applications in remote

sensing have been limited and their applications to solar modeling have not been explored

before. [77] similarly uses self-supervised learning over Landsat images, although their

approach is designed for classifying geographical regions and not applicable here. [132]

reconstructs visible bands from other bands, in a colorization task, to learn useful represen-

tations for land cover classification. Related to our work, [40] uses temporal information

for constructing positive-negative pairs for classification of remote sensing data. Unlike

this work, they ignore complex spatio-temporal dynamics and auto-regressive modeling,

which are more crucial for forecasting. Recently, parallel work [105] utilized generative

modeling on radar data for precipitation nowcasting using generative adversarial networks.

Compared to this, we focus on a different application of solar nowcasting and are able to

demonstrate utility of a simpler model for this application where directly predicting the

next instant values is sufficient as they directly correlate with solar irradiance [41] – hence

do not necessitate requiring a complex discriminator for learning as in GAN models [65].

Finally, our work is also related to auto-regressive language models, that learn to predict

the next word given previous words, which have been very successful for natural language

processing [104].

7.7 Conclusion

Our work shows how to apply deep learning to multispectral satellite data to forecast

short-term changes in solar output. We propose deep auto-regressive models that com-
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bine CNN and LSTMs, trained in a self-supervised manner on abundant satellite data from

GOES-R satellites. Such self-supervised training captures rich spatio-temporal dynamics

that help improve solar nowcasting and is readily applicable to any solar site of interest,

that is captured by the GOES-R satellites, without needing any specialized hardware like

prior work. We evaluate our approach for different coverage areas and forecast horizons

across a large number of 25 solar sites. Our results are promising and demonstrate that 15

minute forecasts using our approach have an error near that of a solar model using current

weather and have forecast skill that is comparable with highly localized methods depending

on installation of specialized sky cameras.

While this is a promising first step, we believe there is much progress to be made in

this area, as self-supervised learning is a promising approach for rapid progress in this

domain due to abundant availability of rich satellite data. The self-supervised learning

approach itself can be improved by exploring longer contexts – both in input and output,

spatially and temporally – through more sophisticated recent neural networks like Trans-

formers [129] which can model longer range dependencies. Finally, while solar nowcasting

is the primary focus here, the self-supervised models presented here should be more gen-

erally useful for other applications such as detecting anomalies like wildfires, forecasting

cloud cover, precipitation nowcasting, and more.
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CHAPTER 8

FUTURE DIRECTIONS AND CONCLUSION

8.1 Conclusion

Distributed solar generation is rising rapidly due to a continuing decline in the cost

of solar modules. Nearly all residential solar deployments are grid-tied, enabling them

to draw power from the grid when their local demand exceeds solar generation and feed

power into the grid when their local solar generation exceeds demand. Utilities need to

continuously regulate both the distributed solar and the traditional generators which vary

in their activation times. With the digitization of the electrical grid, immense data is being

generated at finer time granularities from the grid as well as new range of satellites and

ground-based weather monitoring stations. It is hence possible to create data-drive ML

models. In this regard, this thesis proposes data-driven techniques for controlling, modeling

and forecasting solar for residential homes.

To enable grid-connected solar control, we propose Software-defined Solar-powered

(SDS) [118] systems that dynamically regulates the solar flow rates into the grid and also

present an SDS prototype, called SunShade. SDS manages grid stability and grid neutrality

by introducing a new class of Weighted Power Point Tracking (WPPT) algorithms that

enforce a relative cap while eliminating the need for policy imposed hard caps. To allow

control for off-grid solar, we consider the benefits of partially or entirely defecting from

the grid so as to employ solar without restrictions. We present an architecture [43] for

grid defection and implement a trace-driven simulator that enables a home to dynamically

switch between a local/generator and solar/battery depending on its power consumption

and generation. We further analyze the tradeoffs in terms of number of switches, solar
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waste, reliability, carbon emissions and total cost by introducing switching policies: more

switching leads to less reliability, but maximizes the use of solar.

In order to exercise better control over the intermittent solar, there is a need for accurate

solar performance models which infer solar power output in real time based on the cur- rent

physical and environmental conditions. We evaluate the use of DSR estimates from the new

generation of GOES satellites for use in solar performance modeling [42]. We show how to

leverage DSR for solar performance modeling and compare it with okta-based, SURFRAD

(Surface Radiation Budget) Network and ML-based models. We show that the accuracy of

satellite-based models depends on the cloud conditions. Surprisingly, our results show that

pure satellite-based modeling yields similar accuracy as pure okta-based modeling with a

hybrid approach that uses both showing only a modest improvement in accuracy. We also

show that ML models are less accurate than physical models, although this may be due to

limited training data.

We further explore the use of raw satellite data for solar performance modeling, rather

than the secondary-level DSR data product, especially given DSR’s high unavailability. By

comparison, the raw hyperspectral satellite data is always available at a higher resolution

(roughly every 5 minutes). We evaluate the performance of using multispectral channel

data for solar modeling from the new range of GOES-R range of satellite(s) that cover

the continental domain of North America. We compare the performance of these channels

with conventional ground-level okta-based measurements and a secondary satellite product,

DSR, at different time granularities and at different times of the year [41]. We also show

the merits of combining data from GOES-16 and GOES-17 satellites. Overall, our results

show a strong correlation between satellite data and solar output, and lays a foundation for

future work on using multispectral data for solar performance modeling.

Further, we explore the use of multispectral satellite data for accurate near-term so-

lar forecasting, or nowcasting. We develop a general model for solar nowcasting from

abundant and readily available multispectral satellite data using self-supervised learning.
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Specifically, we develop deep auto-regressive models using convolutional neural networks

(CNN) and long short-term memory networks (LSTM) that are globally trained across mul-

tiple locations to predict raw future observations of the spatio-temporal data collected by

the recently launched GOES-R series of satellites. Our model estimates a location’s fu-

ture solar irradiance based on satellite observations, which we feed to a regression model

trained on smaller site-specific solar data to provide near-term solar photovoltaic (PV) fore-

casts that account for site-specific characteristics. Our results show that our approach yields

errors close to that of a model using ground-truth observations.

8.2 Future Directions

The new-generation constellation of geostationary and polar-orbiting satellites (e.g.,

GOES/ABI [111] and JPSS/VIIRS [112]) provides unprecedented possibilities for ad-

vanced earth observations, scientific discovery and societal benefit. While the visible-

spectrum bands of conventional satellites are only useful during the day time, the Day-

Night Band on the VIIRS system enables novel sensing of nighttime light, including the

ability to observe human activities directly. Paired with a rich array of high-resolution

thermal infrared bands, these observations contain new and improved information about

the land, ocean, and atmosphere. These observations chart new courses for land-cover

mapping, disaster resilience and resource management, modeling and predicting near-term

solar power [41, 42], identifying initiation and spread of wildfires, or even monitoring hu-

man behaviors such as the impact of the COVID-19 pandemic-based changes to nighttime

artificial lighting [61, 87].

Satellite data remains an underused resource in AI methodologies due to several out-

standing challenges. One key issue is that whereas satellite data are available in abundance,

there is a shortage of processed, labeled data (e.g. correct prediction or classification val-

ues) for use in AI training. Here, self-supervised machine learning methods hold a sig-

nificant potential to extract information from these rich spatio-temporal satellite data in
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situations where end-to-end supervised data are limited. Secondly, different satellites have

unique characteristics, strengths and weaknesses, which require deep domain knowledge

of both the data and their suitability for different applications. For instance, in contrast to

standard video sequences, satellite data vary in their spatial, spectral, temporal, and radio-

metric resolution, and may contain objects with fuzzy boundaries [79]. However, within

this diversity there exists rich information content about the underlying processes - waiting

to be discovered and leveraged.

In the future, this work can be extended by avoiding the “black-box” solutions in favor

of Explainable AI (XAI) methodologies [59, 93, 124] which reveal the strategies used

by AI methods. Establishing the link between the machine and human intuition, XAI

represents the essential bridge to end-user acceptance, particularly in high-stake and time-

critical applications.
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