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ABSTRACT

HYBRID BLACK-BOX SOLAR ANALYTICS AND THEIR PRIVACY
IMPLICATIONS

SEPTEMBER 2018

DONG CHEN

B.Sc., XI’AN COMMUNICATIONS INSTITUTE

M.Sc., NORTHEASTERN UNIVERSITY CHINA

Ph.D., NORTHEASTERN UNIVERSITY CHINA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David Irwin

The aggregate solar capacity in the U.S. is rising rapidly due to continuing decreases

in the cost of solar modules. For example, the installed cost per Watt (W) for residential

photovoltaics (PVs) decreased by ⇠6X from 2009 to 2018 (from $8/W to $1.2/W), result-

ing in the installed aggregate solar capacity increasing ⇠128X from 2009 to 2018 (from 435

megawatts to 55.9 gigawatts). This increasing solar capacity is imposing operational chal-

lenges on utilities in balancing electricity’s real-time supply and demand, as solar generation

is more stochastic and less predictable than aggregate demand.

To address this problem, both academia and utilities have raised strong interests in solar

analytics to accurately monitor, predict and react to variations in intermittent solar power.

Prior solar analytics are mostly “white-box” approaches that are based on site-specific

information and require expert knowledge and thus do not scale, recent research focuses

on “black-box” approaches that use training data to automatically learn a custom machine

learning (ML) model. Unfortunately, this approach requires months-to-years of training
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data, and often does not incorporate well-known physical models of solar generation, which

reduces its accuracy. Instead, in this dissertation, we present a hybrid “black box” approach

that can achieve the best of both to solar analytics. Our hypothesis is that the hybrid “black-

box” approach can enable a wide range of accurate solar analytics, including modeling,

disaggregation, and localization, with limited training data and without knowledge of key

system parameters by integrating “black-box” machine learning approaches with “white-

box” physical models. In evaluating our hypothesis, we make the following contributions:

(Mostly) ML “black-box” Solar Modeling. To get benefits from both of ML and

physical approaches, we present a configurable hybrid “black-box” ML approach that com-

bines well-known relationships from physical models with unknown relationships learned via

ML. Rather than manually determining values for physical model parameters, our approach

automatically calibrates them by finding values that best to the data. This calibration re-

quires much less data (as few as 2 datapoints) than training an ML model. And we show

that our hybrid approach significantly improves solar modeling accuracy.

(Mostly) Physical “black-box” Solar Modeling. The physical model used in the

hybrid model above performs significantly worse than other approaches. To determine the

primary source of this inaccuracy, we conduct a large-scale data analysis and show that the

only weather metrics that a↵ect solar output are temperature and cloud cover, and then

derive a new physical model that accurately quantify cloud cover’s e↵ect on solar generation

at all sites. We then enhance our physical model with a ML model that learns each site’s

unique shading e↵ect. And we show that the hybrid modeling yields higher accuracy than

current state-of-the-art ML approaches. We also identify a universal weather-solar e↵ect

that has not been articulated before and is broadly applicable to other solar analytics.

Solar Disaggregation. Solar forecast models require historical solar generation data

for training. Unfortunately, pure solar generation data is often not available, as the vast ma-

jority of small-scale residential solar deployments (<10kW) are “Behind the Meter (BTM)”,

such that smart meter data exposed to utilities represents only the net of a building’s solar

generation and its energy consumption. To address this problem, we design SunDance, a

“black-box” system that leverages the clear sky maximum solar generation model, and the

universal weather-solar e↵ect from the hybrid “black-box” models above. We show that
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SunDance can accurately disaggregate solar generation from net meter data without access

to a building’s pure solar generation data for training.

Solar-based Localization. The energy data produced by solar-powered homes is

considered “anonymous” and usually publicly available if it is not associated with identifying

account information, e.g., a name and address. Our key insight is that solar energy data is

not anonymous: every location on Earth has a unique solar signature, and it embeds detailed

location information. We then design SunSpot to localize the source of solar generation data

and show that SunSpot is able to localize a solar-powered home within ⇠500 meters and

⇠28 kilometers radius for per-second and per-minute resolution.

Weather-based Localization. However, the above solar-based localization has a fun-

damental limit due to Earth’s rotation. To further localize towards a specific home, we

identify another key insight: every location on Earth has a distinct weather signature that

uniquely identifies it. Interestingly, we find that localizing coarse (one-hour resolution) solar

data using weather signature is more accurate than localizing solar data (one minute or one

second resolution) using its solar signature. Both of “SunSpot” and “Weatherman” expose

a new serious privacy threat from energy data, which has not been presented in the past.
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CHAPTER 1

INTRODUCTION

The aggregate solar capacity in the U.S. is rising rapidly due to continuing decreases

in the cost of solar modules. This solar penetration is placing pressure on grid operations,

which balance electricity’s supply and demand in real-time, since solar generation is more

stochastic and less predictable than aggregate demand. To address this issue, we present

a hybrid “black box” approach to solar data analytics that can help utilities accurately

monitor, predict and react to variations in intermittent solar power.

1.1 Solar Penetration Is Increasing

The penetration of intermittent solar in the U.S. is rising rapidly due to continuing

decreases in the cost of solar modules. For example, the installed cost per watt(w) for

residential photovoltaics (PVs) decreased by⇠3X from 2009 to 2016 (from $8/w to $2.93/w).

As a result, the return on investment for “going solar” in many locations is now less than

5 years. Therefore, the installed aggregate solar capacity increased ⇠3X from 2009 to 2016

(from 435 megawatts to 14,762 megawatts).

Nearly all the solar deployments are “grid-tied”, such that they feed any solar power

generated into the electric grid. This increasing grid-tied solar installations is imposing

operational challenges on utilities in balancing electricity’s real-time supply and demand.

Even when aggregated across many deployments over a larger region, solar generation is

still more stochastic and less predictable than aggregate demand, since changes in dynamic

cloud cover (the primary weather metric that a↵ects aggregate solar output) are inherently

more localized and stochastic than changes in temperature (the primary weather metric

that a↵ects aggregate net demand).

While the advancements in solar models (primarily forecasting) are enabling utilities to

better monitor, predict and react to variations in intermittent solar power in grid. Unfor-
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tunately, pure solar generation data required by solar forecast models for training is often

not available, as over 60% of the solar capacity growth is from the small-scale rooftop de-

ployments (<10 kW) that are “behind the meter (BTM)”, such that the smart meter data

exposed to utilities represents only the net of a building’s solar generation and its energy

consumption. In order to address these issues, both academia and utilities have a strong

interest in solar data analytics that are useful for solar energy modeling and predicting.

1.2 Black-box Solar Analyzing

In this dissertation, we propose a “black-box” approach to solar data analytics to address

the above issues. Most recent solar analytics works focus on either Machine Learning (ML)

techniques or physical modeling approaches.

“Black-box” ML-based approaches. The ML approaches are often “o↵ the shelf”

and do not leverage well-known physical models of solar generation based on fundamental

physical properties. Furthermore, most of the recent ML-based analyzing techniques are

not real “black-box” approaches, as they require a significant amount (months-to-years) of

training data from the solar site under test to build a reasonable accurate model for solar

data analytics.

“White-box” physical modeling approaches. In contrast, prior physical modeling

works are “white-box” approaches that require detailed information (e.g. tilt, orientation,

size, e�ciency, nominal operating cell temperature) from a deployment, and some model

inputs (e.g. dust build up, air velocity) that rare di�cult to accurately measure.

Instead, we present a new “black-box” solar analytics approach that does not require

any detailed PVs deployment knowledge, or any training data from a solar-powered build-

ing itself. In essence, to archive the best from both of ML-based techniques and “White

box” approaches, our “black-box” approach allow users to use physical models for selected

parameters (where physical models are available), and uses ML for the other parameters

(where physical models are unavailable).
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1.3 Thesis Contributions

In this thesis, by evaluating our “black-box” approach, we develop multiple di↵erent

solar analytics and evaluate their accuracy.

1.3.1 (Mostly) ML Black-box Solar Performance Modeling

Solar performance modeling is prerequisite for a variety of solar data analytics, including

solar monitoring, BTM solar disaggregation, anonymous localization, and fault detection.

Significant recent works focus on ML-based performance modeling and physical modeling.

ML-based modeling requires a significant amount of pure solar generation data and weather

condition data for training to build a reasonable accurate model. While, physical perfor-

mance modeling requires much less data to calibrate (aka to training) than ML modeling, as

physical models already embedded detailed knowledge (e.g., orientation, size, tilt, e�ciency)

about a deployment. However, physical models do not always exist for all the factors that

a↵ect solar generation. Therefore, we need a new model that can combine benefits from

both worlds, and improve the modeling accuracy.

To address this problem, we first investigate on these existing solar performance model-

ing works-ML-based modeling and physical modeling, compare the accuracy and the amount

of data required for calibration or training for them. We then present a configurable hybrid

“black-box” approach that combines the benefits of both world. Our hypothesis is this

hybrid approach can achieve the best of both, as it can combine well-known relationships

from physical models with unknown relationships learned via ML to improve accuracy.

1.3.2 (Mostly) Physical Black-box Solar Performance Modeling

However, the black-box physical model used in the model above is highly inaccurate

and performs significantly worse than black-box ML models. This inaccuracy must derive

from either the physical models above being inaccurate, or from the e↵ect of unmodeled

physical parameters, such as the other weather metrics, shading from surrounding buildings,

or soiling from dust and pollen.

To address these problems, we conduct a large-scale data analysis to determine the pri-

mary source of the inaccuracy by isolating the e↵ects of 10 di↵erent weather metrics on solar
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output from nearly 343 million hourly weather and solar readings, or 78,435 aggregate years,

gathered from 11,205 solar sites. We show that our empirical physical model accurately de-

scribes weather’s e↵ect on solar output at all sites, obviating the need for training custom

ML models using weather metrics. Instead, we augment our physical model by applying ML

to learn only the relationships that are unique to each site, primarily non-weather-based

shading. We evaluate our approach on solar and weather data from 100 sites, and show it

yields higher accuracy than current state-of-the-art ML approaches.

1.3.3 Solar Disaggregation

Solar performance modelings are enabling utilities to monitor and predict the solar

variance in the grid. However, these solar models (especially for forecasting) requires pure

solar generation data for training. Unfortunately, these solar generation data are often not

available, as the vast majority of the grid-tied solar deployments are “behind the meter

(BTM),”, such that the utilities can only access to net meter data that represents the sum

of each building’s solar generation and its energy consumption.

To address this problem, we design SunDance, a “black box” system for accurately

disaggregate solar generation from net meter data without access to a building’s pure so-

lar generation data for training. It only requires a building’s location and as few as two

datapoints of historical net meter data. It leverages clear sky maximum solar generation

modeling, and identifies an important insight: the Universal Weather-Solar E↵ect e↵ect,

that is, the exact same weather conditions should have the same e↵ect on the maximum

solar irradiance potential, regardless of its location and time. To the best of our knowledge,

it has not been articulated in the past and is broadly applicable to other solar analytics.

1.3.4 Solar-based Localization

The energy produced by solar-powered homes is monitored by utilities and third-parties

using networked energy meters, which record and transmit energy at fine-grained intervals.

Such energy data is considered “anonymous” if it is not associated with identifying informa-

tion, e.g. account number, address. More importantly, according to the U. S. Department
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of Energy’s recently released Voluntary Code of Conduct (VCC), these data can be shared

online or even made publicly available without user’s consent.

Our key insight is solar energy data is not anonymous and can be localized, since every

location on Earth has a unique solar signature (including sunrise, solar noon, and sunset

times), and it embeds detailed location information. To localize the solar-powered homes,

we first examine the factors that a↵ect the accuracy of solar signature for a given location

on Earth, we then designe a localizing technique-SunSpot leveraging two binary searchings

to find latitude and longitude for a solar site. We find that SunSpot is able to localize

a solar-powered home to small region of interest that is near the smallest possible area

give the energy data resolution, e.g., within ⇠500 meters and ⇠28 kilometers radius for

per-second and per-minute resolution. Then, SunSpot identifies solar-powered homes with

in this region using crowd-sourced image processing of satellite image data before applying

additional filters to identify a specific home. We argue that solar generation data is not

anonymous, and SunSpot exposes a new serious privacy threat from energy data, which has

not been discussed before.

1.3.5 Weather-based Localization

While, SunSpot work only examines solar generation data, we next look at other energy

data, e.g. wind generation, energy consumption. We first compare the relationship between

energy data (e.g. wind, solar, energy consumption) and weather condition data to examine

whether they actually correlates with each other. Our key insight is: every location on Earth

also has a distinct weather signature that uniquely identifies it, as energy consumption,

wind, and solar largely correlates with weather metrics, e.g. temperature, wind speed, and

cloud cover, respectively.

To localize the source of energy meter data, we design Weatherman, which leverages

a suite of big data analytics techniques. We show that Weatherman localizes coarse en-

ergy consumption, wind, and solar data to within 16.68 kilometers, 9.84 kilometers, and

5.12 kilometers, respectively. Interestingly, we find that localizing coarse (one-hour resolu-

tion) energy data using weather signature is more accurate than localizing solar data (one

minute/second resolution) using solar signature. Thus, Weatherman presents not only a
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serious privacy threat, but also a potential useful tool for researchers working with smart

meter data. The location information is highly useful and high sensitive, as it can provide

important contextual information to improve big data analytics or interpret their results,

but it can also enable third-parties to link private behavior derived from energy data with

a particular name and address.

1.4 Dissertation Overview

We organize the rest of the dissertation as follows. Chapter 2 provides the necessary

background on solar data analytics. In Chapter 3, we present and evaluate our “black-box”

solar performance modeling approaches. Chapter 4 describes the design, implementation,

and evaluation of SunDance: “black-box” behind the meter solar disaggregation. Chapter 5

details the design and implementation of SunSpot that localizes the source of solar-powered

home using solar signature. Chapter 6 presents and evaluates another solar localization

technique – Weatherman, which localizes the source of energy data using weather signature.

Finally, Chapter 7 concludes the completed work and future work.
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CHAPTER 2

BACKGROUND

In this chapter, we provide background about current solar data analytics approaches

required for various aspects of this dissertation.

2.1 Solar Is “Behind” the Meter

The aggregate solar capacity in the U.S. is rising rapidly due to continuing drops in

the price of solar modules that have fallen 10% per-year on average over the past three

decades. As a result, the return on investment for “going solar” in many locations is

now less than five years [57]. In addition, a variety of financing options are now available

that lower the barrier to installing solar systems by enabling users to avoid incurring large

upfront capital expenses, e.g., by leasing their roof space or entering into a long-term power

purchase agreement. Importantly, nearly all solar deployments are “grid-tied,” such that

they feed any solar power generated into the electric grid. Grid-tied deployments impose new

operational challenges on utilities in balancing electricity’s real-time supply and demand. In

particular, utilities plan “dispatch” schedules for generators in advance based on predictions

of future load. Unfortunately, the increasing penetration of grid-tied solar is decreasing the

accuracy of net load predictions. Solar power, even when aggregated, is more stochastic and

less predictable than aggregate consumption largely because it depends on multiple factors

that are specific to each site and highly localized.

In order to monitor and control these intermittent solar energy in the grid, utilities are

rapidly installing smart energy meters, which continuously measure and transmit electricity

usage at fine-grained intervals using wireless communication techniques, e.g., every minute

or less. Unlike traditional analog meters, smart meters dramatically reduce the need for

sending meter readers to physically visit customer sites (a.k.a Truck Rolls), and enables

two-way power and data flows between customers and utilities to improve the eclectic grid
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Figure 2.1: Solar is “behind the meter” in a grid-tied small scale solar deployment.

management. So far, in the U.S. and Europe, utilities have deployed more than 70 million

and 155 million smart meters, respectively, covering over 50% of all households in each re-

gion. Thus, ample training data from smart meters is typically available for large residential

solar deployments (>10kw) and solar farms, as these deployments are often required to be

monitored independently. As a result, these deployments’ meter data represents pure solar

data.

However, as shown in Figure 2.1, nearly all the small-scale residential solar deployments

(<10kW) that contributes to ⇠60% grid-tied solar deployments are “behind the meter”

(BTM), such that the smart meter data exposed to utilities represents only the net of a

building’s solar generation and its energy consumption, and the pure solar generation data

is not revealed. Therefore, the BTM prevents a wide-range of solar data analytics, e.g.

monitoring, performance modeling, forecasting, and fault detection, as all these need to

access to the historical pure solar generation data. In chapter 4, we present SunDance, a

“black-box” technique that accurately disaggregates solar data from smart meter data to

to remove this barrier.

2.2 Current Solar Analytics Are Impractical

Prior work on solar data analytics generally takes a “white box” approach that assumes

detailed knowledge of a deployment and its location, such as the number of modules and

their size, tilt, orientation, e�ciency, nominal operating cell temperature, wiring, inverter

type, etc. White-box physical models translate this information into the parameters the

models require. The PV Performance Modeling Collaborative documents a variety of white-

box modeling methods [79]. This approach typically decouples the di↵erent e↵ects on solar
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generation and models them separately. For example, di↵erent models exist for estimat-

ing ground-level irradiance versus estimating a deployment’s e�ciency at converting this

irradiance to power. The former applies physical models to local or remote sensing data,

e.g., ground-level pyranometers or satellites, to estimate irradiance, while the latter applies

physical models to estimate the e�ciency of converting this irradiance to power. Many tools

exist, such as PVWatts [2] and SAM [5], that estimate solar potential using “white-box”

models. Unfortunately, while these “white-box” approaches have accuracy, gathering the

detailed deployment information at large scales for millions of small-scale deployments is

infeasible for utilities.

Significant recent work focuses on learning “black box” models, primarily in the context

of forecasting [23, 87], using machine learning (ML) techniques. ML is defined as a set

of methods that can automatically detect data patterns, and then use these uncovered

patterns to predict future data. “Black-box” approaches are attractive because they use

only historical energy and weather data for training. Thus, utilities and third-parties that

remotely monitor tens of thousands of solar deployments, e.g., via smart meters and other

sensors, can directly apply “black-box” techniques at large scales to vast archives of data.

Unfortunately, ML techniques require a significant amount of historical data to train an

accurate model. Prior work requires anywhere from months to years [46, 75], while a recent

survey states that at least 30 days of data is necessary to train a reasonably accurate

model [23]. However, historical data is generally not available for either new deployments

or deployments that do not continuously monitor and store the data.

Instead, in this dissertation, we present a hybrid “black box” approach that can achieve

the best of both to solar data analytics. Our hypothesis is that the hybrid “black-box”

approach can enable a wide range of accurate solar analytics, including modeling, disaggre-

gation, and localization, with limited training data and without knowledge of key system

parameters by integrating “black-box” machine learning approaches with “white-box” phys-

ical models.
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2.3 Anonymized Energy Data Is Not “Anonymous”

Energy data is generally considered “anonymous” if it is not associated with identifying

account information, e.g., a name and address, as suggested by the U.S. Department of

Energy’s recently released Voluntary Code of Conduct (VCC) for managing user energy

data [86]. Importantly, the VCC does not require user consent to release anonymized

energy data with names and addresses stripped. Consent is likely not required because the

energy analytics above do not reveal location, which prevents third-parties from associating

private behavior above with a specific home. Thus, energy data from these “anonymous”

solar-powered homes is often not treated as sensitive: instead, it is routinely transmitted

over the Internet in plaintext, stored unencrypted in the cloud, shared with third-party

energy analytics companies, and even made publicly available.

A plethora of startups have now arisen to analyze these vast archives of utility energy

data, ostensibly to make energy-e�ciency recommendations [28, 13, 70]. Prior research has

demonstrated the ability to learn a variety of insights into private user behavior by analyzing

their energy data [66]. For example, energy data indirectly leaks occupancy [31, 53], which

may reveal whether a home’s occupants: i) include a stay-at-home spouse, ii) keep regular

working hours and daily routines, iii) frequently go on vacation, or iv) regularly eat out for

dinner. Energy data can also reveal load power signatures—changes in power unique to a

device—for specific appliance brands and models. These behavioral insights and appliance

details are valuable to companies in profiling homes and directing advertising campaigns,

and may also be exploited by tech-savvy criminals. Thus, some contend that energy data

will eventually be worth more than the energy consumed to generate it [68].

Our key insight is that solar energy data is not anonymous: since every location on

Earth has a unique solar signature (e.g., a unique sunrise, sunset, and solar noon time)

and a unique weather signature (e.g., temperature, wind speed, cloud cover), and they

already embedded detailed location information. The localization threat exposes a new

privacy threat from energy data, which has never been presented before. In this dissertation,

we design two “black-box’ localization techniques in Chapter 5 (SunSpot) and Chapter 6

(Weatherman) to explore severity and extent of this privacy threat. This privacy threat

explosion is critically important in informing evolving policies by Department of Energy and
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others for managing “anonymous” energy data, and in emphasizing to users and utilities the

need to securely handle energy datasets. Instead of simply removing the account information

(e.g., name, address) from energy data, we need to design advanced privacy preserving

techniques to protect the energy data before sharing to third-parties or releasing online.

2.4 Mean Absolute Percentage Error

To quantify accuracy of the various solar analytics that we present in this dissertation,

we compute the Mean Absolute Percentage Error (MAPE), as follows, between the ground

truth solar energy and the solar energy that SunDance infers over all time intervals t. A

lower MAPE indicates higher accuracy with a 0% MAPE being perfectly accurate solar

disaggregation.

MAPE =
100

n

nX

t=0

|St � Pt

St
| (2.1)

Here, St and Pt are the actual and inferred average solar power generation, respectively,

over time t. We restrict all time periods to between sunrise and sunset, since SunDance

is always perfectly accurate at night, as solar generation is always zero. Even so, MAPE

is highly sensitive to periods of low absolute solar generation. For example, if sunrise falls

near the end of an hour, the absolute generation of a 10kW solar deployment over the hour

may only be 50W. If our approach infers a generation of 100W, its MAPE for that period

will be 100%. In contrast, the absolute generation during a cloudy mid-day period may be

5kW, such that if our approach infers a generation of 6kW, its MAPE is only 20%. Thus,

the absolute error of 50W contributes much more to the average MAPE than the absolute

error of 1kW. To put our results in better context, we usually report overall MAPEs, as

well as MAPEs for separate time periods.
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CHAPTER 3

SOLAR PERFORMANCE MODELING

The increasing penetration of solar power in the grid has motivated a strong interest in

developing real-time performance models that estimate solar output based on a deployment’s

unique location, physical characteristics, and weather conditions. We survey existing work-

“white-box” physical modeling and “black-box” ML modeling, and we then present hybrid

approaches that combines the benefits of both, and show that they significantly improves

solar modeling accuracy.

3.1 Background and Motivation

Solar performance models are useful for a variety of energy analytics, including indirect

solar monitoring [40], solar forecasting [23, 87], “behind the meter” solar disaggregation [63,

50, 33], anonymous localization [36], and fault detection [43, 21]. Significant recent work

focuses on learning “black box” models, primarily in the context of forecasting [23, 87],

using machine learning (ML) techniques. Black-box approaches are attractive because they

use only historical energy and weather data for training. Historical and current weather

data are freely available form nearly every location in the U.S. form National Weather

Service (NWS) and many websites, such as Weather Underground [18]. Thus, utilities and

third-parties that remotely monitor tens of thousands of solar deployments, e.g., via smart

meters and other sensors, can directly apply “black-box” techniques at large scales to vast

archives of data.

Interestingly, these black-box ML approaches are often “o↵ the shelf” and do not leverage

well-known physical models of solar generation based on fundamental physical properties.

Instead, prior work on physical modeling generally takes a “white-box” approach that as-

sumes detailed knowledge of a deployment, such as the number and type of inverters and

solar modules, as well as their rated capacity, e�ciency, tilt, orientation, nominal operating
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cell temperature, and wiring. To develop white-box physical models, experts gather and

translate this information into the parameters the models require. The PV Performance

Modeling Collaborative distills a series of ten white-box modeling steps [79] implemented

as part of the open source PVlib library [22]. Unfortunately, while white-box approaches

may yield high accuracy, gathering the necessary information to construct these models at

large scales for millions of small-scale deployments is infeasible. Thus, white-box models

are typically only developed for utility-scale solar farms.

While recent black-box ML approaches do not require such site-specific information, they

also have significant drawbacks. In particular, they require months-to-years of training data

to derive accurate models [46, 75, 23], and thus are not immediately applicable to new solar

sites coming online, or those that have not archived their historical data. In addition, “o↵

the shelf” ML approaches often do not incorporate well-known physical models of solar

generation based on fundamental properties, which reduce their accuracy. To address the

problem, we develop an approach to physical black-box modeling that leverages many of

the same fundamental properties as existing white-box models. However, rather than derive

physical model parameters from a manual site inspection, our approach calibrates them by

finding the values that best fit the data. As we show, this calibration requires much less

data than training a ML model, as the physical model embeds detailed information about

the relationship between the input parameters and solar output.

We survey prior work on solar performance modeling, and then compare black-box ap-

proaches using machine learning versus physical modeling [26, 38]. We examine both a

canonical “pure” machine learning technique from prior work [63] and a “pure” analytical

approach from prior work, which leverages several well-known physical properties of so-

lar generation [33]. We show that a significant drawback of black-box physical modeling

compared to ML is that simple physical models i) do not exist for all the variables that

potentially a↵ect solar generation, especially the dynamic factors that degrade output, and

ii) may require inputs that are di�cult to accurately measure. For example, there are no

simple physical models that quantify degradation in output due to dust build up, high hu-

midity, or air velocity on solar conversion e�ciency [62]. In addition, physical models of

cloud cover’s impact on solar irradiance requires accurately quantifying cloud cover, which
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is di�cult to measure. In contrast, ML techniques automatically learn these unknown rela-

tionships from observed data, and adapt as they change over time. Thus, while black-box

physical models have the potential to be more accurate than data-driven ML models, they

are generally less accurate in practice.

In this chapter, we compare the accuracy of black-box physical and ML solar perfor-

mance models, as well as the amount of data required for calibration or training. We then

present hybrid solar performance modeling techniques that combine elements of both ap-

proaches. Our hypothesis is that a hybrid approach can achieve the best of both worlds by

combining well-known relationships from the physical models with unknown relationships

learned via ML to improve accuracy, while requiring no more training data from the de-

ployment under test than the pure physical model. However, as we discuss, by normalizing

the output of our ML model based on physical solar properties, this training data need not

be gathered from the deployment under test. In evaluating our hypothesis, we make the

following contributions.

Pure Solar Modeling Approaches. As reference points, we first discuss both a pure ML

approach to black-box solar performance modeling from prior work [63] and a pure physical

approach, which combines several well-known physical models of solar generation.

Hybrid ML Black-box Solar Modeling. We present a configurable hybrid model that

combines ML and physical approaches. In essence, the hybrid approach uses physical mod-

els for selected parameters (where physical models are available), and uses ML for the other

parameters (where physical models are unavailable). We show that the hybrid approach

significantly improves the accuracy of the pure ML and physical approach. In addition,

we evaluate multiple variants of our hybrid approach by selectively adding more parame-

ters with physical models. We show that the accuracy of the hybrid model incrementally

improves as we model more of the input features using physical models.

Empirical Physical Solar Modeling. Unfortunately, the black-box physical model above

is highly inaccurate and performs significantly worse than black-box ML models. This in-

accuracy must derive from either the physical models above being inaccurate, or from the

e↵ect of unmodeled physical parameters, such as the other weather metrics, shading from

surrounding buildings, or soiling from dust and pollen. Therefore, we conduct a large-scale
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data analysis to determine the primary source of the inaccuracy by isolating the e↵ects

of 10 di↵erent weather metrics on solar output. Our analysis shows that only 2 weather

metrics a↵ect solar generation—temperature and cloud cover—and that their e↵ect is uni-

versal and independent of time and location after normalizing for a deployment’s physical

characteristics. We improve these existing cloud cover models in developing our approach,

which estimates a site’s solar output at any time based on widely-available temperature and

cloud cover readings. Unlike prior ML approaches, which require months-to-years of data

to train accurate models, our model requires as few as 2 datapoints to calibrate a specific

solar site.

Hybrid Physical Black-box Solar Modeling. Of course, there are unique aspects of

each solar site that do a↵ect solar output, which our physical model does not capture. These

aspects primarily derive from non-weather-based shading, e.g., from nearby buildings, trees,

and mountains, and soiling, e.g., from dust and pollen. Thus, we augment our approach by

applying ML to learn only how much these unique site-specific shading and soiling e↵ects

decrease the solar output expected by our physical model. As we discuss, these site-specific

e↵ects are largely a function of the Sun’s azimuth and zenith angles. We show that our

ML-enhanced physical black-box model further yields much higher accuracy than current

state-of-the-art ML approaches across all 100 sites in our evaluation, especially at sites and

during periods with significant shading from obstructions.

3.2 Black-box Solar Modeling

There are significant prior works on ML-based solar modeling and physical solar mod-

eling. In this section, we survey and compare these two di↵erent kinds of solar modeling

techniques.

3.2.1 Black-box ML-based Modeling

Prior work on ML-based black-box solar modeling has the same broad characteristics.

Since solar generation varies based on weather conditions, input features include a variety of

weather metrics that are publicly available, e.g., from the National Weather Service (NWS)

or Weather Underground, such as temperature, dewpoint, humidity, wind speed, and sky
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cover. Note that all approaches assume a deployment’s location, and thus its weather is

well-known. The dependent output variable is often the raw solar output. Given historical

weather data and raw solar output, a variety of supervised ML techniques, e.g., regression,

neural nets, Support Vector Machines (SVMs), can learn a model that maps the weather

metrics to raw solar output. However, since solar generation potential varies significantly

each day and over the year, this approach requires learning a separate model for each time

period [75]. This significantly increases the training data required to learn an accurate

model, as each sub-model requires distinct training data.

To reduce the size of the training data, ML-based modeling can normalize the input and

output variables, such that it can use each datapoint to learn a single model [46]. Our pure

ML-based approach normalizes these variables without using detailed physical models of

the system [63, 65]. In particular, the approach normalizes the output variable by dividing

the raw solar power by the solar capacity, defined as the system’s maximum generation

over some previous interval, which it calls the solar intensity. While the prior work does not

specify this interval, in this chapter, we divide by a solar deployment’s maximum generation

over a year. In addition, the approach also adds the time of each datapoint to the input

features along with the time of sunrise and sunset. The time information enables the model

to automatically learn the solar generation profile. For example, a time closer to sunrise or

sunset will have a lower solar intensity, even in sunny clear sky conditions, compared to a

time closer to solar noon. The approach then uses a Support Vector Machine (SVM) with

a Radial Basis Function (RBF) kernel to learn a model from the training data. SVM-RBF

is common in solar modeling, since it attempts to fit a Gaussian curve to solar data and

solar profiles are similar to Gaussian curves [75, 63, 27]. Figure 1 depicts a typical solar

profile and its best fit Gaussian curve. As the figure shows, the Gaussian curve fits well in

the middle of the day, but diverges at the beginning and end of each day.

Note that the approach above is completely data-driven and does not incorporate any

physical models of solar generation, other than the insight that solar curves vary over time

and are similar in shape to Gaussian curves. While the approach requires multiple months

of training data to learn an accurate model, the authors claim that the normalization

enables them to train the model on di↵erent solar deployments than they test on, since all
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Figure 3.1: Solar data along with a best fit Gaussian curve.

solar profiles exhibit the same Gaussian shape. In fact, this model was developed for solar

disaggregation, where solar data from the deployment under test is unknown, thus requiring

the model to be trained using data from separate deployments. Of course, as we show,, the

model is more accurate when trained data from the deployment under test due to physical

di↵erences between deployments that a↵ect solar output.

3.2.2 Black-box Physical Modeling

Our approach to physical modeling leverages several well-known relationships that gov-

ern solar generation. Our physical model leverages existing models that estimate the clear

sky solar irradiance at any point in time at any location based on the Sun’s position in the

sky. Many clear sky irradiance models have been developed over the past few decades with

varying levels of complexity [60]. There are multiple libraries available that implement these

models [3, 1] with the simplest models requiring as input only a location, i.e., a latitude

and longitude, and time. The output is then the expected clear sky irradiance (in W/m2)

horizontal to the Earth’s surface. This is the maximum solar energy available to a solar

module to convert to electricity.

3.2.2.1 Computing Clear Sky Irradiance

Solar irradiance is the power transmitted to the Earth by the Sun, and is measured

in units of kilowatts per meter squared (kW/m2). While the Total Solar Irradiance (TSI)
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that strikes perpendicular to the Earth’s atmosphere is relatively constant and estimated

at ⇠1.361 kW/m2, the irradiance that reaches the ground is much less due to atmospheric

losses (even under clear skies). The magnitude of these losses is largely a function of the Air

Mass (AM) that light must travel through to reach the Earth, such that that the larger the

AM the lower the fraction of TSI that reaches the ground. The AM is, in turn, a function

of the Sun’s position in the sky. For example, the fraction of TSI that reaches the ground

is less closer to sunrise or sunset, as the Sun’s light must pass through much more of the

Earth’s atmosphere at those times.

Since the Sun’s position in the sky is a well-known function of location and time, it is

possible to use the AM along with measurements of other atmospheric parameters to esti-

mate the clear sky irradiance under a cloudless sky at any point on Earth at any time. There

are many clear sky irradiance models that range from simple geometric formulas involving

only the AM, the Sun’s position, and experimentally-derived constants to highly complex

models that require detailed data on the specific location’s atmospheric conditions [60].

Note that evaluating the accuracy of these models is outside the scope of this work, and has

been the focus of significant prior work [60]. While our approaches are compatible with any

of these models, our implementation in this chapter uses a simple model that requires only

a location’s latitude and longitude and the Sun’s position, which is a function of location

and time.

3.2.2.2 Modeling Physical Characteristics

Solar cells harness the photovoltaic e↵ect to translate the Sun’s irradiance into electrical

energy. However, the e�ciency of solar cells depends on a variety of physical characteristics

specific to each solar deployment. For example, the e�ciency of commercial solar modules

varies widely due to di↵erent materials and manufacturing processes, e.g., mono- versus

poly-crystalline modules. In addition, a number of other physical characteristics further

reduce solar module e�ciency. The most important physical characteristics that a↵ect e�-

ciency are a solar module’s size, tilt, and orientation. For example, the clear sky irradiance

models above assume a 100% e�cient solar module lying flat on the ground, such that its

directional orientation and vertical tilt are equal to 0�. However, if a solar module is tilted
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Figure 3.2: Maximum clear sky solar generation potential near NYC on 1/1/2016 for dif-
ferent physical deployment characteristics, including di↵erent orientations ↵ (a), sizes and
e�ciencies k (b), and tilts �(c).

upward and facing away from the Sun, not all of the available solar irradiance will reach it.

As before, the e↵ect of solar module size, tilt, and orientation are well-known and can be ex-

pressed using the closed-form equation below that relate a module’s solar power generation

Ps to the solar irradiance incident on the module Iincident and the physical characteristics

above.

Ps = Iincident ⇤ k ⇤ [cos(90�⇥) ⇤ sin(�) ⇤ cos(�� ↵)

+ sin(90�⇥) ⇤ cos(�)] (3.1)

Here, ⇥ is the Sun’s zenith angle above (such that 90-⇥ is the Sun’s elevation angle), ↵

is the Sun’s azimuth (or orientation) angle, � is the solar module’s tilt angle, and � is the

solar module’s azimuth (or orientation) angle. The Sun’s zenith angle ranges from 0� (when

the Sun is directly overhead) to 90� (at sunrise or sunset). Similarly, a solar module’s tilt

angle ranges from 0� when lying flat on the ground to 90� when vertical. The orientation

angles for both the Sun and the module range from 0� (directly north) to 180� (directly
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south). Finally, the k parameter represents a combination of a solar module’s size and its

e�ciency, expressed as a percentage of the incident solar irradiance Iincident it converts to

electrical energy. For example, a solar module that is 2⇥ larger but half as e�cient as

another solar module would have the same value of k.

Figure 3.2 illustrates the physical e↵ects on clear sky generation potential at a location

just north of New York City, at 41� latitude and -74� longitude, on January 1st, 2016 for

di↵erent solar module orientations (a), sizes and e�ciencies (b), and tilts (c). As the figure

shows, orienting the solar modules west or east shifts the peak solar generation later or

earlier, respectively. In addition, since the k parameter from Equation 3.1 is a constant

scaler it simply scales the curve up and down. The tilt parameter (�) has a similar e↵ect

as k, in that it also tends to scale the curve up and down for practical values, but is not a

scaler, and thus also a↵ects the orientation shift.

White-box models can directly measure the module angles, size, and e�ciency. While

black-box models cannot directly measure these values, given the relationships above, it

can search for these parameters via curve fitting. In particular, Ps(t) follows the equation

above and Iincident(t) is known from existing clear sky models. To search, we can set the

tilt and orientation to their ideal values (a tilt equal to the location’s latitude and a south-

facing orientation in the northern hemisphere), and then conduct a binary search for the

k that both minimizes the Root Mean Squared Error (RMSE) with the observed data and

represents a strict upper bound on the data, as we know generation should never exceed the

maximum dictated by the clear sky irradiance. After fitting k, we then conduct a similar

binary search for orientation and tilt. We iterate on the search until the parameters do not

significantly change. In Chapter 4, we show that this searching method results in highly

accurate values for k and the orientation and tilt angles.

3.2.2.3 Modeling Weather E↵ects

The model found above assumes that k is static and never changes. However, module

e�ciency changes over time based on numerous dynamic conditions, such as temperature,

rain, snow, humidity, dust, etc. In particular, the e↵ects of temperature on module e�ciency

are well-known, and are described by a variety of physical models.

20



Temperature E↵ects. While multiple weather metrics may a↵ect solar cell e�ciency,

the most significant metric is the ambient temperature. The closed-form equation below

estimates the cell temperature based on the temperature of the ambient air [73]. The

simplest model is the Nominal Operating Cell Temperature (NOCT) model, which specifies

the cell temperature based on the ambient air temperature and the cell temperature at

1kW/m2 in 25C. For every degree increase (or decrease) in Tcell, module e�ciency drops

(or rises) by roughly a constant percentage, which varies between modules, but is ⇠0.5%

per degree Celsius.

Tcell = Tair + S ⇤ NOCT � 20

800
(3.2)

Here, Tcell is the cell temperature in Celsius, Tair is the ambient air temperature in

Celsius, S is the solar irradiance that is striking the panel (in W/m2), and NOCT is

the Nominal Operating Cell Temperature. The NOCT varies between solar modules, but

generally ranges from 33�C to 58�C with 48�C as a typical value. Importantly, for every

degree increase (or decrease) in Tcell, the e�ciency drops (or rises) by a constant percentage.

While the precise temperature-based e�ciency loss varies between modules, it is typically

⇠0.5% per degree Celsius.

To account for temperature e↵ects, we can re-calibrate our model by adjusting the

original value of k above based on the temperature at each datapoint using the equation

below, where Tbaseline is the temperature at the datapoint that is closest to the upper bound

solar curve in the model above. Note that the relationship between cell temperature and

air temperature is a constant. While e�ciency varies strictly based on cell temperature,

the cell temperature’s relationship to air temperature di↵ers only by an additive constant,

which cancels out when subtracting two cell temperatures (leaving only the air temperature

below). The baseline temperature should represent the coldest point in the year that has a

clear sky. Again, we search for the value of c that minimizes the RMSE with the observed

data but remains a strict upper bound on the data.

k
0(t) = k ⇤ (1 + c ⇤ (Tbaseline � Tair(t))) (3.3)

21



Cloud Cover E↵ects. The adjustment above represents a temperature-adjusted clear sky

solar generation model. Of course, skies are not always clear, such that the solar irradiance

that reaches Earth is much less than the clear sky solar irradiance. The amount of cloud

cover is the primary metric that dictates the fraction of the maximum solar irradiance that

reaches the ground. As above, there are numerous well-known physical models [67, 89] that

translate cloud cover into a clear sky index, which is the solar irradiance that reaches the

Earth’s surface divided by the clear sky solar irradiance [59]. For example, one well-known

cloud cover model is below [4].

Iincident/Iclearsky = (1� 0.75n3.4) (3.4)

Here, Iincident represents the solar irradiance that reaches the Earth, Iclearsky represents

the solar irradiance from the clear sky model, and n represents the fraction of cloud cover

(0.0-1.0). This cloud cover (or sky condition) is typically measured in oktas, which repre-

sents how many eighths of the sky are covered in clouds, ranging from 0 oktas (completely

clear sky) through to 8 oktas (completely overcast). The sky conditions reported by the

NWS translate directly to oktas [19]. For example “Clear/Sunny” is <1 okta, “Mostly

Clear/Mostly Sunny” is 1-3 oktas, “Partly Cloudy/Partly Sunny” is 3-5 oktas, “Mostly

Cloudy” is 5-7 oktas, and “Cloudy” is 8 oktas. While the sky condition reported by the

NWS (and other sources) is a rough measure of cloud cover, more accurate measures can

be extracted from satellite images [42]. However, this is non-trivial and these measures are

not reported by weather sites.

Thus, using the equation above we can adjust the output of our physical model by

multiplying the solar output in our temperature-adjusted model above by the fraction

Iincident/Iclearsky. Note that, while Equation 3.4 is in terms of solar irradiance and not

solar power, the ratio of observed solar power to maximum solar generation potential after

the temperature adjustment (from Equation 3.3) are equivalent, since the e↵ect of the phys-

ical characteristics cancel out. Recent work refers to this value as the clear sky photovoltaic

index [40]. We could continue to adjust our model downwards based on physical models
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for other conditions, such as humidity, air velocity, and dust buildup [62]. Unfortunately,

similar types of simple models are not readily available for these parameters.

One benefit of the physical model above is that it requires very little data to calibrate.

In the limit, it requires only two datapoints during clear skies with a significant di↵erence in

temperature. In recent work, we show that physical models of clear sky generation (without

the cloud cover adjustment) built with only two days of data have similar accuracy to

those built with a year’s worth of data [33]. However, unlike the ML-based models, our

physical model is necessarily custom to each deployment based on its unique location, tilt,

orientation, e�ciency, and sensitivity to temperature. Our physical model also does not

account for shade from surrounding structures, e.g., buildings and trees, or multi-module

systems with di↵erent tilts, orientations, and e�ciencies that are wired together, e.g., in

series, parallel, or a combination. While accounting for these e↵ects in the physical model

is possible, it would significantly increase its complexity. In contrast, the ML-based model

is capable of inherently incorporating these e↵ects into its model.

Other Weather E↵ects. The NWS and other weather sites, such as Weather Under-

ground, report numerous other weather metrics, including dew point, humidity, visibility,

pressure, precipitation intensity, precipitation probability, wind speed, and wind bearing.

While some work has examined the e↵ect of a few of these metrics on solar output [62, 74, 85],

their e↵ects are still not well understood and there are no commonly-used white-box phys-

ical models for them. Black-box ML approaches generally include these additional weather

metrics as input features in case they do a↵ect solar output.

3.3 (Mostly) ML Black-box Solar Modeling

The black-box ML and physical solar performance models from the previous section have

both benefits and drawbacks. The ML model generally requires months of training data to

build an accurate model. As we show, while we can train the pure ML model on data from

one set of solar deployments, and then use it to model a separate set of solar deployments,

this significantly decreases the model’s accuracy, since the approach does not take into

account di↵erent physical system characteristics, e.g., tilt, orientation, size, and e�ciency.

In contrast, while our physical model requires little data to calibrate, it is generally less
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accurate than the ML model in practice because it i) depends on coarse measurements

of cloud cover that are often inaccurate and ii) does not incorporate the e↵ect of other

conditions that degrade output, such as additional weather metrics, complex multi-panel

characteristics, dust and snow buildup, and regular shading patterns from nearby structures.

Thus, to leverage the benefits of both approaches, we present a configurable hybrid approach

that combines both approaches.

Our hybrid approach first builds a physical model of solar output, as in section 3.2.2,

based on a deployment’s location, tilt, orientation, size, e�ciency, and any other relevant

parameters where physical models exist. The approach then trains a ML classifier, similar

to the one in section 3.2.1, that includes as input features any relevant parameters not

included in the physical models. However, a key di↵erence relative to section 3.2.1 is that

the dependent output variable is not the raw power normalized by the (static) solar capacity,

but is instead the raw power normalized by the generation potential from the physical model

above. Thus, the dependent output variable represents the additional percentage reduction

in solar generation beyond that estimated by the physical model due to the parameters in the

ML model. For example, the physical model might estimate a solar output of 1kW based

on the current location, time, temperature, and cloud cover. However, based on the other

metrics, the ML model may then estimate the actual output to be 80% of this 1kW output.

In this case, the labeled data in the training set for the ML model would include any input

features that are not physically modeled with an output variable of 0.80.

Thus, our hybrid model estimates solar output by multiplying the estimated output

from the physical model by the fraction specified in the ML model. Note that, when the

physical model includes only the metrics that a↵ect module e�ciency, e.g., tilt, orientation,

size, and temperature, this ratio represents the clear sky (photovoltaic) index [40]. Our

hybrid approach is configurable because we can either model input features with physical

models, or using the ML model. For example, in our evaluation, we examine di↵erent hybrid

variants that physically models di↵erent sets of parameters.

Note that, since the physical model is already a function of time, our ML classifier does

not need sunrise, sunset, or current time as input features, unlike the pure ML model from

section 3.2.1. In addition, by specifying our output variable as a function of the physical
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model, its normalization naturally takes into account the physical di↵erences between solar

deployments. Thus, as with our pure ML model, our hybrid approach can accurately train

its ML model on data from one set of solar deployments, and then apply it to a separate

set of deployments with widely di↵erent physical characteristics. Of course, for any new

deployment, we would still need to calibrate a physical model of the system, as described

in section 3.2.1. However, as we discuss, this only requires a minimal amount of data. In

some sense, our physical model captures how e�ciently a solar deployment translates the

available solar irradiance into electricity, while our ML model captures how much solar

irradiance actually reaches the module. As we show in recent work [33], the latter is

primarily due to weather e↵ects that are general and not dependent on specific physical

deployment characteristics.

In this chapter, we use the same classifier (SVM-RBF) in our hybrid ML model as we

do in the pure ML model [63] to provide a direct comparison. More sophisticated ML

modeling techniques could potentially learn the physical models above from training data

without requiring the manual identification we perform in our hybrid approach. However,

for systems, such as solar deployments, where the physical e↵ect from a subset of inputs on

a dependent output variable is well-known, and independent of the other inputs, it is more

straightforward to simply calibrate the input directly from the data using the model. As we

show, this approach significantly increases accuracy using straightforward ML techniques.

3.3.1 Implementation

We implement the ML-based, physical, and hybrid black-box solar performance models

using python. We use the scikit-learn machine learning library to implement our ML-based

models. We implement the pure ML-based model as specified in prior work [63, 65] using

the same input features, dependent output variable, and SVM-RBF kernel. In particular,

we use one hour resolution weather metrics (from Weather Underground) including the sky

cover, dewpoint, humidity, temperature, and windspeed. We translate the sky cover string

into a cloud cover percentage using the standard okta translation [19]. Our physical model

leverages the PySolar [3] library for computing the clear sky irradiance at any location and

time, which it uses to find the tilt, orientation, size, e�ciency, and temperature coe�cient
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that best fits the data. Our basic hybrid ML model uses the same weather metrics as with

the pure ML-based model [63, 65], and thus does not include temperature and cloud cover

as part of the physical model. We implement two other hybrid variants: one that physically

models temperature and thus takes it out of the training set of input features, and one that

physically models both temperature and cloud cover, which also takes cloud cover out of

the ML model’s training set.

We evaluate the accuracy of each model on data from 6 rooftop solar deployments at

di↵erent locations with widely di↵erent physical characteristics. Since our weather data has

one-hour resolution, we use average power data at one-hour resolution in our evaluation.

We examine model accuracy using two di↵erent training scenarios, where we train the ML

models (both pure and hybrid) using data from either i) the same deployment we test on

or ii) di↵erent deployments than we test on. In the former scenario, we perform cross-

validation across one-year of data to split the dataset into a training and testing set (in

a 2:1 ratio). In the latter case, we train the ML model using one year of data from 4

other deployments, and then apply the model to estimate solar output over one year from

the 6 deployments. Since, due to Figure 1, the Gaussian fit is most inaccurate during the

morning/evening, we evaluate accuracy over both the entire day and over mid-day between

10am and 2pm. Finally, we quantify model accuracy using the Mean Absolute Percentage

Error (MAPE), as shown in Equation 2.1.

3.3.2 Experimental Evaluation

Figure 3.3 quantifies model accuracy for the 6 buildings with rooftop deployments in

our test set across multiple scenarios. Buildings #1-#6 are located in Pennslyvania, Texas,

New York, Arizona, Washington, and Massachusetts, respectively. The deployments have

a wide range of sizes: buildings #1-#6 consist of 110, 16, 93, 36, 17, and 30 solar modules,

respectively, with a standard size of 165cm⇥99cm which typically have a rated capacity of

⇠230-330 based on the module type. The top graph is the scenario where we train a ML

model for each deployment using its historical data, while the middle and bottom graphs

train a ML model on 4 separate homes (not in the set of six) and then apply that same

model to each of these 6 homes. The top two graphs compute MAPE over each day (across
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Figure 3.3: Solar model accuracy when training the ML model on the same deployment
(top), training on di↵erent deployments on di↵erent deployments (middle), and the accuracy
(when training on di↵erent deployments) during the middle of the day.

a year of data), while the bottom graph computes it from 10am-2pm. Note that the physical

model requires no training; we include it in all the graphs for comparison.

The experiment shows that the physical model performs significantly worse than all

the models that use ML. This is primarily due to i) the coarseness and imprecision of the

cloud cover metric, and ii) that it cannot account for conditions that do not permit physical

modeling, including the e↵ect of other weather metrics [62]. As part of future work, we are

leveraging various satellite images to better quantify real-time cloud cover, such as via the

HELIOSTAT method [42], which should improve the results of the analytical model. Un-

fortunately, an accurate and precise cloud cover metric is not available via common weather

services and APIs. In contrast, the pure ML approach can inherently incorporate such

e↵ects and achieves a significantly higher accuracy in all cases. Importantly, though, the

hybrid model, even without including temperature and cloud cover, significantly improves

on the pure ML approach. For example, for deployment’s #3 and #5 in the top graph,

the improvement is over a 30% reduction in MAPE. Significant, although slightly lesser,

improvements are also apparent in the middle graph. The reason for this reduction stems

from normalizing the output variable of the hybrid approach’s ML model based on a custom
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physical model of the deployment’s output over time, rather than a static capacity value as

in the pure ML model.

In addition, as we incorporate more physical parameters into the hybrid model, the more

accurate the model becomes. This is most evident when shifting temperature from the ML

model to the physical model, which results in another significant decrease in MAPE in all

cases. Further, even though cloud cover is a coarse and imprecise metric, by incorporating

it into the physical model (along with temperature), we again observe a slight reduction in

MAPE in all cases, relative to the hybrid model that only incorporates temperature. These

results hold whether we train a ML model for each deployment using its historical data

(top) or train a general model using data from other deployments (middle). As expected,

the former results in significantly higher accuracy in all cases compared to the latter. How-

ever, as the bottom graph indicates, much of this inaccuracy is due to imprecision at the

beginning and end of each day. When quantifying only the mid-day accuracy, the pure

ML-based approach is only slightly less accurate than our basic hybrid approach, since the

Gaussian fit is much more accurate in the middle of the day. However, our hybrid approach

significantly improves upon the pure ML model when incorporating the physical models

for temperature and cloud cover (even during the mid-day hours in the bottom graph),

especially for deployments #3, #5, and #6.

Overall, our results indicate that the hybrid approach achieves much better accuracy

than either the pure ML or pure physical approach in all cases. In addition, by training the

ML model on separate deployments than we test on, the hybrid model requires only a small

amount of training data (as few as two datapoints) from the system under test to calibrate

an accurate model.

The model error of our black-box approach is likely higher (⇠15-25) MAPE than that

of highly-tuned white-box approaches. However, a direct comparison is di�cult as prior

work uses a wide range of error metrics. In many cases, these metrics are not normalized,

and thus vary based on a deployment’s capacity. In addition, the variability of weather at

a location also a↵ects model accuracy. For example, solar performance models are likely

to be more accurate in San Diego, where there is little variation in weather, compared to

Massachusetts where weather has more day-to-day and season-to-season changes. As part
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of future work, we plan to incorporate more accurate estimations of ground-level irradiance

from visible satellite imagery, such as o↵ered by SolarAnywhere and SoDa. We expect

this to significantly improve accuracy relative to the coarse cloud-cover metrics in standard

weather data.

3.4 (Mostly) Physical Black-box Solar Modeling

The black-box model above is entirely based on well-known physical models that incor-

porate the e↵ect of module size, e�ciency, location, time, temperature, cloud cover, tilt,

and orientation on solar output. The model is black-box, since it can determine the unique

parameter values for each site, given its location, using as few as 2 datapoints (primarily

to determine the temperature coe�cient). Of course, black-box ML models that are purely

data-driven can potentially learn these relationships, given enough training data from a site.

However, since these relationships are based on fundamental physical properties common

across all solar sites, re-learning them at every site is wasteful and unnecessary. Unfortu-

nately, as we show, the black-box physical model above is highly inaccurate and performs

significantly worse than black-box ML models. This inaccuracy must derive from either the

physical models above being inaccurate, or from the e↵ect of unmodeled physical parame-

ters, such as the other weather metrics, shading from surrounding buildings, or soiling from

dust and pollen. In the next section, we conduct a large-scale data analysis to determine

the primary source of the inaccuracy by isolating the e↵ects of 10 di↵erent weather metrics

on solar output

3.4.1 Large-Scale Weather Data Analytics

To isolate the e↵ect of any single weather metric on solar output, we must normalize

the e↵ect of all the other variables. We use the models of physical characteristics from

section 3.2.2.2 to normalize for the e↵ect of module/array location, size, e�ciency, tilt, ori-

entation, and the time of the day and year. This normalization divides the raw solar power

observation by the maximum solar generation estimate under clear skies from our model,

which, as we discuss in section 3.2.2.3, should be the same as ratio of the observed GHI to

the clear sky GHI, modulo any module shading or soiling e↵ects. Figure 3.4 verifies this by
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Figure 3.4: Normalized solar output as a function of GHI from a solar radiation sensor (left)
and satellite imagery (right).

plotting our normalized solar output ratio (on the y-axis) as a function of the GHI ratio

(on the x-axis), which is also called the clear sky index. Figure 3.4(a) uses a solar radiation

sensor deployed at a single unshaded solar site to determine the GHI ratio. However, since

most sites do not have an on-site solar radiation sensor, (b) computes the GHI ratio using

the Heliosat-3 algorithm, which estimates it from visible satellite imagery [42]. Both figures

show that our normalized solar power ratio ratio is close to the GHI ratio, with a linear

regression line close to y=x.

Importantly, our normalization makes the solar output from many di↵erent sites directly

comparable. Thus, our data analysis normalizes hourly solar output data from nearly

343 million hourly weather and solar readings, or 78,435 aggregate years, gathered from

11,205 solar sites. We gathered this data from public sources, including Pecan Street’s

DataPort [13] and PVoutput [16]. We gathered weather data from Weather Underground’s

API [18], which includes current and historical data from 180k weather stations in the U.S.

To isolate the e↵ect of 10 weather metrics on solar output, we examine clusters of datapoints

where all 10 weather metrics have nearly the same value. One reason we use so much solar

data is that finding a statistically significant number of hours where all 10 metrics are the

same is not possible at a single site (or even a few sites), as the weather across these 10

metrics varies too much. Even in our massive-scale dataset, identifying su�ciently large

clusters is challenging. As a result, our clusters only ensure that each of the 10 metrics

is within a small range. We suspect this massive data requirement is one reason a similar
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analysis has not been conducted in prior work. In contrast, the Kasten-Czeplak cloud cover

equation was derived from 10 years of hourly data at only a single site [51].

Universal Weather-Solar E↵ect. A key insight of our work, which we will leverage

in the next section, is that the exact same weather should have the same proportionate

a↵ect on the maximum solar irradiance potential Itotal that reaches the ground, regardless

of its magnitude, which varies widely over time time at di↵erent locations. That is, if two

di↵erent locations A and B experience the exact same weather conditions at two di↵erent

times then the solar irradiance that reaches the ground Iincident will be c ⇤ IAtotal at location

A and c ⇤ IBtotal at location B, where c is a constant based on the weather and Itotal is the

maximum clear sky solar irradiance at those locations at those times. We call this the

Universal Weather-Solar E↵ect.

Figure 3.5 plots the normalized solar output ratio on the y-axis for 5 such clusters,

which each include 7500 hourly datapoints on the x-axis. We use the multi-dimensional k-

Means algorithm to identify these clusters, such that we define a threshold for the distance

to each cluster’s centroid to control the number of datapoints. For each cluster, we select

the minimum distance threshold necessary to ensure 7500 datapoints. Table 3.1 shows the

weather metric value at the centroid of each cluster. Note that these hourly datapoints are

from di↵erent times from numerous solar sites with di↵erent locations and physical charac-

teristics: the only commonality is the value of the 10 weather metrics within each cluster.

We select these illustrative clusters to yield di↵erent ratios on the y-axis. Importantly,

Figure 3.5 shows that the same weather conditions have the same percentage e↵ect on the

normalized solar output ratio (or, equivalently, the GHI ratio) at any site, regardless of the

time, a site’s location, or its other physical characteristics. That is, the e↵ect of weather is

universal across all solar sites.

Given our 5 clusters, we can now isolate the e↵ect of any single weather metric by

removing it from the cluster, and including all datapoints where the other 9 metrics are

within the cluster, but the removed metric can take on any value. Doing so, empirically

demonstrates the e↵ect of only that single weather metric on the normalized solar output

ratio (modulo any shading or soiling e↵ects) across our massive dataset. Note that we have

already applied the temperature adjustment to all these ratios based on each site’s tem-
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Figure 3.5: Normalized solar output ratio across many solar sites and hour-long time periods
for 5 di↵erent clusters, indicated by the 5 colors, with the same weather.

Metrics Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Visibility 9.69 11.53 11.77 9.58 11.47
Pressure

(in)
1216.51 1211.06 998.10 1103.03 1198.61

Wind
Bearing

189.25 203.90 179.07 169.33 180.03

Dewpoint
(�F)

44.83 43.31 41.69 55.01 49.84

Precipitation
Intensity(in)

0.008 0.019 0.022 0.017 0.011

Wind
Speed(mph)

7.81 9.05 8.41 6.11 8.32

Humidity
(%)

48.15 48.36 58.39 38.60 35.71

Precipitation
Probability(%)

33.13 31.21 35.03 29.18 38.19

Cloud
Cover(%)

94.79 77.86 40.97 21.85 1.83

Table 3.1: The centroid for each of the 5 clusters of weather metrics.

perature coe�cient using the physical model from section 3.2.2.3. We empirically validated

the linear NOCT physical model that describes the temperature e↵ect using our data, but

omit the graph due to space constraints. Figure 3.6 shows the results that isolate the e↵ect

of the 8 weather metrics without physical models. The graphs show these weather metrics

have no significant e↵ect on solar output, as the normalized solar output ratio remains the

same regardless of the value of the metric, whether extremely high or low. That is, the

lines are horizontal with a value equal to that from Figure 3.5. Thus, these metrics are not

useful in estimating solar performance, and need not be included when training black-box

ML models.
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Figure 3.6: The isolated e↵ect of 8 unmodeled weather metrics on the normalized solar
output ratio for our 5 clusters.

In contrast, Figure 3.7(left) isolates cloud cover, which demonstrates a clear non-linear

relationship with the normalized solar output ratio. At first glance, the relationship appears

similar to the Karston-Czeplak model from section 3.2.2.3. However, Figure 3.7(right) plots

the normalized temperature-adjusted solar output ratio as a function of cloud cover for a

larger random sampling of our entire dataset (and not just from the 5 clusters), as the entire

dataset is too large to fit on a graph. The graph shows that, while imprecise, the datapoints

follow the same trend as in Figure 3.7(left). The imprecision is not surprising, given the

imprecision inherent to measuring oktas. In addition, module shading and soiling, which
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Figure 3.7: Isolated e↵ect of cloud cover on normalized solar output ratio for 5 clusters
(left). Normalized solar output versus cloud cover for a larger random sample of clusters,
along with existing models and our new empirical one (right).

can cause the ratio to be lower than expected based solely on the weather, also contributes

to the imprecision. We also graph the Kasten-Czeplak equation [51], as well as PVlib’s

models in their default configuration. In this case, for the Liu-Jordan model, we set the

zenith angle to 45�, as our data normalizes for the zenith angle.

Similar to the linear model, the Liu-Jordan model is linear for any given zenith angle. As

a result, both of PVlib’s models are poor fits for the normalized data. The Kasten-Czeplak

model is a better fit, but becomes increasingly imprecise as the cloud cover increases, with

errors greater than 2⇥ for cloud covers above 90%. Thus, we improve on Kasten-Czeplak

by keeping the same model form, but finding parameters that provide a tight upper bound

on the bulk of the datapoints. We assume the high outlier values are incorrect okta mea-

surements, and use k-Means clustering to filter them out. As before, we fit the tightest

upper bound that minimizes the RMSE with the data, which automatically filters out low

values due to shading, soiling, or imprecise okta measurements. Our corrected empirical

cloud cover equation is below and in Figure 3.7.

Iincident/Iclearsky = (0.985� 0.984n3.4) (3.5)

3.4.2 Integrating ML-based Modeling

The previous section i) demonstrates that weather’s e↵ect on a site’s normalized solar

output ratio is universal across all solar sites, ii) shows the only weather metrics that
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a↵ect solar output are temperature and cloud cover, and iii) derives a new physical model

to account for cloud cover’s e↵ect. The other physical models in section 3.2.2 are also

universal across all solar sites, and account for module/array size, location, time, e�ciency,

tilt, and orientation. Since these models are universal across all sites, there is no need

to separately learn them at each site using ML. However, ML is potentially useful for

learning the e↵ect of unmodeled parameters that are unique to each site. These unmodeled

parameters include shade from surrounding buildings and trees, soiling from dust or pollen,

or the wiring configuration, e.g., series, parallel, or a combination, of multiple modules with

di↵erent tilts and orientations. Importantly, all of these unmodeled parameters are a direct

function of the position of the Sun in the sky, i.e., its azimuth and zenith angle.

Thus, we enhance our physical model using ML to learn each site’s unique shading e↵ects

from training data. Our ML model’s input features are the Sun’s azimuth and zenith angles,

while the dependent output variable is the observed solar output divided by the solar output

estimated by our physical model. Thus, with no e↵ects from unmodeled parameters, the

output variable should be 1, while with significant e↵ects, the output variable should be <1.

Note that the Sun’s azimuth and zenith angles are a function of time at a given location,

and many prior ML models include time as an input feature, enabling them to indirectly

learn such shading e↵ects. However, since the solar angles are unique at every point over

the year, using time either requires i) multiple years of input data to learn shading e↵ects

at each unique time in the year, or ii) rough approximations that assume the same time of

day on di↵erent days are equivalent over a week or month. In contrast, directly using solar

angles at each datapoint as features makes all points comparable and eliminates the need

for approximations, which reduces the training data necessary to learn an accurate model.

3.4.3 Implementation

We implement our solar performance model using a mixture of python and C++. To

build the model, we require a site’s location, i.e., its latitude and longitude, and some

time-stamped solar generation data as input. We use the location to fetch historical hourly

measurements of temperature and cloud cover at the time of solar generation from Weather

Underground’s API [18]. Once built, the model estimates solar output at any time t based
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on the weather at t. Our implementation requires a clear sky GHI model for calibration.

We implement a clear sky GHI model from first principles using an open source C++

implementation of the PSA algorithm, which computes the Sun’s azimuth and zenith angles

to within 0.0083�. Prior work describes in detail how to compute the clear sky GHI given

the solar angles, which are a function of location and time [33, 15]. We could also use the

clear sky GHI models available in open source libraries, such as PVlib [22], PySolar [3],

and NREL’s implementation [1]. We use the scikit-learn ML library in python to train

our ML model based on solar angles, as well as the ML models we compare against in

our evaluation [17]. Our approach in Section 3.4.2 is compatible with any ML modeling

technique, such as SVMs or DNNs. Our current implementation uses SVM-RBF, similar

to prior work on solar modeling [75, 63, 27]. We also use NumPy [11] and Pandas [12]

libraries for weather and energy data processing. We plan to release both the dataset from

this paper and the implementation of our model as open source.

We compare our approach with multiple other approaches to black-box solar perfor-

mance modeling. We implement a pure physical approach using the physical model in

section 3.1 including the Kasten-Czeplak cloud cover model. Note that we did not im-

plement either PVlib model, since they would result in significantly worse accuracy than

Kasten-Czeplak based on Figure 3.7. We also implement the pure ML approach described

at the beginning of Section 3.1, which uses all 10 weather metrics and each day’s sunset and

sunrise times as input features for training, and solar intensity as its output variable [63].

In addition, we implement a hybrid ML approach from prior work, which is similar to the

pure ML approach, but, instead of solar intensity, uses the same normalized solar output

ratio as our physical model in Section 3.1 for its output variable. The hybrid ML model

also adjusts its output variable using the NOCT temperature and Kasten-Czeplak cloud

cover models, and thus removes them as input features for ML training [32]. Finally, we

implement another performance model that uses visible satellite imagery to estimate solar

output instead of weather data. Geostationary satellites provide visible images of cloud

cover every 15 minutes for nearly the entire world. The Heliosat family of algorithms [42]

analyze these images to estimate the e↵ect of cloud cover on ground-level GHI. To estimate

solar output, our satellite model uses the physical model from Section 3.1 to estimate a
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site’s maximum solar output (including the temperature adjustment), and then multiplies

this value by the GHI ratio estimate from satellite imagery in lieu of using the cloud cover

equation. Since we derive our physical model empirically, we label it as empirical. Note

that our model is equivalent to the pure physical model above, but using our improved

cloud cover equation. Finally, we also evaluate our physical model after enhancing it with

ML, as described in Section 3.4.2, which we label as empirical ML.

We train all of the ML-based performance models on 5 years of solar generation data

for each site using 20-fold cross-validation with a 70-30% split of training data to test data.

For a fair comparison of accuracy, we calibrate the model of maximum solar output for the

pure physical, satellite, and our empirical physical model using the same training data. We

quantify model accuracy using the Mean Absolute Percentage Error (MAPE) (shown in

Equation 2.1) between the ground truth solar power (S(t)) and the solar energy estimated

by each model (Ps(t)) at each time t in our test set, which spans 13,140 hours for each solar

site. Lower MAPEs have higher accuracy with 0% being a perfect model. We only evaluate

MAPE between sunrise and sunset.

3.4.4 Experimental Evaluation

We evaluate and compare the accuracy of our solar performance model with the other

models described in Section 3.4.3 on data from 100 solar sites at di↵erent locations with

widely di↵erent physical and shading characteristics. Of course, the accuracy of the models

varies across these sites. To better understand the attributes that a↵ect model accuracy,

we first examine in-depth the 6 homes pictured in Figure 3.8. This figure shows both a

photograph from a satellite and from Google’s Project Sunroof [10], which leverages LIDAR

data to estimate a site’s solar potential based on the roof tilt, orientation, and surrounding

shading. Brighter colors indicate more solar potential. As the figure shows, some sites, such

as (a), have little shade and are ideally positioned for solar generation, while other sites,

such as (f), have non-ideal orientations and significant shading. We order the solar sites

left to right from least shaded to most shaded.

Figure 3.9 then shows the accuracy in MAPE for all the performance models for each

of these 6 solar sites. We order the performance models left to right from least accurate
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(a) Site #1 (b) Site #2 (c) Site #3

(d) Site #4 (e) Site #5 (f) Site #6
Figure 3.8: Satellite images (top) and Google Sunroof images (bottom) depicting 6 illus-
trative solar sites and their shading level. The site-specific shading level increases from left
(a), with 0% shade, to right (f), with 60% shade.

to most accurate. The top graph shows the MAPE over the entire day, while the middle

graph shows the MAPE over just the middle of the day (10am - 3pm), where shading has

the least e↵ect, and the bottom graph shows the MAPE over just the beginning and end

of each day (Sunrise - 10am and 3pm - Sunset), where shading has the most e↵ect. All the

graphs show the impact of the inaccurate Kasten-Czeplak cloud cover model (Equation 3.4)

on the pure physical performance model, as it has by far the largest MAPE across all sites.

Surprisingly, the satellite-based performance model is the next least accurate across all

sites and time periods. This likely demonstrates the limitations of using visible satellite im-

agery to estimate ground-level GHI. These limitations were also evident in the inaccuracy of
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Figure 3.9: MAPE for 6 di↵erent black-box solar performance modeling techniques for the
6 solar sites in Figure 3.8.

Figure 3.4(bottom). Ultimately, visible satellite imagery can only detect the reflectivity of

the tops of clouds, and cannot asses their thickness and the amount of solar radiation that

ultimately reaches the ground. In addition, the Heliosat algorithm requires an accurate

estimate of ground reflectivity as a baseline, which varies substantially across locations,

seasons, and time periods. For example, the presence of snow dramatically changes the

baseline ground reflectivity. As a result, snow detection is critically important for accurate

GHI estimates from satellite imagery. In addition, the ground reflectivity changes through-

out the day based on the solar angles, and are less accurate at sunrise and sunset as the

pictures become darker, making it more di�cult to distinguish between the ground and the

clouds. Finally, the current generation of satellites only has a resolution of 10⇥10km, which

introduces imprecision by averaging cloud cover e↵ects across a wide area.

Both the pure ML and the hybrid ML performance models are more accurate than

the satellite-based model even though they use coarse measurements of cloud cover using

oktas. However, while coarse, in contrast to satellite imagery, these measurements are

taken at ground level near the solar site. In addition, Weather Underground and other

websites process data from multiple weather stations, such that the reported cloud cover

often derives not from a single measurement but from multiple independent measurements.

For all sites and time periods, the hybrid ML model has a slightly higher accuracy than the
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Figure 3.10: MAPE for mid-day solar generation during di↵erent weather conditions for
solar site #3 from Figure 3.9.

pure ML model, likely because it uses feature engineering based on the physical models in

section 3.2.2 before training its ML model. Both the pure ML and hybrid ML models have

decreased accuracy at the beginning and end of each day, where shading exhibits a greater

e↵ect, compared to the middle of the day. This indicates that both ML models have issues

learning shading. The pure physical and satellite models have similar issues, as they also

exhibit a lower accuracy at the beginning and end of each day.

Our empirical physical model, which is the same as the pure physical model but with

an improved cloud cover equation, substantially increases the accuracy of the pure physical

model. In all cases, our empirical model is also more accurate than the satellite model

(even though it uses imprecise okta measurements for cloud cover) and the pure ML model

(even though it does not incorporate shading e↵ects). In contrast, the hybrid ML model is

slightly more accurate than our empirical physical model over a full day, likely because it

both incorporates some physical models and indirectly accounts for shading e↵ects during its

training. However, over mid-day, where shading e↵ects are minimal, our empirical physical

model, which requires much less data for calibration, has equal or better accuracy across all

sites. Further, our enhanced empirical ML physical model, which uses ML to account for

unique site-specific shading e↵ects, substantially improves the empirical physical model’s

accuracy. This improvement in accuracy increases as the site-specific shading e↵ects increase

from left to right, such that our empirical ML model reduces MAPE by ⇠2⇥ for the most

shaded site #6. Not surprisingly, the accuracy of our empirical ML model is similar to that

of our empirical model over mid-day, where shading e↵ects are minimal, but is significantly

better at the beginning and end of each day, especially as site shading increases.
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The only di↵erence between the pure physical model and our empirical physical model

is the cloud cover model. To illustrate this, Figure 3.10 shows a breakdown of accuracy

based on the percentage of cloud cover for site #3. The pure physical model’s accuracy

becomes steadily worse as the cloud cover increases, due to increasing inaccuracy in the

Kasten-Czeplak model, while our empirical model accuracy is consistent. The figure also

shows how the empirical ML model improves upon the empirical model. Under minimal

cloud cover, all the models exhibit similar accuracy (⇠15%). We suspect that some of

the inaccuracy derives from okta and satellite measurement error and not model error, as

indicated in Figure 3.4(right) and Figure 3.7(right), respectively. Imprecise measurements

ultimately bound the accuracy of solar performance modeling.

Finally, Figure 3.9 shows results for all of the models across 100 rooftop solar deploy-

ments at di↵erent locations with various climates and shading levels. From top to bottom,

the graphs show the pure physical, satellite pure ML, hybrid ML, empirical, and empirical

ML models described earlier. Note that the y-axis range is [0-80] with a dotted line at 20

as visual reference point for comparison. Since space constraints prevent us from including

pictures of all 100 sites, we manually divide the deployments into di↵erent general shading

levels and group them together. Within each shading level, we order sites based on their

average cloud cover, such that less cloudier sites within a group have a lower ID (and are on

the left). In general, our results from 100 sites echo our results from 6 sites. Interestingly,

in all models except for empirical ML, the average accuracy slightly decreases as the shade

increases. In contrast, the accuracy of the empirical ML model are more consistent across

all shade levels, and even slightly better for sites with higher levels of shade. Overall, across

all 100 sites, the average MAPE of our empirical ML model was 20.7%, or 18% and 49%

better than the average MAPE of the state-of-the-art hybrid ML model (25.3%) and the

satellite model (40.6%), respectively.

3.5 Applications and Related Work

While there is significant prior work on ML-based solar modeling, most of it is in the

context of solar forecasting, as detailed in recent surveys [23, 87, 54] that cite well over one

hundred papers on the topic. Unfortunately, this prior work generally conflates modeling
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Figure 3.11: MAPE of 6 solar performance models across 100 solar sites over 1.5 years.
Sites are grouped by their shade level.

and forecasting, and thus does not evaluate them separately. In addition, these forecasting

approaches often implicitly embed assumptions about their specific problem variant, such

as its temporal horizon, temporal resolution, spatial horizon, i.e., forecasting one solar

deployment versus many deployments, spatial resolution, performance metrics, weather

data, and deployment characteristics. These variants are generally not relevant to solar

modeling, which simply estimates solar output (at some resolution) given a set of known

conditions, e.g., the location, weather, and time. As a result, extracting a solar performance

model from prior work on ML-based forecasting is non-trivial. Thus, for our pure ML-

based technique we instead adapt a technique originally proposed for solar disaggregation,

which focuses on separating solar generation from aggregate energy data that also includes

consumption [63]. However, instead of applying the technique to disaggregate such “net
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meter” data, we use it to model pure solar data. The technique has been patented by

Bidgely, Inc. [65] and is in production use [49].

As discussed in section 3.2.2, prior work on physical modeling generally takes a white-

box approach [38, 26]. Our approach to black-box physical modeling is similar to these

white-box approaches, in that it uses the same well-known physical models, but instead

of directly measuring the necessary input parameters for a deployment, we infer them by

searching for values that best fit the available data.

Our approach combines the best aspects of white-box modeling, which leverage physical

models of solar generation based on fundamental properties but requires manually derive

model parameters a priori, with black-box modeling, which automatically learns model pa-

rameters using ML but requires months-to-years of training data to learn accurate parame-

ters. We compare with numerous other black-box ML approaches in section3.4.4. We plan

to compare our approach with PVlib’s white-box modeling as part of future work [22, 14].

However, we expect PVlib to be less accurate under cloudy skies given the inaccuracy of

its cloud cover models. Solar performance modeling is also a foundation for many solar

analytics.

Solar Monitoring. Our solar performance model enables indirect solar monitoring if the

sensors directly monitoring power generation fail, by simply replacing the sensor data with

the model output. We can also easily adapt our performance model to enable us to infer

a site’s solar output from other nearby sites if weather data is not available, as in prior

work [40]. In this case, we can simply multiply the normalized solar output ratio from a

nearby site by our model’s estimate of a site’s maximum power generation.

Solar Forecasting. Our solar performance model also enables solar forecasting by pro-

viding as input a future time, and forecast for temperature and cloud cover at that time.

Weather Underground forecasts temperature and cloud cover each hour over the next 240

hours. Recent research focuses on black-box ML approaches to solar forecasting similar to

ours [46, 75, 30, 87, 77]. These techniques are generally o↵-the-shelf, do not incorporate

physical models, and require months-to-years of training data to learn accurate models.

Unfortunately, prior work often conflates weather forecast error, model error, and measure-

ment error, which makes it di�cult to isolate the accuracy of forecast models independently
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of weather forecast error. As future work, we plan to apply our performance model to solar

forecasting, compare its accuracy with existing black-box ML approaches, and quantify the

weather forecast, modeling, and measurement error. We expect our model to perform as

well or better than existing forecast techniques, since we expect much of its error derives

from imprecise okta measurements.

Solar Fault Detection. Our solar performance model enables anomaly and fault detection

if its accuracy deviates from its expected accuracy. In addition, a recent approach uses a

sophisticated black-box ML algorithm for detecting anomalies by analyzing and comparing

with the solar output of nearby sites [45]. Our solar performance model enables a similar

function by simply comparing the normalized solar output ratios of nearby sites after ad-

justing for shading e↵ects. Since these ratios should be equal across sites experiencing the

same weather, any divergence signals an anomaly.

Solar Disaggregation. Prior work on solar disaggregation, which separates solar genera-

tion from energy consumption in combined net meter data, implicitly leverages the insight

that the e↵ect of weather on solar generation is universal [63, 33]. That is, these approaches

learn black-box ML models that infer solar output on labeled data from one set of solar sites

for training, and then assume they can use these models to accurately infer solar output at

other sites, where raw solar data is not available. To disaggregate, these approaches simply

subtract the inferred solar output from the net meter data to infer energy consumption.

This paper empirically verifies this assumed universal weather e↵ect across data from tens

of thousands of solar sites, demonstrates that temperature and cloud cover are the only

weather metrics that a↵ect solar output, and derives an improved equation between cloud

cover and GHI.

Solar Localization. Our current approach requires a site’s location to compute the clear

sky GHI and determine the local weather conditions. Prior work assumes the location of

solar data is unknown, and instead determines the location from anonymous data based on

its unique solar signature [36] or weather [34] signature. We could apply these techniques to

automatically determine a site’s location, although accurately estimating a site’s location

may increase our approach’s data requirements. However, integrating automated solar
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localization would enable accurate performance modeling directly from solar data without

any input from the user.

3.6 Conclusion

This chapter surveys and compares di↵erent approaches to black-box solar performance

modeling. We compare a pure ML model from prior work [63, 65], a black-box physical

model based on well-known relationships in solar generation [33], and a configurable hybrid

approach that combines the benefits of both by achieving the most accurate results with

little historical data. Our results motivate using physical models when relationships are

well-known, and leveraging ML to quantify the e↵ect of unknown relationships.

Due to inaccuracy of the black-box physical modeling, we then conduct a big data

analytics to determine the primary source to the inaccuracy and then develop a physical

black-box solar performance model, which requires minimal data for calibration, based on

fundamental properties of solar generation. In particular, we leverage a large-scale data

analysis across tens of thousands of years of solar and weather data in aggregate to i)

demonstrate that weather’s e↵ect on a site’s normalized solar output ratio is universal across

all solar sites, ii) show the only weather metrics that a↵ect solar output are temperature

and cloud cover, and iii) derive a new physical model to quantify cloud cover’s e↵ect on

solar generation. We show that our physical black-box model yields similar accuracy as

state-of-the-art black-box ML approaches. We then enhance our physical model with a ML

model that learns each site’s unique shading e↵ects. We show that our enhanced model has

significantly better accuracy than state-of-the-art ML models, as well as a model based on

GHI estimates from visible satellite imagery.
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CHAPTER 4

SOLAR DISAGGREGATION

As discussed in Chapter 2 and Chapter 3, solar modeling is enabling utilities to better

monitor, predict, and response to the variations of solar power in electric grid. Unfortu-

nately, these models require historical solar generation data for training that is often not

available. To address this problem, we design SunDance, a “black-box” technique for accu-

rately disaggregating solar generation from net meter data that requires only a building’s

location and a minimal amount of historical net meter data, e.g., as few as two datapoints.

4.1 Motivation

Due to its increasing importance in grid operations, numerous prior and ongoing work

focuses on accurately forecasting the grid’s solar generation [24, 37, 44, 46, 52, 58, 76,

77]. While many of these forecast models o↵er coarse grid-level predictions of net load,

recent work increasingly focuses on automatically generating customized forecast models

via machine learning for each solar deployment based on its unique characteristics [46,

76]. These models can then be combined to generate a more accurate fine-grained grid-

level forecast of solar generation and net load. Importantly, these custom solar forecasting

techniques leverage supervised machine learning (ML) technique: they use a site’s historical

solar generation as training data to automatically learn a model that maps weather metrics

to solar output at each time interval. The models then use standard forecasts of these

weather metrics as input, e.g., from the National Weather Service (NWS), to predict future

solar output.

Thus, the key to constructing sophisticated forecast models is access to historical solar

generation data for training. Utilities are rapidly installing advanced or “smart” meters,

which record energy flow at fine-grained intervals ranging from five minutes to every hour,

that can provide such historical data. Smart meter installations are estimated to hit 70M
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by the start of 2017 and 90M by 2020 [47]. Thus, ample training data from smart meters is

typically available for large residential solar deployments (�10kW) and solar farms, as these

deployments are often required to be independently metered. As a result, these deployments’

meter data represents pure solar data. However, nearly all small-scale residential solar

deployments (<10kW) are “behind the meter” (BTM), such that the smart meter data

exposed to utilities represents only the net of a building’s solar generation and its energy

consumption. Thus, constructing the forecast models above for BTM solar is not possible,

as there is no pure solar data available for model training.

To address the problem, we present a new system, called SunDance, that accurately

separates (or “disaggregates”) a building’s net meter data into its solar generation and en-

ergy consumption.1 Importantly, SunDance employs a “black box” technique that requires

no training data from the building itself, i.e., historical data separated into solar generation

and energy usage, and instead only requires a minimal amount of net meter data and a

location, both of which are available to utilities. In lieu of training data, SunDance lever-

ages multiple insights into fundamental relationships between location, weather, physical

characteristics, and solar irradiance. In particular, SunDance combines two key insights.

Clear Sky Generation Model. Our first insight is that it is possible to build an

accurate customized model of each solar deployment’s maximum “clear sky” generation po-

tential based on fundamental relationships between the Sun, the Earth, and a deployment’s

location and custom physical characteristics, even when using noisy net meter data that

combines solar generation with significant energy consumption.

Universal Weather-Solar E↵ect. Our second related insight is that the same weather

conditions reduce the maximum clear sky solar irradiance potential by the same percent-

age regardless of the magnitude of this solar irradiance, which is a well-known weather-

independent function of time at each location. This property, which we call the Universal

Weather-Solar E↵ect, enables SunDance to i) build a general model using supervised ma-

chine learning that maps weather metrics to the expected fraction of the maximum solar

1Note that solar disaggregation di↵ers from energy disaggregation [25], as it only separates out solar
generation from energy data and not appliance-specific consumption.
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irradiance potential for locations where solar training data is available, and then ii) apply

that model to accurately infer solar generation at other locations, where solar training data

is not available.

SunDance combines the insights above to develop an accurate customized model of

a solar deployment’s maximum solar generation potential using only its noisy net meter

data and location, and then determines the fraction of this maximum generation the de-

ployment actually produces by using a general model of weather’s fundamental impact on

the maximum solar irradiance potential. In developing SunDance, we make the following

contributions.

Solar Background. We discuss in detail the fundamental physical relationships that

govern solar generation over time based on location, position of the Sun, physical charac-

teristics, weather, temperature, etc., and provide empirical evidence for SunDance’s key

insights above. These relationships dictate each location’s unique solar signature, and the

impact of weather on solar generation.

SunDance Design. We present SunDance’s solar disaggregation technique summarized

above. To construct a customized model of a solar deployment’s maximum clear sky gen-

eration, SunDance searches for a valid solar signature that represents the tightest strict

upper bound on the noisy net meter data. SunDance then learns a general model that cap-

tures the Universal Weather-Solar E↵ect at all location(s) where solar training is available.

SunDance then combines these models to disaggregate a location’s net meter data.

Implementation and Evaluation. We implement SunDance and evaluate it on net meter

data from 100 buildings. We show that SunDance’s accuracy, in terms of its Mean Absolute

Percentage Error (MAPE), when inferring solar generation without access to any solar

training data from the buildings under test is comparable to the accuracy of a customized

machine learning model built with complete access to a building’s historical solar data for

training.
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4.2 Solar Background

SunDance assumes access to average power data Pnet(t) from a building smart meter,

which represents the sum of solar power generation Ps(t) and energy consumption Pc(t), as

shown below, where Ps(t) � 0 and Pc(t)  0.

Pnet(t) = Ps(t) + Pc(t), 8t > 0 (4.1)

Given only Pnet(t) and the meter’s location, SunDance’s task is to infer Ps(t) and Pc(t)

at each time t.2 Below, we provide a brief background on the fundamental relationships that

determine i) the maximum amount of solar irradiance that reaches the Earth’s surface at

any time at any location, ii) the physical characteristics of solar cells that dictate how much

of this irradiance is converted to electrical power under ideal weather conditions, and iii) the

impact of non-ideal weather conditions. We identify insights based on these fundamental

relationships in designing SunDance.

Computing Clear Sky Irradiance and E↵ect of Physical Characteristics. Sun-

Dance uses the models in section 3.2.2.1 to compute the clear sky irradiance for a specific

solar deployment. While SunDance is compatible with any of these models, our imple-

mentation in this chapter uses a simple model that requires only a location’s latitude and

longitude and the Sun’s position, which is a function of location and time. Thus, given k,

�, and �, we can compute a solar module’s maximum power generation potential Psmax in

clear skies at any location at any time by setting Iincident = Itotal from 3.2.2.1, as the other

parameters are a function of location and time. In 6.3, we show how SunDance infers k, �,

and � from net meter data.

While module size, e�ciency, tilt, and orientation have the largest impact on solar

module output, other physical e↵ects also exist that are not precisely modeled by the closed-

form equation above. For example, a module’s operating voltage a↵ects its e�ciency based

on a solar module’s IV curve. In this chapter, we assume solar modules always operate at

their maximum power point using standard tracking algorithms. In addition, while both i)

multiple solar modules with di↵erent placements that are wired together (either in series

2Note that this time t also includes the day and month of the year.
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or parallel) and ii) modules that track the Sun by changing their tilt and orientation also

permit similar closed-form models, they are more complex. We focus use simple models,

which apply to the vast majority of solar deployments, and leave extending them to more

complex deployments as future work.

E�ciency E↵ects. The relationships in section 3.2.2.2 model the energy a solar module

generates at any location at any time in ideal weather, e.g., under clear skies at an opti-

mal temperature. Of course, non-ideal weather conditions can reduce both solar module

e�ciency and the amount of solar irradiance that reaches the ground. As we discuss in

section 3.2.2.3, the ambient temperature has a significant e↵ect on solar module e�ciency,

while other weather conditions, such as clouds and humidity, a↵ect the solar irradiance that

reaches the ground. We do not model the e↵ect of other weather metrics on e�ciency, as

these e↵ects are typically not significant [62].

Irradiance E↵ects. A key insight of our work in section 3.4.1 , which we will leverage

in the next section, is that the exact same weather should have the same proportionate

a↵ect on the maximum solar irradiance potential Itotal that reaches the ground, regardless

of its magnitude, which varies widely over time time at di↵erent locations. That is, if two

di↵erent locations A and B experience the exact same weather conditions at two di↵erent

times then the solar irradiance that reaches the ground Iincident will be c ⇤ IAtotal at location

A and c ⇤ IBtotal at location B, where c is a constant based on the weather and Itotal is the

maximum clear sky solar irradiance at those locations at those times. We call this the

Universal Weather-Solar E↵ect, and, as we show, it is key to SunDance’s approach.

4.3 SunDance Design

Given only a solar-powered building’s net energy meter data and its location, SunDance

disaggregates the data into the two separate components in Equation 4.1: the building’s

solar generation Ps(t) and its energy consumption Pc(t). SunDance’s design includes three

key steps, which we summarize below, before detailing each.

1. Build a Custom Model of Maximum Solar Generation.

SunDance uses historical net energy meter data to build a custom model of a solar de-

ployment’s maximum clear sky solar generation potential at any given time based on its
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location. This model incorporates each deployment’s unique physical characteristics from

the previous section, and its temperature e↵ects, but focuses narrowly on modeling maxi-

mum generation potential and thus does not model any other weather-related e↵ects, e.g.,

due to clouds, humidity, precipitation, etc. SunDance builds this model by finding the valid

solar curve dictated by the fundamental relationships in the previous section that best “fits”

the data. Since this model focuses narrowly on maximum generation potential, it is possible

to build an accurate model using only noisy net meter data.

2. Build a General Model of Weather’s E↵ect on Irradiance.

Separately, SunDance builds a general model that maps multiple weather metrics to the

expected percentage reduction in clear sky solar irradiance potential. Due to the Universal

Weather-Solar E↵ect, this model is general and can be built using solar training data from

any (or multiple) locations, but then applied to accurately quantify the e↵ect of weather on

the clear sky solar irradiance potential at other locations, where such training data is not

available.

3. Apply the Two Models Above to Disaggregate Solar Power.

Given the two models above, disaggregating net energy meter data is trivial. SunDance

first uses weather data for the location as input to its general weather model to infer the

percentage reduction in maximum clear sky solar irradiance potential. SunDance then

applies this percentage reduction to the deployment’s maximum solar generation, which

is computed using the custom model in step one, to infer the absolute amount of solar

generation Ps(t) at each time t. Finally, to complete the disaggregation, SunDance subtracts

this solar generation Ps(t) from the net meter data Pnet(t) to yield the energy consumption

Pc(t) at the same time t.

4.3.1 Building a Maximum Generation Model

Inferring Physical Characteristics. The relationships in Section 3.2.2.1 and Section 3.2.2.2

enable us to define a range of valid solar curves at any location, which dictate the shape

of maximum clear sky solar generation potential over each day of the year based on a de-

ployment’s physical characteristics, e.g., �, k, and � from Equation 3.1. Examples of these

solar curves are depicted in Figure 3.2.
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SunDance builds a maximum clear sky generation model for a solar deployment by

finding the �, k, and � that defines the valid solar curve that best “fits” the location’s

energy data. We first discuss building this model for pure solar generation data and then

describe how to translate it to net meter data that combines solar generation and energy

consumption. Even pure solar generation data is stochastic, exhibiting many rapid varia-

tions in power due to changing weather conditions that diverge from its maximum power.

For example, Figure 4.2(a) depicts solar generation on a partially cloudy day for a 10kW

residential solar deployment, where output dips in the morning. Since generation deviates

from its maximum in the morning, finding the valid solar curve that simply minimizes the

Root Mean Squared Error (RMSE) with the data is not appropriate: the non-ideal weather

will always result in fitting a solar curve that is lower than the maximum clear sky solar

generation.

As a result, SunDance instead finds the best fit valid solar curve that represents the

tightest upper bound on the data, since we know that the observed solar generation should

never exceed the maximum clear sky generation. That is, among the valid solar curves

that are equal to or greater than all datapoints, we find the one that minimizes the RMSE

with the data. As a result, the curve SunDance finds will be dictated entirely by the single

datapoint that experiences the highest percentage of its maximum generation potential. Thus,

even if a day is cloudy, if there is even one datapoint that is near the maximum generation,

this datapoint will dictate the best fit for the entire day (since the best fit must be a strict

upper bound on the data). For example, even on the cloudy day in Figure 4.2(a), the best fit

curve closely matches the ground truth maximum solar generation (which we approximate

using the next day’s solar generation under a clear sky), since it is dictated by the points

in the day that are sunny. SunDance can apply this approach to multi-day time periods

where the likelihood of a deployment experiencing its maximum generation at one or more

datapoints is high.

SunDance must search for the �, k, and � from Equation 3.1 to find the best fit. This

search is challenging since the parameters are dependent, e.g., modifying the tilt changes the

e↵ect of orientation, and conducting a brute force search across the entire parameter space

is too computationally expensive. However, searching the entire parameter space appears
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necessary, as the tilt � and size and e�ciency k have a similar e↵ect on generation, which

can lead to finding local maxima in isolated areas of the parameter space. For example, in

one part of the parameter space, we may find a best fit curve that has a high tilt and low

k, whereas the actual deployment has a high k and low tilt.

To address this problem, we observe that, while the physical characteristics of solar

deployments are not always ideal, installers generally attempt to make them as ideal as

possible. As a result, SunDance is able to accurately estimate a starting condition for its

search based on the ideal physical characteristics to ensure it starts in the “right” region

of the parameter space. In particular, the ideal orientation angle is south-facing in the

northern hemisphere (and north-facing in the southern hemisphere) with a tilt angle equal

to the latitude. Given these starting conditions, SunDance conducts an iterative search

that first finds the value of k that best fits the data using a binary search, while keeping the

other values constant. Given the new value of k, the search process then proceeds iteratively

by next searching for the orientation that best fits the data using a binary search. After

finding this orientation, we adjust the tilt in the same way. The search continues iteratively

by adjusting each parameter in turn until they do not change significantly.

In practice, this approach e�ciently finds tilt and orientation angles that are close to

the ground truth tilt and orientation angles, since most solar deployments have physical

characteristics near the ideal. For example, the ground truth tilt and orientation in Fig-

ure 4.2 are 35� and 190�, respectively, while the tilt and orientation angles SunDance finds

in (a) when using pure solar data are 36� and 189�.

Modeling Temperature E↵ects. While the approach above finds a model with tilt

and orientation angles that are close to the ground truth tilt and orientation angles, it is

not accurate when applied over the entire year due to the e↵ect of temperature on solar

cell e�ciency, which is captured by the k parameter. Since the best fit curve must be an

upper bound on the data, this curve is dictated by the point that achieves the highest

percentage of its maximum clear sky generation potential at the lowest temperature, which

is the most e�cient operating point for the solar cell. Thus, to adjust for these temperature

e↵ects, SunDance finds the datapoint that is closest to the initial upper bound solar curve

found above and then finds the location’s ambient temperature at that time to use as a
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Figure 4.1: SunDance’s maximum clear sky generation model both before and after adjust-
ing for temperature e↵ects.

baseline Tbaseline. This datapoint represents the coldest time period that maximizes solar

cell e�ciency under clear skies. SunDance then applies a temperature adjustment to k in

the model, as discussed in Section 3.2.2.3.

The temperature adjustment function reflects the constant factor c increase (or decrease)

in e�ciency when the ambient temperature is below or above the baseline temperature.

Here, Tair is the location’s ambient temperature at time t. While a typical value of c is

0.5% for solar modules [78], SunDance searches for the precise value of c for each deployment

that represents the tightest upper bound on the data. While e�ciency is a linear function of

cell temperature, and not ambient temperature, since the temperature adjustment function

subtracts the current temperature from the baseline it cancels out the constant values in

Equation 3.2.

Figure 4.1 shows a maximum generation model for a sunny day in each season both

before and after our temperature adjustment. Before the temperature adjustment, the

model is highly accurate in January, since these cold weather days represent the most

e�cient operating points that dictate the upper bound, but is highly inaccurate in July

when the temperature is 40C greater than on the coldest days. This is expected, since

with a typical solar module, a 40C increase in temperature decreases the e�ciency (and

maximum generation potential) by 40 ⇤ 0.5%=20%. After the temperature adjustment, the

maximum generation model closely matches the generation on these sunny days. In this

case, the factor c we found was 0.57%, which is near the typical value of 0.5%.
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Modeling using Net Meter Data. The discussion above builds a model of maximum

clear sky solar generation using pure solar generation data. Modeling the maximum solar

generation using net meter data di↵ers in two key respects, which require simple extensions

to our methodology above.

First, adding energy consumption introduces additional “consumption noise” to pure so-

lar data that causes it to deviate from its maximum generation. Of course, this consumption-

induced noise has the same e↵ect as variable non-ideal weather conditions in decreasing the

recorded generation. However, as discussed above, our modeling approach above is robust

to non-ideal weather conditions, since the best fit must be a strict upper bound on the data,

which is dictated the datapoint(s) that are closest to the maximum generation potential.

This logic also applies to the non-ideal “weather” created by adding energy consumption:

as long as datapoints exist where solar generation is near its maximum potential and energy

consumption is low, e.g., when a home is unoccupied on a sunny day, our best fit upper

bound model will be dictated by these few datapoints. This insight enables us to model

a deployment’s maximum solar generation even on noisy net meter data, where we cannot

directly model the actual (disaggregated) solar generation.

Second, energy consumption in modern buildings generally never drops to zero. Thus,

SunDance must estimate a building’s minimum power consumption floor for the data-

point(s) above that dictate the model. To do so, SunDance simply uses the minimum

power consumption at night, when solar generation is guaranteed to be zero. SunDance

subtracts this power consumption floor from the data before constructing its model, where

the minimum nightly consumption in the adjusted net meter data is zero. Figure 4.2(b)

shows our model built using net meter data from the same deployment and time as in Fig-

ure 4.2(a). Note that, with (negative) consumption included, the net meter data is strictly

less than the solar model; the figure also highlights the power floor SunDance uses to adjust

the net meter data. Recall that the model in (a) finds a tilt of 36�, an orientation of 189�,

a k of 10.6, and a c of 0.57%. Our model in (b) using the net meter data is similar, finding

a tilt of 34�, an orientation of 186�, a k of 10.9, and a c of 0.72%.

Historical Data Requirements. SunDance requires remarkably little data to construct

an accurate custom model of solar generation. In the limit, our approach needs only two
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Figure 4.2: SunDance’s maximum clear sky generation model when built on pure solar data
(a), net meter data (b), and on net meter data using historical data from only two days (c).
In contrast, both (a) and (b) represent the best fit over one year of data.

datapoints during clear skies with low energy consumption, such that there is a significant

temperature di↵erence between the two points. Since the model finds the tightest upper

bound on the available data, it is entirely dictated by the single point of maximum net

generation (or, equivalently, the minimum net consumption). An additional point is needed

at a di↵erent temperature to model the e↵ect of temperature on e�ciency. To illustrate, the

models in Figures 4.2(a) and (b) were built by finding the tightest upper bound across an

entire year of training data. In contrast, Figure 4.2(c) shows our model (with and without

a temperature adjustment) using two sunny days in January on net meter data. Using only

these two days, instead of a year, SunDance finds similar model parameters, with a tilt of

36�, an orientation of 185�, k = 11.6, and c = 0.69%.

Table 4.1 summarizes the model parameters found on the di↵erent datasets and model

variants in Figure 4.2. In all cases, the tilt, orientation, and c SunDance finds are close to

the ground truth. In addition, the k value, which is the product of a module’s size and
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Days Tilt Orientation k Area (m
2
) c

Ground Truth NA 35
�

190
�

12.3 48.88 NA

Pure Solar 365 36
�

189
�

10.6 48.18 0.57

Net Meter 365 36
�

188
�

10.7 48.63 0.58

Net Meter (Temp) 365 34
�

186
�

10.9 49.55 0.72

Net Meter (Temp) 2 36
�

185
�

11.6 52.73 0.69

Table 4.1: The model parameters SunDance finds in the Figure 4.2 variants are all similar
to the ground truth parameters.
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Figure 4.3: SunDance is able to find tilt and orientation angles near the ground truth from
as little as two days of noisy net meter data.

e�ciency at the baseline temperature, is also accurate. In this case, the module is 48.88m2.

While we cannot separate a module’s size and e�ciency, if we assume a typical commercial

module with ⇠22% e�ciency at 25C, SunDance can estimate the module size. As the table

shows, SunDance finds sizes close to the ground truth for this module. While we evaluated

SunDance across 100 buildings, we were only able to verify ground truth tilt and orientation

angles of buildings that were clearly visible from Google street view data. Figure 4.3 shows

that using noisy net meter data from 10 buildings where we could manually verify the

ground truth tilt and orientation angles, SunDance consistently finds angles that are near

the ground truth even when using only two days of data.

4.3.2 Building a General Weather Model

The models described above are highly customized to each deployment, incorporating its

unique orientation, tilt, size, e�ciency, and temperature e↵ects. In contrast, our weather

model, which leverages the Universal Weather-Solar E↵ect from Section 3.4.1, is general

and thus applies to any solar deployment. As a result, our weather modeling is a one-

time exercise that can use any solar irradiance (or solar power data) from any location.
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We construct our weather models similar to prior work on solar power forecasting models

that use supervised machine learning [46, 76]. These approaches train a model based on

labeled data that associates standard weather metrics, such as sky condition, temperature,

humidity, dew point, precipitation, etc., with a deployment’s solar generation.

Thus, the output of these existing models is a deployment’s absolute solar generation,

which is not general, but instead custom to each deployment’s unique physical character-

istics, particular its size. In contrast, SunDance generalizes these models by changing the

output to be the fraction of maximum solar irradiance potential that reaches the ground.

Based on the Universal Weather-Solar E↵ect, this approach can include solar irradiance

data from many locations (and many times) to use for training a single general model. In

addition, since pyranometer deployments, which record solar irradiance, are rare, SunDance

can equivalently use any pure solar generation data (adjusted for temperature e↵ects) that

is available to build these models. Based on Equation 3.1, when dividing a deployment’s

solar output by its maximum solar generation potential, the factors based on the physical

deployment characteristics cancel out, such that the resulting ratio is equivalent to the ratio

of observed solar irradiance to maximum solar irradiance potential.

Importantly, our insight above means that we can build a general weather model using

pure solar power data from one (or many) deployments where it is available, and then use

that model to accurately infer the reduction in solar power from its maximum potential at

other solar deployments, where pure solar power data is not available. This is a significant

insight not only for our work on solar disaggregation, but also for work on solar forecasting

based on pure solar data. For example, recent work highlights the importance of reducing

the amount of training data necessary to build custom solar forecast models, especially

for new solar deployments coming online [46]. However, based on the insight above, our

general weather model requires zero training data from a new solar deployment under test.

In addition, as discussed above, we can build an accurate maximum generation model using

as few as two datapoints. In contrast, prior work requires from months [46] to years [76] of

historical data to construct an accurate model.

Prior work has evaluated a wide range of supervised machine learning techniques for

modeling the e↵ect of weather on solar output, including least squares regression, Support
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Vector Machines (SVMs) using di↵erent kernel functions, and deep neural nets. While

we evaluate di↵erent modeling techniques in Section 4.5, SunDance is orthogonal to the

specific machine learning technique. SunDance’s contribution instead lies in identifying the

Universal Weather-Solar E↵ect and designing input and output features to leverage it to

build a general weather model. We use the weather metrics from Weather Underground

as input features to our model, including temperature, humidity, dew point, barometric

pressure, precipitation, and sky condition. We map the qualitative descriptions for sky

condition, e.g., scattered clouds, sunny, etc. to a numerical percentage of cloud cover using

the mapping suggested by the NWS. More precise numerical percentages, which would

improve model accuracy, can be derived from infrared satellite imagery.

4.3.3 Disaggregating Net Meter Data

Given the two models above, solar disaggregation is trivial. For each datapoint in the

net meter data, we use the weather metrics at that time as input to our general weather

model above to infer the fraction of its maximum generation a solar deployment will output.

To infer a building’s actual solar generation Ps(t), we then multiply this fraction by the

maximum solar generation we infer based on our customized model in Section 4.3.1 at that

time. We then simply subtract our inferred solar generation from the building’s net meter

data Pnet(t) to compute the corresponding energy consumption Pc(t).

One limitation of SunDance’s current modeling approach is that it does not adjust for

dynamic local conditions that reduce solar output and are not reflected in the set of weather

metrics, such as shade from nearby buildings and trees or dust buildup on the solar modules.

Thus, a decrease in solar generation due to these factors will be incorrectly associated with

increased energy consumption. However, since these factors typically have a minimal impact

on generation [62], they also generally have a minimal impact on SunDance’s accuracy. In

addition, it is possible to adjust for such dynamic conditions by adjusting our maximum

model above based on solar output during clear sky weather periods. If solar output is

significantly less than the maximum generation model (after the temperature adjustments)

during these periods where weather has no e↵ect, then we can infer that it is due to a

dynamic factor. Of course, correcting for such factors may require much more historical
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data, as we can only use solar data during clear skies. We leave extending our model to

account for dynamic factors to future work.

4.4 Implementation

We implement SunDance using a mixture of python and C++. We use simple well-

known geometric formulas to compute a location’s clear sky solar irradiance based on its

latitude, longitude, elevation, time, and the Sun’s position in the sky. To derive the Sun’s

position in the sky, we use the PSA algorithm, which takes as input the UTC time (to the

second) and a location’s latitude and longitude and outputs the Sun’s precise azimuth and

zenith angles [29]. High performance implementations of the PSA algorithm are publicly

available that are accurate to within 0.0083� of the Sun’s true position. We then compute

the AM relative to an AM of 1 when the Sun is 90� overhead based on the well-known

formula below.

AM =
1

cos(⇥) + 0.50572(96.07995�⇥)�1.6364
(4.2)

Given the AM above, we estimate the direct solar irradiance Idirect that reaches the

ground using the Laue Model [55] as follows, where h is the location’s elevation above sea

level and 1.361 kW/m2 represents the solar constant.

Idirect = 1.361 ⇤ [(1� 0.14 ⇤ h)0.7AM0.678
+ 0.14 ⇤ h] (4.3)

In addition, while variable, the amount of di↵use irradiance that is scattered by the

atmosphere is generally estimated at ⇠10% of the direct irradiance on a clear day. Thus,

we compute the total solar irradiance Itotal from 3.2.2.1 at any location as follows.

Itotal = 1.1 ⇤ Idirect (4.4)

Note that there are also packages available that implement other clear sky solar irradi-

ance models, including PySolar [3] and NREL’s library that implements the Bird model [1].

We leave evaluating SunDance’s accuracy across these di↵erent models as future work.

Given a location’s latitude and longitude, our implementation fetches historical weather

data at one-hour granularity using Weather Underground’s API. Since Weather Under-

ground only has one-hour weather data, we can only disaggregate net meter data at the
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granularity of an hour. However, SunDance’s approach is general and can be applied to

weather and energy data at any granularity. We use the scikit-learn machine learning library

in python to build our general weather model. The library supports multiple techniques

including Support Vector Machines with di↵erent kernel functions and multiple linear re-

gression models. We also use NumPy and Pandas for weather and energy data processing.

4.5 Experimental Evaluation

We first evaluate SunDance’s accuracy across 100 solar-powered buildings using one year

of hour-level interval energy data. We then focus on a representative “net zero” building

to understand the e↵ect of energy consumption patterns, weather, and time on SunDance’s

accuracy. To quantify accuracy, we compute the Mean Absolute Percentage Error (MAPE)

described in Equation 2.1.

We also compute the MAPE between the actual and inferred energy consumption using

the same approach. We restrict all time periods to between sunrise and sunset, since

SunDance is always perfectly accurate at night, as solar generation is always zero. Even so,

MAPE is highly sensitive to periods of low absolute solar generation. For example, if sunrise

falls near the end of an hour, the absolute generation of a 10kW solar deployment over the

hour may only be 50W. If SunDance infers a generation of 100W, its MAPE for that period

will be 100%. In contrast, the absolute generation during a cloudy mid-day period may

be 5kW, such that if SunDance infers a generation of 6kW, its MAPE is only 20%. Thus,

the absolute error of 50W contributes much more to the average MAPE than the absolute

error of 1kW. To put our results in better context, we report overall MAPEs, as well as

MAPEs for separate time periods and under di↵erent weather conditions. In particular, as

in solar forecasting, we prioritize accuracy during cloudy periods in the middle parts of the

day, where a significant amount of solar generation may fluctuate.

4.5.1 Comparing with a Supervised Approach

We compare SunDance’s black-box approach to a fully supervised machine learning

approach that has access to an entire year of historical solar generation and energy con-

sumption data that has already been separated. In this case, the supervised approach works
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Figure 4.4: Daytime (top) and mid-day (bottom) MAPE for solar disaggregation using a
supervised approach and SunDance for 100 buildings over a year. Buildings sorted by their
ratio of solar generation to energy consumption (listed atop each bar).

exactly like SunDance, except that, instead of our general weather model, we build a su-

pervised model using the custom solar training data from each specific solar site. Thus,

unlike other machine learning approaches [76, 63, 27, 46], our supervised approach incor-

porates the same physical solar models as SunDance. In recent work, we have show that

this supervised approach is significantly more accurate than existing supervised approaches

that do not incorporate physical solar models [32]. Our supervised approach represents

a lower bound on the MAPE (and an upper bound on the accuracy) that SunDance can

expect. As in prior work, we use a Support Vector Machine (SVM) with a Radial Basis

Function (RBF) kernel for our supervised approach [76, 63, 27]. SVM-RBF is common in

solar modeling, since it attempts to fit a Gaussian curve to solar data and solar profiles are

similar to Gaussian curves.

Figure 4.4 compares SunDance’s accuracy with that of the supervised approach for each

of the 100 buildings. In the graph, each stacked bar represents a building, such that the

lower bar is the MAPE of a supervised approach, and the upper bar represents the increase

in MAPE when using SunDance. The graph shows that across all buildings, the increase

for SunDance in MAPE is generally small relative to the supervised approach. This result

suggests the accuracy of Universal Weather-Solar E↵ect, as the only di↵erence between the

two approaches is data used for training.

62



-4
-3
-2
-1
 0
 1
 2
 3
 4

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

N
et

 M
et

er
 (k

W
)

Time (Days)

Net Meter Data
0

 0

 1

 2

 3

 4

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

G
en

er
at

io
n 

(k
W

)

Time (Days)

MAPE: 26.178426732

SunDance
Ground truth

Figure 4.5: One month of net meter data (top) and ground truth and inferred solar gener-
ation (bottom) from a net zero building.

In addition, the buildings are sorted by their ratio of solar energy generation to energy

consumption, which is listed at the top of each bar. As the graph shows, the MAPE is

partially a function of this ratio, such that a higher ratio generally yields more accurate

results. This is intuitive, as increased energy consumption represents additional “noise” that

SunDance must filter out. Note that a ratio of 100% represents a “net zero” building that

has equal solar generation and energy consumption. Here, we see average MAPEs of ⇠22%

for SunDance on net zero buildings. Much of the imprecision derives from the absolute error

in estimating each building’s energy floor, which essentially requires an informed guess.

We also plot the same graph but only for the middle hours of the day (11am-3pm) to

reduce the e↵ect of small absolute errors that yield large percentage errors at the start and

end of each day. This graph shows that MAPEs reduce by ⇠22% during these important

periods to an average of ⇠17% for a net zero building. In addition, in many cases for

the mid-day results, SunDance performs as well as the supervised approach, in large part,

because any small absolute error in the energy consumption floor has less e↵ect on the

MAPE as the absolute solar generation increases.

Result: SunDance’s black-box approach achieves similar accuracy without access to any

solar training data from a site as a fully supervised approach with complete access to such

training data.
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4.5.2 Quantifying SunDance’s Accuracy

We next evaluate the di↵erent conditions that a↵ect SunDance’s accuracy on a represen-

tative net zero building (labeled in Figure 4.4). To provide a qualitative sense of SunDance’s

accuracy, Figure 4.5 shows the raw net meter data (top), as well as the ground truth and

disaggregated solar generation (bottom). The figure shows that SunDance’s inferred solar

generation closely matches the ground truth solar generation, despite the stochasticity in

the net meter data. In this case, the MAPE for solar generation is ⇠26%, while the MAPE

for energy consumption is ⇠22%. The inferred energy consumption MAPE is typically lower

because it is less a↵ected by low absolute values, e.g., in the morning and evening.

We also examine the e↵ect of changing both the ratio of solar generation to energy

consumption and altering the variance of the energy consumption. In this case, to change

the ratio, we alter the building’s energy consumption at each time by a constant factor to

increase and decrease the ratio. Similarly, we alter the variance by scaling the di↵erence

in energy consumption between two time periods by a constant factor, such that a value

of 0 results in a completely flat consumption that never changes from the initial value. In

both cases, the alterations produce a new set of net meter data, which we feed to SunDance

for disaggregation. Figure 4.6 shows the results. As expected, as the ratio increases (a),

and there is more solar generation to consumption, we see a linear decrease in MAPE

(and corresponding increase in accuracy). Similarly, a low variance in consumption enables

SunDance to more accurately model the solar generation and energy consumption floor

(even if the ratio is large). Thus, in (b) we see a linear decrease in accuracy (and increase

in MAPE) as the energy consumption variance increases.

We also break down our results based on weather conditions and time. Figure 4.7 breaks

down accuracy based on weather conditions. In this case, we capture weather based on the

percentage of the maximum generation a solar deployment is producing at any given time.

Thus, if a solar deployment is only generating between 0% and 25% of its maximum clear sky

potential, we assume that the weather is not good. Figure 4.7 shows that, as expected, our

MAPE improves as the weather conditions improve. Importantly, for weather conditions

that result in a ratio greater than 25%, SunDance yields near the same accuracy, indicating

it performs well even under highly adverse weather conditions. While the MAPE is quite
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Figure 4.6: Higher ratios of generation to consumption result in higher disaggregation
accuracy (a). Lower variances in consumption result in higher disaggregation accuracy (b).

high during the worst weather conditions, this is largely due to small absolute errors from

low generation that result in large percentage errors. To quantify this e↵ect, we also plot

the MAPE of energy consumption. Since this is a net zero building, we see that the small

absolute errors in inferred solar generation during the worst weather conditions have little

on e↵ect on the energy consumption MAPE, which has similar accuracy across all weather.

Result: SunDance accuracy is a linear function of the ratio of solar generation to energy

usage and the variance in the energy usage. SunDance has the highest accuracy during the

most critical period: adverse weather where solar generation is di�cult to infer.

4.6 Related Work

The most similar work to SunDance is a recent approach for solar disaggregation (and

product) from Bidgely, Inc. [63, 65]. Similar to SunDance, Bidgely trains a machine learning

model (also using an SVM-RBF kernel) that maps weather metrics to normalized solar out-

put on data from a set instrumented deployments, and then applies that model to estimate

solar generation on a separate set of deployments. However, while SunDance normalizes

solar output by constructing a maximum generation model based on the underlying physical

characteristics of the deployment, Bidgely normalizes using a static value representing the

maximum capacity of each deployment. As a result, Bidgely’s model is significantly less

accurate than SunDance’s model, as we show in recent work [32]. Prior work also performs

solar disaggregation by using data from microsynchrophasors at the feeder-level [50]. This

approach di↵ers in that it requires data from grid-level sensors.

65



 10

 20

 30

 40

 50

 60

 70

 80

       0-25        25-50        50-75       75-100       Overall
M

AP
E

Percentage Max (%)

Solar Generation
Energy Consumption

Figure 4.7: Solar generation and energy consumption MAPE during di↵erent weather con-
ditions.

SunDance has many commonalities with existing solar forecast models based on machine

learning [30, 46, 76]. However, these techniques use pure solar data to train their models,

while SunDance focuses on disaggregating solar data from net meter data. SunDance’s

weather model uses a similar machine learning approach as prior forecasting techniques,

except that its output is a fraction of the maximum clear sky generation, which varies over

time at each location. This model is general due to the Universal Weather-Solar E↵ect. As

a result, unlike prior forecasting approaches, SunDance requires no training data from the

location under test to accurately model weather’s e↵ect on solar output.

Prior work on solar forecasting in SolarCast also performs feature engineering to reduce

the amount training data necessary to build an accurate model that maps weather to solar

output [46]. Similar to SunDance, SolarCast leverages the relationship between clear sky

solar irradiance and solar output to build a single model of weather-to-solar output by

normalizing its training data across time, e.g., by multiplying weather metrics by the clear

sky irradiance. However, unlike SunDance, SolarCast’s models are custom for each site,

and not general, as their output is expressed in terms of raw solar power.

Finally, recent work shows how to extract the location where “anonymous” solar energy

data was generated [36]. SunDance suggests the same approach can extract the location of

anonymous net meter data that includes solar generation by first disaggregating the solar

energy data. The potential to extract location from net meter data has serious privacy

implications.
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4.7 Conclusion

In this chapter, we design SunDance, a new black-box technique for disaggregating BTM

solar generation from net meter data. Importantly, SunDance requires only a deployment’s

location and a minimal amount of historical net meter data, e.g., as few as two datapoints.

SunDance then leverages multiple insights into well-known fundamental relationships be-

tween location, weather, physical characteristics, and solar generation to build an accurate

model of a deployment’s solar generation. We implement SunDance and evaluate it on

100 buildings. Our evaluation shows that SunDance’s black-box approach achieves similar

accuracy without access to any solar training data from a deployment, as a fully supervised

approach that has complete access to historical solar training data. SunDance also enables

a wide range of NILM related works that disaggregate total energy consumption into the

energy readings of individual loads over a period of time for a home, as SunDance separates

energy consumption from net meter as well.
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CHAPTER 5

SOLAR-BASED LOCALIZATION

The energy data produced by solar-powered homes is considered “anonymous” if it

is not associated with identifying account information, e.g., a name and address. Thus,

these energy data is often not handled securely, and even made publicly available over the

Internet. Our key insight is that solar energy data is not anonymous: since every location

on Earth has a unique solar signature, it embeds detailed location information. To explore

the severity and extent of this privacy threat, in this chapter, we design SunSpot to localize

“anonymous” solar-powered homes using their solar energy data.

5.1 Background and Motivation

Utilities and third-parties monitor the energy produced by solar-powered homes using

networked energy meters, which record and transmit energy data at fine-grained intervals.

Such energy data is generally considered anonymous if it is not associated with identifying

account information, e.g., a name and address. Thus, energy data from these “anonymous”

solar-powered homes is often not treated as sensitive: instead, it is routinely transmitted

over the Internet in plaintext, stored unencrypted in the cloud, shared with third-party

energy analytics companies, and even made publicly available.

For example, Figure 5.1 shows a screenshot of 1Hz energy data an anonymous solar-

powered home has made publicly available on the Internet via a networked energy meter,

such as the TED, eGauge, BrulTech, or Enphase Envoy. These meters connect to the In-

ternet and upload energy data to the cloud in real time, where it is then stored to enable

queries on archival data. Solar installers typically add networked meters to enable home-

owners to monitor energy generation and consumption via web dashboards or smartphone

applications. For simplicity, in many cases as in Figure 5.1, accessing the data does not re-

quire a password, as there is an assumption the data is anonymous and cannot be associated
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Figure 5.1: Example data from solar-powered home that is making its 1Hz solar generation
and energy usage publicly available on the the Internet under the assumption of anonymity.

with a particular home. The example in Figure 5.1 is from one of the 28,000 anonymous

homes we have found uploading solar generation and energy consumption data to the public

Internet. While the example makes the data publicly available for simplicity, similar data

is also being intentionally gathered and released by various research institutions to support

energy analytics research. As above, these datasets often include detailed solar and energy

usage data from thousands of volunteer anonymous homes.

While users may choose to not install (or securely configure) the meters above, they are

forced to allow utilities to monitor their energy usage. In addition, to receive reimburse-

ments for solar generation, some states also require users to upload their utility energy

data to an external database managed by a third party [71]. This energy data is becoming

increasingly detailed, as utilities employ “smart” meters that record energy usage at fine-

grained intervals. Current smart meters monitor energy usage on the order of minutes [47]

with next-generation meters expected to monitor on the order of seconds [83]. In the U.S.,

utilities have deployed >70 million smart meters [48], and are rapidly accumulating smart

meter data, which they may permanently archive for later analysis.

A plethora of startups have now arisen to analyze these vast archives of utility energy

data, ostensibly to make energy-e�ciency recommendations [28, 13, 70]. Prior research has

demonstrated the ability to learn a variety of insights into private user behavior by analyzing

their energy data [66]. For example, energy data indirectly leaks occupancy [31, 53], which

may reveal whether a home’s occupants: i) include a stay-at-home spouse, ii) keep regular

working hours and daily routines, iii) frequently go on vacation, or iv) regularly eat out for

dinner. Energy data can also reveal load power signatures—changes in power unique to a

device—for specific appliance brands and models. These behavioral insights and appliance

69



-100

 0

 100

 200

 300

 400

7 am 9 am 11am 1pm 3pm 5pm

P
o
w

e
r 

(w
)

Time (hour)

Sunrise

First +Point

Solar Noon Maximum Power

Last +Point
Sunset

Figure 5.2: The start, stop, and peak of solar generation (red) approximates the time of
sunrise, sunset, and solar noon (green).

details are valuable to companies in profiling homes and directing advertising campaigns,

and may also be exploited by tech-savvy criminals. Thus, some contend that energy data

will eventually be worth more than the energy consumed to generate it [68].

Users and utilities commonly provide energy data to the energy analytics companies

above under the assumption the data is anonymous. In many cases, users do not realize

their energy data leaks side-channel information. Utilities typically anonymize any energy

data they share with third-parties by removing account names and addresses, as suggested

by the U.S. Department of Energy’s recently released Voluntary Code of Conduct (VCC)

for managing user energy data [86]. Importantly, the VCC does not require user consent

to release anonymized energy data with names and addresses stripped. Consent is likely

not required because the energy analytics above do not reveal location, which prevents

third-parties from associating private behavior above with a specific home.

Our key insight is that solar energy data is not anonymous: since every location on

Earth has a unique solar signature, e.g., a unique sunrise, sunset, and solar noon time, it

embeds detailed location information. While there is substantial prior work on estimating

solar energy output based on a home’s location, we know of no work that does the reverse—

estimating the location based on solar output. The localization threat means home energy

data that includes solar generation is never anonymous.

As one example of this threat, an attacker could determine when to burglarize the anony-

mous home in Figure 5.1 by first determining its occupancy pattern from its consumption

data (in red) using existing techniques [31, 53], and then analyzing its solar signature (in

green) to determine the home’s location. As a result, users and utilities should treat such

data as highly sensitive by, in particular, not making it publicly available on the Internet
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or releasing it to third-parties without user consent. To explore the severity and extent of

this privacy threat, we design SunSpot, a system for localizing an anonymous solar-powered

home by analyzing its solar energy data. Exposing and evaluating this threat is critically

important in informing evolving policies by DOE and others for managing anonymous en-

ergy data, and in emphasizing to users and utilities the need to securely handle energy

datasets that include solar generation. In doing so, we makes the following contributions.

Localization Challenges. We highlight numerous challenges to localization from solar

energy data, as a solar module is a highly imprecise sensor for tracking the sun. Solar

energy data is a↵ected by numerous unknown variables, including a home’s local climate,

e.g., frequency of cloud cover and temperature variations, physical characteristics, e.g.,

tilt/orientation, topography, shading from nearby structures, etc., and properties of the

electrical system, e.g., variations in grid voltage, choice of wiring and inverter(s), etc.

SunSpot Design. We design SunSpot, which localizes a solar-powered home to a small

region by exploiting multiple insights dervied from the regularity in the Earth’s orbit. We

leverage crowd-sourced image processing on publicly-available satellite data to identify po-

tential homes in the area with visible solar modules. SunSpot significantly reduces the

search area by filtering out areas without man-made structures, and may then apply ad-

ditional filters, e.g., by matching solar output to module size or local weather patterns, to

hone in on a specific solar-powered home.

Implementation and Evaluation. We implement and evaluate SunSpot on publicly-

available energy data at both per-second and per-minute resolution from 14 solar-powered

homes. We find that SunSpot localizes a solar-powered home to near the smallest possi-

ble region given the energy data resolution, e.g., within a ⇠500m and ⇠28km radius for

per-second and per-minute resolution, respectively. SunSpot then leverages Amazon’s Me-

chanical Turk at a cost of $13.60/km2 to identify a specific home, after reducing the search

space by filtering out regions without man-made structures, which eliminates on average

>97% of the search area in the U.S.
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Figure 5.3: Sunlight map of the Earth.

5.2 Localization Challenges

SunSpot assumes an anonymous solar-powered home at an unknown location equipped

with a networked energy meter that monitors energy generation over time. Given this solar

energy data, SunSpot’s objective is to infer a location—a latitude and longitude—where

the data originates. Note that we focus exclusively on localizing the source of solar en-

ergy data, and not “net meter” data, which is the sum of a home’s solar generation and

energy consumption. Energy analytics companies have already developed solar disaggre-

gation techniques, which analyze net meter data to separate solar data from consumption

data [64], and are actively applying them to utility smart meter data [63]. We also designed

a more accurate solar disaggregation system-SunDance in Chapter 5. Combing our solar

disaggregation techniques, our localization techniques may be used to localize based on net

meter data, and we leave it as future work. In addition, as discussed in Section 5.1, there

are already thousands of solar-powered homes, including the home in Figure 5.1, that are

separately exposing their solar generation and their energy consumption data.

The basic principle for localizing a solar-powered home from its solar energy data is

straightforward. On a clear sunny data, solar generation data reveals a location’s unique

solar signature, which derives from the sun’s position in the sky at a particular location and

time and determines the amount of solar radiation that strikes the Earth. In particular, a

location’s unique solar signature dictates a unique time of sunrise, sunset, and solar noon

(see Figure 5.2), which correspond to the times when a solar system’s generation starts,

stops, and peaks each day, respectively. SunSpot leverages this information to infer the

location where solar energy data originates.
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5.2.1 Deriving Location from the Sun

Given the sun’s importance to life on Earth, astronomers can derive its movements with

incredible precision. For example, the PSA algorithm [29] provides the sun’s position, i.e.,

its azimuth and elevation angles, in the sky to within 0.0083� at any location, given its

latitude and longitude, at any time of the year. Open-source code and online APIs are

available that implement the sunrise/sunset algorithm, which provides precise sunrise and

sunset times (to the second) given a location’s latitude and longitude [80, 81].

Interestingly, while technically feasible, there are no commonly available open-source

libraries or online APIs that perform the reverse operation, by computing a location from

the sunrise and sunset times. Unfortunately, the PSA and the sunrise/sunset algorithm

above are not reversible, since they both use trigonometric functions at multiple stages that

are not one-to-one, i.e., their inverse yields multiple solutions. Instead, the algorithms for

deriving location from sunrise/sunset events are much more obscure, as they are typically

only used for celestial navigation of ships without electronic navigation [84]. Unlike the

open-source code and online APIs above, these localization algorithms widely published in

textbooks do not compensate for the slight irregularities in the Earth’s shape and orbit that

are required for high precision.

However, as a prerequisite to localizing solar energy data, SunSpot requires a precise

algorithm for determining a location based on its sunrise and sunset times. Due to the issues

above, rather than implement and refine published algorithms, we develop an approach that

uses available APIs, which only work in the opposite direction by computing sunrise/sunset

time given a latitude and longitude, as tools to conduct a binary search for a location. Note

that in the chapter we use UTC time to eliminate time zone issues.

Deriving Latitude. To determine a location’s latitude, we observe that all locations at

the same latitude have the same daylength, i.e., the duration between sunrise and sunset,

on each day. We also observe that, the daylength gets shorter the further north the latitude

in the fall/winter, and gets longer the further north the latitude in the spring/summer. To

illustrate, Figure 5.3 shows a sunlight map of the earth in the northern hemisphere’s winter,

where daylength becomes shorter moving from south to north. We leverage this insight to

conduct a binary search to find a latitude that yields our desired daylength, given a sunrise
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Figure 5.4: We accurately derive location from sunrise and sunset times using existing
online APIs that perform the reverse operation.

and sunset time. That is, we pick any longitude value and then compute the daylength

using the online APIs for �90�, 0�, and 90� latitude. We then select the region, either

[�90�, 0�] or [0�, 90�], that includes the desired daylength. We then compute the daylength

for the mid-point of that interval, and repeat the process. We terminate the search when

the latitude computed at the next step does not significantly change.

Deriving Longitude. We perform a similar procedure to compute a location’s longitude.

Longitude is uniquely determined by the time of solar noon, when the sun is at its highest

point in the sky, which is always the mid-point between the sunrise and sunset times. In this

case, we pick any latitude and then compute solar noon using the online APIs for both 0�

and ±180� longitude. We then select the region, either [0�,-180�] or [0�,180�], that includes

our desired solar noon. As above, we compute solar noon for the mid-point of the selected

region, either 90� or �90�, and repeat the process until the longitude computed at the next

step does not change.

Note that, by searching based on daylength and solar noon, the two procedures above are

independent of each other. That is, computing the longitude does not depend on knowing

the latitude or vice versa. We evaluate our approach across the full range of latitudes and

longitudes above using existing online APIs [81], as shown in Figure 5.4. Figure 5.4(a)

shows that our derived longitude is always within 400m of the actual location’s longitude.

Longitude accuracy is a function of the latitude, such that higher latitudes enable higher

accuracy at the same data resolution. The Earth’s rotation speed decreases by the cosine

of the latitude, such that the speed at X� latitude is 465 ⇥ cos X�m/s. As a result, the

maximum precision possible at the equator with second-level data is 465m, and the accuracy
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Figure 5.5: The precision possible for computing longitude from solar noon is a function of
the latitude and the data resolution.

possible with minute-level data is 27.9km. Figure 5.5 plots the maximum longitude precision

possible for second- and minute-level resolution data across all latitudes. To make both lines

visible, we plot second-level data based on the left y-axis and minute-level data based on

the right y-axis.

Similarly, Figure 5.4(b) shows that our computed latitude is always less than 500m from

the actual location. The abrupt increases at ±66.56�1 indicate regions near the poles where

the sun does not rise or set. We ran this experiment on data from June 21st, 2015 (the

summer solstice) where the half of the Earth lit by the sun is maximally misaligned with

the poles. Note that the solstices represent the days that yield the most accurate results

for latitude. Latitude accuracy changes over the course of the year, as shown in Figure 5.6.

Since, on the equinoxes (September 22nd and March 20th), every location experiences 12

hours of daylight, it is impossible to distinguish a location’s latitude from daylength.

5.2.2 Challenges to using Solar Energy Data

Our approach above derives a location from a known sunrise and sunset time—or equiv-

alently the daylength and solar noon—on a particular day. A näıve approach to compute

location from solar energy data is to simply use the times for the first and last positive solar

generation of the day as the sunrise and the sunset times, respectively. SunSpot can use

these times to directly estimate daylength and solar noon, and then provide these estimates

as input into the algorithm above. However, this approach is inaccurate—on the order of

hundreds to thousands of kilometers—because a solar system is a highly imprecise sensor for

1This latitude is equal to 90� minus the Earth’s tilt of 23.44�.
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Figure 5.6: The accuracy of deriving latitude from daylength varies over the year and is
least accurate near the equinoxes.

numerous reasons. For example, even a few minutes of inaccuracy in solar noon can yield

massive errors, as each minute of error translates to roughly 27.9km error in longitude, as

mentioned above. Figure 5.2 shows that even on a seemingly ideal day, sunrise, sunset, and

solar noon often do not precisely align with the start, stop, and peak of solar generation,

respectively. Below we describe the reasons for this error.

Atmospheric Conditions. Solar output depends on changing environmental conditions,

namely solar irradiance. For a flat stationary solar deployment, the maximum solar irra-

diance (in W/m2) is proportional to the sun’s position in the sky. However, atmospheric

e↵ects alter the maximum solar irradiance. These e↵ects include not only the presence of

visible clouds, but also other conditions, including humidity, rain, dust, snow, pollution

levels, etc. As a result, on a cloudy day, the start and stop of solar generation may be tens

of minutes after and before sunrise and sunset, respectively.

Generation Ine�ciency. Solar modules are not 100% e�cient at converting solar radi-

ation to power, but instead range in e�ciency from 15-25%. Due to this ine�ciency, even

under ideal conditions with no clouds, the start and stop of solar generation each day will

not precisely align with sunrise and sunset, as shown in Figure 5.2. Solar module e�ciency

also decreases as the temperature increases. Thus, the lag in detecting the first positive

generation after sunrise (and the last positive generation before sunset) varies with tem-

perature. Temperatures may vary significantly over the day (from morning to evening) and

year (from winter to summer).

Shading from Nearby Objects. Sunrise and sunset times are derived assuming no

topographical e↵ects, i.e., the location and its surroundings are at sea level. This is only
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true in the middle of the ocean. In reality, the surrounding landscape dictates the horizon.

For example, in a valley, the sun will rise from behind the mountains later and set behind

them earlier than the o�cial sunrise and sunset times. The opposite will occur at the top of

a mountain. Solar deployments, especially on rooftops, are also often obstructed by nearby

buildings and trees. The impact of these e↵ects is not consistent, but will vary over time,

e.g., when trees lose their leaves.

Physical Properties. The physical properties of a module, namely its tilt and orientation,

also a↵ect energy generation. The power output of a stationary deployment oriented toward

the equator, e.g., south in the northern hemisphere and north in the southern hemisphere,

is proportional to solar irradiance, which is a function of the sun’s position in the sky.

However, many deployments are not perfectly oriented toward the equator, and may also

be tilted to varying degrees. The equation below computes solar output as a function of

the sun’s position in the sky, and modules’ tilt and orientation.

Sp = Si[cos(↵) sin(�) cos( �⇥) + sin(↵) cos(�)] (5.1)

Here, Si is the intensity of solar radiation that strikes a flat module, while Sp is the

amount of solar radiation that strikes an actual module, given the module’s azimuth and

tilt angles ( and �, respectively), as well as the sun’s azimuth and elevation angles (⇥ and

↵, respectively). Figure 5.7 graphically depicts how the orientation a↵ects the output of

a module (in the northern hemisphere). An ideal module oriented south ( = 180�) will

experience its maximum production at solar noon (when the sun is at its highest point in the

sky, maximizing solar radiation). In contrast, an ideal module with more of an eastward

orientation will shift the generation curve earlier, such that its maximum production is

earlier than solar noon. The more eastwardly the orientation, the earlier the maximum

production point and the earlier the day’s first and last generation times. A westward

orientation has the opposite e↵ect.

Unlike changes in the orientation, changes in the tilt do not a↵ect either the time of

maximum generation or the time of first or last positive generation. However, they do

reduce the magnitude of the maximum generation and, thus, result in a more gradual rise

and fall of the generation curve. Note that the relationships above dictate the output
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for a solar system where all modules are tilted and oriented in the same way. If there

are multiple modules with di↵erent tilts and orientations their output is the sum of each

module’s individual production based on its own tilt and orientation (assuming each module

has its own microinverter, as discussed below).

Electrical Characteristics. A solar deployment’s electrical system also a↵ects its output.

For example, the output of modules wired in series is dictated by the individual module

generating the least current. Each individual module’s output is also dictated by its IV

curve, which defines the amount of current (and power) a module generates at di↵erent

voltages. The IV curve of a multi-module deployment connected to a single inverter is

a complex function of the IV curves of all the modules and how they are wired, e.g., in

series or parallel. As with module e�ciency, the shape of the IV curve also varies with

temperature and solar irradiance. Inverters actively vary their operating voltage to search

for the maximum power point on this complex aggregate IV curve as conditions change,

which may lead to periods of operation below the maximum power point. Rather than

connect multiple modules to a single inverter, deployments may also attach a microinverter

to each module. In this case, each microinverter independently optimizes its module’s

maximum power point. Thus, the same system using microinverters will generate a di↵erent

energy profile than when using a single inverter.

Meter Accuracy. Ultimately, solar energy data derives from meters that sense its gen-

eration. These meters have varying levels of accuracy, typically ranging from 0.5% to 2%,

depending on whether they are certified as utility- or consumer-grade. Energy meters are

typically placed in front of the inverter and measure AC power. As a result, the power they

record is a function of, not only the current generated by the modules, but also the grid’s

voltage. While RMS grid voltage in the U.S. is 120V, it may vary by ±5% based on current

standards. Thus, recorded power generation will also vary in proportion to these voltage

fluctuations.

5.2.3 Summary

The inaccuracy in solar energy data caused by the e↵ects above varies across locations.

For example, the power generated by a deployment in Southern California (which has

78



8pm6am 8am 10am 12pm 2pm 4pm 6pm

400

0

100

200

300

Time
Po

we
r O

ut
pu

t (
W

)

Oriented east Oriented west

Oriented south

Figure 5.7: Depiction of how solar generation changes based on solar module orientation
(in the northern hemisphere).

few temperature variations and cloudy days) that has few obstructions and all modules

oriented towards the equator (with the same tilt) will more closely reflect the sun’s path

than a deployment in a location with a highly variable climate, many obstructions, multiple

modules with di↵erent orientations and tilts, unstable grid voltage, etc. In essence, the more

e�cient a solar deployment is at generating power, the closer it tracks the sun’s position

in the sky, and the more susceptible it is to localization. This general principle—that the

more energy-e�cient a system, the more vulnerable it is to leaking information via energy

data—has been observed in other contexts [31, 53].

5.3 SunSpot Design

The e↵ects from the previous section are often significant—even for the most e�cient

deployment—and impossible to accurately model without knowing details of a solar instal-

lation, e.g., its location, tilt/orientation, wiring, etc. Thus, accurate localization from single

day’s solar data (or even a few days or weeks) is challenging, and impossible if the time

period is near the equinox (since all locations have a similar daylength near the equinox).

However, since utilities, third parties, and current networked energy meters have archives of

solar energy data, as discussed in Section 5.1, SunSpot leverages data over multiple days to

mitigate inaccuracy from any single day’s data. Note that Sunspot does not require many

months of data, and can operate on even a few weeks of data, as long it includes some clear

sunny days. However, as we discuss, for inferring latitude, SunSpot does require data from

a separate set of days in the fall/winter and the spring/summer. Of course, in general, data

over a longer period increases both accuracy and confidence.
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Similar to the approach in Section 2, SunSpot works by first inferring a location’s lon-

gitude and latitude separately. SunSpot uses this inferred location to identify a region of

interest, since solar energy data alone is not accurate enough to precisely identify a home’s

location. After identifying a region of interest, SunSpot then uses image processing on

publicly-available satellite data within the region to identify candidate homes with visible

solar systems. Finally, SunSpot applies filters to further prune this set of homes. Figure 5.8

depicts SunSpot’s pipeline of operations.

5.3.1 Identifying a Region of Interest

Inferring Longitude. To infer longitude, SunSpot leverages the time of solar noon. Solar

noon is the wall clock time on any given day where the sun is at its highest point in the

sky at a specific location. The clock time of noon, e.g., 12pm, often di↵ers from solar noon,

as clock times are based on the local time zone, where a large region within the same time

zone has the same wall clock time. In contrast, each location within that time zone has a

di↵erent solar noon time, depending on when the sun rises to its highest point, i.e., nearest

zenith, at that specific location. Further, as the Earth orbits the sun, the time of solar noon

for each location changes gradually over the course of the year. SunSpot leverages the fact

that the day-to-day changes in solar noon across a year are consistent at every location on

Earth. In particular, the ⇠31 minutes of movement in solar noon are the same at every

location and dictated by the Equation of Time (EoT), which is imprinted on sundials to

reconcile the di↵erence between apparent solar time (which tracks the actual movement of

the sun each day) and mean solar time (which tracks an “average” sun where noon is always

24 hours apart).
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Figure 5.9 shows the EoT (the bottom line) at 0� latitude over the course of a year,

where the y-axis is the change in solar noon time assuming we set solar noon time on

January 1st to zero. For an e�cient solar system (oriented towards the equator) on a

sunny day, solar noon should correspond to the time of maximum generation. Thus, the

change in the time of maximum generation should precisely track the EoT, regardless of

a deployment’s location. Note that using solar noon should mitigate the e↵ect of shading

from obstructions, as only the most ine�cient deployments would be shaded at solar noon.

Of course, due to the other e↵ects in the previous section, the maximum time of generation

does deviate significantly from that predicted by the EoT over the year. Figure 5.9 includes

a scatterplot of the time of maximum energy generation (with energy data at one minute

resolution) for a representative home. The scatterplot shows that there are numerous and

significant deviations in the time of maximum generation across the year.

Since the EoT is the same for every location on Earth, SunSpot knows the shape of

the EoT curve it must “fit” to the data: it need only shift up and down the y-axis to

determine where to best place it. In the figure, we use 0� latitude as the baseline EoT.

To “fit” the EoT to the data, SunSpot assumes that on ideal (sunny) days the time of

maximum generation should often track the EoT, while on non-ideal (cloudy) days the

time of maximum generation will be random, e.g., it might be before or after solar noon
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Figure 5.10: Longitude accuracy depends on the top k points of generation we include in
the scatterplot when fitting the EoT.

depending on the weather. Given this assumption, we place the EoT curve at the spot on

the graph where it overlaps the most data points within some tolerance, e.g., ±1 minute. In

Figure 5.9, the placed curve (in dark violet) nearly precisely overlaps the actual ground truth

EoT curve for the location—the bottom of the zoomed-in inset shows the two overlapping

curves.We tried various other methods for placing the EoT curve, such as placing it to

minimize the root mean squared error, or RMSE (in blue), but found that this and similar

approaches were not as accurate. This likely occurs because using RMSE assumes the

magnitude of the deviations above and below solar noon are the same. However, the local

climate may cause the magnitude of these deviations to be biased towards the morning or

afternoon. For example, frequent fog in the mornings might increase the probability of the

time of maximum generation often occurring much later than solar noon (as in the figure).

After placing the EoT on the graph, SunSpot then infers longitude by taking solar noon

time for any day on the EoT and applying our algorithm from Section 6.1 to compute

the longitude. Note that solar noon time for any day on the same EoT curve will yield

exactly the same longitude. In experimenting with the basic approach above, we found

that the time of maximum generation often deviates from solar noon on many sunny days

that appear ideal. This likely occurs due to small variations in the various factors listed in

Section 2.2, such as slight variations in grid voltage. As a result, we extend this approach

by using the top k times of maximum generation. That is, we sort the data points (for

any resolution) by their energy generation and plot the top k data points on the graph.

Figure 5.10 shows how longitude accuracy changes based on the value of k for 1Hz data.
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We typically use k = 3, as we have empirically found that it performs best on a large set of

solar deployments.

Note that our basic approach above assumes a deployment with a single set of modules

oriented towards the equator. Since most deployments strive for e�ciency, they are typically

oriented towards the equator, which mitigates the impact of our orientation assumption in

practice. However, we can extend the basic approach to account for tilts and orientations,

as described below.

Based on the PSA algorithm [29] and Equation 1, we can compute a modified EoT that

tracks the movement in solar radiation incident on a module of di↵erent orientations. The

PSA algorithm gives the sun’s position in the sky at any time for any location, and Equation

1 computes the expected solar generation given the sun’s position and a deployment’s

tilt and orientation. The PSA algorithm requires a latitude and a longitude: we use the

latitude we infer below (which is derived independently of the longitude) and we choose any

longitude, since the EoT and our modified EoT will have the same shape at any location.

We then compute multiple modified EoT curves for many di↵erent orientations, e.g., every

5� from 0� to 180�, and place them based on the procedure above. We choose the curve (and

orientation) with the most overlapping points as above, and use Equation 1 to compute the

di↵erence between the point of maximum generation and the real solar noon for a module

with that orientation. After inferring solar noon (on any day), as above, we infer longitude

by taking this solar noon and using our algorithm from Section 2 to compute a longitude.

While it may be possible to adjust for other factors that contribute to inaccuracy, e.g.,

multiple modules with di↵erent tilts and orientations, etc., we leave these optimizations as

future work.

Inferring Latitude. To infer latitude, we observe that the length of a day—the time from

sunrise to sunset—varies with latitude. For example, in the summer, the daylength gets

longer as we go from the equator to the north pole and shorter as we go from the equator

to the south pole. The situation is reversed in the winter. Thus, latitude is a function of

the daylength—the length of the day at a location and how the daylength changes over the

course of the year depends on its latitude. To compute the daylength, we must estimate

the sunrise and sunset time. SunSpot estimates sunrise and sunset by simply taking the
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first and last positive points of generation in the day, respectively. However, as discussed

earlier, this approach will always result in a significantly shorter daylength than the actual

daylength. We have found the di↵erence to be on the order of tens of minutes for sunrise

and sunset, resulting in latitude errors that approach 1000 kilometers.

SunSpot mitigates this error by leveraging the insight above: namely, in the fall/winter,

daylength becomes shorter moving north, and in the spring/summer, daylength becomes

shorter moving south. As a result, using the approach above, in the fall/winter, SunSpot

will always infer a location north of the actual location, and in the spring/summer, SunSpot

will always infer a location south of the actual location. SunSpot splits the di↵erence

between these two errors by computing latitude separately for each half of the year, and then

averaging them. This approach is surprisingly accurate, reducing latitude errors from near

1000km to less than 20km for 1Hz energy data. The accuracy improvement derives, in part,

from the technique’s ability to mitigate the impact of orientation, shading from structures,

etc., as these characteristics a↵ect the inaccuracy in the fall/winter and spring/summer in

a similar way. Thus, when averaging, the e↵ects largely cancel each other out.

The approach above requires some energy data from the two di↵erent halves of the year.

We generally use a few months worth of data to mitigate the inaccuracy of data from any

single day. Since daylength is a function of latitude, we can derive a daylength curve that

dictates the daylength over a year. Of course, unlike the EoT, the shape of the curve is

dependent on the latitude, requiring SunSpot to find the latitude curve that best “fits” the

data. In addition, just as above, the curve that minimizes the root mean squared error is

inaccurate, as it is “pulled down” by many short daylengths due to cloudy days. Instead,

SunSpot defines the best fit as the daylength curve that represents the tighest upper bound

on the data. While the data point that defines this tightest bound represents the most ideal

day of the year (in that it is the longest day we record relative to the daylength curve), it will

still always be shorter than the actual daylength, since a solar deployment cannot generate

power until strictly after the sun has risen (and will stop generating strictly before the sun

has set). Thus, the tightest bound will never define a longer daylength than the actual one.

We find this upper bound separately for data in the spring/summer and fall/winter.
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Figure 5.11: SunSpot finds the daylength curve that provides the tightest upper bound
on the data in each half of the year. The zoomed-in inset shows SunSpot curve nearly
preciesely overlaps the ground truth daylength curve.

Figure 5.11 shows three daylength curves for an example home, representing the upper-

bound on the spring/summer data and the fall/winter data, as well as the daylength curve

associated with the average of the two derived latitudes. In computing the tightest bound,

we adjust for outliers due to sensing errors by removing the data point that defines the

tightest bound of the daylength curve, and then find the next tightest bound. We then

compare the distance between these two latitudes, and if it is less than a threshold distance

n we stop, but if not we iterate again. We continue until the latitude does not change

significantly. This approach ensures that at least two points over the year define near the

same daylength curve. The figure shows how far apart the tightest bounds of the daylength

curve are in each half of the year. The di↵erence typically translates to near 1000km.

However, when averaging the two, SunSpot achieves a location near the ground truth.

5.3.2 Localizing a Home

The latitude and longitude define only a region of interest, and are not accurate enough,

even with 1Hz resolution energy data, to identify a specific address. SunSpot uses another

method to localize a home within the region, as described below. We define a region of

interest as being a radius r around the inferred location.

Identifying Candidate Homes. To identify candidate homes, we observe that solar

modules are clearly visible from publicly available satellite imagery. Figure 5.12 shows a

85



Figure 5.12: Rooftop solar is identifiable from satellite imagery.

representative photo of a rooftop solar deployment. While it is likely possible to identify

candidate homes using image recognition, given the consistent and distinctive appearance of

solar modules, SunSpot takes advantage of crowd-sourced image recognition on Mechanical

Turk, which provides a programmatic interface to hiring people to perform routine tasks,

such as image processing. In this case, SunSpot submits tasks to identify whether a solar

module appears within the image.

To reduce costs, we also leverage Google Maps’ landscape API that colors areas with and

without man-made structures di↵erently, allowing us to filter out forests, deserts, bodies

of water, etc. Since >97% of land area in the U. S. does not have man-made structures,

this optimization significantly reduces the search area, although it becomes less e↵ective

the more urban the region. Figure 5.13 shows an example of Manhattan, where man-made

structures are colored black and other areas are colored green (land) or blue (water). The

figure shows the API is precise at distinguishing areas without man-made structures, as

streets, central park, and shoreline are not black. We provide images to the OpenCV image

processing library to filter out images with very little black color.

Filtering Sites. There may be many candidate solar homes identified within the region

of interest. There are numerous ways to filter this list of candidate homes. Some examples

include: computing the area covered by a solar system to estimate its maximum output,

and then filtering out homes that deviate from the anonymous solar data; observing panel

properties, such as the orientation or the presence of obstructions, and checking if those

properties manifest themselves in the data; or comparing how well drops in energy genera-

tion align with clouds moving over each candidate home.
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Figure 5.13: Map of Manhattan using Google Maps API that colors areas that include
man-made structures black.

The filtering above may not be able to prune the list of candidate homes to only a single

one. Solar energy data inherently provides k-anonymity, where k represents the number of

nearby homes with similar solar deployments [82]. For example, an Hawaiian neighborhood

where nearly every home has solar is less vulnerable to precise localization, despite the

sunny weather, compared to a home in the Southeast where few homes have solar.

5.3.3 Preserving Privacy

There are many possible ways to preserve the privacy of solar energy data. We discuss a

few below, but, due to space constraints, only focus on localization in this chapter and leave

a full treatment of privacy preservation to future work. Simple data transformations that

shift all datapoints forward or backwards in time would reduce the accuracy of longitude

estimates. Utilities could apply these data transformations (or even remove time labels

altogether) before releasing data to third parties. However, there may be legitimate reasons

for third parties to know the absolute time of generation. Consumers could apply such

transformations themselves by shifting their consumption using batteries. Such shifting

would require significantly less battery capacity than is required to prevent Non-Intrusive

Load Monitoring [61, 88], since consumers can significantly reduce longitudinal accuracy

by shifting perceived generation by only a few minutes. Consumers might also be able

to employ background load scheduling to introduce noise at the start, stop, and peak of

solar generation. While our approach relies on these three key generation points, more
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sophisticated approaches may be possible that leverage the entire generation profile for

localization. Thus, provably masking latitude poses a greater challenge, since it potentially

requires modifying the entire profile.

5.4 Implementation

We implemented SunSpot in python using widely available open-source code that com-

putes a location from its sunrise and sunset time2; SunSpot could also leverage any of a

number of online APIs [81]. Our current implementation determines the region of interest

as described in Section 5.3, but does not implement the adjustments to account for di↵erent

orientations (from Section 5.3.1). After defining the region of interest, our implementation

then processes satellite data to filter areas without man-made structures, divides it into

many small images, and submits them to Amazon’s Mechanical Turk to detect candidate

homes. Our integration with Mechanical Turk downloads satellite imagery from Google

Maps, which has a maximum zoom of 20 that corresponds to a width of ⇠70m in the north-

ern U.S. (but increases to ⇠100m near the equator). In some highly rural areas, Google

Maps either has much lower resolution or is not available. For these areas, higher resolution

satellite imagery, which is available for purchase, may be necessary. The total number of

images at a zoom-level of 20 (640x640 pixel) within a 1km2 radius is 276. We use the Google

Maps API to generate the equivalent images with areas with man-made objects black and

other areas a di↵erent color, and then use OpenCV to automatically remove any images

that have more than 5% of their area covered in black pixels. We currently do not apply the

additional filters from Section 5.3.2. Thus, our results are conservative, as applying these

techniques would only improve SunSpot’s accuracy.

5.5 Evaluation

We evaluate our results on publicly-available energy data from 14 solar-powered homes

at known locations with visible solar modules in the northern hemisphere. We have per-

2See https://github.com/mikereedell/sunrisesunsetlib-java and https://github.com/
rconradharris/pysunset/
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Figure 5.14: Sunspot accuracy when identifying e�cient solar deployments using per-second
resolution solar energy data.

second solar energy data for three of the homes and per-minute resolution data for the

remaining 11 homes. For each home, we have between 6 months and a year’s worth of data.

Since our initial prototype does not account for irregular module tilts or orientations (as

discussed in Section 5.3.1), we focus on homes with mostly south-facing orientations that

maximize solar generation. Our evaluation quantifies the localization accuracy for solar

deployments per-second and per-minute data resolution. We then evaluate the cost and

accuracy of crowd-sourced image processing on Mechanical Turk.

5.5.1 Localization Accuracy

Figure 5.14 shows distance error when localizing the region of interest for the three homes

with per-second resolution solar energy data. The latitude error is the north-south accuracy,

while the longitude error is the east-west accuracy. We then compute the combined distance

error as the hypotenuse of the right triangle formed by the latitude and longitude error.

The combined area represents the minimum radius required to include the home in the

search area. The figure shows that with per-second energy data the inaccuracy ranges from

10km to 20km. Interestingly, for Homes A and B the error in latitude dominates the total

error, while for Home C the error in longitude dominates the total error. We believe Home

C’s higher longitude error is largely due to its orientation, which deviates the most from

south-facing (and our current implementation does not take into account when determining

the longitude). The underlying reason for the di↵erence in latitude error is more di�cult

to determine, as averaging the spring/summer and fall/winter cancel out some, but not all,

of the e↵ects of a solar system’s irregularities. This may be due to di↵erent conditions in
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(a) Distance Error (b) Latitude Error (c) Longitude Error

Figure 5.15: Sunspot accuracy when identifying e�cient solar deployments using minute
resolution solar energy data. The red line depicts the baseline precision possible (27.9km)
with minute-level data.

each half of the year, such as the presence of nearby trees, which might provide shade in

the summer but not in the winter.

Similarly, Figure 5.15 shows results for 11 homes with per-minute resolution data. We

sort the homes based on their error in total distance from the ground truth location in

Figure 5.15(a), and again report both the latitude and longitude error in (b) and (c). The

red line at 27.9km indicates the baseline precision (at the equator) with minute-level data.3

Overall, the minimum error is 10km with six homes having an error near or below the

baseline precision. The average error is 62km (or near 2⇥ the baseline precision), the

largest error is 160km (or near 5⇥ the baseline precision). Again, the larger errors are due

to less e�cient deployments with orientations that deviate more from south-facing. Since

we define the region of interest based on a radius r from the home, the region of interest

on average is within 22 = 4⇥ the smallest possible region given the minute-level resolution

of the data. Interestingly, in this case, the average latitude error is less than the average

longitude error, despite the fact that our daylength estimates are much more inaccurate

that our solar noon estimates (due to the start and stop of generation not aligning with the

sunrise and sunset times).

Our results above demonstrate that 1Hz resolution significantly improves accuracy. To

illustrate this, Figure 5.16 shows this scatterplot for five months of data for Home A, along

with the inferred EoTs when using minute-level and second-level data over this period. As

the graph shows, the time di↵erence between the best fit with minute-level data and the

best-fit with second-level data is 22 seconds, which corresponds to an error of ⇠41km. In

3Note that the actual precision varies by the cosine of the latitude, and these homes are located across a
range of latitudes.
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Figure 5.16: The di↵erence in error in placing the EoT when using minute-level and second-
level data.

contrast, the error between the ground truth longitude and the longitude inferred by the

second-level data is only 1.75km (or 4⇥ the baseline precision for second-level data).

SunSpot’s longitude accuracy also depends on tuning the k parameter and the tolerance

parameter from Section 5.3.1. Figure 5.17 plots the accuracy of inferring longitude as a

function of the tolerance parameter for k=3 using Homes A, B, and C with 1Hz resolution

data. Recall that the tolerance parameter is the amount of time above and below the EoT

curve we are fitting, such that we count datapoints within this range as overlapping the

EoT curve. The graph shows that as we increase the threshold to near 50 seconds the

localization for all three homes becomes more accurate. Interestingly, the best tolerance

for second-level data is near one minute, which is similar to the one minute tolerance we

also used for the minute-level data. Since our dataset includes a wide range of homes from

di↵erent locations, these results suggest the magnitude of these parameters do not vary

significantly across deployments.

Finally, while our current implementation does not adjust for ine�cient orientations

that deviate significantly from south-facing, we have performed an initial evaluation of this

e↵ect. Home C is unique in that it has two separate solar arrays—one south-facing and one

east-facing—with two separate inverters and meters. While the data in Figure 5.14 is from

the south-facing solar array and has a longitude error of 18km, the longitude error for the

east-facing array is 50km. By quantifying the e↵ect of orientation on solar generation under

the same weather conditions, this initial result indicates the potential of the optimizations

that adjust for orientation. We plan to explore this as part of future work.
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Figure 5.17: Homes A, B, and C show similar trends when tuning SunSpot’s tolerance
threshold when computing longitude.

5.5.2 Image Processing

To preserve privacy, we did not conduct any real searches on Amazon’s Mechanical

Turk, but rather ran microbenchmarks to evaluate the accuracy and cost of identifying

anonymous solar-powered homes. Here, we took a random urban area with 2km radius (or

12.6km2). We chose this small area both to limit costs and to enable manual verification

of all the solar-powered homes in the area by observing each image. We divided this area

into 3481 satellite images from Google Earth, which has a maximum zoom of ⇠65-70m at

640x640 resolution. Since we chose an urban location, a much higher percentage (82%) of

these images contained man-made structures compared to the U.S. average, yielding a total

of 2847 images. We manually checked these images for solar-powered homes and found 28

total.

We then submitted the 2487 images as “categorization” tasks on Mechanical Turk. We

selected master-level workers for 5% extra cost to ensure high accuracy.4 Amazon allows

a maximum redundancy of two workers per task, so we issued a total of 2487 ⇥ 2 = 5694

images for categorization into two categories: i) yes, solar modules do exist or ii) no, solar

modules do not exist. Each task had a reward of $0.02 and Amazon charges an additional

$0.02 per task. Thus, the overall cost of the experiment was $170.82, or $13.60/km2. Of the

5594 images, 99% were categorized in <30 minutes with the average time per task equal to

42 seconds. The workers agreed on 26 images, and were thus correct in identifying all but

two deployments, yielding a 93% accuracy.

4Master-level workers have an accuracy >90%.
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Since we chose a relatively small area (to minimize experiment costs and perform manual

verification) in an urban setting, we were only able to filter out 18% of the search area.

However, generally the larger the search radius, the higher the percentage of land area that

can be filtered out. For example, in this experiment, if we had chosen a 10km radius near the

search radius for Home A, only 60% of the images contained man-made structures (38085

out of 62845 total images). For non-urban areas and larger areas, we expect to be able to

filter out an even higher percentage of the images. Thus, even for the relatively large search

areas, it is possible to filter out a high percentage of the actual land area when searching.

These costs may be reduced using computational image processing, rather than people,

recognizing solar modules. Given the uniformity in solar module appearance, automated

recognition is likely possible.

5.6 Related Work

There is significant prior work on estimating solar production for a specific location,

which solar installers routinely use to give users an estimate of their potential benefits

from solar. There is also significant prior work on analyzing building energy consumption

data to infer individual appliance energy usage [90], i.e., Non-Intrusive Load Monitoring

(NILM) and user behavioral patterns, such as occupancy [31, 53]. NILM researchers have

also looked at inferring the generation profile of solar power by treating it as another load

(with negative consumption) and disaggregating it [64]. Such solar disaggregation is now

included in commercial o↵erings from third party analytics startups, which actively use it

on data from a large number of utilities [28, 64]. As part of future work, we plan to extend

SunSpot to localize a home based on net meter data by first disaggregating the solar data.

Security researchers have recognized that the energy analytics above represent significant

privacy threats [61, 88, 66, 35]. However, this prior work focuses on using chemical or

thermal energy storage, e.g., batteries and water heaters, to mask the changes in energy

usage that analytic techniques use to infer behavior. The threat is that utilities can associate

behavior learned from energy data with account information, e.g., names and addresses. The

threat SunSpot exposes is di↵erent, as it reveals that data most people believe is anonymous

is actually not anonymous.
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SunSpot is also related to prior work on modeling a solar deployment’s generation based

its various characteristics, e.g., the weather, tilt/orientation, etc. These models are largely

used for predicting solar generation in the near-term future based on weather forecasts.

Large solar farms may develop detailed models that incorporate specific characteristics of

the deployment, e.g., type of panels, tilt/orientation, wiring, etc., and data from co-located

irradiance sensors [20]. SunSpot di↵ers from this work in that it does not predict solar

output, but instead estimates the location of a solar-powered home based on its output.

Prior work also applies machine learning techniques on empirical solar data to develop

“black box” models that do not require such deployment-specific details [46]. SunSpot is

similar to this work in that it also operates on anonymous solar energy data, although for

localization and not prediction. However, SunSpot could potentially improve its accuracy

by incorporating information about a solar deployment’s characteristics learned via such

models, such as tilt and orientation.

5.7 Conclusion

We design SunSpot to localize anonymous solar energy data and expose its threat to

privacy. SunSpot extracts the location information inherently embedded in solar data to

localize a solar deployment to a small region of interest. The system then uses crowd-sourced

image processing to identify a small set of potential solar deployments within the region.

We evaluate SunSpot on publicly-available energy data from 14 homes with rooftop solar,

and show that its accuracy ranges from 10km to 20km for 1Hz data. SunSpot is then able to

narrow this region to a set of candidate sites with visible solar panels using crowd-sourced

image processing of publicly-available satellite data on Amazon’s Mechanical Turk at a cost

of $13.60/km2. SunSpot’s motivates a reconsideration of what energy data is classified as

“anonymous,” as current regulations, such as the DOE’s Voluntary Code of Conduct for

handling energy data, only consider energy data without associated account information to

be anonymous. In contrast, our work shows that energy data itself can reveal location.
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CHAPTER 6

WEATHER-BASED LOCALIZATION

Solar-based localization in Chapter 5 has a fundamental limit due to Earth’s rotation.

To further localize towards a specific home, in this chapter, we identify another key insight:

every location on Earth also has a distinct weather signature that uniquely identifies it. We

then present Weatherman based on this key insight, which leverages a suite of “big data”

analytics techniques to expose the source of “anonymous” energy meter data.

6.1 Background and Motivation

Given the scale of the deployments as we discussed in Chapter 1 and Chapter 2, de-

veloping techniques that analyze big energy data to improve energy-e�ciency has become

an active research area in both industry and academia. Numerous startups, including

Bidgely [28], Onzo [69], PlottWatt [70], and Sense [8], are now focused on monetizing

insights drawn from big energy data. These insights have the potential to significantly

improve energy-e�ciency at massive scales, e.g., by providing real-time energy-e�ciency

recommendations to users, automatically identifying faults in individual buildings or the

electric grid, detecting energy usage outliers to select candidates for energy audits, or im-

proving consumption and generation forecasting to inform generator dispatch scheduling.

To gain these insights, utilities routinely contract with the third-party big energy data ana-

lytics companies above and directly provide them energy meter data, while end-users often

link their meters to public APIs that allow analytics companies to directly access customer

energy data. These companies often provide analytics services to customers “for free,” since

the energy data itself provides value to them, e.g., either as training data to improve their

techniques or in profiling users’ energy usage and behavior.

The big energy data made available to the third-party companies and academic re-

searchers above is often anonymous and not associated with a specific location. Anony-
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mous energy data includes only a series of tuples, which each specify a timestamp and

energy consumption (or generation). The primary reason for anonymizing energy data is

to prevent third-parties from linking sensitive private behavior derived from energy data

with a particular name and address [66]. Such behavioral information is potentially valu-

able. As one example, analyzing energy data can reveal irregular sleeping patterns, e.g.,

based on sporadic energy usage at night, which pharmaceutical companies could use to

inform direct marketing campaigns of insomnia drugs. A publicly-posted job description

from one big data analytics startup illustrates a real example of such profiling: it advertises

that prospective employees will “[u]se energy data to predict whether the user has a GE

or Maytag refrigerator. Very Cool! Imagine the value of that information for Whirlpool to

target this house for selling their appliance.” To guard against these privacy threats, the

Voluntary Code of Conduct (VCC) for managing customer energy data recently released

by the DOE recommends utilities remove the name and location of any energy data they

share with third-parties [86].

Unfortunately, while entirely stripping energy data of its location prevents the privacy

leaks above, it also removes perhaps the most important input for many well-intentioned

analytics. For example, knowing location can improve the accuracy of consumption and

generation forecasts by enabling analytics to correlate them with local weather forecasts.

Similarly, location information can enable comparisons of energy usage across buildings

within the same region to profile general energy consumption patterns or identify outliers.

Thus, recovering the location of energy data can be a useful tool that advances the develop-

ment and evaluation of such well-intentioned analytics. This is especially true for academic

researchers that have limited data access, and must rely on an assortment of public datasets,

which often lack metadata. In many cases, energy data is collected in an ad hoc fashion

and not handled rigorously, causing the metadata that specifies location to be lost.

In this chapter, we present Weatherman, a suite of big data analytics techniques that

extract location from anonymous energy consumption, wind, and solar data. Our key

insight is that energy data largely correlates with the local weather, e.g., temperature, wind

speed, and cloud cover, and that every location on Earth has a distinct weather signature

that uniquely identifies it. Weatherman leverages this insight to localize the source of
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anonymous energy data. To do so, Weatherman combines physical system models with

statistical techniques to extract a weather signature from energy data at each location

when searching a massive weather database that includes records from 35k locations.

Our goal is to explore the severity of this privacy threat by quantifying the localiza-

tion accuracy for energy consumption, wind, and solar data. Based on the DOE’s VCC,

users often do not consider the privacy implications of releasing anonymous energy data to

third-parties, assuming the data is anonymous if it is not associated with location informa-

tion, e.g., an address. Understanding the localization threat is important in i) educating

users about the sensitivity of energy data, ii) informing evolving policies on managing

energy data, and iii) developing techniques that preserve privacy, while also enabling well-

intentioned analytics. Existing techniques for preserving privacy in energy data do not

consider localization threats, and thus cannot prevent them [61, 88].

Broadly, Weatherman shows how public access to large “big data” archives of sensor data

can introduce serious privacy threats. Our hypothesis is that weather-based localization of

energy consumption, wind, and solar data is accurate to a small region. Since wind and solar

sites are identifiable via public satellite imagery within the region [56, 36], such localization

represents a serious privacy threat, as it is possible to associate data with a specific home.

In evaluating our hypothesis, we make the following contributions.

Weather-based Energy Modeling. We present physical models that characterize the

energy consumption of buildings and the energy generation of wind and solar sites based on

the weather. These physical models show how energy consumption, wind, and solar energy

data correlate with specific weather metrics—temperature, wind speed, and cloud cover—in

di↵erent ways, which dictates the fundamental localization accuracy in each case.

Weather-based Energy Localization. We combine the physical models above with

statistical techniques to extract a unique weather signature at each possible location from

energy data based on its type. Weather-based localization then involves searching a massive

weather database to find a location with weather that best matches the weather signature.

Given the scale of the database, a key challenge is making this search both e�cient and

accurate.
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Implementation and Evaluation. Finally, we evaluate Weatherman’s localization accu-

racy on 117 smart meters and show that it localizes coarse (hour-level) energy consumption,

wind, and solar data to within 16.68km, 9.84km, and 5.12km regions, respectively, on av-

erage. This represents significantly higher accuracy than the work on solar localization in

Chapter 5, which i) only localizes solar energy data based on its solar signature, and not

its weather signature, and ii) requires fine-grained second- or minute-level data and is not

accurate using coarse hourly or daily data.

6.2 Correlation Modeling

Weatherman is given anonymous energy meter data that includes only a time-series of

energy readings at a coarse resolution, e.g., every hour, with no other metadata. Weather-

man’s goal is to then analyze this anonymous energy data to infer the location—a latitude

and longitude—of the smart meter that collected it. Weatherman does this by searching a

database of historical weather data to find a location where the weather data best matches

a weather signature extracted from the energy data. While our techniques are general and

not specific to any data resolution, Weatherman’s accuracy is dependent on the spatial res-

olution, temporal resolution, and coverage of the weather database. Our database includes

the U.S., but could be expanded to include other areas.

Weather archives are available that cover hundreds of thousands of weather stations

going back as far as 100 years. For example, in the U.S., the NOAA maintains the Integrated

Surface Database (ISD) [7], which consists of hourly observations from over 35k weather

stations in a common data format. In addition, Weather Underground collects real-time

weather data from a network of 180k weather stations in the U.S. [18], or roughly 1 weather

station every 42km2. However, the density of weather stations is much higher in populated

areas, which encompass only 3.5% of total U.S. land area [9], or 1 weather station every

1.5km2. This is near the density that Weather Underground generates customized forecasts,

which are unique for every 4km2 grid.

Temporal resolution also a↵ects localization accuracy. While modern weather stations

typically update their observations in near real-time (every few seconds), most publicly-

available weather archives only store average data at a one-hour resolution. As a result,
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Weatherman currently operates on energy and weather data with a coarse one-hour resolu-

tion. As we show, even with such coarse data, Weatherman achieves higher accuracy than

prior work that localizes only solar data using solar signatures [36] and requires either one-

minute or one-second resolution data. We expect weather data to be archived and made

available at higher temporal and spatial resolutions in the future, as the cost of storage

decreases, which will increase Weatherman’s accuracy.

Weatherman identifies and localizes three di↵erent types of anonymous big energy data—

energy consumption, wind, and solar data—using a type-specific technique. For each type

of energy data, Weatherman leverages a di↵erent physical model based on how that energy

data relates to the location’s weather to extract a weather signature. Below, we describe

the simple physical models Weatherman uses to generate a weather signature for each type

of data.

6.2.1 Energy Consumption-Temperature Model

The dominant fraction of energy consumption in residential homes is due to space heat-

ing and cooling, which accounts for over 48% of energy usage [39]. The energy consumed

for heating and cooling generally correlates with the outdoor temperature. This relation-

ship is captured by the degree-day metric (in units of degree-time), which is the integral of

the degrees above or below a specified base temperature over time for cooling and heating,

respectively [6]. The base temperature represents the “balance” point at which no cooling

or heating is required, and is typically estimated as 18C (or 65F) for buildings. The energy

required to heat or cool a building is modeled as being directly proportional to the number

of heating or cooling degree-days, respectively. To illustrate this relationship, Figure 6.1

plots a home’s daily energy usage on the y-axis, and the daily degree-days on the x-axis,

over summer. We use a base temperature of 18C, so a degree-day less than 0 is a day where

the temperature was always less than 18C.

While the degree-days metric linearly correlates with energy consumption, the parame-

ters and base temperature(s) vary significantly across buildings. For example, the slope in

Figure 6.1 is related to the tightness of the building envelope, where a larger slope indicates

a greater increase in energy usage for every degree rise in temperature. Similarly, the base
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Figure 6.1: Daily average power and degree-days over the summer for a home with central
air conditioning.

temperature is also partially a function of user behavior, as it depends on the thermostat

setpoint. For example, if it is 30C outside but the thermostat is set to 32C cool, then even

though it is quite hot, there will not be an increase in energy usage. In addition, this be-

havior may change over time, as users may program a thermostat to set di↵erent setpoints

at di↵erent times, e.g., when they are home versus away.

Thus, the accuracy of localizing energy consumption based on outdoor temperature is,

in part, a function of a building’s insulation and user behavior, since less e�cient buildings

and users cause energy consumption to more closely track outdoor temperature. Local-

ization accuracy is also a function of the location’s temperature variance. For example, a

location where temperature varies frequently has more opportunities to distinguish itself

from locations where the temperature rarely changes. Since the speed of cold fronts, which

have a temperature di↵erence on the order of 10C-20C, ranges from 25 to 45 kilometers (km)

per hour, two locations 25-45km apart can experience a wide di↵erence in temperature at

the same time, which, as we show, can manifest itself as a di↵erence in energy consumption

at even a coarse hourly or daily resolution.

6.2.2 Wind Energy-Speed Model

The relationship between wind speed and wind energy generation is much simpler, since

100% of wind energy is a function of wind speed. Wind power generation is based on the

cubic function below, where A derives from the turbine’s rotor area, ⇢ is the air density,

and v is the wind speed.
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Figure 6.2: Hourly measurements of wind power and speed.

P =
1

2
A⇢v

3 (6.1)

Wind turbine designs also dictate cut-in, rated, and cut-out thresholds that represent the

wind speed at which power generation starts to increase, stops increasing, and terminates,

respectively. At low wind speeds under the cut-in speed, there is not enough power to

overcome the friction of the rotor. After the cut-in wind speed, power then increases

cubically up to the turbine’s rated wind speed, where its generator limits power to a constant

output. The turbine generates this constant power up to a cut-out wind speed that can

damage it, at which point the turbine engages brakes and power output drops to zero. While

these thresholds vary based on a wind turbine’s size and design, typical cut-in wind speeds

are 3-4 meters per second (m/s), rated speeds are 12-17 m/s, and cut-out speeds are ⇠25

m/s. Figure 6.2 is a scatterplot of hour-level wind generation and speed measurements with

annotations of the turbine’s cut-in speed, cubic function, rated speed, and cut-out speed.

6.2.3 Solar Energy-Cloud Cover Model

Solar energy embeds perhaps the most detailed location information, since the Sun’s

irradiance in clear skies at every location is a well-known function of time. Thus, prior

work shows how to localize the source of anonymous solar energy data using only its solar

signature, which it defines as the shape of the curve of solar output over time in clear

skies [36]. This approach requires second- and minute-level solar data to localize within

⇠20km and ⇠60km, respectively, which is near the highest accuracy possible given the speed

of the Earth’s rotation. However, prior work does not consider weather when localizing
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Figure 6.3: Solar energy is a linear function of solar irradiance.

solar data, even though there is a strong relationship between solar output and weather,

particularly temperature and cloud cover.

Figure 6.3 shows the solar output of a small rooftop solar site as a function of the

measured Global Horizontal Irradiance (GHI) in W/m2 using a pyranometer at the same

location. As expected, the relationship is almost perfectly linear, since solar modules trans-

late irradiance directly into power with an e�ciency loss. The small imprecision in the

relationship is due to minor temperature e↵ects, which cause e�ciency to decrease as the

temperature rises. Temperature coe�cients for crystalline solar modules range from 0.38-

0.50, such that for every degree above 25C the output decreases by 0.38-0.50% and for

every degree below 25C the output increases by 0.38-0.50%. However, the slope of the line

depends on the site’s e�ciency, which is a function of lower-level physical and electrical

characteristics, such as the module’s material and choice of inverter(s).

Unfortunately, unlike temperature and wind speed, most weather stations do not in-

clude pyranometers, and thus do not report ground-level irradiance. Thus, to localize solar

data, we cannot simply correlate ground-level irradiance measurements with solar output.

As a result, we use the coarse sky condition information reported by weather stations,

and is typically measured in oktas, which represents how many eighths of the sky are

covered in clouds and ranges from 0 oktas (completely clear sky) to 8 oktas (completely

overcast). The sky conditions reported by the NWS translate directly to oktas [19]. For

example, “Clear/Sunny” is <1 okta, “Mostly Clear/Mostly Sunny” is 1-3 oktas, “Partly

Cloudy/Partly Sunny” is 3-5 oktas, “Mostly Cloudy” is 5-7 oktas, and “Cloudy” is 8 ok-

tas. While more accurate sky condition estimates can be extracted from visible satellite
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Figure 6.4: Pipeline of operations Weatherman uses to infer the location from its energy
data.

images [42], this process is non-trivial and these measures are generally not reported by

weather stations.

6.3 Weatherman Design

Weatherman uses the physical relationships above to search a massive weather database

to determine the location with weather that best matches a weather signature extracted

from the energy data at each possible location. Figure 6.4 shows the pipeline of Weathman

operations. Since Weatherman assumes energy data is anonymous, it makes minimal as-

sumptions about the associated metadata. For example, Weatherman does not assume the

type of energy data is given, which requires it to first classify the data. This classification is

straightforward using simple rules: if the energy data is rarely zero, we classify it as energy

consumption, since nearly all buildings have a non-zero baseload; if the energy data is con-

sistently zero for a multi-hour period every 24 hours, we identify this period as nighttime

and classify it as solar; if we do not classify the energy data as consumption or solar, and

it exhibits a similar variance over time, we classify it as wind (under the assumption that

wind intensity is more similar across day and night than solar). Weatherman also does not

require the associated units of energy data, e.g., watt, kilowatt, megawatt, etc., as it uses

only the correlation of energy with weather at a location, which does not depend on the

magnitude. In addition, we also ignore a positive/negative sign, if any, associated with the

energy data, since there is no standard for how it maps to generation or consumption.

Finally, Weatherman supports di↵erent assumptions about the metadata information

encoded in the timestamp. In e↵ect, the specificity in the timestamp simply increases or

decreases the search space. By default, Weatherman assumes the timestamp includes the
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date and hour, but the local timezone is not known. In this case, Weatherman assumes the

timezone is local to each location for which it is extracting the weather signature. However,

in some cases, the timestamp may not include the date. In this case, Weatherman must

correlate weather signatures for every possible daily time o↵set against each location in the

weather database, which increases the search-space by 365⇥ over a year. Similarly, if the

timestamp does not include the hour, it increases the search space by 8760⇥ over a year.

6.3.1 Weather-based Localization Challenges

A näıve approach to weather-based localization is to directly correlate energy data with

weather measurements at each location in our weather database. There are many possible

functions that quantify how well two time-series correlate with each other, enabling a rank-

ing of locations based on how well energy data matches the weather data. For example, the

Pearson Correlation Coe�cient (PCC) is a measure of the linear correlation between two

variables, computed as the covariance between the variables divided by the product of their

standard deviation. It is shown in the equation below,

PCC =

Pn
t=1

(xt � x̄)(yt � ȳ)pPn
t=1

(xt � x̄)2
pPn

t=1
(yt � ȳ)2

(6.2)

where n is the number of samples, xt and yt are the single samples-weather data (tempera-

ture, wind speed, or sky cover) and energy data (energy consumption, wind generation, or

solar generation) indexed with time t, x̄ = 1

n

Pn
t=1

xt (the sample mean); and analogously

for ȳ.

A näıve approach selects the top-ranked location using such a correlation function.

Unfortunately, this approach has multiple problems.

Imprecise. The approach is imprecise, as energy data, itself, does not highly correlates

with weather. For example, as discussed in 6.2, energy consumption only correlates with

weather above (or below) a specified base temperature, while wind turbines define multiple

points where the correlation between wind speed and power output abruptly changes. In

addition, while changing weather instantly a↵ects wind and solar energy, there is often a

lag in the e↵ect on energy consumption as a building heats up or cools down, which simple

“instantaneous” correlation coe�cients, such as the PCC, do not capture. Thus, as we
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describe below, Weatherman extracts a custom signature for each location that accounts for

such data type-specific weather e↵ects.

Ine�cient. Searching all locations in a large weather database can be highly ine�cient,

since Weatherman must extract and compare a weather signature from energy data based

on each location’s weather metrics over a long period of time, e.g., multiple months to years.

While any individual extract and compare operation is not expensive, performing them over

tens of thousands of locations across many months in a massive weather database is not

e�cient, especially for correlations that must account for a variable lag. Thus, Weatherman

first extracts weather signatures on coarse day-level data, which it natively stores in its

database, to filter the possible locations, as each type of energy also correlates with weather

each day, albeit with less precision. To improve e�ciency, Weatherman only then does

finer-grained signature extraction and matching on this filtered set of locations.

Noisy. While the physical models in 6.2 apply to all energy consumption, wind, and solar

data, the specific parameters of each model vary widely and only represent a coarse approx-

imation of each system, since, in each case, a large number of hidden variables also a↵ect

energy consumption and generation. For example, the actual energy consumption may be

less than predicted by a linear model when occupants are away on vacation if they set their

thermostat to a high temperature. Similarly, if occupants return and proceed to execute

a series of energy-intensive laundry loads (to clean the clothes from their vacation), then

their energy consumption may exceed the linear model. This noise makes it challenging to

distinguish between locations that are close together, e.g., under 20km, especially with ac-

cess to only coarse hour-level data. As we discuss, Weatherman selects di↵erent correlation

functions at di↵erent granularities for di↵erent data types to mitigate the impact of noise.

6.3.2 Basic Weather Localization Approach

Based on the discussion above, Weatherman uses the same general approach to localize

each type of weather data. Weatherman first uses data type-specific methods, discussed

below, for extracting a custom weather signature from energy data at each location in

its weather database. To improve e�ciency, it first extracts and correlates this weather

signature at each location with coarse day-level weather using a data type-specific correla-
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tion function. Weather databases, including ours, typically store both day- and hour-level

data. Using day-level data both reduces the size of the input by 24⇥, and thus increases

e�ciency, and, in the case of energy consumption, also mitigates the impact of a variable

lag in the energy response to temperature changes (since this lag is only evident at hour-

level). Weatherman uses the day-level analysis to filter possible locations by generating a

Cumulative Distribution Function (CDF) and only considering locations in the “tail” of the

CDF, where the correlations are highest, e.g., within the top 1%. This day-level filtering is

especially important if timestamps lack metadata, since this increases the search space.

Weatherman then finds the weighted geographic midpoint of these top candidate loca-

tions (based on the magnitude of the correlation with each location) to estimate a final

location. Below, we present the weather signature extraction and correlation functions for

each energy type.

6.3.3 Energy Consumption Weather Signatures

Based on the degree-days model from 6.1, when correlating with each location, Weath-

erman removes energy consumption datapoints whenever the corresponding temperature is

below the typical 18C base temperature. Since energy consumption is linear with degree-

days above a base temperature, we simply compute the correlation using the PCC between

daily energy and temperature data. Note that the daily correlation is robust to changes in

user behavior, which are most prevalent within a day, e.g., from setting a programmable

thermostat schedule that di↵ers over the day, rather than across days. Figure 6.5(a) shows

the CDF of the PCC across all locations, with the ground truth location indicated as a red

dot. This graph is for the same home as in Figure 6.1. In this case, we filter the list of

locations from 30k to 300 (the top 1%). Here, the home’s actual location is ranked 94th,

and the weighted geographic midpoint of the top five homes is 38.84km from the actual

location.

Unfortunately, for higher resolution hourly energy data, there is typically a variable lag

between the increase in temperature and the corresponding increase in energy consumption,

as it takes time for a building to heat up and for its thermostat to detect this and activate

the air conditioner. This lag is variable, as it depends on the thermostat setting, which may
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Figure 6.5: CDF of correlation analysis across all locations for daily energy consumption,
wind energy, and solar energy data.

vary, and the tightness of the building’s envelope. As a result, the impact of a temperature

increase is often not observed in energy data for an hour or more. Thus, the PCC does

not work well with hour-level data, since it only considers the correlation between each two

points in time.

In this case, Weatherman applies Granger causality analysis [41], which captures the

extent to which changes in one variable predict (or lag) another over time using an F-test.

Note that, unlike the PCC, Granger causality analysis does not require that changes be

linearly correlated, only that they lag and have the same direction. Computing Granger

causality is more computationally-intensive than computing the PCC, since it searches over

multiple possible lag values. As a result, performing Granger causality at hour-level over

35k locations is time-consuming. For example, a full search, assuming the date and hour

are well-known, takes 8.5 hours using 80 high-end data center servers. If the date is not

included in the timestamp, the search would take ⇠8.5⇤120=1020 hours (42.5 days) on the

same set of servers, since we only conduct this search over the summer months. Thus, we

only perform Granger causality analysis over the filtered list of the top 300 (1%) sites using

the daily data analysis above, which takes ⇠5 minutes.

Figure 6.6(a) shows the CDF of the Granger causality of the hourly energy data (using

an F-test with a p-value<0.001). In this case, the final weighted geographic midpoint of

these 300 locations results in an estimated location 6.14km from the actual location (and

within the same town). Note that the home is 4.1km from the nearest weather station,

which has the fifth highest correlation in this case.

As Figure 6.2 shows, the relationship between wind power and speed is defined by a

piecewise function based on the cut-in, rated, and cut-out speeds. A simple approach for
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Figure 6.6: CDF of correlation analysis across all locations for hourly energy consumption,
wind energy, and solar energy data.

extracting a wind weather signature would be to focus on just one part of this function.

However, this would remove useful information. Instead, Weatherman projects this piece-

wise function onto the single line y = 0 (where y is the energy generation and x is the wind

speed), such that the wind power data as a function of wind speed after this projection

should be zero at the correct location. Since PCC and other correlation coe�cients are un-

defined when the variance of one variable is zero, we rank locations based on their average

absolute value after the projection, i.e., the average perpendicular distance from y = 0.

While cut-in, rated, and cut-out speeds vary slightly from turbine to turbine, they are

in the same general range. In general, the cut-in speed is ⇠3m/s, the rated speed is ⇠13-

14m/s, and the cut-out speed is greater than ⇠22m/s. To account for slight di↵erences in

these ranges between turbines, when extracting the weather signature at each location, we

remove datapoints around the boundary points. Specifically, we remove datapoints that

correspond to wind speeds in the ranges 3-4m/s, 13-14m/s, and 21-22m/s.

6.3.4 Wind Energy Weather Signatures

Weatherman does not alter the energy datapoints that correspond to wind speeds from

0-3m/s and >22m/s, since these should already map to zero. For datapoints in the range

4-13m/s, we first take the cube root of the energy data, perform a linear regression, and

then find the distance each datapoint is from this line. We then project these points by

replacing their original energy generation value on the y-axis with this distance value on

the y-axis. For datapoints in the range 14-21m/s, we find the horizontal line that minimizes

the root mean squared error with the datapoints, and then subtract the y-value of this

horizontal line from the y-value of each datapoint. After this projection, wind power data

that perfectly correlates with wind speed will lie near the line y=0. Figure 6.7 illustrates
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Figure 6.7: Projection of wind data from Figure 6.2 to y=0.

this projection for the same data as in Figure 6.2. As expected, the projected data is near

the line y=0, e.g., within 0.1.

We perform the same projection when filtering based on daily and hourly data, as

described above. After performing this projection, Weatherman proceeds based on the

basic approach above, where the weather metric is wind speed and the correlation function

is the average of the absolute value of the projected data. Figure 6.5(b) and Figure 6.6(b)

show the CDF of this average across all locations for the daily and hourly data for the

data in Figure 6.2, with the ground truth location indicated by the red dot. In this case,

we filter from 30k to 300 (1% of locations) using the daily energy data. Here, the nearest

weather station to the actual location ranks fifth and the geographic midpoint of the selected

locations is 24.37km from the target site. We then perform the same analysis on the 300

sites using the hourly data. In this case, the nearest weather station ranks third, and the

geographic mid-point of the 300 locations is 3.87km away from the location. Interestingly,

the nearest weather station is 10.31km away, so in this case, the localization is more accurate

than any single weather station.

6.3.5 Solar Energy Weather Signatures

Solar power has a near linear correlation with solar irradiance, which is largely deter-

mined by cloud cover that is measured by weather stations in oktas, as discussed in 6.1.

Unfortunately, raw solar generation does not directly correlate with oktas, as solar output

varies over both the time-of-day and the day-of-year. Since these variations are a function

of location, Weatherman does not know them precisely. However, we can roughly estimate
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Figure 6.8: Weather-based localization of solar energy.

the maximum generation potential Ps of solar by observing that the average clear sky irradi-

ance, which is a well-known function of time at each location based on a site’s e�ciency, tilt,

orientation, etc. should be an upper-bound on solar output, as described by the equation

in section 3.2.2.2.

We search for the parameters above as described in prior work in Chapter 3, 4 and

5. Specifically, we first use prior work on localization using solar signatures to estimate a

location by associating the first, last, and maximum hour of generation with the time of

sunrise, sunset, and solar noon in Chapter 5. Note that we use this search only to provide

a rough estimate of the hourly maximum generation; the latitude and longitude we find

are not accurate for localization. Accurate localization based on the solar signature using

hourly data is not possible, as it has a maximum accuracy of at most 1656km based on the

speed of the Earth’s rotation. Given this rough location, we then conduct a binary search

for the e�ciency, tilt, and orientation parameters that represents the tightest upper-bound

on the data, as described in prior work in Chapter 1, since solar generation is bounded by

the maximum clear sky irradiance at any time. Weatherman’s search only di↵ers in that it

does not adjust the solar e�ciency of the maximum generation model for temperature at

this stage.

The model above does not account for temperature, which increases solar e�ciency by

some percentage c for every degree Celsius decrease in temperature. Thus, when extracting

the weather signature for each location, we use the same model from prior work to ad-
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just for these temperature e↵ects 3.2.2.3. This approach conducts a binary search for the

temperature coe�cient c that results in the tightest upper bound on the data.

Note that, since temperatures are di↵erent at each location, our search must repeat

this process at each location. This search provides a temperature-adjusted estimate of

the maximum solar generation for each hour and day at each location. Weatherman then

normalizes the daily and hourly data in its weather signature at each time period by dividing

each data point by this maximum estimated solar generation. This normalized solar output

(relative to the maximum possible output in clear skies) should linearly correlate with the

sky condition in oktas reported by weather stations. As a result, Weatherman directly

uses the PCC to quantify this correlation. While Weatherman could use the latitude and

longitude estimated from the solar signature to limit its search space, it does not because

the estimates are highly inaccurate, e.g., order of thousands of kilometers.

Figure 6.5(c) and Figure 6.6(c) show the CDF of the PCC across all locations for the

daily and hourly solar data. We again filter from 30k locations to 300 locations (the top 1%)

using the daily data, and then perform analytics using the hourly data. The nearest weather

station ranks fourth in the daily data with the geographic midpoint of the 300 locations

13.53km from the actual location. The nearest weather station ranks second using the

hourly data with the geographic midpoint an estimated location 2.05km from the actual

location. Again, the nearest weather station is 12.73km away from the actual location,

so Weatherman’s estimate is closer than any single point. Figure 6.8 shows the top 2%

locations that contribute the most to the midpoint.

6.4 Implementation

We implement Weatherman in Python, and plan to make it and our data publicly-

available. We use the scikit package, which includes the required correlation functions, e.g.,

PCC and Granger causality analysis. We implement a standard approach for finding the

weighted geographic midpoint.1 Finally, we use the Pysolar Python package for estimating

the clear sky irradiance [3]. Note that we set the thresholds for filtering the daily and

1Using the approach at http://www.geomidpoint.com/calculation.html.
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Dataset Name Granularity Duration Sites Dimension

Weather Hour 6/1/2016⇠10/1/2016 3,0000 6

Energy
Consumption Hour 6/1/2016⇠10/1/2016 100 2

Wind Energy Hour 6/1/2016⇠10/1/2016 7 2

Solar Energy Hour 6/1/2016⇠10/1/2016 10 2

Table 6.1: Datasets used in evaluations.

hourly data based on an empirical analysis. We experimented with di↵erent thresholds in

this range, and it did not significantly change the results. For the daily data, we select the

top 1% of locations with the highest correlation, and for the hourly data we compute the

weighted geographic midpoint of the filtered locations.

We build our weather database (with ⇠ 1 million hourly data) by fetching data from

DarkSky’s weather data API. 2 Weatherman only uses the temperature, wind, and sky

condition data. Our database currently stores hourly and daily weather data from 35k

weather stations in the U.S. In general, weather station archives natively include both

average hourly and daily measurements. While some of these weather stations include data

archives going back multiple decades, our database only includes hourly and daily data over

a four-month period in the summer, including June, July, August and September. We focus

on data in the summer, since we are localizing electricity consumption, and all cooling is

electric.

6.5 Evaluation

Section 6.3 illustrates Weatherman on an example building, wind site, and solar site. In

this section, we evaluate Weatherman’s accuracy across many sites, and highlight how its

accuracy varies across sites with di↵erent characteristics.

6.5.1 Datasets

As shown in Table 6.1, our evaluation uses energy consumption data from a sample of

100 homes in the Pecan St. dataset [13], as well as 10 solar sites and 7 wind sites. We

compute the accuracy as the di↵erence between the localization estimate and the Pecan

St. neighborhood. We know the configuration profiles of AC setup for each PecanStreet

2http://darksky.net
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Figure 6.9: Weatherman localization accuracy for 100 di↵erent homes in Texas (on a log-
scale). Homes are sorted by their degree-day slope, which appears atop each bar. The bar
color indicates whether the home has zero, one, or two air conditioners.

house, and the ground truth location for all wind and solar sites. Our weather database has

weather condition as: [local time, latitude, longitude, Temperature, Wind Speed, Cloud

Cover]. The energy consumption, wind, and solar data have the same format as: [local

time, energy in kw].

6.5.2 Energy Consumption

Figure 6.9 shows Weatherman’s localization accuracy for 100 homes from the Pecan St.

dataset. We sort homes by the slope of their average energy usage versus degree-day line,

as depicted in Figure 6.1, which appears as a number above each bar. We also color each

bar based on whether the home has zero, one, or two air conditioner circuits sub-metered,

as the Pecan St. dataset includes not only each home’s aggregate energy usage, but also

the energy usage of selected circuits. Multiple air conditioners indicate multiple units for

multi-zone cooling systems. We also experiment with two di↵erent timestamp assumptions:

one where we know each point’s date and hour (but not the timezone), and one where we

only know the hour (but not the date or timezone). We indicate the decrease in accuracy

from removing the date by placing an additional green bar atop each bar. Note that the

y-axis has a log scale.

The graph shows that homes without air conditioners have a relatively flat degree-

day slope, which indicates that their energy consumption does not change with outdoor

temperature. The first four bars of the graph have a localization accuracy of >200km and

exhibit a negative degree-day slope, such that their energy consumption decreases as the

temperature increases in the Texas summer. Four other homes with no air conditioners

have a non-negative slope in the range 0.0-0.1 and thus have a slightly better localization

accuracy of ⇠80km. There are two other homes without air conditioners that exhibit much
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Figure 6.10: Localization accuracy for 7 wind sites, sorted by variance in wind speed, which
appears atop each bar.

higher degree-day slopes 0.9-1.0, and thus yield better accuracy of ⇠20km. These homes

likely operate other temperature-dependent loads.

As expected, homes with a single air conditioner exhibit degree-day slopes ranging from

0.3-4.6, and exhibit much higher localization accuracy, ranging from 5-40km with an average

accuracy of 16.98km. Homes with two air conditioners tend to have an even larger degree-

day slope and thus a higher average localization accuracy of 11.89km on average. Here,

accuracy is a roughly linear function of degree-day slope, indicating that more e�cient

homes are more di�cult to localize. We also observe that removing the timestamp’s date

does not significantly alter the localization accuracy: for homes with degree-day slopes

>1.2 (near Building ID 37) it does not change, and for homes with degree slopes <1.2 it

only slightly decreases. This shows that weather signatures are distinct, not only across

locations, but also across time.

6.5.3 Wind Energy

Figure 6.10 shows the localization accuracy for 7 wind sites in Washington (#1), Idaho

(#2), California (#3), Colorado (#4,6), Wisconsin (#5), and Texas (#7). In this case,

we sort the sites by the variance in the wind speed at their location over a year. We use

variance as a proxy for the uniqueness of a location’s weather signature, since the more the

wind speed varies, the more opportunity Weatherman has to distinguish one location from

another. As expected, the localization accuracy increases as the variance in wind speed

at a location increases. In this case, the highest variance yields the highest localization
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Figure 6.11: Localization accuracy for 10 solar sites, sorted by variance in sky condition,
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accuracy of ⇠3km, while the lowest variance yields the lowest accuracy ⇠21km. Thus, wind

localization is slightly more accurate than energy usage localization (for homes with air

conditioners). For wind energy, removing the date from the timestamp also has little e↵ect

on the accuracy (indicated by the green bars as before).

6.5.4 Solar Energy

Figure 6.11 shows Weatherman’s localization accuracy for 10 solar sites, as well as the

accuracy for prior work on SunSpot, which localizes using a site’s solar signature. The

solar sites are in North Carolina (#1), Washington (#2), Colorado (#3-5), Texas (#6),

Wisconsin (#7), Massachusetts (#8,10), and Ohio (#9). In this case, for SunSpot, we

localize using minute-level data, while for Weatherman we localize using hour-level data.

Similar to above, we sort the sites by the variance in their location’s sky condition data,

which is listed atop each bar. Using the same intuition as for wind, the more variable the sky

condition, the more opportunity Weatherman has to distinguish one location from another.

As above, we see that Weatherman’s accuracy improves as the variance increases, with the

most variable site having an accuracy of ⇠2km. In addition, we see that solar localization

accuracy based on weather is typically higher than either energy consumption or wind with

all the sites having an accuracy between 2-7km. In general, the relationship between solar

power and cloud cover (and temperature) is more direct than the similar relationships with

energy consumption and wind, since solar is a purely electric device, while the other two

involve more complex mechanical relationships.
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We also see that weather-based solar localization is significantly more accurate using

hour-level data than SunSpot using minute-level data. In particular, the worst site for

Weatherman has an accuracy of 6.86km, while the best site for SunSpot has an accuracy of

⇠12km. In addition, SunSpot has more variable accuracy, indicating that its solar signature

is less robust than Weatherman’s weather signature. Finally, we again see that removing

the date from the timestamp has a minimal e↵ect on localization accuracy.

6.6 Related Works

The work most similar to Weatherman is recent time-series big data analytics work

on SunSpot [36], which localizes pure solar data using a solar signature, specifically by

inferring the time of sunrise, sunset, and solar noon. This technique was able to localize

solar sites to within ⇠20km using second-level solar data and ⇠60km using minute-level

data. Weatherman shows that weather-based localization is significantly more accurate

usingmuch lower resolution data and requiringmuch less data. In particular, Weatherman’s

average solar localization accuracy using hour-level data is 5.12km, which is more accurate

than SunSpot’s accuracy using data that is 60-3600⇥ lower resolution. In addition, SunSpot

requires more than six months of data, since it needs data in both the spring/summer

and fall/winter to pinpoint an accurate latitude, while our evaluation here only used data

from four months in the summer. Finally, Weatherman is more general and also capable of

localizing energy consumption and wind energy data to similar (or better) levels of accuracy.

There have been numerous papers focused on preventing big energy data analytics to

protect user privacy. These techniques generally focus on obscuring the patterns of high

resolution energy data, e.g., second-level or minute-level, using a controllable power source,

such as a battery [61, 88], a water heater [35], or a solar inverter [72]. These techniques

are likely not e↵ective in preventing weather-based localization, since it requires only coarse

day- and hour-level data. In general, the battery, water heater, or solar capacity required

to significantly alter day- and hour-level energy usage over a long period is prohibitively

expensive. While users could also prevent weather-based solar localization by decreasing

their solar output at their inverter, this would decrease solar generation and thus defeat the

benefit of solar modules. In addition, we also show that even modifying energy data to elim-
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inating timestamp metadata, e.g., by not including the date or hour, does not significantly

a↵ect Weatherman’s accuracy. Thus, preventing weather-based localization represents a

challenging problem, which we plan to explore as part of future work.

6.7 Conclusion

We present Weatherman, which leverages a suite of big data analytics techniques to

localize anonymous energy usage, wind, and solar data. Weatherman shows how access

to large archives of publicly-available, and seemingly innocuous, sensor data can introduce

serious privacy threats. Our work shows that weather-based localization is highly accurate

for multiple types of energy data. In particular, we show that Weatherman localizes coarse

(one-hour resolution) energy consumption, wind, and solar data to within a radius distance

of 16.68km, 9.84km, and 5.12km. These results are significantly more accurate using much

lower resolution and much less energy data than using solar signature in Chapter 5 on

energy-based localization, which only localized solar data to within ⇠20km using second-

level energy data.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Solar generation capacity is rapidly expanding as solar module prices continue to drop.

Accommodating this solar growth, while also balancing electricity’s real-time supply and de-

mand, is placing increasing pressure on utilities to monitor, forecast, and respond to changes

in solar generation. Thus, there is an increasing interest in accurately solar analytics.

Prior solar analytics are either using “white box” approaches or “black-box” approaches.

Unfortunately, none of them is practical for utilities to manage the grid. “White-box” ap-

proach requires utilities to manually gather and record detailed deployment information

from millions of solar-powered homes. While, “black-box” approach does not incorpo-

rate fundamental well-known physical models of solar generation and requires a significant

amount of historical pure solar generation data to train an accurate model. And this pure

solar data is generally not available for either new deployments coming online or deploy-

ments that do not continuously monitor and store the data to train an accurate model.

To address these problems, we present a hybrid “black-box” approach that can achieve

the best of both to solar data analytics. We show that the hybrid “black-box” approach

can enable a wide range of accurate solar analytics, including modeling, disaggregation, and

localization, with limited training data and without knowledge of key system parameters

by integrating “black-box” machine learning approaches with “white-box” physical models.

We first investigate on most recent solar performance modeling techniques, including

ML-based modeling and physical modeling, and then present a configurable hybrid ML

“black-box” approach that combines the benefits of both. Rather than manually deter-

mining the values for the physical models, our approach automatically calibrates them by

finding values that best fit the data. And the calibration requires much less data as few as

2 datapoints.
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Unfortunately, the physical models we used in the above hybrid approach are highly

inaccurate and perform significantly worse than pure ML models. This inaccuracy can

drive from either the physical models being inaccurate, for from the e↵ect of unmodeled

physical parameters, such as other weather metrics, shading from nearby trees or buildings.

To address this problem, we conduct a large-scale data analytics to determine the primary

source of the inaccuracy. We isolate 10 di↵erent weather metrics on solar output using

343 million hourly weather and solar data, and then find that the only weather metrics

a↵ecting solar output are temperature and cloud cover. We then derive a new physical

model to quantify cloud over’s e↵ect on solar generation. Finally, we enhance our physical

model with an ML model that leads each site unique shading e↵ects. And we show that this

enhanced physical model has significantly better accuracy than state-of-the-art ML models

and a model based on GHI estimate s from satellite imagery.

To address the Behind-the-Meter (BTM) problem and get pure solar generation for

the training of ML approaches, we present SunDance, a “black box” system for accurately

disaggregate solar generation from net meter data without access to a building’s pure solar

generation data for training. We also identify a new relationship between weather metrics

and solar generation–Universal Weather and Solar Generation E↵ect. This e↵ect has never

been discussed before, and is highly useful for other energy data analytics.

Energy data is usually considered “anonymous” if it is not associated with identifying

account information, e.g., a name and address. We argue that solar energy data is not

anonymous, since every location on Earth has a unique solar signature (including sunrise,

solar noon, and sunset times), and it embeds detailed location information. To localize

the solar-powered home, we then design “SunSpot” that can localize a solar-powered home

within ⇠500 meters and ⇠28 kilometers radius for per-second and per-minute resolution

solar generation data.

To further localize towards a specific home, we find another key insight: besides the

solar signature, every location on Earth also has a distinct weather signature that uniquely

identifies it, since energy consumption, wind generation, and solar generation largely cor-

relates with weather metrics, e.g., temperature, wind speed, and cloud cover. We then

design Weatherman to localize the source of energy data. Interestingly, we find that lo-
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calizing coarse (one-hour resolution) energy data using weather signature is more accurate

than localizing solar data (one minute or one second resolution) using its solar signature.

Therefore, Weatherman exposes a severe new privacy threat from energy data, which has

not been discussed before.

7.2 Future Work

Smart meter is the most widely deployed sensor in the world. Comparing with other

energy data, net metered energy data, which combines energy consumption and renewable

data, is much more common. These energy data embeds detailed information about a build-

ing’s energy-e�ciency, as well as the behavior of its occupants, which academia and industry

are actively working to extract. However, for the public available net meter datasets, their

addresses or locations are typically not associated. We can combine and extend SunDance

and Weatherman is: 1) disaggregate the solar generation from anonymized net metered

data; 2) localize the pure solar generation data using weather signature to a small region of

interest; 3) further localize to a specific solar-powered home using machine learning-based

satellite image processing technique. We could apply these techniques to automatically

determine a site’s location.
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