152 research outputs found

    More on Decomposing Coverings by Octants

    Get PDF
    In this note we improve our upper bound given earlier by showing that every 9-fold covering of a point set in the space by finitely many translates of an octant decomposes into two coverings, and our lower bound by a construction for a 4-fold covering that does not decompose into two coverings. The same bounds also hold for coverings of points in R2\R^2 by finitely many homothets or translates of a triangle. We also prove that certain dynamic interval coloring problems are equivalent to the above question

    Colorful Strips

    Full text link
    Given a planar point set and an integer kk, we wish to color the points with kk colors so that any axis-aligned strip containing enough points contains all colors. The goal is to bound the necessary size of such a strip, as a function of kk. We show that if the strip size is at least 2k−12k{-}1, such a coloring can always be found. We prove that the size of the strip is also bounded in any fixed number of dimensions. In contrast to the planar case, we show that deciding whether a 3D point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. We also consider the problem of coloring a given set of axis-aligned strips, so that any sufficiently covered point in the plane is covered by kk colors. We show that in dd dimensions the required coverage is at most d(k−1)+1d(k{-}1)+1. Lower bounds are given for the two problems. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. Finally, we study a variant where strips are replaced by wedges

    Indecomposable Coverings with Concave Polygons

    Get PDF
    We show that for any concave polygon that has no parallel sides and for any k, there is a k-fold covering of some point set by the translates of this polygon that cannot be decomposed into two coverings. Moreover, we give a complete classification of open polygons with this property. We also construct for any polytope (having dimension at least three) and for any k, a k-fold covering of the space by its translates that cannot be decomposed into two covering

    Polychromatic Coloring for Half-Planes

    Full text link
    We prove that for every integer kk, every finite set of points in the plane can be kk-colored so that every half-plane that contains at least 2k−12k-1 points, also contains at least one point from every color class. We also show that the bound 2k−12k-1 is best possible. This improves the best previously known lower and upper bounds of 43k\frac{4}{3}k and 4k−14k-1 respectively. We also show that every finite set of half-planes can be kk colored so that if a point pp belongs to a subset HpH_p of at least 3k−23k-2 of the half-planes then HpH_p contains a half-plane from every color class. This improves the best previously known upper bound of 8k−38k-3. Another corollary of our first result is a new proof of the existence of small size \eps-nets for points in the plane with respect to half-planes.Comment: 11 pages, 5 figure

    Octants are cover-decomposable into many coverings

    Get PDF
    We prove that octants are cover-decomposable into multiple coverings, i.e., for any k there is an m(k)m(k) such that any m(k)m(k)-fold covering of any subset of the space with a finite number of translates of a given octant can be decomposed into k coverings. As a corollary, we obtain that any m(k)m(k)-fold covering of any subset of the plane with a finite number of homothetic copies of a given triangle can be decomposed into k coverings. Previously only some weaker bounds were known for related problems [20]

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets

    Set It and Forget It: Approximating the Set Once Strip Cover Problem

    Full text link
    We consider the Set Once Strip Cover problem, in which n wireless sensors are deployed over a one-dimensional region. Each sensor has a fixed battery that drains in inverse proportion to a radius that can be set just once, but activated at any time. The problem is to find an assignment of radii and activation times that maximizes the length of time during which the entire region is covered. We show that this problem is NP-hard. Second, we show that RoundRobin, the algorithm in which the sensors simply take turns covering the entire region, has a tight approximation guarantee of 3/2 in both Set Once Strip Cover and the more general Strip Cover problem, in which each radius may be set finitely-many times. Moreover, we show that the more general class of duty cycle algorithms, in which groups of sensors take turns covering the entire region, can do no better. Finally, we give an optimal O(n^2 log n)-time algorithm for the related Set Radius Strip Cover problem, in which all sensors must be activated immediately.Comment: briefly announced at SPAA 201

    Survey on Decomposition of Multiple Coverings

    Get PDF
    The study of multiple coverings was initiated by Davenport and L. Fejes Tóth more than 50 years ago. In 1980 and 1986, the rst named author published the rst papers about decompos-ability of multiple coverings. It was discovered much later that, besides its theoretical interest, this area has practical applications to sensor networks. Now there is a lot of activity in this eld with several breakthrough results, although, many basic questions are still unsolved. In this survey, we outline the most important results, methods, and questions. 1 Cover-decomposability and the sensor cover problem Let P = { Pi | i ∈ I} be a collection of sets in Rd. We say that P is an m-fold covering if every point of Rd is contained in at least m members of P. The largest such m is called the thickness of the covering. A 1-fold covering is simply called a covering. To formulate the central question of this survey succinctly, we need a denition. Denition 1.1. A planar set P is said to be cover-decomposable if there exists a (minimal) constant m = m(P) such that every m-fold covering of the plane with translates of P can be decomposed into two coverings. Note that the above term is slightly misleading: we decompose (partition) not the set P, but a collection P of its translates. Such a partition is sometimes regarded a coloring of the members of P
    • …
    corecore