217 research outputs found

    Decoding Brain Activation from Ipsilateral Cortex using ECoG Signals in Humans

    Get PDF
    Today, learning from the brain is the most challenging issue in many areas. Neural scientists, computer scientists, and engineers are collaborating in this broad research area. With better techniques, we can extract the brain signals by either non-invasive approach such as EEG: electroencephalography), fMRI, or invasive method such as ECoG: electrocorticography), FP: field potential) and signals from single unit. The challenge is, given the brain signals, how can we possibly decipher them? Brain Computer Interfaces, or BCIs, aim at utilizing the brain signals to control prothetic arms or operate devices. Previously almost all the research on BCIs focuses on decoding signals from the contralateral hemisphere to implement BCI systems. However, the loss of functionality in the contralateral cortex often occurs due to strokes, resulting in total failure to motor function of fingers, hands, and limbs contralateral to the damaged hemisphere. Recent studies indicate that the signals from ipsilateral cortex is relevant to the planning phase of motor movements. Therefore, it is critical to find out if human motor movements can be decoded using signals from the ipsilateral cortex. In the thesis, we propose using ECoG signals from the ipsilateral cortex to decode finger movements. To our knowledge, this is the first work that successfully detects finger movements using signals from the ipsilateral cortex. We also investigate the experiment design and decoding directional movements. Our results show high decoding performance. We also show the anatomical feature analysis for ipsilateral cortex in performing motor-associated tasks, and the features are consistent with previous findings. The result reveals promising implications for a stroke relevant BCI

    Human Ipsilateral Motor Physiology and Neuroprosthetic Applications in Chronic Stroke

    Get PDF
    Improving the recovery of lost motor function in hemiplegic chronic stroke survivors is a critical need to improve the lives of these patients. Over the last several decades, neuroprosthetic systems have emerged as novel tools with the potential to restore function in a variety of patient populations. While traditional neuroprosthetics have focused on using neural activity contralateral to a moving limb for device control, an alternative control signal may be necessary to develop brain-computer interface (BCI) systems in stroke survivors that suffer damage to the cortical hemisphere contralateral to the affected limb. While movement-related neural activity also occurs in the hemisphere ipsilateral to a moving limb, it is uncertain if these signals can be used within BCI systems. This dissertation examines the motor activity ipsilateral to a moving limb and the potential use of these signals for neuroprosthetic applications in chronic stroke survivors. Patients performed three-dimensional (3D) reaching movements with the arm ipsilateral to an electrocorticography (ECoG) array in order to assess the extent of kinematic information that can be decoded from the cortex ipsilateral to a moving limb. Additionally, patients performed the same task with the arm contralateral to the same ECoG arrays, allowing us to compare the neural representations of contralateral and ipsilateral limb movements. While spectral power changes related to ipsilateral arm movements begin later and are lower in amplitude than power changes related to contralateral arm movements, 3D kinematics from both contralateral and ipsilateral arm trajectories can be decoded with similar accuracies. The ability to decode movement kinematics from the ipsilateral cortical hemisphere demonstrates the potential to use these signals within BCI applications for controlling multiple degrees of freedom. Next we examined the relationship between electrode invasiveness and signal quality. The ability to decode movement kinematics from neural activity was significantly decreased in simulated electroencephalography (EEG) signals relative to ECoG signals, indicating that invasive signals would be necessary to implement BCI systems with multiple degrees of freedom. For ECoG signals, the human dura also causes a significant decrease in signal quality when electrodes with small spatial sizes are used. This tradeoff between signal quality and electrode invasiveness should therefore be taken into account when designing ECoG BCI systems. Finally, chronic stroke survivors used activity associated with affected hand motor intentions, recorded from their unaffected hemisphere using EEG, to control simple BCI systems. This demonstrates that motor signals from the ipsilateral hemisphere are viable for BCI applications, not only in motor-intact patients, but also in chronic stroke survivors. Taken together, these experiments provide initial demonstrations that it is possible to develop BCI systems using the unaffected hemisphere in stroke survivors with multiple degrees of freedom. Further development of these BCI systems may eventually lead to improving function for a significant population of patients

    Comparison of tri-polar concentric ring electrodes to disc electrodes for decoding real and imaginary finger movements, A

    Get PDF
    2019 Spring.Includes bibliographical references.The electroencephalogram (EEG) is broadly used for diagnosis of brain diseases and research of brain activities. Although the EEG provides a good temporal resolution, it suffers from poor spatial resolution due to the blurring effects of volume conduction and signal-to-noise ratio. Many efforts have been devoted to the development of novel methods that can increase the EEG spatial resolution. The surface Laplacian, which is the second derivative of the surface potential, has been applied to EEG to improve the spatial resolution. Tri-polar concentric ring electrodes (TCREs) have been shown to estimate the surface Laplacian automatically with better spatial resolution than conventional disc electrodes. The aim of this research is to study how well the TCREs can be used to acquire EEG signals to decode real and imaginary finger movements. These EEG signals will be then translated into finger movements commands. We also compare the feasibility of discriminating finger movements from one hand using EEG recorded from TCREs and conventional disc electrodes. Furthermore, we evaluated two movement-related features, temporal EEG data and spectral features, in discriminating individual finger from one hand using non-invasive EEG. To do so, movement-related potentials (MRPs) are measured and analyzed from four TCREs and conventional disc electrodes while 13 subjects performed either motor execution or motor imagery of individual finger movements. The tri-polar-EEG (tEEG) and conventional EEG (cEEG) were recorded from electrodes placed according to the 10-20 International Electrode Positioning System over the motor cortex. Our results show that the TCREs achieved higher spatial resolution than conventional disc electrodes. Moreover, the results show that signals from TCREs generated higher decoding accuracy compared to signals from conventional disc electrodes. The average decoding accuracy of five-class classification for all subjects was of 70.04 ± 7.68% when we used temporal EEG data as feature and classified it using Artificial Neural Networks (ANNs) classifier. In addition, the results show that the TCRE EEG (tEEG) provides approximately a four times enhancement in the signal-to-noise ratio (SNR) compared to disc electrode signals. We also evaluated the interdependency level between neighboring electrodes from tri-polar, disc, and disc with Hjorth's Laplacian method in time and frequency domains by calculating the mutual information (MI) and coherence. The MRP signals recorded with the TCRE system have significantly less mutual information (MI) between electrodes than the conventional disc electrode system and disc electrodes with Hjorth's Laplacian method. Also, the results show that the mean coherence between neighboring tri-polar electrodes was found to be significantly smaller than disc electrode and disc electrode with Hjorth's method, especially at higher frequencies. This lower coherence in the high frequency band between neighboring tri polar electrodes suggests that the TCREs may record a more localized neuronal activity. The successful decoding of finger movements can provide extra degrees of freedom to drive brain computer interface (BCI) applications, especially for neurorehabilitation

    Cortical Mirror-System Activation During Real-Life Game Playing: An Intracranial Electroencephalography (EEG) Study

    Full text link
    Analogous to the mirror neuron system repeatedly described in monkeys as a possible substrate for imitation learning and/or action understanding, a neuronal execution/observation matching system (OEMS) is assumed in humans, but little is known to what extent this system is activated in non-experimental, real-life conditions. In the present case study, we investigated brain activity of this system during natural, non-experimental motor behavior as it occurred during playing of the board game "Malefiz". We compared spectral modulations of the high-gamma band related to ipsilateral reaching movement execution and observation of the same kind of movement using electrocorticography (ECoG) in one participant. Spatially coincident activity during both conditions execution and observation was recorded at electrode contacts over the premotor/primary motor cortex. The topography and amplitude of the high-gamma modulations related to both, movement observation and execution were clearly spatially correlated over several fronto-parietal brain areas. Thus, our findings indicate that a network of cortical areas contributes to the human OEMS, beyond primary/premotor cortex including Brocas area and the temporo-parieto-occipital junction area, in real-life conditions.Comment: 4 pages, 2 figure, CCN 2018 conference pape

    A writing aid for dysgraphia affected people

    Get PDF
    Dysgraphia is a writing disability due to ineffective working of motor neurons, causing the patient to face difficulty in writing. Many studies have been done to overcome Dysgraphia but unfortunately, only therapies are made instead of any aid. In this paper, a movement aid is proposed that removes the need of any therapy. The proposed methodology comprises of acquisition of hand movement signal from Motor Cortex and Sensory Brain area by using EEG scanning. These signals are then processed using Brain Computer Interface (BCI2000), which mainly includes Features selection, extraction and translational algorithms to convert signals into commands. These commands are then used to control Hand Movement device. The Hand Movement device uses the FES, applied at the forearm to perform different hand movements. This paper focuses on the flexion and extension of the fist

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation describes the use of cortical surface potentials, recorded with dense grids of microelectrodes, for brain-computer interfaces (BCIs). The work presented herein is an in-depth treatment of a broad and interdisciplinary topic, covering issues from electronics to electrodes, signals, and applications. Within the scope of this dissertation are several significant contributions. First, this work was the first to demonstrate that speech and arm movements could be decoded from surface local field potentials (LFPs) recorded in human subjects. Using surface LFPs recorded over face-motor cortex and Wernickes area, 150 trials comprising vocalized articulations of ten different words were classified on a trial-by-trial basis with 86% accuracy. Surface LFPs recorded over the hand and arm area of motor cortex were used to decode continuous hand movements, with correlation of 0.54 between the actual and predicted position over 70 seconds of movement. Second, this work is the first to make a detailed comparison of cortical field potentials recorded intracortically with microelectrodes and at the cortical surface with both micro- and macroelectrodes. Whereas coherence in macroelectrocorticography (ECoG) decayed to half its maximum at 5.1 mm separation in high frequencies, spatial constants of micro-ECoG signals were 530-700 ?m-much closer to the 110-160 ?m calculated for intracortical field potentials than to the macro-ECoG. These findings confirm that cortical surface potentials contain millimeter-scale dynamics. Moreover, these fine spatiotemporal features were important for the performance of speech and arm movement decoding. In addition to contributions in the areas of signals and applications, this dissertation includes a full characterization of the microelectrodes as well as collaborative work in which a custom, low-power microcontroller, with features optimized for biomedical implants, was taped out, fabricated in 65 nm CMOS technology, and tested. A new instruction was implemented in this microcontroller which reduced energy consumption when moving large amounts of data into memory by as much as 44%. This dissertation represents a comprehensive investigation of surface LFPs as an interfacing medium between man and machine. The nature of this work, in both the breadth of topics and depth of interdisciplinary effort, demonstrates an important and developing branch of engineering

    Doctor of Philosophy

    Get PDF
    dissertationRecording the neural activity of human subjects is indispensable for fundamental neuroscience research and clinical applications. Human studies range from examining the neural activity of large regions of the cortex using electroencephalography (EEG) or electrocorticography (ECoG) to single neurons or small populations of neurons using microelectrode arrays. In this dissertation, microscale recordings in the human cortex were analyzed during administration of propofol anesthesia and articulate movements such as speech, finger flexion, and arm reach. Recordings were performed on epilepsy patients who required long-term electrocorticographic monitoring and were implanted with penetrating or surface microelectrode arrays. We used penetrating microelectrode arrays to investigate the effects of propofol anesthesia on action potentials (APs) and local field potentials (LFPs). Increased propofol concentration correlated with decreased high-frequency power in LFP spectra and decreased AP firing rates, as well as the generation of large amplitude spike-like LFP activity; however, the temporal relationship between APs and LFPs remained relatively consistent at all levels of propofol anesthesia. The propofol-induced suppression of neocortical network activity allowed LFPs to be dominated by low-frequency spike-like activity, and correlated with sedation and unconsciousness. As the low-frequency spike-like activity increased, and the AP-LFP relationship became more predictable, firing rate encoding capacity was impaired. This suggests a mechanism for decreased information processing in the neocortex that accounts for propofol-induced unconsciousness. We also demonstrated that speech, finger, and arm movements can be decoded from LFPs recorded with dense grids of microelectrodes placed on the surface of human cerebral cortex for brain computer interface (BCI) applications using LFPs recorded over face-motor area, vocalized articulations of ten different words and silence were classified on a trial-by-trial basis with 82.4% accuracy. Using LFPs recorded over the hand area of motor cortex, three individual finger movements and rest were classified on a trial-by-trial basis with 62% accuracy. LFPs recorded over the arm area of motor cortex were used to continuously decode the arm trajectory with a maximum correlation coefficient of 0.82 in the x-direction and 0.76 in the y-direction. These findings demonstrate that LFPs recorded by micro-ECoG grids from the surface of the cerebral cortex contain sufficient information to provide rapid and intuitive control a BCI communication or motor prosthesis

    Classification of spoken words using surface local field potentials

    Get PDF
    Cortical surface potentials recorded by electrocorticography (ECoG) have enabled robust motor classification algorithms in large part because of the close proximity of the electrodes to the cortical surface. However, standard clinical ECoG electrodes are large in both diameter and spacing relative to the underlying cortical column architecture in which groups of neurons process similar types of stimuli. The potential for surface micro-electrodes closely spaced together to provide even higher fidelity in recording surface field potentials has been a topic of recent interest in the neural prosthetic community. This study describes the classification of spoken words from surface local field potentials (LFPs) recorded using grids of subdural, nonpenetrating high impedance micro-electrodes. Data recorded from these micro-ECoG electrodes supported accurate and rapid classification. Furthermore, electrodes spaced millimeters apart demonstrated varying classification characteristics, suggesting that cortical surface LFPs may be recorded with high temporal and spatial resolution to enable even more robust algorithms for motor classification

    Classification of spoken words using surface local field potentials

    Get PDF
    Cortical surface potentials recorded by electrocorticography (ECoG) have enabled robust motor classification algorithms in large part because of the close proximity of the electrodes to the cortical surface. However, standard clinical ECoG electrodes are large in both diameter and spacing relative to the underlying cortical column architecture in which groups of neurons process similar types of stimuli. The potential for surface micro-electrodes closely spaced together to provide even higher fidelity in recording surface field potentials has been a topic of recent interest in the neural prosthetic community. This study describes the classification of spoken words from surface local field potentials (LFPs) recorded using grids of subdural, nonpenetrating high impedance micro-electrodes. Data recorded from these micro-ECoG electrodes supported accurate and rapid classification. Furthermore, electrodes spaced millimeters apart demonstrated varying classification characteristics, suggesting that cortical surface LFPs may be recorded with high temporal and spatial resolution to enable even more robust algorithms for motor classification
    • …
    corecore