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ABSTRACT

A COMPARISON OF TRI-POLAR CONCENTRIC RING ELECTRODES TO DISC

ELECTRODES FOR DECODING REAL AND IMAGINARY FINGER MOVEMENTS

The electroencephalogram (EEG) is broadly used for diagnosis of brain diseases and research

of brain activities. Although the EEG provides a good temporal resolution, it suffers from poor

spatial resolution due to the blurring effects of volume conduction and signal-to-noise ratio.

Many efforts have been devoted to the development of novel methods that can increase the EEG

spatial resolution. The surface Laplacian, which is the second derivative of the surface potential,

has been applied to EEG to improve the spatial resolution. Tri-polar concentric ring electrodes

(TCREs) have been shown to estimate the surface Laplacian automatically with better spatial res-

olution than conventional disc electrodes.

The aim of this research is to study how well the TCREs can be used to acquire EEG signals

to decode real and imaginary finger movements. These EEG signals will be then translated into

finger movements commands. We also compare the feasibility of discriminating finger movements

from one hand using EEG recorded from TCREs and conventional disc electrodes. Furthermore,

we evaluated two movement-related features, temporal EEG data and spectral features, in discrim-

inating individual finger from one hand using non-invasive EEG.

To do so, movement-related potentials (MRPs) are measured and analyzed from four TCREs

and conventional disc electrodes while 13 subjects performed either motor execution or motor

imagery of individual finger movements. The tri-polar-EEG (tEEG) and conventional EEG (cEEG)

were recorded from electrodes placed according to the 10-20 International Electrode Positioning

System over the motor cortex.

Our results show that the TCREs achieved higher spatial resolution than conventional disc

electrodes. Moreover, the results show that signals from TCREs generated higher decoding ac-
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curacy compared to signals from conventional disc electrodes. The average decoding accuracy of

five-class classification for all subjects was of 70.04 ± 7.68% when we used temporal EEG data

as feature and classified it using Artificial Neural Networks (ANNs) classifier. In addition, the

results show that the TCRE EEG (tEEG) provides approximately a four times enhancement in the

signal-to-noise ratio (SNR) compared to disc electrode signals.

We also evaluated the interdependency level between neighboring electrodes from tri-polar,

disc, and disc with Hjorth’s Laplacian method in time and frequency domains by calculating the

mutual information (MI) and coherence. The MRP signals recorded with the TCRE system have

significantly less mutual information (MI) between electrodes than the conventional disc electrode

system and disc electrodes with Hjorth’s Laplacian method. Also, the results show that the mean

coherence between neighboring tri-polar electrodes was found to be significantly smaller than disc

electrode and disc electrode with Hjorth’s method, especially at higher frequencies. This lower

coherence in the high frequency band between neighboring tri-polar electrodes suggests that the

TCREs may record a more localized neuronal activity. The successful decoding of finger move-

ments can provide extra degrees of freedom to drive brain computer interface (BCI) applications,

especially for neurorehabilitation.

iii



ACKNOWLEDGEMENTS

First, I would like to express my sincere appreciation and gratitude to Dr. Charles Anderson for

his support, encouragement, feedback and critiques he has provided me throughout my research.

Without his guidance, this work would not have come to fruition. I would also like to thank

my committee members Dr. Jozsef Vigh, Dr. Don Rojas, and Dr. Salah Abdel-Ghany for their

time, insights, and reviewing this dissertation. I am also grateful to Dr. Walter Besio for all the

equipments he provided us to conduct this research and the time he devoted to help me. Dr. William

Gavin deserves many thanks for providing his valuable comments on the preliminary results of this

work. Finally and most importantly, I acknowledge with a deep sense of reverence, my gratitude

towards my parents and family for their inspiration, support, and encouragement.

This dissertation is typset in LATEX using a document class designed by Leif Anderson.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Dissertation Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Tri-polar Concentric Ring Electrodes . . . . . . . . . . . . . . . . . . . . 13
2.3 Movement-Related Potentials . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Related Works in Decoding Finger Movements . . . . . . . . . . . . . . . 20
2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Experiment Protocol and Data Acquisition . . . . . . . . . . . . . . . . . 27
3.2 Detection of Finger Movement Time Onset . . . . . . . . . . . . . . . . . 31
3.3 Pre-processing of MRP signals . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Calculation of Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . 39
3.5 Measuring the Interdependency Between Neighboring Electrodes . . . . . 40
3.6 Applying Local Hjorth’s Laplacian on the Outer-Ring Signal . . . . . . . . 41
3.7 Classification Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1 Movement-Related Potentials . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Mutual Information and Coherence . . . . . . . . . . . . . . . . . . . . . 54
4.3 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Evaluation of Temporal and Frequency Features in Decoding Individual

Finger Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 EEG (De)synchronization Prior, During, and After Finger Movement . . . 68
4.6 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 5 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
.1 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

v



LIST OF TABLES

2.1 Some factors which influence the magnitude and time course of early and late BP [1]. . 20

3.1 Number of successful trials for the real movement task. . . . . . . . . . . . . . . . . . 28

4.1 Grand averages of MI for different electrode systems. . . . . . . . . . . . . . . . . . . 56
4.2 Coherence values between four channels for tri-polar and disc electrode systems from

one subject. The coherence values were compared over the following frequency bands:
1-4Hz (delta), 4-7Hz (theta), 7-12Hz (alpha), 12-30Hz (beta), 30-60Hz (gamma). . . . 58

4.3 Averaged SNR for conventional disc electrodes and tri-polar electrodes . . . . . . . . . 62
4.4 ANOVA table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Summary of t-test results on decoding accuracies from tEEG using different features,

as well as the guess level (20%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Summary of t-test results on decoding accuracies from cEEG using different features,

as well as the guess level (20%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7 Decoding accuracies results for different features used to decode real and imaginary

fingers movements using TCRE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Decoding accuracies results for different features used to decode real and imaginary

fingers movements using disc electrode. . . . . . . . . . . . . . . . . . . . . . . . . . 74

vi



LIST OF FIGURES

1.1 Structural components of a BCI System . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 A Simple of Neural Network Representation . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Conventional disc electrode and tri-polar concentric ring electrode . . . . . . . . . . . 13
2.3 Arrangement of the five-point method (FPM) and nine-point method (NPM) . . . . . . 14
2.4 MRPs for real and imaginary right ankle dorsiflexion movements. . . . . . . . . . . . 19
2.5 Example of contingent negative variation with early and late CNVs. . . . . . . . . . . 21

3.1 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Illustration of a 128-channel EEG sensor layout with 4 electrodes (in red) on three

different montages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Components used to build the circuit to detect finger movement onset time . . . . . . . 33
3.4 The circuit schematic for system designed for detecting finger movement onset. . . . . 36
3.5 Events plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Preprocessing pipeline used to prepare the EEG data for analysis. . . . . . . . . . . . . 39
3.7 MRP signals recorded from tri-polar electrodes and conventional electrode at the CZ

position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Grand averages of the Movement-related potentials (MRPs) preceding and accompa-
nying the execution of index finger movement. . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Movement-related potentials (MRPs) during a self-paced index finger movement task . 48
4.3 Grand averages of the Movement-related potentials (MRPs) preceding and accompa-

nying the execution of middle finger movement. . . . . . . . . . . . . . . . . . . . . . 51
4.4 Monopolar (µV; top), Laplacian computed from Hjorth’s method (µV/cm2; middle),

and tri-polar (µV/cm2; bottom) grand averages of MRP for real middle finger movement. 52
4.5 MRP associated with contralateral and ipsilateral finger movement. . . . . . . . . . . . 53
4.6 Time-course of average EEG trace from channel C3 during rest (in red) and right

thumb movement in one subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7 Grand averages of the Movement-related potentials (MRPs) of ring finger recorded

from tri-polar C3 electrode during real (black) and imagined (red) movement task. . . . 54
4.8 Box-plot comparing the MI of disc and tri-polar electrodes. . . . . . . . . . . . . . . . 57
4.9 Box-plot comparing the MI of disc, disc with Hjorth, and tri-polar electrodes. . . . . . 57
4.10 Coherence between electrodes for tri-polar and disc electrodes . . . . . . . . . . . . . 59
4.11 Coherence between electrodes for tri-polar and disc systems . . . . . . . . . . . . . . 60
4.12 Box-plot comparing the SNR of disc and tri-polar electrodes. . . . . . . . . . . . . . . 62
4.13 Box-plot comparing the SNR of disc, Hjorth, and tri-polar electrodes. . . . . . . . . . 63
4.14 Grand averages of MRPs for different fingers recorded from tri-polar ring electrodes

and conventional disc electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.15 Averaged alpha/beta power changes from tri-polar and disc C3 electrode. . . . . . . . . 67
4.16 Time-frequency map from 45 trials EEG recorded from tri-polar electrode and con-

ventional disc electrode in one subject. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



4.17 The accuracy in decoding movements from resting conditions using temporal data, α
and β bands from tEEG and cEEG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.18 Confusion matrices of the ANNs classifier for classification of real fingers movements. 76
4.19 Confusion matrices of the LDA classifier for classification of real fingers movements. . 77
4.20 Confusion matrices of the ANNs classifier for classification of imagined fingers move-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.21 Confusion matrices of the LDA classifier for classification of imagined finger movement 79

viii



Chapter 1

Introduction

Brain-computer interface (BCI) is an assistive technology, which enables communication and

control of a device such as a neuroprosthesis without using the brain’s normal output pathways of

peripheral nerves and muscles [2]. BCI systems are mainly targeted for people with severe neuro-

muscular disorders such as amyotrophic lateral sclerosis (ALS), spinal cord injury, cerebral palsy,

or brain stem stroke. They provide them with basic control and/or communication capabilities and

determine the user’s intent from a range of different electrophysiological signals, so that they can

perform multiple tasks, such as controlling a wheelchair, operating a prosthetic limb, or controlling

a two-dimensional cursor movement on screen [2–4].

Several neuroimaging modalities have been utilized to record and monitor the brain activity.

These include electroencephalography (EEG), magnetoencephalography (MEG), positron emis-

sion tomography (PET), functional magnetic resonance imaging (fMRI), and optical imaging.

Among these different modalities, scalp-recorded Electroencephalography (EEG) is considered

the most commonly used modality in BCI systems. This can be attributed to several factors such

as the high temporal resolution, relatively inexpensive, mobility, and measuring the brain signals

with reasonable signal-to-noise ratio (SNR) [4–6].

BCI systems can be classified into two categories depending on the placement of the electrodes

used to measure neurophysiological signals from the brain: invasive and noninvasive. For invasive

BCIs, the electrodes are implanted directly into the brain tissue to record neural activities with

high SNR and spatiotemporal resolution. Noninvasive BCIs use the brain activity measured by

electrodes placed on the scalp, and for this reason they are by far the most widespread record-

ing modality used in BCI research. However, they provide poor spatial resolution and low SNR,

thereby limiting the bandwidth of control signals that can be reliably extracted.

Figure 1.1 shows the basic design and operation of any BCI system. A typical BCI system has

input (e.g., the user’s brain signals), output (i.e., device commands), and components that translate
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input into output. The input of the BCI system is neural activity which is recorded from the inside

of the brain (e.g., Electrocorticography (ECoG)) or from the scalp surface of the brain (e.g., EEG).

These signals are amplified, digitized, and then processed to extract specific signal features (e.g.,

amplitudes of evoked potentials) that encode the user’s intent. These features are translated into

commands that operate a computer display or other device.

Figure 1.1: Elements of any BCI system and their principal interactions [7]. The signal is first acquired
from the user’s brain and then processed to extract specific features used for classification. The classification
algorithms then attempt to identify the user’s mental state which is translated into commands that operate
an external device.

EEG-based BCI approach has provided paralyzed or ’locked in’ patients alternative ways to

communicate with the external world [8]. However, there are a number of challenges that must

be considered when developing EEG-based BCI systems. Current EEG-based BCIs have limited

communication capacity. They have maximum information transfer rates (ITRs) up to 10-25 bits

min−1 [2, 8]. With this limitation of the transfer rates, EEG-based BCIs cannot provide those

with severe neuromuscular disabilities with more complex BCI applications such as operating a

multi-degree of freedom neuroprosthesis.

Furthermore, EEG signals have good temporal resolution with delays in the tens of millisec-

onds, but low spatial resolution on the scalp surface due to the blurring effects of different con-

ductivities of the volume conductor such as cerebrospinal fluid, skull, skin, and many other layers.
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The EEG also is susceptible to physiological artifacts due to muscle contractions, ocular move-

ments and heart activity, or technical artifacts such as power-line noises or changes in electrode

impedances. These artifacts may reduce the performance of EEG-based BCI systems.

Spatial resolution and the ITRs are not the only challenges facing EEG-based BCI systems, but

there are other scientific and technical challenges. Some of these challenges are discussed in the

following points.

Challenge 1: BCI research is inherently and necessarily dependent on very fundamentally multi-

disciplinary research such as neuroscience, engineering, cognitive science, computer science, and

other technical and health-care disciplines.

Challenge 2: The brain is highly non-stationary, which means that the EEG signals rapidly vary

over time and over sessions. Therefore, non-stationary signal processing and machine learning

algorithms need to be developed.

Challenge 3: EEG has a very low signal-to-noise ratio (SNR). In other words, the relevant brain

activity is small compared to brain background activity. Therefore, it is hard to detect relevant

brain patterns.

Challenge 4: There is a high variability in the EEG signals recorded between subjects or even

within sessions for the same subject. This would result in poor classifications and high error rate.

Challenge 5: The information transfer rate (ITR) achievable through EEG is low compared to

the ITR observed by invasive methods [9]. Many communication and control BCI systems, such

as neuroprosthesis control, require high ITRs. Low ITR makes the BCI applications suffer from

accurate communication and control.

Challenge 6: The BCI system must have sufficient reliability to be practical and useful, especially

in the clinical applications. Low reliability of current BCI systems is mainly due to the incorrect

recognition of user intent by the BCI. This poor recognition by BCI is probably because it is dif-

ficult for the user to reliably perform the mental tasks or because the translation algorithm, which

translates the EEG signals into device commands, does not work perfectly.

Challenge 7: User training is considered as one of the most important factors affecting the BCI
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capabilities. In some BCI experiments such as motor imagery tasks, it is difficult to train the users

to control their brain signals. In addition, some users may need more training time to achieve

high performance. Therefore, providing appropriate feedback makes subjects more motivated and

involved.

Despite these well-known shortcomings, numerous studies have successfully demonstrated

practical EEG-based BCI applications for those with devastating neuromuscular disorders. For

instance, Li, et al., [10] have proposed an EEG-based BCI paradigm which allows the user to con-

trol a cursor in two dimensions by combining two EEG signals: P300 potential and mu and beta

rhythms during motor imagery. The subjects successfully controlled the cursor with accuracies of

about 80%. Moreover, Pfurtscheller, et al., [11] have used steady-state visual evoked potentials

(SSVEPs), resulting from repetitive flicker stimulation, to control a two-axis electrical hand pros-

thesis. In their study, the participants reached an online classification accuracy between 44% and

88%.

Due to the advancements in computational technology and machine learning, the field of BCI is

progressing fast towards noninvasiveness. The most popular brain activity patterns that have been

identified and used in constructing noninvasive BCI are P300 Event-Related Potential (ERP) and

motor execution/imagery induced Event-Related (De)Synchronization (ERD/ERS) [12–14]. ERPs

are electric brain responses time-locked to a particular external or internal event [15]. The P300

is an exogenous ERP component elicited approximately 300 ms after an infrequent, but expected,

stimulus presented to a subject. A P300 speller is based on this concept, where the user attends to

a grid of of letters displayed on a computer monitor. The rows and columns of the grid are flashed

in a random sequence. When a row or a column that has the letter that the user wishes to type is

flashed, a P300 component of the ERP is elicited [16].

The ERD/ERS BCIs based on motor real/imagined movement have been proposed to restore

function and enhance communication in motor-impaired patients [17, 18]. The oscillatory activity

of the EEG signals are changed when we move our left or right hand, for example. These changes

are recognized in the EEG oscillation and used to drive a BCI. A typical example of the oscillatory
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activity-based BCI is imagination of motor movements [19]. For example, a user might imagine

moving his left/right hand, foot, or tongue to control a robotic arm [20]. The ERD/ERS appears

during movement or preparation for movement as a power decrease or increase in µ (8-13 Hz)

or β (16-32 Hz) bands observed in the contralateral motor cortex. These phenomena reveal the

change of synchrony in underlying neuron populations in the motor area of the brain [13]. A

variety of studies have demonstrated that healthy people or motor-impaired patients can learn to

control the amplitude of µ or β rhythms detected from the sensory motor areas with EEG electrodes

attached to the scalp. This can then be used to allow people with severe motor disabilities to control

applications such as a robotic arm or a neuroprosthesis [21].

1.1 Overview of the Problem

The problem of decoding information from neurons is extremely important in the field of brain-

computer interfacing and neural prosthesis. A common approach to design a BCI system is to

decode kinematic parameters of movements. Several studies have demonstrated the decoding of

the movements of large body parts of the human using ECoG and EEG, including wrists, upper

limbs, elbows and shoulders [22–24]. However, there are some difficulties in decoding movements

of fine body parts, such as individual finger using EEG recordings. Although it has been shown

that individual finger movements can be accurately decoded using ECoG signals, it is hard to reach

good performance using noninvasive EEG [25, 26].

Decoding individual finger movements has not been well-studied in EEG based BCI because

it is still a challenging task [27, 28]. As mentioned previously, the EEG has poor spatial resolu-

tion and low SNR. These two disadvantages of the EEG make the decoding of individual finger

movements hard since the finger movements activate adjacent brain regions and elicit close cortical

motor areas [29]. Current noninvasive approaches of decoding finger movements from the brain

use conventional disc EEG electrodes. Using the disc EEG electrodes is not promising to reach

high reliability in recognizing patterns in EEG related to individual finger movements since they
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lack the precision necessary to discern differences in brain activity. Therefore, this decreases the

BCI’s usability and convenience.

To the best of our knowledge, very few studies have shown that the kinematics of fine individual

finger movements can be decoded from brain signals. All of these studies have shown that EEGs

may contain information about the movements of fine body parts, such as individual finger, which

can be used and translated into control signals to control external devices. This movement-related

information has to be extracted from EEG signals reliably. With the current conventional disc EEG

electrodes, the step of extracting movement-related information is not promising, especially if the

temporal EEG is used as features.

Different features related to motor functions have been extracted as control features for BCI,

such as ERD/ERS. However, we still do not know which feature works best for decoding different

finger movements. In addition, there are many different ways in which the finger can be moved,

such as tapping, extension or flexion, rapid or slow movements. Moreover, internally generated

and externally triggered finger movements, i.e., during the absence and presence of an external cue,

generates different movement-related potentials known as Bereitschafispotential and contingent

negative variations, respectively [30, 31]. All of these different movement types and experimental

protocols make it hard to study which ones should be chosen to design a more practical and reliable

EEG-based BCI, such as neuroprosthetic device.

1.2 The Dissertation Objective

EEG-based BCI research has matured much in the last several decades. In the last two decades,

there has been growing interest in developing new methods to achieve higher quality EEG signals,

and therefore better estimates of cognitive state information. One of these methods is by developing

new electrodes with higher capabilities than the current conventional disc electrodes which have

not changed much in decades.

Recently, new electrodes, tri-polar concentric ring electrodes (TCREs), were developed by Dr.

W. Besio, at the University of Rhode Island [32]. These TCREs have been proven to have several
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advantages compared to conventional disc electrodes, such as better spatial resolution and higher

signal to noise ratio. The design of the TCREs automatically cancels the noise and reduces mutual

information between electrodes [33, 34]. In addition, the TCREs estimate the surface Laplacian

and therefore increase the spatial resolution of the EEG signals.

The objective of this research is to use the neural signals generated during real and imagi-

nary finger movement to discriminate between the five fingers. In this study, we investigated the

hypothesis that brain signals recorded non-invasively through scalp EEG can be used to decode

fine finger movements. We also evaluated the performance of decoding real and imaginary finger

movements with EEG signals recorded from the TCREs and conventional disc electrodes. In this

study, we focused on recording and analyzing the contingent negative variation (CNV) movement-

related potentials (MRPs) [35]. We focused on this type of MRPs because we wanted to make a

comparison between all the subjects. In order to do that, we need the movement to be performed

at the same time window, and this can be done by presenting a cue to the subjects so they know

when they should start moving their finger. This paradigm will generate the CNV.

Also, we compared temporal and spectral features from EEG signals recorded by tri-polar and

disc electrode systems after finger movement onset. Previous study has shown that the temporal

features computed from the MRP recorded by conventional disc electrodes may not suffice for

the task of decoding movements of fine body parts, that is, individual finger movements [36].

This is due to the fact that the conventional disc electrodes detect the same signal when they

are placed closer than 4 cm. However, we hypothesized that the TCREs provide higher spatial

resolution than the conventional disc electrodes needed to distinguish and identify brain activity

and spatiotemporal patterns related individual finger movements.

We suspected the combination of the TCREs and machine learning algorithms will lead to

a practical, reliable, and accurate BCI for controlling a neuroprosthesis. The choice of the best

machine learning algorithm leads to design a practical, accurate BCI application. For this reason,

we compared decoding classification performance of different classification algorithms including

linear discriminant analysis and artificial neural networks. Since the TCREs automatically apply
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the Laplacian to the EEG signals, we hypothesized that using TCREs will discriminate between

finger movements better that the conventional disc electrodes. This hypothesis is based on previous

studies that have shown that applying Laplacian to EEG signals yields good performance on EEG

classification [37, 38].

Determining the finger movement time onset precisely is critical in analyzing MRPs. The

conventional way of doing that is by recording EMG activity simultaneously with EEG. The syn-

chronization of EEG signals and EMG activity requires additional signal processing for both data

and more equipments (e.g., amplifiers, electrodes, etc.). Additionally, the type of devices used

to run the experiment might be not sufficient to collect EEG and EMG data simultaneously. For

instance, in this study we used Cyton OpenBCI board, which has only eight input channels, to

measure and record EEG data. All the input channels were connected to TCREs and the output of

the outer rings, which means there was no any available input channel to be used by EMG elec-

trode. Here we designed a new method for detecting the finger movement onset precisely by using

accelerometer and Arduino board. More details is in Section 3.2.

1.3 Overview of Dissertation

The dissertation is organized as follows. Chapter 2 gives background information about the

classification algorithms used in this study, the TCREs, and MRPs. The related works in decoding

finger movements are discussed in the last section of this chapter. Chapter 3 explains in details

the experimental protocol and data acquisition. In addition, a new method of detecting finger

movement time onset is discussed in this chapter. Chapter 4 discusses the results that have been

achieved for different finger movement classification using TCREs and disc electrodes. Chapter 5

gives the conclusion to the study and outlines the future work. Appendix lists the code used in this

research.
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Chapter 2

Background and Related Works

This chapter explains the basic information relating to our work. The first section of this chap-

ter introduces two classification algorithms, Linear Discriminate Analysis and Artificial Neural

Networks, which were used in this research to classify individual finger movements from EEG

recordings. The second section introduces the tri-polar concentric ring electrodes. The main two

types of the MRPs which are Bereitschaftspotential and contingent negative variations are dis-

cussed in the third part of this chapter. The related works that have been achieved in the decoding

of finger movements is summarized in the last section.

2.1 Classification Algorithms

Classification algorithms are methods of supervised learning that aim to estimate the class of

data as represented by a feature vector. In this study, our goal of classification is to classify the

data into different classes. For instance, classifying the data into movement and resting conditions

or classifying the data based on the finger movement. To accomplish the task of classification,

we will use two different classifier techniques that are well-studied to classify different movement

tasks [39]. These classifier techniques are linear discriminant analysis (LDA) and artificial neural

networks (ANNs).

2.1.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), also called Fisher’s LDA, is used in machine learning

(ML) to find a linear combination of features that separate two or more classes of objects. The

goal of a discriminant function is to take an input vector x and assign it to one of K discrete

classes, denoted Ck, where k = 1, 2, ..., K. Suppose we have an input vector x together with

a corresponding vector t of target variables, and the goal is to predict t give a new value for x.

The joint probability p(x, t) provides a complete summary of the uncertainty associated with these
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variables [40]. Using Bayes’ Theorem, these probabilities can be expressed in the form:

P (Ck|x) =
P (x|Cx)P (Ck)

P (x)
(2.1)

Let us assume that all classes share the same covariance matrix Σ. By testing if the probability that

a sample x is contained in one class or another, we can find the discriminant function:

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + logP (C = k) (2.2)

where µk is the mean of class k, P (C = k) = Nk

N
, and N is the total number of samples from all

classes. This approach tells us that the class of x is argmax δk(x). Since equation 2.2 is linear in

x, it can be written as:

δk(x) = xTwk + xo (2.3)

where wk is weight vectors, and xo is a bias. Consider we have two classes, C1 and C2. If δk(x) ≥

0, the input vector w is assigned to class C1 and to C2 otherwise. The decision boundary is defined

by the relation δk(x).

2.1.2 Artificial Neural Networks

The artificial neural network "ANN", sometimes is called neural network "NN", is an informa-

tion processing paradigm that is inspired by the way biological nervous systems, such as the brain,

process information. The key element of this paradigm is the novel structure of the information

processing system. It is composed of a large number of highly interconnected processing elements

(neurons) working in unison to solve specific problems. The ANN is configured for a specific ap-

plication, such as linear/nonlinear regression, pattern recognition or data classification, through a

learning process. Learning in biological systems involves adjustments to the synaptic connections

that exist between the neurons [40].

The commonest type of ANNs consists of three groups, or layers, of units: a layer of "input"

units is connected to layers of "hidden" units, which is connected to a layer of "output" units.
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The activity of the input units represents the raw information that is fed into the network. The

purpose of the hidden units is determined by the activities of the input units and the weights on the

connections between the input and the hidden units. The number of units in the hidden layers can

vary from no hidden layer to n hidden layers. Each layer has a set of weights associated with the

inputs to hidden layer. These layers apply a nonlinear function to the weighted sum of inputs. The

first hidden layer operates on the input values, while subsequent layers operated on the outputs of

the previous hidden layer. At the end, the behavior of the output units depends on the activity of

the hidden units and the weights between the hidden and output units. The output layer produces

a weighted sum of the outputs from the last hidden layer as the output of the neural network.

The neural network learns the weights through an iterative process using training data. Figure 2.1

shows an example of simple ANN structure.

Figure 2.1: A Simple of Neural Network Representation [41].

The following equation computes the value of the predicted output Y for a given set of X as

inputs in a two layers, which are hidden and output layer, neural network [41]:

Y = h(XV )W (2.4)
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where h is the activation function for the units in the hidden layer. In addition, V and W are

weights associated with the hidden and output layers. In general, gradient descent (GD) is used

to optimize the weights of the neural network. Before using this method, the mean squared error

between each target value and the tn,k and output value yn,k is needed to be calculated by the

following equation [41]:

E =
1

N

1

K

N
∑

n=1

K
∑

k=1

(yn,k − tn,k)
2 (2.5)

The neural network model then learns by the training the values of the weights for the hidden

V and output W layers. This process is done by minimizing the mean squared error E between

the values predicted Y and the target values T associated with the training data. Moreover, the

neural network model also uses gradients of the mean squared error E to improve the weights. The

gradient of mean square error is used to make small changes into the weights vj,m and wm,k [41].

vj,m ← vj,m − ρh
∂E

∂vj,m
(2.6)

wm,k ← wm,k − ρo
∂E

∂wm,k

(2.7)

where ρh is the learning rate of the hidden layer, and ρo is the learning rate of the output layer.

If the NN is used to solve a multi-class classification problem, the output layer uses a softmax

function. By using the softmax function, we are forcing the output of the neural network to

sum to one, so that they can represent a probability distribution across discrete mutually exclusive

alternatives [40]. The output of softmax is the probability of each class and the target class will

have the high probability. The softmax function is defined as:

Y (x)j =
exj

∑K

k=1
exk

(2.8)

where xj is the weighted sum of output unit j, and j = 1, 2, ..., K.
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2.2 Tri-polar Concentric Ring Electrodes

In 1924, Hans Berger recorded the first human electroencephalogram (EEG) using conventional

disc electrodes [42]. Since that time, the basics of the EEG measurement have been the same even

though the conventional electrodes have many shortcomings. Beside the poor spatial resolution

provided by disc electrodes, the EEG signals recorded with conventional disc electrodes have

reference electrode problems. The choice of the reference electrode for the measurement of EEG

is a critical issue since there is no ideal location for it. Therefore, placing the reference electrode

at different locations provides EEG signals with different characteristics [32, 43].

There is a need for new electrodes that may be utilized to overcome the current disadvantages

of the conventional disc electrodes. There has been little effort on improving the conventional

disc electrodes. Recently, tri-polar concentric ring electrodes (TCREs) were invented by Dr. W.

Besio. The TCRE has the same size as the conventional disc electrode. However, it consists of

three electrode elements: the outer ring, the middle ring, and the center disc, as shown in Figure

2.2(B). The potential differences are taken between the outer ring and the central disc and between

the middle ring and the central disc.

Figure 2.2: Conventional disc electrode (A) and tri-polar concentric ring electrode (B).

The TCRE estimates the surface Laplacian (SL) based on a nine point finite difference method

(NPM) automatically and better than the conventional disc electrodes. The SL, also known in the

literature as current source density or current scalp density (CSD), is one of the spatial filters that

is commonly used in EEG data to clean the data and prepare it for connectivity analysis. Laplacian
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attenuates the volume conduction by minimizing contributions of deep and distant sources, and

estimates current flow at the dura.

The spline surface tri-polar estimation relies on the potential recorded on every electrode to

optimize the interpolation parameters, therefore more sensors lead to a better estimation of the

parameters. On the other hand, each TCRE measures the surface Laplacian independently, and

as a result, the tri-polar surface Laplacian does not rely on the number of sensors. The TCRE

performs the Laplacian automatically and takes bipolar differences of the surface potentials from

closely spaced (∼1 mm) concentric electrode elements.

There is a local relationship between the SL of scalp potentials and the underlying flow of

electric current caused by brain activity [44]. This relationship approximates the cortical potentials

from scalp voltage distributions. Laplacian is the second spatial derivative of the scalp potentials.

Bin He [45] has shown that SL increases the spatial resolution and spatial selectivity of the brain

activity. Several approaches have been used to estimate the SL resulting from the EEG potential

measurements, such as the five-point method (FPM), spline Laplacian algorithm, ellipsoidal spline

Laplacian algorithm, and realistic geometry Laplacian algorithms [46–49].

Figure 2.3: Arrangement of the five-point method (FPM) and nine-point method (NPM). vo through v8 are
the potentials at points po through p8, respectively.
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The five-point method (FPM) was first reported by Hjorth to increase the EEG spatial selectiv-

ity using conventional disc electrodes [46]. Hjorth’s five point method calculates the local surface

Laplacian by taking the difference of the potential on the electrode and the average potential on its

neighboring four electrodes. In the 10-20 system configuration, electrodes that are often used are

not close to each other. Hence, the surface Laplacian might not be estimated correctly. Instead of

utilizing nearby electrodes to estimate the surface Laplacian, the three elements of a single TCRE

are used to calculate the surface Laplacian. As shown in Figure 2.3, v5, v6, v7, v8, and vo form the

FPM.

The Laplacian potentials at point po are calculated as:

∆vo =
∂2v

∂x2
+

∂2v

∂y2
=

1

(2r)2
(

8
∑

i=5

vi − 4vo) +O((2r)2) (2.9)

where r is the interpoint distance and the truncation error is given as:

O((2r)2) =
(2r)2

4!
(
∂4v

∂x4
+

∂4v

∂y4
) +

(2r)4

6!
(
∂6v

∂x6
+

∂6v

∂y6
) + .... (2.10)

After neglecting the truncation error and solving 2.9, we get the approximation to the Laplacian at

po as [50, 51]:

∆vo ∼=
4

(2r)2
(v − vo) (2.11)

where v is the average of the potentials v5, v6, v7, and v8.

The TCREs are based upon the nine-point method (NPM). As shown in Figure 2.3, vo through

v8 form the NPM (which can be seen also as two FPM). The Laplacian potentials at point po are

calculated as:

∆vo = (
∂2v

∂x2
+

∂2v

∂y2
) =

1

12r2

{

16
4

∑

i=1

vi − 60vo −
8

∑

j=5

vj

}

+O(r4) (2.12)

where the truncation error is given as:
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O(r4) = (
r4

270
)((

∂6v

∂x6
) + (

∂6v

∂y6
)) + .... (2.13)

If we compare equations 2.10 and 2.13, we find that the NPM truncation error does not have the 4th

order derivative term. Therefore, the NPM is more accurate than the FPM. By applying a similar

procedure, we can generalize the FPM to a TCRE. Hence, the average potential on the middle ring

and outer ring, respectively, is given as:

∆vo ∼=
1

3r2

{

16(
1

2π

∫

2π

0

v(r, θ)dθ − vo)− (
1

2π

∫

2π

0

v(2r, θ)dθ − vo)

}

(2.14)

Previous studies in a wide range of applications have demonstrated the superiority of the

TCREs to conventional disc electrodes. Besio, et al., [33] used the TCREs to measure the surface

Laplacian electrocardiogram (LECG). They compared the accuracy in estimating the SL and the

spatial resolution with the concentric bipolar, concentric quasi-bipolar and disc electrode configu-

rations. They found that the TCREs configuration results in higher accuracy and spatial resolution

over other electrodes configurations.

In another study, the EEG signals were acquired using TCREs and disc electrodes while the

subjects performed left/right hand motor imagery [52]. The purpose of their work was to compare

the classification of left/right hand imagery movements between signals from disc and tri-polar

electrodes. They used a Mahalanobis distance based linear classifier for classification, and an

autoregressive (AR) model for feature extraction [53,54]. For each subject, 160-200 trials for both

left and right hand imagery movements were recorded. The average accuracy for the subjects from

TCREs and disc electrodes were 78.7 ± 3.3% and 68.0 ± 5.0%, respectively.

TCREs can also be used to provide more precise stimulation. Besio, et al., [55] applied non-

invasive transcutaneous electrical stimulation (TcES) via TCREs on the scalp of rats after inducing

seizures with penicillin G, pilocarpine, and pentylenetetrazole (PTZ). The results showed that the

seizures induced by PTZ were attenuated significantly after applying the TcES via TCREs. They

also found that TcES via TCREs attenuated the severity of behavior induced by seizures such
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as motor contractions. However, when they applied the electrical stimulation via conventional

electrodes, the rats had vocalizations, escape behavior, and uncontrollable motor activity.

Liu, et al., [56] used a computer simulation, by Cuffin and Cohen [57], to compare the spatial

resolution for disc electrodes and TCREs. The simulation was based on 4-layer concentric spheri-

cal human head model. The four layers represent brain, cerebrospinal fluid, skull, and scalp. They

placed an 8x8 electrode array above the visual cortex area. To generate visual evoked potentials

(VEPs), they placed a signal dipole under the electrode array. They recorded the VEPs with two

electrodes configurations and found that the half sensitivity volume (HSV) of TCRE is 1/10 the

HSV of the disc electrodes. The HSV is defined by Malmivuo and Suihko [58] as "the volume

of the source region in which the magnitude of the detector’s sensitivity is more than one half of

its maximum value in the source region" and it is inversely proportional to the spatial resolution.

Therefore, higher spatial resolution is achievable with TCREs.

The TCREs also can be used to detect high frequency oscillations (HFOs) preceding seizures

from patients with epilepsy, which improves diagnosis epilepsy and localization of seizure on-

set. Besio, et al., [59] recorded EEG signals with TCREs and disc electrodes from patients with

epilepsy at the same time. High-gamma band (between 60 and 80 Hz) was observed in TCREs

EEG data with less muscle and movements artifacts starting approximately 10 min prior to the

seizure activity, but not in the conventional EEG data. In another patient, 70 Hz gamma band was

found approximately three minutes before the seizures.

Boudria, et al., [60] compared disc EEG with tri-polar EEG based BCIs for real-time one-

dimensional cursor control. The subjects were asked to move a cursor (imaginary movement)

from the center of the screen and hit a target that presented in the left or the right of the screen. The

subjects performed 10 runs in which each run contained 20 trials. The accuracy for each subject

was calculated for disc and tri-polar electrode. The subjects achieved higher average accuracies

with the tri-polar EEG (between 30-66% for disc EEG, and between 44-100% for tri-polar EEG).

Another comparative study between the tri-polar and disc electrodes was done by Koka and

Besio [34]. In their work, they compared the SNR, spatial selectivity, and mutual information (MI)

17



of the movement-related potentials (MRPs) signals recorded using tri-polar, bipolar, and unipolar

electrode systems. The MRP is a negative EEG deflection preceding and accompanying self-paced

voluntary real and imaginary movements [35]. The subjects were asked to press a micro-switch

when a cue is presented. The results showed that the averaged SNR for disc, bipolar, and tri-polar

electrodes were 1.454, 2.829, and 5.431, respectively. The results also showed that the TCREs

have significantly higher spatial selectivity and MI than disc and bipolar electrodes.

2.3 Movement-Related Potentials

In present-day EEG-based BCIs, movement-related potential (MRP) has received much atten-

tion. The MRP is a low-frequency negative shift in the EEG recording that takes place about 2

seconds prior to voluntary movement production. The MRP is present in real as well as in imag-

inary volitional movements [1]. The MRPs are observed in self-paced and cue-based paradigms.

The former is often referred to Bereitschaftspotential potential (BP) and the latter is called contin-

gent negative variation (CNV). The MRP comprises three events called BP or readiness potential

(RP), motor potential (MP), and movement-monitoring potential (MMP). An example of MRP and

its components is presented in Figure 2.4.

The following two subsections give an overview of two types of movements related potentials:

Bereitschaftspotential and contingent negative variation. We narrow the focus down to the main

components and the source generators for each type. Moreover, Sections 2.3.1 and 2.3.2 describe

the similarity and difference between BP and CNV.

2.3.1 Bereitschaftspotential

The Bereitschaftspotential (BP, which means "readiness potential" in German) was first de-

scribed by Kornuber and Deecke in 1964 [62]. It is a negative potential which commences 1 to

2 s prior to the planning of voluntary movement onset. BP has two distinguishable components.

The first component starts about 2 s before to movement onset, known as early BP or BP1, and is

more distinguished in the supplementary motor area (SMA) and the cingulate motor area (CMA).
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Figure 2.4: MRPs for real and imaginary right ankle dorsiflexion movements. Time 0s is defined as the
movement onset. BP1 and BP2 are early BP and late BP, respectively. MP is motor potential, and MMP is
movement-monitoring potential [61].

The second component, known as late BP or BP2, has a steeper slope and occurs about 0.4-0.5 s

prior movement onset and has maximum amplitude over the contralateral primary motor cortex. It

is believed that BP1 may represent the more general preparation for the forthcoming movement or

reflect an intention to act [1].

The generator sources of the BP are still unclear. Based on the results of invasive recording

in epileptic patients, the source generators of the BP in human are thought to be primary and

supplementary motor areas (SMA) [63]. An intracranial recording study showed that the BP might

be recorded from basal ganglia and thalamus [1]. Another study reported that the BP was produced

by both the ipsilateral and contralateral supplementary motor areas (SMAs) [64]. There are various

factors influencing the magnitude and time course of BP. Table 2.1 shows some factors which

influence the early and late BP components. More details on BP can be found in the comprehensive

book "The Bereitschaftspotential-Movement Related Cortical Potentials" [35].

2.3.2 Contingent Negative Variation

The contingent negative variation (CNV), also known as movement-preceding negativity (MPN),

was first described by Walter et al., in 1964 [65]. It is a negative brain potential that occurs in the
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Table 2.1: Some factors which influence the magnitude and time course of early and late BP [1].

Factors Early BP Late BP

Level of intention Larger
Preparatory state Earlier onset

Movement selection Larger No effect
Speed Later onset

Mirror movement No change Involved
Complexity No effect Larger
Precision No effect Larger

interval between a "Warning" (S1) and a "Go" (S2) stimulus (Figure 2.5). The CNVs are produced

with the planning and execution of externally-paced, voluntary movements. Similar to the BP, the

CNV has two main components: early and late CNVs. The early CNV begins immediately after

S1 and has maximum amplitude over the frontal cortex. The late CNV starts about 1.5 s before the

"Go" cue stimulus and has maximum amplitude over the motor cortex.

Several studies have investigated whether the late BP and late CNV components are identical

or not. Rohrbaugh et al., found that the late CNV may share some generator mechanisms with

BP [66]. Another work [67] found that the late CNV has larger amplitude as compared with BP.

Recent study suggests that the generators of the late CNV component are in the premotor cortex,

while the late BP is generated in the supplementary motor area [68]. Deecke and Komhuber found

that the CNV is larger over the frontal area, and the BP over the parietal areas [62]. Also, they

found that the CNV increases suddenly, while the BP increases gradually. In contrast, various

studies reported that the late BP and late CNV components are identical. For instance, McAdam et

aI., found that late CNV during larger forepreriods had a similar morphology as the late BP [69].

2.4 Related Works in Decoding Finger Movements

Numerous studies over the past seven decades have shown that the neural activities in the motor

cortices recorded invasively or non-invasively provide specific movement information capable of

controlling an output device. In 1951, Bates used a photographic superimposition technique to

record a cerebral potential during voluntary hand movements [71]. He found a negative potential
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Figure 2.5: Example of contingent negative variation with early and late CNVs [70].

starting 20–40 msec after the onset of the EMG, but no potential change was found preceding the

movement. Kornhuber and Deecke were the first who discovered a potential preceding voluntary

movements in 1965 [62]. They found a slowly increasing surface negative potential of 10–15 µV

preceding a voluntary hand and foot movement.

Since the findings of Kornhuber and Deecke, there has been a surge of interest in brain activity

associated with the movement of large body parts, e.g., upper and lower limbs. For instance, Pis-

tohl, et al., predicted movement trajectories of 2D hand position from the ECoG signals recorded

during arm movements [72]. In another MEG study, Wang, et al., decoded intended of wrist move-

ment from MEG signals [73]. Moreover, Zhou, et al., investigated the classification of shoulder

versus elbow movement using EEG recordings [24].

The decoding of fine body parts, such as individual fingers, was also investigated using different

neuroimaging modalities. However, the ability to decode information about fine body movements

from EEG has not been well demonstrated. The following subsections summarize related work

that has been done in decoding finger movements from three different neural electrophysiological

signals: local field potential (LFP), ECoG, and EEG.

2.3.1 DECODING FINGER MOVEMENT FROM LFP. A number of studies have demonstrated

the use of LFP recorded in human and non-human primates to differentiate between different

fingers movements. Baker, et al., implanted Utah electrode array (UEA) and µECoG grid into

the motor cortex of a monkey [74]. The goal of the study was to perform a real-time decoding of
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the monkey’s finger movements. The monkey was trained to perform finger flexions and extensions

of the thumb, index, and middle finger. They calculated the average LFP and µECoG spectrum

across trials for a one second window. They also developed a naïve Bayes classifier algorithm to

decode finger movements in real time. The results showed that the decoding performance over all

finger movements in real time was 96%. The result of the averaged spectrogram for LFP indicated

a difference in power in the gamma band across fingers just prior to finger flexion.

Aggarwal, et al., analyzed the LFP recorded from the primary motor cortex (M1) and dorsal

(PMd) and ventral (PMv) premotor areas, while the monkeys making reach-to-grasp movements to

four different objects in space [75]. The purpose of the study was to accurately decode arm, hand,

and finger kinematics during movement. They used a kinematic decoder and trained it to decode

hand end point position and 18 joint angles of the wrist and fingers. Using LFP from up to 16

electrodes, the finger movements were decoded and distinguished from wrist and hand movements

with a 73% accuracy.

Most of the studies about the decoding of finger movements from LFP were done on monkeys

and little work has been undertaken in human. One of these studies has been conducted by Litvak,

et al., [76]. They recorded MEG signals and LFP, simultaneously, in a Parkinson’s disease patient

with bilateral deep brain stimulation electrodes in the subthalamic nucleus (STN). The recordings

were performed while the subjects performed either simultaneous button press with index, middle

and ring finger or index-ring-middle with either left or right hand. The authors studied the power

changes around finger movements onset. They observed an ERD in α and β bands started about 1

second before the movement onset. This ERD was followed by ERS in the same frequency bands

started about 2 seconds after the movement onset. The results also showed ERS in high gamma

band started about 0.5 to 1.5 seconds before button press.

2.3.2 DECODING FINGER MOVEMENT FROM ECOG. Recent ECoG-based BCI studies have

shown promising results in discriminating between different fingers movements. Scherer, et al.,

have shown that thumb and index finger movements can be discriminated from ECoG signals in

both contra- and ipsilateral hand (with average accuracy of 87.8%) [77]. They also found that
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ipsilateral movements induce less activity, particularly in the higher frequency ranges (> 50 Hz),

compared with contralateral movements. In another study, Flamary, et al., proposed a method for

finger flexions prediction from ECoG signals based on switching models base on a single hidden

Markov model (HMM), which have already been successfully used for arm movement prediction

on monkeys, based on micro-electrode array measures [73, 78]. The proposed model consists of

two blocks. The first block estimates which finger is moving and the second block predicts the

movements of all other fingers. They achieved a correlation of 0.46 between the feature extracted

from the ECoG signals and the finger flexions using a linear regression.

The cortical power spectrum changes in the ECoG signals during finger movements have been

investigated as well. Miller, et al., studied the broad-spectral change in the frequencies between

5-200 Hz [79]. The results showed that there is a decrease in power at lower frequencies (<

40 Hz) before the finger movement onset and a power increase at higher frequencies (> 40 Hz).

Furthermore, they found distinct representations of different fingers in cortical area. However,

Schieber and his colleagues have shown that there is an extensive overlap between the activated

neurons with movements of different fingers [80]. In addition, Wang, et al., have observed a mixed

representation between index and thumb fingers in ECoG signals [101].

The work of Samiee, et al., focused on finding the best algorithm to classify between individual

finger movements using ECoG signals [81]. The authors compared three classification algorithms:

Fisher Linear Discriminate (FLD), linear Support Vector Machine (SVM) and k Nearest Neighbour

(kNN). They extracted different features from the data and calculated the classification accuracy

for each feature. Theses features include statistical features (mean and variance), frequency trans-

form related features (discrete sine transform (DST), discrete cosine transform and fast Fourier

transform (FFT)), parametric model related features (Auto Regressive Model), and energy at dif-

ferent frequency bands (δ, θ, α, and β). They also used principal component analysis method for

feature extraction and scatter matrix method for feature selection. The results showed that FLD

has better accuracy (45%) compared to the other classifiers.
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Another work, which investigated the possibility of decoding the time course of the flexion

of individual fingers using ECoG signals in humans, was conducted by Kubanek,et al., [25]. The

study aimed also to localize the sources of different fingers movements in the brain. The subjects

were asked to flex and extend specific individual fingers in response to visual cues. 384 features

were extracted using 100-ms time windows from the ECoG signals. The results showed that it is

possible to accurately distinguish between different fingers movements using ECoG signals. The

maximum classification accuracy between fingers was achieved 90.6%. Furthermore, the results

provide strong evidence that the Local Motor Potential (LMP) and amplitudes at high gamma

frequencies (> 50 Hz) over motor cortex area are associated with different changes for different

fingers.

Other studies have attempted to design real-life application of ECoG BCI by detecting and

classifying finger movements online. One such study tried to control individual prosthetic fingers

by using high gamma responses recorded with a high-density ECoG array [26]. They performed

three kinds of experiments: vibrotactile stimulation (to control sensory feedback), finger tapping

(was done offline to collect training data for online finger decoder and for offline analysis), and

online testing. LDA classifier was used in the study. When specific finger movement is detected,

a command is sent to the prosthetic limb and the corresponding finger is flexed at fixed velocity.

The authors used the 5-way individual finger classifications to evaluate the performance of the

prosthetic limb control. The results showed that the individual finger prediction accuracy reached

81%. Moreover, the results indicated that the somatosensory areas were activated before movement

onset.

2.2.3 DECODING FINGER MOVEMENT FROM EEG. Recent studies have shown that the EEG

signals may contain information about planning and execution of real and imaginary finger move-

ments. The study of Stankevich, et al., aimed to classify real and imaginary finger movements

using EEG signals [82]. The EEG signals were recorded from 19 electrodes. They converted the

recorded EEG data to current source density to reduce the effect of volume conduction on the EEG

signals. They also calculated changes in EEG power using Morlet wavelet transform. A two-level
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committee of classifiers based on SVM and artificial neural networks was developed and used for

classification. Moreover, two features were selected for classification: the area under the curve

and the curve length calculated in a sliding window. In their study, the EEG power changes during

real finger movements showed an ERD in the β frequency band prior the movement onset. Similar

pattern were observed in during imaginary finger movements, but less pronounced. The average

accuracy of four-class classification of the imagination finger movements reached 50 ± 7% for the

pair of sites F3-C3 and 46 ± 11% for the pair of sites C3-Cz.

Hayashi, et al., [83] reported the results of predicting real and imaginary finger (thumb, in-

dex, middle and little) movements through the use of EEG. They studied the feasibility of using

temporal changes in frequency spectrum power of EEG signals as a feature to discriminate be-

tween fingers by LDA during right hand finger flexion-extension and motor imagery of the task.

The classification accuracies were calculated for three frequency bands (α, β, and γ) as well as

the combination of those bands. The results showed that the highest accuracy was 61.13% on

index-middle classification in motor imagery task, while the highest accuracy was 67.39% on

thumb-middle classification in motor real task. The results also suggested that using the combined

features of α, β, and γ could yield significantly increased classification accuracy between fingers

in both motor real and imagery tasks.

Previous studies have focused on developing and applying algorithms to enhance the spatial

resolution of the EEG signals and hence increase finger classification from one hand. For instance,

Cerny, et al., applied common spatial filter (CSP) on EEG signals recorded during voluntary move-

ments of thumb and little fingers [84]. They used Hidden Markov Model-based classifier to classify

between thumb and little finger flexion movements. The best classification accuracy obtained was

63.8% ± 4.9%. Additionally, the results did not show any significant improvement in the classi-

fication accuracy of CSP when compared the classification accuracy achieved by Laplacian filter

(61.9% ± 5.2%).

A few recent studies have investigated several EEG features in discriminating individual finger

movements from one hand. A comparative study of three EEG features, including projections on
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spectral principal components (PCs), ERD/ERS in α and β bands, and temporal data, in decoding

finger movements shows that the use of the first three PCs as a feature can yield the best decoding

accuracy (45.2%) among all other EEG features. Also, the results suggested that combined features

could improve the discrimination of individual fingers movements.

2.5 Chapter Summary

This chapter gives background information and reviews previous work related to topic of this

dissertation. The first section of this chapter introduces two classification algorithms, LDA and

ANNs, which were used in this research to classify individual finger movements from EEG record-

ings. The classification of individual finger movements from one hand requires a good SNR. More-

over, the representations of different fingers in the sensorimotor cortex are largely overlapped,

which necessitate high spatial resolution to extract reliable control signals that originate from

relatively small brain regions. Conventional EEG recorded with disc electrodes has two major

drawbacks including low SNR and poor spatial resolution. These shortcomings impose difficulties

when using non-invasive EEG to classify individual finger movements from one hand. TCREs have

been shown to have significantly better SNR and spatial resolution compared to EEG with conven-

tional disc electrodes. This superiority to conventional disc electrodes has motivated us to use

the TCREs to decode different finger movements from one hand. The second part of this chapter

describe the TCREs in more details. The main two types of the MRPs, which are Bereitschaftspo-

tential and contingent negative variations, are discussed in the third section of this chapter. The last

direction of this chapter reviews the previous works in decoding finger movements using different

techniques: LFP, ECoG, and EEG.
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Chapter 3

Methodology

3.1 Experiment Protocol and Data Acquisition

The experimental protocol used in this study is shown in Figure 3.1. Thirteen right handed sub-

jects (12 men, 1 woman; mean age 27.77±10.05 (SD)) performed real and imaginary finger move-

ments according to visually presented cues. The tri-polar-EEG and conventional EEG recorded

from four electrodes (Cz, C1, C3, and C5) were placed at different locations according to the 10-20

International Electrode Positioning System over the motor cortex, as illustrated in Figure 3.2. The

reference and ground electrodes were placed on the forehead of the subject. The skin-to-electrode

impedance was checked before each experiment and kept below 10 kΩ. The sampling rate was

1000 samples/sec per channel. The recording protocol was approved by the CSU Institutional

Review Board (IRB), and all subjects gave their written informed consent for the study.

During the experiment, each subject was asked to perform two tasks: real and imaginary move-

ments of the right hand fingers. The number of successful trials completed by the subjects for each

finger is shown in Table 3.1. Each trial lasted for 6 seconds. The total duration of the experiment

was 2 hours. A break of 2-3 minutes was introduced each 10 minutes in order to prevent fatigue.

Also, the subject was instructed to avoid eye blinks, swallowing, or any unnecessary movement

other than the required finger movements during the last 4 seconds of the trial. The subjects were

seated comfortably in an armchair with the right arm relaxed and resting on a pillow. To record

the time of movement onset, we designed an electronic circuit using accelerometer, Arduino and

optocouplers, and the data was sampled at 1000 Hz.

Each trial began with a blank black screen at second 0, allowing swallowing or blinking for the

subject. We did not use the first 2 seconds of each trial in any analysis. After that, a visual cue was

presented for 2 seconds to tell the subject which task (real or imaginary) he/she will perform. The

subject was instructed during this time window to relax and avoid any unnecessary movements.
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The EEG data in this time window was used for resting condition. Next, the fingers’ names were

presented on the screen for 2 seconds (index, middle, ring, little, thumb) to tell the subject which

finger movement must be performed. A training period was given before the recording sessions,

and was continued until the subject could conduct the above tasks correctly.

Table 3.1: Number of successful trials for the real movement task.

Subjects Index Middle Ring Little Thumb
1 44 45 42 41 45
2 46 45 45 39 44
3 43 43 43 45 45
4 39 40 45 46 39
5 46 45 46 44 44
6 40 42 42 42 44
7 45 44 46 45 45
8 43 45 45 40 39
9 44 40 46 37 42
10 46 44 43 40 44
11 45 45 42 44 44
12 46 45 44 44 43
13 45 45 43 42 44

Average 44 43.7 44 42.2 43.2
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Figure 3.1: This figure illustrates the experimental protocol. The time window of each trial is 6 seconds.
The first 2 seconds is blank screen where the subject can rest. The next 2 seconds will be used for resting
condition. During this time window, subject will avoid any unnecessary movements. In the last 2 second,
the subject will perform either real or imaginary movement of corresponding fingers according to visually
presented cues.
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Figure 3.2: Illustration of a 128-channel EEG sensor layout with 4 electrodes (in red) which are used in our
study to decode finger movements. The upper left used to compare ipsilateral and contralateral sides. The
upper right used to study only the contralateral side. The bottom used to compute the surface Laplacian on
the EEG recorded with outer ring and compare it to the tEEG.
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3.2 Detection of Finger Movement Time Onset

A variety of approaches have been used to detect finger movements, including datagloves,

EMG, and accelerometer. Although these methods are widely used, they are limited by high cost

and the need for specialist knowledge to use them. We present a new low-cost and accurate system

for measuring of finger movements onset time. The following subsections discuss the components

used to build the system in more details. The electrical connection between the components and

how the circuit works are described in the last subsection.

3.2.1 Arduino

Arduino is a microcontroller-based open source electronic prototyping board which can be

programmed with an Arduino IDE, which uses a basic version of C++. There are different types of

Arduino boards such as Arduino Uno, Due, Mega, Pro Mini, etc. In this research we used Arduino

Uno (Figure 3.3a) and Arduino Pro Mini (Figure 3.3b).

The Arduino Uno consists of 14–digital I/O pins (labeled "Digital 0 to 13"), where 6-pins can

be used as pulse width modulation (PWM) outputs, 6–analog inputs (labeled "Analog 0 to 5"), a

reset button, USB connection, and a power jack. The microcontroller used on the Uno board is

ATmega328P manufactured by Atmel. ATmega328P consists of flash memory of 32KB, RAM

of 2KB, CPU, and Electrically Erasable Programmable Read Only Memory (EEPROM) of 1KB.

The board can be supplied with power either from the USB connector (5V), the DC power jack

(7–12V), or the Vin pin of the board (7–12V).

The Arduino Pro Mini is similar to Arduino Uno, but smaller in size. It also consists of a 6–pin

header which can be connected to an FTDI cable to provide USB power and communication to the

board. The Arduino Pro Mini has only one voltage regulator that operates at 3.3V unlike the Uno

which has a regulator operates at either a 5V or 3.3V. Another major difference between Pro Mini

and Uno is that the Pro Mini runs at 8MHz which is the half speed of the Arduino Uno.
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3.2.2 Optocoupler

Optocoupler, also known as an opto-isolator, is a passive electronic component that allows

the transmission of electrical signals between two isolated circuits by using only light. A typical

optocoupler is usually a 6 pin device that contains a source (emitter) of light (LED) on one side and

a phototransistor on the other side, as shown in Figure 3.3c. The LED receives an electrical signal

and converts it into light. The phototransistor detects the incoming light and generates electrical

energy.

The optocoupler uses an LED emitter with a phototransistor that are separated by an insulating

film within a silicon dome. When a current flows through the LED emitter, the light that falls on

the phototransistor allows a different current to flow through the collector-emitter of the photo-

transistor. When no current flows through the LED emitter, there will not be a collector-emitter

current.

3.2.3 LIS3DH Accelerometer

Accelerometer is a micro-electromechanical systems (MEMS) sensor measures either static

(e.g., gravity) or dynamic (e.g., vibrations and movement) forces of acceleration, which is the rate

of change of velocity of an object. The unit of the acceleration is meters per second squared (m/s2)

or G-forces (g), where 1 g = 9.8 m/s2. In this research we used LIS3DH accelerometer (Figure

3.3d) produced by ST Microelectronics [85].

The LIS3DH is low power, low cost, lightweight, and easy to use triple-axis accelerometer.

Additionally, LIS3DH accelerometer has 12 bit of resolution in a range of ±2 to ±16 g and data

rate up to 5 kHz. Moreover, the LIS3DH accelerometer operates over I2C or serial peripheral

interface (SPI) digital output interface making the sensor particularly suitable for interfacing with

the microcontroller.
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3.2.4 OpenBCI and Wifi Shield Boards

OpenBCI stands for open-source brain-computer interface. It is an affordable and powerful

tool for measuring and recording different bioelectrical signals include EEG, EMG, and ECG.

There are different types of OpenBCI boards, such as Ganglion, Cyton, and Wifi shield boards.

Additionally, all OpenBCI boards have an accelerometer for decoding movement. In this research

we used the OpenBCI Cyton board (Figure 3.3e) and the OpenBCI Wifi shield (Figure 3.3f).

The OpenBCI Cyton board is an eight channel biosensing board with a 32–bit processor. It has

PIC32MX250F128B Micrcontroller with chipKIT UDB32-MX2-DIP bootloader. The OpenBCI

USB dongle is used to connect the Cyton Board to a computer. In the Cyton board, data is sampled

at 250Hz. To sample the data at higher sampling rate, the OpenBCI WiFi Shield is used. The

OpenBCI WiFi Shield transmits the data via Wi-Fi, as opposed to bluetooth when using Cyton,

and has a ESP8266 on-board microcontroller and wireless connection which enables faster data

streaming than the Cyton. The WiFi Shield can stream data at 1000Hz with the Cyton and Daisy

boards and at 1600Hz with the Ganglion board.

(a) (b) (c)

(d) (e) (f)

Figure 3.3: (a) Arduino Uno (b) Arduino Pro Mini (c) Optocoupler (d) LIS3DH accelerometer (e) Cyton
Biosensing Board (f) OpenBCI WiFi Shield
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3.2.5 Schematic Diagram of the Circuit

In this research, a real-time finger movement detecting system has been designed. Figure 3.4

illustrates the circuit schematic for the system and the connection between the components. Two

screens were used. One was used to display the protocol described in Section 3.1 to the subject.

The other screen was used to monitor the signals and the impedance during the recording session.

Three events were detected simultaneously during the EEG recording. The first event corresponds

to the warning stimulus (S1). The second event is for the "Go" stimulus (S2). The third event

represents the data recorded from the accelerometer. Figure 3.5 depicts a three trials of the data

and the events.

The Arduino Pro Mini is connected to a computer via FTDI USB-to-serial cable to provide

USB 5V power to the Arduino board and to transfer the data between the computer and Arduino.

The other side of the cable is terminated with a 6-pin connector with the following pinout: RTS,

RX, TX, 5V, CTS, GND. These 6-pin headers were connected to the pins on the Arduino board.

The Arduino Uno was mainly used to detect the time onset of the S1 and S2 stimulus as follows.

Pyfirmata module in Python was used to write data to digital pins 3 and 5 on Arduino Uno (see the

code in Appendix). When the S1 stimulus starts, the digital pin 3 goes from 0 (low) to 1 (high)

state. Similarly, when S2 stimulus begins, the digital pin 5 goes from low (0) to high (1) state.

The output of digital pins 3 and 5 are connected to pin 1 (anode of photodiode) on two separate

optocouplers. An external 100Ω resistor was used between the Arduino and the optocoupler to

drive a current of about 38 mA to the emitter side of the optocoupler ((5V-1.2V)/100Ω = 38mA),

where the maximum input current must be less than 60 mA according to the Optocoupler datasheet.

Pin 2 on the optocoupler was connected to the ground. On the other side of the optocoupler, pin

5 receives a 3.3V from the OpenBCI wifi shield board. A resistor of 1kΩ was used to limit the

collector current to be less than 50mA ((3.3V-1.2V)/1kΩ = 2.1mA). The ground side (pin 6) is

connected to the ground of the OpenBCI wifi shield board. In addition, digital pins D11 and D12

on the OpenBCI wifi shield board are connected to pin 5 on the optocoupler.

34



When S1 or S2 stimulus starts, a 5V pulse is sent from the USB port to the Arduino Uno.

Consequently, pin 3 or 5 switches from low to high state. When they switch from the low to

high state, a current flows in the photodiode. As a result, an infrared light from the photodiode will

come on and fall on the phototransistor. The phototransistor then goes into conduction mode which

means that there will be a current flow between the collector and emitter of the phototransistor.

Finally, the D11 or D12 on the OpenBCI wifi shield board will receive a power input from the

output of the phototransistor and switches from low to high state.

The LIS3DH accelerometer is connected to the Arduino Pro Mini using I2C wiring as follows.

Vin pin is connected to the Vcc pin on the Arduino Pro Mini. The SCL pin is connected to the I2C

clock SCL pin on your Arduino Pro Mini. Finally, the SDA pin is connected to the I2C data SDA

pin on the Arduino Pro Mini. Digital pin 9 is set to be an output and the ground is connected to

the ground on the Arduino Pro Mini. Only the value of y-axis was measured. The accelerometer

is very sensitive, so a thresholding technique was used to detect the movement only when it is

required. The source code used to program the accelerometer is shown in Appendix.

When the y-axis value exceeds the threshold, the pin 9 goes from low to high. A resistor of

100Ω is connected between the output of pin 9 and the input of the optocoupler (pin 1) to limit

the current in the circuit. The anode of the photodiode on the optocoupler receives a voltage pulse

from pin 9, and hence the photodiode emits light and an emitter-collector current flows on the

phototransistor. The output of the emitter of the phototransistor is connected to pin D17 on the

OpenBCI wifi shield. When the emitter-collector current flows, the D17 switched from low to high

state.
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Figure 3.4: The circuit schematic for system designed for detecting finger movement onset.
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Figure 3.5: This figure shows three trials (each trial is 6 sec). Three different events can be seen. The first
event corresponds to the warning stimulus (S1). The second event is for the "Go" stimulus (S2). The third
event represents the data recorded from the accelerometer.

3.3 Pre-processing of MRP signals

Figure 3.6 illustrates the pipeline for processing the MRPs in this study. First, we collected

tri-polar EEG and conventional EEG simultaneously using four tri-polar concentric ring elec-

trodes [86]. After acquiring the EEG signals, a 60 Hz notch filter was applied to the data to

remove the power-line noise. Then, the EEG data was passed to a high-pass filter with a cut-off

frequency of 0.3 Hz. In the MRP studies, the EEG signals are usually filtered using band-pass filter

from 0.3 to 30 Hz since the movement-related information is found to be in this range. However,

previous studies using ECoG electrodes has shown that there are high gamma band activity gener-

ated prior and during movements [87]. In addition, it was proven that the TCREs can detect higher

frequencies oscillations than the conventional disc EEG electrodes [59]. Therefore, we studied the

possibility of detecting these high frequencies from the scalp using the TCREs.

The next step was to examine the data visually to see what type of artifacts are present in the

data. Then, bad channels were identified and rejected. To further increase the SNR, the EEG
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signals were passed to a spatial filter which is a common average reference (CAR). The CAR is

calculated by subtracting the average EEG potentials of total N channels at sample point t from the

potential V (n, t) at channel n and that sample point. The formal equation is given as follows [37]:

VCAR(n, t) = V (n, t)−
1

N

N
∑

i=1

V (i, t) (3.1)

where VCAR(n, t) is the common average referenced potential at channel n and sample point t.

After applying the CAR, we inspected the data visually and rejected large artifacts (EMG,

eye movements, etc.). The last step in this pipeline is to run an algorithm called independent

component analysis (ICA) to identify and reject components that contain physiological or non-

physiological noise not caused by EEG dynamic. The ICA is a blind decomposition that finds

maximally statistically independent variance in the EEG. It is used for identifying and remov-

ing common artifacts (such as eye blinking), electrooculogram (EOG), electrocardiogram (ECG),

electromyogram (EMG) components. ICA method implemented in the EEGLAB toolbox [88] was

used, and 1-2 artifact-related independent components were rejected in each subject.

Okano and Tanjis [89] recorded neuronal activity prior to externally triggered movements.

They observed short-lead activity (late CNV component) which occurred within 480 ms prior to

movement onset. This short-lead activity was observed in neuronal recordings in the supplemen-

tary motor area (SMA), premotor cortex, and primary motor cortex (M1) and prior to triggered

movements. In another study, Shima, et al., [90] reported that the late CNV component occurs 500

ms to 2 s prior to visually triggered movement in single cell recordings in the anterior cingulate.

Based on these observations and other studies, the EEG data were segmented into epochs of 2 sec

duration starting 1000 ms before and 1000 ms after the onset of a finger movement.
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Figure 3.6: Preprocessing pipeline used to prepare the EEG data for analysis.

3.4 Calculation of Signal-to-Noise Ratio

The signal to noise ratio (SNR) has been defined as the ratio of the signal power to the noise

power. In this study, we followed Klug, et al., [91] method to calculate the SNR for each tri-polar

and conventional electrode using the following equation.

SNR =
Epeak

Enoise

=
(1/p)

∑p

i=1
x2
i

(1/n)
∑n

j=1
x2
j

(3.2)

where

SNR: signal-to-noise ratio;

E: energy;

xi: amplitude of the filtered signal (CAR and ICA) at sample i;

p: number of points in the peak;

n: number of points in the noise;

Figure 3.7 illustrates the MRP signals recorded during self-paced right index finger movement

from tri-polar and disc electrodes at Cz position. The red dashed line indicates the movement

onset. This figure shows how the peak signal and noise signal are determined. The peak signal

window was determined as shown by the two blue vertical lines. The peak signal is chosen to be

the pre-movement potential (before the movement onset) and the post-movement potential (after

the onset). The remaining-activity is considered the noise signal.
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Figure 3.7: MRP signals recorded from (A) tri-polar electrodes and (B) conventional electrode at the CZ

position. Vertical dashed red line indicates the movement onset.

3.5 Measuring the Interdependency Between Neighboring Elec-

trodes

We used two different techniques to measure the level of interdependency between different

locations for the two electrode systems. The first technique is the Mutual information (MI). The

MI is a measurement technique used to measure the statistical dependencies between random data

variables. It was first introduced by Shannon [92]. If two random variables are strictly independent,

the MI is zero. A binned process approach, which is the most common technique for estimating

MI more precisely, was used for calculating the MI. The continuous valued observations are first

partitioned into bins of finite size and then the number of points that fall within each bin is counted.

The MI was calculated as follows [93, 94].

I(Xi, Xj) ≈ Ibinned(Xi, Xj) =
∑

kl

p(k, l)log(
p(k, l)

pxi
(k)pxj

(l)
) (3.3)

where pxi
(k) =

∫

k
dxiµxi

(xi), pxj
(l) =

∫

l
dxjµxj

(xj), and p(k, l) =
∫

k

∫

l
dxidxjµ(xi, xj) and

∫

k

means the integral over bin k. pxi
(k), pxj

(l), and p(k, l) are calculated by

pxi
(k) = nxi

(k)/N (3.4)

pxj
(l) = nxj

(l)/N (3.5)
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p(k, l) = n(k, l)(l)/N (3.6)

where nxi
(k) is the number of points falling into the kth bin of Xi, nxj

(l) is the number of points

falling into the lth bin of Xj , n(k, l) is the number of points within their interaction, and N is the

total number of points in a window.

In this research, MI between each electrode for the two electrode systems (tri-polar and disc)

were calculated with a custom Python script. Previous studies have shown that decreasing the MI

improves the classification with fewer numbers of electrodes [94].

The second method used to measure the interdependency is the coherence, which is a tool for

describing the relationship between different signals in the frequency domain. The coherence is

based on the cross-correlation between two signals. The coherence values range between 0 (no

coherence) and 1 (max coherence). In this study, the coherence analysis was used to measure

the independency between EEG signals recorded from different electrodes for both the tri-polar

electrodes and the conventional disc electrodes. The coherence between EEG signals recorded

from all possible pairs of of data channels in the tri-polar and disc systems was calculated as

Cxixj
(f) =

∣

∣Pxixj
(f)

∣

∣

2

Pxi
(f)Pxj

(f)
(3.7)

where Cxixj
is the cross-channel coherence between xi and xj , Pxi

and Pxj
are the spectral density

of xi and xj , respectively, and Pxixj
is the power spectral density of xi and xj .

3.6 Applying Local Hjorth’s Laplacian on the Outer-Ring Sig-

nal

In this study, we aimed to investigate the effect of applying surface Laplacian on the EEG signal

acquired from the outer ring of the TCREs. The estimation of the surface Laplacian is commonly

used to enhance the spatial resolution of the conventional monopolar EEG. There are several meth-

ods available for surface Laplacian estimates. The most common method used is Hjorth’s method.

The Hjorth’s method is obtained by computing the difference between the potential at each elec-
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trode site and the average potential of its nearest four neighbour electrodes, where the distances

between electrodes are equal and the angles built by the electrodes configuration are equal [95].

To estimate surface Laplacian by Hjorth’s method, we used an electrode configuration shown

in Figure 3.2(c). This configuration was proposed by Tandonneta et al., and MacKay [95,96]. The

electrode configuration formed the vertices of an equilateral triangle, where the "nodal" electrode

(C3) was at the center of the triangle and surrounded by three other electrodes. The estimation

of the surface Laplacian by Hjorth’s method as modified by MacKay is given by the following

equation.

Vlap =

{

4

3
[3VN − (VA + VB + VC)])

}

/d2 (3.8)

where Vlap is the potential at the nodal electrode computed with Hjorth’s method, VN is the po-

tential recorded at the nodal electrode, VA, VB, VC are the potentials recorded at the surrounding

electrodes, and d is the distance between the nodal and the surrounding electrodes. We compared

the signal-to-noise ratio and the mutual information for the tri-polar concentric ring electrodes,

disc electrodes with Hjorth’s Laplacian, and conventional disc electrodes. The results are shown

in the next chapter.

3.7 Classification Procedures

The Linear Discriminant analysis (LDA) and Artificial Neural Networks (ANNs) classifiers

were chosen for classification. For LDA classifier, the classification accuracy was calculated by

five-fold cross validation, where the data were split up into five subsets, with each subset used

for testing once while the remaining four subsets were used for training the classifier. Before

classification, the segments and the corresponding labels were randomly permuted. Then the data

was randomly partitioned into training and testing sets in the ratio of 80:20. Next, the feature data

and its labels in the training set were used to train the LDA classifier. This procedure was repeated

30 times to evaluate the decoding accuracies. After training the classifier, it was used to predict
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labels of segment data in the testing set. The decoding accuracy was calculated as the average

percentage of correctly classified trials in all five folds.

For ANNs classifier, the data was partitioned into training, validation, and testing partitions.

To do this, a five-fold cross validation was performed. The ANNs classifier was trained on the

training set and then evaluated on the validation set. The accuracies on the validation set were

calculated and used to choose the number of hidden units. Multiple hidden layers were tested on

the validation set. We observed that the validation accuracies were the best at number of hidden

units equal to 10. We also tested different number of units in each layer. We observed that the

best ANNs structure that lead to best accuracy is as follows: 10 hidden layers, 20 units in the first

layer and 8 in each of the following 9 layers. The network was trained for 50 iterations, which was

chosen by the validation accuracies result.
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Chapter 4

Results and Discussion

In this chapter, the results of the experiments we outlined in Chapter 3 are presented and dis-

cussed. In the first section, the results of analyzing and comparing the MRP signals recorded using

TCREs and disc electrodes are discussed. This section also discusses the results that have been

obtained after applying the Hjorth’s Laplacian on the outer-ring signal, as well as the comparison

with TCREs and disc electrodes. In addition, this section provides and discusses the results of

MRPs during contralateral and ipsilateral movements, as well as real and imagined movements.

In the next two sections, the signal-to-noise ratio (SNR), mutual information (MI), and coherence

of the MRP signals recorded with TCREs and disc electrodes are compared. We also study and

evaluate two types of EEG features, including temporal EEG data and spectral power increases

and decreases in both α and β bands during individual finger movements from one hand, and the

results are presented in Section 4. Section 5 provides a comparative analysis of ERD/ERS between

TCREs and disc electrodes. Finally, we report and discuss the results of applying LDA and ANNs

classifiers to the datasets in the last section.

4.1 Movement-Related Potentials

Two data sets recorded during self-paced and cued-paced conditions are presented and dis-

cussed. The first data set consists of tri-polar EEG (tEEG) and conventional EEG (cEEG) recorded

from one subject using four electrodes (Cz, C1, C3, and C5) over the contralateral motor area

during self-paced movement (finger tapping). The experiment was conducted in the Neuro Re-

habilitation Laboratory at the University of Rhode Island. The second data set consists of tEEG

and cEEG recorded from 13 subjects using the same electrodes. The electrodes were placed on

the scalp using three different montages as shown in Figure 3.2. However, the subject followed

the proposed method explained in Section 3.1. The experiment was conducted in the EEG Labora-
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tory at Colorado State University. Two different movement-related potentials (MRPs) components,

Bereitschaftspotential (BP) and contingent negative variation (CNV), were recorded and analyzed.

Figures 4.1 and 4.2 show grand averages of movement-related potentials (MRPs) waveforms at

four electrode sites recorded over the contralateral motor cortex during self-paced, voluntary right

index finger movement. The data in Figures 4.1 and 4.2 was not filtered by CAR or ICA and no

trials were removed. The two main components of the MRP, pre-movement peak (pre-MP) and

post-movement peak (post-MP), are observed in both tEEGs and cEEGs. The pre-MP and post-

MP differ in latency and topography. The waveforms of the MRPs recorded from the TCREs show

significant differences in the relative size of its components depending on the site of recording.

These differences were not seen in the MRPs recorded from disc electrodes, Figure 4.1(b).

The pre-MP is a negative deflection preceding the movement onset. We can see clearly in

Figures 4.1 and 4.2 that its amplitude decreases as we move toward the temporal electrodes sites.

For instance, the pre-MP at C1 is approximately 50% of its amplitude at Cz. Starting with a

negative deflection at about 250 ms before the movement onset, the pre-MP peaked in Cz at about

12 ms after the movement onset, followed by a positive deflection starting approximately 30 ms

after the movement onset. The post-MP component follows the movement onset. Its amplitude

decreased toward the temporal electrodes. Mostly, it was absent in the channel posterior to C3

(e.g., C5). The post-MP peaked in Cz at approximately 80 ms after the movement onset. At the

time of finger movement onset, pre-MP decreases to about 30-40% of peak amplitude, followed

by a positive deflection starting approximately 50 ms after the movement onset.

From Figure 4.1, we can see that contralateral index finger movements elicited MRPs with

significantly larger amplitudes of the BP recorded from TCREs compared to the BP recorded

from the conventional disc electrodes. Moreover, the BPs in the tEEG (Figure 4.1) are more

distinguishable and have less noise as compared to those in the cEEG. This result shows that the

TCREs provide higher spatial resolution than the conventional EEG electrodes. In addition, these

findings suggest that the TCREs detect the MRPs more precisely.
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It has been shown that if the conventional electrodes are placed any closer on the brain surface

than about 4 cm they will see the same signal. However, the MRPs, as shown in Figure 4.2, are

quite different among the tEEG electrodes (left column), even though they are placed close on

the brain surface. To improve control of BCIs we need to improve the EEG spatial resolution.

According to our results we hypothesized that using TCREs non-invasively is adequate to detect

brain activity that will decode the movement of fine body parts such as finger movements with high

accuracy.
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(a)

(b)

Figure 4.1: Grand averages of the Movement-related potentials (MRPs) preceding and accompanying the
execution of index finger movement recorded from tri-polar ring electrodes (a) and conventional disc elec-
trodes (b). Epoch length was 2 sec, starting 1 s before and ending 1 sec after onset of movement onset.
These MRPs are averages of 60 trials. The vertical line indicated the movement onset.
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Figure 4.2: Movement-related potentials (MRPs) during a self-paced finger movement task. The conventional EEG see the same signal at different
locations. In contrast, the TCREs show different MRPs. Data are averages of 211 self-paced right index finger movements. Vertical red lines indicates
the movement onset.
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The average waveforms of CNV recorded from tri-polar and disc electrodes during real finger

movements are shown in Figure 4.3 (a) and (b), respectively. The late CNV is clearly seen as

a negative slope during index finger movements at all recording sites in both tri-polar and disc

electrodes. The late CNV, a negative slow potential, started about 1380 ms after the S1, and

gradually increased in amplitude until the movement onset at all recording sites. In the tEEGs,

the late CNV measured at 1380 ms after the S1 was -3.67±1.28 µV at Cz, -2.25±2.02 µV at C1,

-4.05±3.31 µV at C3, and -3.88±1.92 µV at C5 (mean±SD). In the cEEGs, the late CNV was

-3.67±1.28 µV at Cz, -2.25±2.02 µV at C1, -4.05±3.31 µV at C3, and -3.88±1.92 µV at C5

(mean±SD), and and no significant difference of the late CNV amplitude was observed at those 4

sites.

The use of TCREs have been shown to have enhanced characteristics over disc electrodes.

Previous studies have compared different EEG characteristics such as spatial selectivity and SNR

for different electrodes systems, including: TCREs, bipolar concentric ring electrodes, and disc

electrodes. A few of them conducted this comparison on MRPs. Here, we compare the MRPs

recorded from TCREs and disc electrodes. The signal-to-noise ratio (SNR), coherence, and mutual

information (MI) of the MRP signals recorded with the TCREs and disc electrodes were compared.

With tri-polar concentric and disc electrodes, the BPs and CNVs were recognized as slow neg-

ative potentials preceding the movement onset. Figures 4.1 and 4.3 show that the MRPs recorded

using the TCREs are more distinguishable than the disc electrodes. This result was expected as

the TCREs apply surface Laplacian based on the nine-point method which have higher attenua-

tion of global signals, and this attenuation improves the spatial selectivity of the signals. For the

conventional disc electrodes there is not much difference in the signal morphologies noted in all

four locations. These results suggest that the TCREs have the ability to measure more localized

brain activity than the conventional disc electrodes. Since the finger movements activate adjacent

brain regions and elicit close cortical motor, we hypothesized that with the TCREs, it is possible

to record high spatial and temporal resolution of EEG. By increasing the spatial and temporal res-
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olutions of EEG, we can decode different fingers movement from the scalp with high decoding

accuracy.
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(a)

(b)

Figure 4.3: Grand averages of the Movement-related potentials (MRPs) preceding and accompanying the
execution of middle finger movement recorded from tri-polar ring electrodes (a) and conventional disc elec-
trodes (b). These MRPs are averages of 43 trials. The vertical red line indicated the movement onset.
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We also studied the effect of applying surface Laplacian computed by Hjorth’s method on the

outer-ring signal. Figure 4.4 presents monopolar (µV; top), Laplacian computed from Hjorth’s

method (µV/cm2; middle), and tri-polar (µV/cm2; bottom) grand averages of MRPs. Similar

topographic information was observed in all waveforms. A negative wave at C3 site starts about

1300 ms after the S1 stimulus, and peaking about 20 ms before the finger movement onset. The

other waveforms show similar negative wave beginning at the same latency, but peaking at different

time (130 ms before the movement onset). To further examine the effect of the Laplacian on the

outer ring signal of the TCREs, we compared the SNR and mutual information for the different

electrode systems. The results are presented in the following sections.

Figure 4.4: Monopolar (µV; top), Laplacian computed from Hjorth’s method (µV/cm2; middle), and tri-
polar (µV/cm2; bottom) grand averages of MRP for real middle finger movement. Vertical line indicates
movement onset

We studied the temporal EEG changes associated with contralateral and ipsilateral individ-

ual finger movement. Figure 4.5 shows the MRP for both contralateral and ipsilateral ring finger

movement. In recordings above the primary motor cortices (C3, C4) CNV was observed with

larger amplitudes contralateral to the moving finger (C3 > C4). Moreover, the contralateral and

ipsilateral recordings were different from each other in the latency and amplitude of MRPs. Before

the finger movement onset, the contralateral MRP occurred earlier (by 14 ms) than the ipsilat-

eral MRP. The result demonstrates that both contralateral and ipsilateral finger movements can be
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(a) (b)

Figure 4.5: MRP associated with contralateral and ipsilateral finger movement. The CNV is present simi-
larly for movement of either side.

discriminated from EEG signals recorded from a single brain hemisphere. The possibility of de-

coding both contralateral and ipsilateral finger movements would have important implications for

neurorehabilitation, in particular for the use of BCI in stroke recovery patients.

We also studied the possibility of distinguishing movements from rest periods. Figure 4.6

shows the MRP for right thumb movement (blue) versus rest (red). We can see that the amplitude

of the post-MP is higher for contralateral C3 channel located over the sensorimotor cortex than for

rest. This result suggests that we can discriminate between movement and rest in the time domain

as well as in the frequency domain. Classification experiments are described in Section 4.6.

Figure 4.6: Time-course of average EEG trace from channel C3 during rest (in red) and right thumb move-
ment in one subject.

53



The late CNV components related to movement preparation and execution were examined sep-

arately by comparing CNVs associated with imagined and actual finger movements. Figure 4.7

illustrates with data from one subject the MRP of ring finger recorded from tri-polar C3 elec-

trode during real (black) and imagined (red) movement task. The result shows that motor imagery

activates sensorimotor cortex in a similar way to movement execution. Previous studies have

shown that movement imagination and movement execution share a lot of similarity. For instance,

Personnier, et al., found that imagined and real movement follow the same spatial-temporal con-

straints [97]. Also, neuroimaging techniques have shown that movement imagination and move-

ment execution reveal overlapping activity in the cortical areas [98]. These similarities between

movement imagination and movement execution leads to the fact that movement imagination has

been suggested as a promising rehabilitation approach for patients suffering from stroke [99].

Figure 4.7: Grand averages of the Movement-related potentials (MRPs) of ring finger recorded from tri-
polar C3 electrode during real (black) and imagined (red) movement task.

4.2 Mutual Information and Coherence

Mutual information (MI) of the MRP signals recorded with the different electrode systems was

calculated using equation 3.3. Additionally, the MI of the different electrode systems were com-

pared using a single factor ANOVA and Bonferroni tests. Table 4.1 shows the grand averages of
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the MI for each subject for different electrode systems. The MI of the tri-polar and disc electrodes

were statistically compared and the results are shown in Figure 4.8. Furthermore, we compared the

MI between the disc, tri-polar, and the disc with Hjorth Laplacian, and the results are illustrated in

Figure 4.9.

The MRP signals recorded with the TCRE system have significantly less (p < 0.0001 ) MI

between electrodes than the conventional disc electrode system and disc with Hjorth Laplacian

(p=0.003). On the other hand, the result shows no significant difference between disc electrode

and disc with Hjorth Laplacian (p = 0.719). These results suggest that the TCRE data have less MI

than the other two systems even if we apply the Laplacian on the signals recorded from the outer

ring.

Koka, et al, compared the MI between three different electrode configurations: tri-polar, bipo-

lar, and disc electrodes [34]. They found that the MI for TCREs was significantly less (p = 0.0104)

than the other two systems. Koka, et al., suggested that the significance in the decrease of MI may

be improved by increasing the number of channels recorded concurrently.

The MI results showed the interdependency between the neighbouring electrodes in the time

domain. To measure the level of interdependency in the frequency domain, we measured the

inter-electrode coherence. EEG coherence was computed between neural signals recorded from all

possible pairs of electrodes in the tri-polar and all possible pairs in the disc electrode systems using

equation 3.7. The coherence values were compared over the following frequency bands: 1-4Hz

(δ), 4-7Hz (θ), 7-12Hz (α), 12-30Hz (β), 30-60Hz (γ) followed [100]. Table 4.2 shows coherence

values between four electrode pair combinations for tri-polar and disc electrode systems from one

subject at different frequency bands. Figure 4.10 shows the grand average coherence averaged

over 10 subjects at five frequency bands. Figure 4.11 compares the coherence values at various

frequencies between neighboring electrodes for the tri-polar and the disc electrode systems.

The mean coherence between neighboring tri-polar electrodes was found to be 0.6, 0.53, 0.36,

0.24, and 0.15 for δ, θ, α, β, and γ, respectively. Moreover, the mean coherence between neigh-

boring disc electrodes was 0.92, 0.87, 0.78, 0.74, and 0.63 for δ, θ, α, β, and γ, respectively. The
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Table 4.1: Grand averages of MI for different electrode systems.

Disc tri-polar

Subject 1 0.235 0.017
Subject 2 0.310 0.028
Subject 3 0.401 0.022
Subject 4 0.226 0.026
Subject 5 0.198 0.019
Subject 6 0.301 0.022
Subject 7 0.271 0.019
Subject 8 0.288 0.020
Subject 9 0.313 0.022

Subject 10 0.311 0.019

Average 0.285 0.021

coherence was found to decrease at higher frequencies. The coherence of the high frequency band

(γ) recorded by neighboring tri-polar electrodes shows the lower than that of the disc electrodes,

indicating greater signal independence. The lower coherence in the high frequency band between

electrodes suggests that it may reflect a more localized neuronal activity [73]. The disc electrodes

exhibited higher coherence at all frequency bands than that observed in the tri-polar electrodes,

indicating a significant amount of dependence between them for recording neural activity.

The pioneering study by Wang and his colleagues has demonstrated that the coherence between

ECoG electrodes decreases at higher frequency band [101]. Our results suggest that the TCREs

have low coherence between electrodes, especially at γ band, similar to ECoG electrodes. We

suggest, based on the results presented here, that TCREs is a promising recording method for

obtaining high quality signals especially for the BCI based on the high-frequency rhythms.
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Figure 4.8: Box-plot comparing the MI of disc and tri-polar electrodes. ∗∗∗∗p < 0.0001.

Figure 4.9: Box-plot comparing the MI of disc, disc with Hjorth, and tri-polar electrodes. ∗∗p < 0.01.
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Table 4.2: Coherence values between four channels for tri-polar and disc electrode systems from one subject. The coherence values were compared
over the following frequency bands: 1-4Hz (delta), 4-7Hz (theta), 7-12Hz (alpha), 12-30Hz (beta), 30-60Hz (gamma).

Channels Delta Theta Alpha Beta Gamma

Tri-polar Disc Tri-polar Disc Tri-polar Disc Tri-polar Disc Tri-polar Disc

Cz, C1 0.895 0.968 0.821 0.938 0.672 0.887 0.352 0.652 0.129 0.786

Cz, C3 0.568 0.918 0.340 0.849 0.295 0.729 0.136 0.412 0.075 0.633

Cz, C5 0.830 0.892 0.691 0.766 0.471 0.590 0.164 0.231 0.107 0.374

C1, C3 0.612 0.949 0.462 0.926 0.377 0.881 0.262 0.770 0.020 0.757

C1, C5 0.896 0.931 0.801 0.864 0.647 0.757 0.302 0.467 0.124 0.491

C3, C5 0.585 0.932 0.442 0.919 0.362 0.865 0.233 0.676 0.106 0.610

Average 0.731 0.932 0.593 0.877 0.471 0.785 0.242 0.535 0.094 0.609
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Grand averaged cross-channel coherence over all 10 subjects at the different frequency bands
analyzed for tri-polar and disc electrodes.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Coherence analysis for the tri-polar electrodes (black lines) and the disc electrodes (blue lines).
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4.3 Signal-to-Noise Ratio

We used the MRP signals to compare the SNR for tri-polar concentric ring electrodes and

conventional disc electrodes, as shown in Figure 3.7. The SNR of the two different electrode con-

figurations was calculated for the signals at each location using equation 3.2. Table 4.3 and Figures

4.12 and 4.13 show the SNR for the conventional disc and tri-polar electrodes for the real index

finger movement data. It can be seen clearly that the signals from tri-polar concentric ring elec-

trodes have significantly higher SNR than the signals from the conventional disc electrodes. For

the MRP signals, the tri-polar electrode has mean SNR of 4.854 and the conventional disc elec-

trode has mean SNR of 1.115. The tri-polar concentric ring electrodes have higher SNR because

they have higher attenuation of global signals, and this attenuation improves the spatial selectiv-

ity and, as a result, higher spatial resolution [33, 51]. A previous study has shown that the EEG

recorded with the TCRE (tEEG) has about a 4-fold (374%) increase in signal-to-noise ratio (SNR)

as compared with disc signals [59]. These results suggest that using the TCREs will attenuate the

volume conductance effects significantly.

The SNR data was analyzed using a single factor ANOVA test. The SNR of the tri-polar con-

centric ring electrode signals showed significant improvement (p = 5.48E-10, Table 4.4) over the

SNR of conventional disc electrode emulation. This higher SNR provided by TCRE will increase

the ability to extract meaningful information from the recorded signals and therefore simplify the

BCI’s detection and classification task.
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Table 4.3: Averaged SNR for conventional disc electrodes and tri-polar electrodes

Disc Tri-polar

Subject 1 1.220 5.672
Subject 2 1.548 5.344
Subject 3 0.631 5.611
Subject 4 1.105 3.679
Subject 5 0.556 4.644
Subject 6 0.982 3.302
Subject 7 1.390 5.691
Subject 8 1.011 4.998
Subject 9 0.782 4.093

Subject 10 0.921 5.504

Average 1.115 4.854

Figure 4.12: Box-plot comparing the SNR of disc and tri-polar electrodes. ∗∗∗∗p < 0.0001.
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Figure 4.13: Box-plot comparing the SNR of disc, Hjorth, and tri-polar electrodes. ∗∗∗∗p < 0.0001.

Table 4.4: ANOVA table

Source of Variation SS df MS F P -value Fcrit

Between Groups 69.91 1 69.91 142.53 5.48E-10 4.41
Within Groups 8.83 18 0.49

Total 78.74 19

4.4 Evaluation of Temporal and Frequency Features in Decod-

ing Individual Finger Movements

Figure 4.14 shows grand average MRP waveforms from different fingers recorded using tri-

polar (a) and disc (b) C3 electrode during real finger movement task. For all fingers, the late

CNV was clearly seen at C3 electrode site. Those waveforms present similar pattern prior to

the finger movement onset in the disc electrode (b). However, different EEG patterns prior to

the finger movement onset was observed in the tri-polar electrode. This results suggest that we

can use the tri-polar electrodes to predict the intention of the movement of a specific finger from

EEG signals using temporal data. Even though the individual finger representations are known
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to largely overlap, these differences in the late CNV amplitudes from each finger detected by tri-

polar electrode are evidence on the superiority of the tri-polar electrodes to the disc electrodes in

recording more localized EEG activity from the scalp.

The differences in the CNV amplitudes for movements are due to many factors, and some are

mentioned in Section 2.3. The movement of the middle finger is more difficult and effortful than

index finger movements. If we compare the CNV of the index and middle fingers, we can see that

the CNV amplitude for movements of the middle finger is larger than the CNV amplitude for index

finger. This difference was expected since a complex movement would generate a larger ampli-

tude of CNV due to greater activation of SMA as compared to simple movement. Similarly, the

movement of the ring finger is more complex than of the little finger, thus the CNV amplitude of

the ring finger is larger. The figures also show that different fluctuations in amplitudes can be seen

from different finger movements after the movement onset from both tri-polar and disc electrodes.

Because these fluctuation in amplitudes were seen in both electrode systems, we selected the time

window (1 sec) after the movement onset to decode individual finger movements. Based on these

results, we hypothesized that it is possible to classify movements from five fingers using tempo-

ral data as movement-related features with high decoding accuracy, especially with the tri-polar

electrodes.

In this study, we used movement-related spectral changes as features to classify fingers move-

ments and compare them with the temporal EEG features. Particularly, increases and decreases

of the spectral power in α (8-13 Hz) and β (13-30 Hz) bands were utilized as features to decode

individual finger movements from one hand. To estimate the power spectral density (PSD) of EEG

on each channel, we used Welch’s method. We first split the EEG data into a short-time Hanning

window T centered at movement peaks τq, where q = 1,2,...,5 is the time window at different fin-

gers. Then, for each window, the discrete Fourier transform (DFT) was computed. Finally, all the

DFTs were scaled and averaged together as follows [28, 79].
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where Pn(f, τq) is the PSD at frequency f and time τq on channel n, H(t) is the Hanning window,

and T is the window length.

Figure 4.15 shows the averaged α and β power changes from C3 electrode over the contralateral

motor cortex from both tri-polar (a) and disc (b) electrodes. We compared the power changes

between different fingers and between movement data and resting data. The resting data were

selected as 1 sec segments after the S1 stimulus onset. We can see that all finger movements

elicit power decreases (ERD) in both α band and β band compared to the resting condition. Two

identifiable peaks are present in the rest condition, one in the α band at approximately 10 Hz

and one in the β band at approximately 20 Hz. Power in these bands were greater at rest than

during the movement for all fingers. Interestingly, the spectral power changes among different

finger movement conditions can be identified in both α and β bands with the tri-polar electrode.

However, spectral powers changes did not discriminate between different fingers movement when

we used disc electrode.

The high-frequency band (HFB) power (> 35 Hz) is commonly used to differentiate between

different movements because it has been shown that the HFB contains distinct spatial activation

patterns for different body parts [102]. On the other hand, the low-frequency band (LFB) power (α

and β) features are less informative for motor activity, and are not sufficient for good classification

between different body parts. Here, with the tri-polar electrodes, the LFB power can be utilized

as features to discriminate between different fingers movement-associated activations, whereas the

disc electrodes do not.
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(a)

(b)

Figure 4.14: Grand averages of the Movement-related potentials (MRPs) of different fingers recorded from
tri-polar ring electrodes (a) and conventional disc electrodes (b). Epoch length was 2 sec, starting 1sec
before and ending 1sec after onset of movement onset. The vertical red line indicated the movement onset.
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(a)

(b)

Figure 4.15: Averaged alpha/beta power changes from tri-polar (a) and disc (b) C3 electrode.
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4.5 EEG (De)synchronization Prior, During, and After Finger

Movement

A comparison of ERD/ERS between tri-polar and disc electrodes in a real thumb finger move-

ment is given in Figure 4.16. Starting with low frequency changes, pre-response θ-band ERS can

be observed. We can see that thumb finger execution elicits power changes in different frequency

bands. An α and β ERS started about 800 ms prior to the movement onset followed by ERD

is shown in Figure 4.16. In addition, ERD in α band was found during and after the movement

onset. Furthermore, the results demonstrated before the beginning of thumb finger movement an

existence of a 10 Hz ERD. The results also show post-movement β ERS started 100 ms after the

movement onset. These ERD/ERS may be considered to be due to a decrease or an increase in

synchrony of the underlying neuronal populations, respectively. ERD and ERS were visible in all

subjects for real movement and imagined movement.

Movement or preparation for movement is typically accompanied by a decrease in µ and β

rhythms, particularly contralateral to the movement. The ERD around 10Hz can represent an

electrophysiological correlate of activated different cortical areas related to motor preparation [103,

104]. In the present study, the finger movement does not result only on ERD in the upper α (µ)

band, but also in ERS. This enhancement in the α band may be due to the fact that the subject was

receiving a visual input during the experiment. Brechet and Lecasble found a synchronized upper

α (µ) band rhythm during flicker stimulation [105]. Also, Koshino and Niedermeyer reported

an enhanced µ rhythms during pattern vision test [106]. A few studies have reported an α post-

movement ERS, such as in [13].

The β ERS after the movement onset was not strong, and this is because a small muscle mass

is required to move one finger and a small population of cortical neurons is required. However,

for the large body parts such as wrist, the β ERS is significantly large as compared to finger

movement [107]. Another factor affecting the size and amplitude of the ERD is the complexity

of the movement task. Derambure et al., compared the ERD in elderly and young subjects during
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planning of voluntary finger movements task. They found a spatial diffusion of ERD over motor

and premotor areas in elderly subjects compared with young subjects which was limited to the

central regions [108].

Additionally, we can notice the decrease of power in the β-band (16–28 Hz) after movement

onset for the channel from the left sensorimotor region. The results also show a strong induced os-

cillations in γ band prior the movement onset for tri-polar electrode as compared to disc electrode.

Around 60 and 80 Hz, we can see γ ERS started about 800 ms prior the movement onset. Recent

ECoG studies have found that there is a significant γ power increase prior movement onset repre-

senting neural activation beyond somatosensory feedback [109,110]. Similar finding was reported

in [111].
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(a)

(b)

Figure 4.16: Time-frequency map from 45 trials EEG recorded from (a) tri-polar electrode and (b) conven-
tional disc electrode in one subject. This time-frequency map calculated from EEG signals acquired during
a real movement for thumb finger following the experimental paradigm described before.
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4.6 Classification Results

Two classification algorithms were used in this study: LDA and ANNs. We chose these meth-

ods because we wanted to test which classification algorithm, linear (LDA) and nonlinear (ANNs),

will yield to higher decoding accuracies for individual finger movements. In addition, we inves-

tigated two movement-related features, EEG temporal data and spectral features in EEG data, to

discriminate individual fingers from one hand. Furthermore, we performed two statistical methods

to evaluate the performance of decoding individual finger movements using these features. To eval-

uate the performance of decoding individual finger movements from each feature individually, we

compared the classification accuracies obtained by each feature with the guess level (1/5 = 20%)

using one-sample t-test. To further evaluate the decoding performance, we compared the decoding

accuracies obtained by each pair of features using pairwise t-test. Moreover, the performance eval-

uation of the ANNs classifier and LDA classifier are examined using confusion matrices, which

contain information about the true and predicted classifications performed by a classification algo-

rithm and provides the common misclassifications in the classification of EEG signals.

Using temporal EEG and ERD/ERS features from individual frequency bands (i.e., α and β

bands) as features, 80% of the data were selected as the training set and the remaining (20%) as

the testing set. We first classified movements from resting conditions. Movement data and resting

data were combined together with the corresponding labels for fingers. Figure 4.17 summarizes

the decoding accuracies in discriminating movements from resting using α, β, and temporal EEG

as features from tEEG (a) and cEEG (b). For the tEEG, the mean classification accuracy of move-

ments from resting condition achieved by the temporal EEG feature is 84.83%. Spectral powers

on the α and β bands achieved significantly lower classification accuracy than the temporal EEG

feature, 75.27% and 76.65% respectively (p < 0.05, Table 4.5). For the cEEG, the mean classi-

fication accuracy of movements from resting condition achieved by the temporal EEG feature is

70.55%, followed by spectral powers for β at 70.23% and α at 66.62%. The classification accuracy

achieved by spectral powers on the α and β bands are significantly lower than the temporal EEG
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feature (p < 0.05, Table 4.6). Tables 4.5 and 4.6 also show that all features achieved significantly

higher decoding accuracy than the guessing level (p < 0.05).

Table 4.5: Summary of t-test results on decoding accuracies from tEEG using different features, as well as
the guess level (20%).

Temporal data Alpha band Beta band Guess level
Temporal data — 0.0028 0.0068 9.30E-15

Alpha band — — 0.2859 3.89E-13
Beta band — — — 5.22E-14

Table 4.6: Summary of t-test results on decoding accuracies from cEEG using different features, as well as
the guess level (20%).

Temporal data Alpha band Beta band Guess level
Temporal data — 0.0040 0.0046 2.170E-11
Alpha band — — 0.3456 1.20E-15
Beta band — — — 6.45E-17

The results of five-class classification of the motor real and imagery EEG patterns correspond-

ing to the right hand finger movements (thumb, index, middle, ring, and little fingers) of 13 subjects

are presented in Figures 4.18, 4.19, 4.20, and 4.21. Tables 4.7 and 4.8 display the averaged de-

coding accuracies for each feature and for real and imagined finger movements classified by LDA

and ANNs classifiers. The decoding accuracies were calculated from the confusion matrices as

follows.

Decoding accuracy =
Correct predictions
Total predictions

× 100 (4.2)

The TCRE accuracy on average was higher than for the conventional disc electrode. This is

because, as our results showed, the TCREs improve spatial resolution, SNR, and mutual informa-

tion of the EEG signals compared to the conventional disc electrodes. The results suggest that with

the TCRE we can achieve higher decoding accuracy for real movement if we use temporal EEG
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data as feature with the ANNs classifier (70.04 ± 7.68%). Similarly, with the disc electrode, it

achieved highest accuracy with temporal EEG data feature and ANNs (46.13 ± 6.77%). For the

imaginary finger movements, using temporal EEG data with ANNs yielded the highest accuracy

from TCRE (63.33 ± 5.79 %), and similar with disc electrode (34.03 ± 5.03%). The results also

showed that ANNs classifier generated higher classification accuracy than the LDA classifier for

both electrode systems and for the real and imagined finger movement, but with no statistically

significant difference (p > 0.05).

When comparing confusion matrices from different features, the temporal EEG feature shows

less confusions than the frequency-based features. Figure 4.18 shows the confusion matrices for

real finger movement classifications using ANNs classifier. From the TCRE results shown in

Figure 4.18, the most confused finger is the middle finger using the β band, the index finger using

α band, and the little finger using temporal EEG data. From the disc electrode results (Figure 4.18,

bottom), the little finger is most misclassified finger using temporal EEG data or α band, and the

ring finger is the most confused finger using β band.

Similar phenomenon is also observed when using LDA classifier (Figure 4.19) with both TCRE

and disc electrode. The misclassification occurred generally between the adjacent fingers (i.e.,

index vs. middle, ring vs. little). This indicates that the anatomical representation of the fingers

are likely represented by overlapping neural activity. In addition, the results obtained by the TCREs

when we use temporal data as feature show that there is some degree of independence between the

decoded movements of the different fingers, in particular between the neighboring fingers. This

suggests that different fingers movements are more distinguishable when using the temporal EEG

data as feature.

The results also show that the decoding accuracies for most of the fingers with disc electrodes

are close to the guessing level (i.e., 20%), especially for features from α and β bands. Moreover,

the disc electrode results illustrate that thumb and middle are usually better classified than other

fingers. Figures 4.20 and 4.21 show the results of classification of imagined fingers movements.

Overall classification accuracies for imagined movement tended to be lower than for real move-
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ment. The superior classification results for real movements is due to the fact that real movements

generate stronger motor neural activity [112, 113]. However, some studies have shown that when

the subjects are familiar with motor imagery, the classification results for imagined movements

could be better than for real movements [114].

Table 4.7: Decoding accuracies results for different features used to decode real and imaginary fingers
movements using TCRE.

Features Real Imaginary

ANNs LDA ANNs LDA

Temporal data 70.04% 64.20% 63.33% 59.62%
Alpha band 55.57% 53.22% 54.56% 48.46%
Beta band 63.04% 56.38% 55.92% 51.50%

Table 4.8: Decoding accuracies results for different features used to decode real and imaginary fingers
movements using disc electrode.

Features Real Imaginary

ANNs LDA ANNs LDA

Temporal data 46.13% 34.15% 38.53% 34.03%
Alpha band 35.69% 31.3% 30.06% 27.03%
Beta band 31.36% 29.36% 26.70% 26.05%
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(a)

(b)

Figure 4.17: The accuracy in decoding movements from resting conditions using temporal data, α and β

bands from tEEG (a) and cEEG (b).
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Figure 4.18: Confusion matrices of the ANNs classifier for classification of real fingers movements using temporal data, α, and β as features from
TCRE (top) and disc electrode (below). Each row indicates true labels and each column indicates predicted labels.
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Figure 4.19: Confusion matrices of the LDA classifier for classification of real fingers movements using temporal data, α, and β as features from
TCRE (top) and disc electrode (below). Each row indicates true labels and each column indicates predicted labels.
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Figure 4.20: Confusion matrices of the ANNs classifier for classification of imagined fingers movements using temporal data, α, and β as features
from TCRE (top) and disc electrode (below). Each row indicates true labels and each column indicates predicted labels.

78



Figure 4.21: Confusion matrices of the LDA classifier for classification of imagined finger movement decoding using temporal data, α, and β as
features from TCRE (top) and disc electrode (below). Each row indicates true labels and each column indicates predicted labels.
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Chapter 5

Conclusion and Future Works

The purpose of this study was to decode real and imaginary finger movements with brain activ-

ity acquired via non-invasive EEG. We investigated how well real and imaginary finger movements

can be decoded from scalp EEG signals using two different electrode systems: tri-polar concentric

ring electrodes and conventional disc electrodes. The successful decoding of finger movements can

provide extra degrees of freedom to drive brain computer interface (BCI) applications, especially

for neurorehabilitation.

The results show that the TCRE EEG (tEEG) provides approximately a four times enhancement

in the SNR compared to disc electrode signals. In addition, we evaluated the interdependency level

between neighboring electrodes from tri-polar, disc, and disc with Hjorth’s Laplacian method in

time and frequency domains by calculating the mutual information (MI) and coherence. The MRP

signals recorded with the TCRE system have significantly less MI between electrodes than the

conventional disc electrode system and disc electrodes with Hjorth’s Laplacian method. Also,

the results show that the mean coherence between neighboring tri-polar electrodes was found to

be significantly smaller than disc electrode and disc electrode with Hjorth’s method, especially at

higher frequencies. This lower coherence in the high frequency band between neighboring tri-polar

electrodes suggests that the TCREs may record a more localized neuronal activity.

Due to the limitation of the numbers of the TCREs we currently have, we used different mon-

tages to record from different part of the brain. The first electrode placement was done by attaching

all four TCREs above sensorimotor area on the contralateral cortex. We also recorded from the

ipsilateral area (C4 site) and compared the result with the contralateral area (C3 site). We found

that the contralateral finger movements produced more pronounced MRP compared with ipsilat-

eral finger movements. This result suggests the possibility of decoding both contralateral finger

movements from the ipsilateral side of the brain, and this has a great impact in the BCI, in particu-
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lar for stroke patients. The last montage we used was to apply the Hjorth’s Laplacian on the signal

recorded from the outer ring.

To decode different real and imagined fingers movements, we extracted two features from the

EEG signals. The first feature is the temporal EEG data, and the second feature is the spectral

powers in α and β bands. We compared two classification algorithms: LDA and ANNs. The

highest average decoding accuracy of 5-class classification for real movements was 70.04% when

we used temporal EEG data as feature and classified it using ANNs. For the imaginary movements,

the highest average decoding accuracy of 5-class classification was 63.33% when we used temporal

EEG data as feature and classify it using ANNs as well.

This work has a lot of scope for improvement in the future in order to design a BCI application

with high reliability using non-invasive EEG. Firstly, it will be interesting to record with TCREs

from different areas on the scalp to investigate the behavior of the MRPs at different locations.

In the future , these recordings should be repeated with more locations recorded concurrently.

Additionally, with future improvement of the TCREs design, such as designing micro-TCREs, we

can record even more localized brain signals and hence decode different finger movements with

higher accuracy. This hypothesis is based on an ECoG study, where the authors compared between

regular-ECoG and micro-ECoG grids and they found that with the micro-ECoG grid they could

obtain signals with higher spatial and temporal resolution than with the regular-ECoG grid [101].

Additionally, we are planning to implement a cross-subject classifier, where the classifier is trained

across group of subjects and tested on one subject. Currently, the standard practice is to build a

new classifier for each subject. This requires more training time for each subject, and it might even

be necessary to train the classifier every day for the same subject [115]. We will compare between

the classifier performance when it is trained on multiple subjects versus on individual subjects.

To further increase the classification accuracy, we will apply the common spatial pattern (CSP)

on EEG data. The goal of CSP is to find spatial filters that optimally capture modulations of brain

rhythms. The idea of CSP is to find spatial filters such that the filtered signal is maximal for one

class and minimal for the other class [116]. Formally, given per-class average covariance matrices
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∑

c, find the simultaneous diagonalizer V of
∑

n−1
and

∑

n+1
:

V TΣn−1V = D−1 (5.1)

V TΣn+1V = D+1 (5.2)

for diagonal D−1 and D+1 such that D+1 + D+1 = I . This yields a generalized eigenvalue problem

of the form:

V TΣ−1V = DΛV T (Σ−1 + Σ+1)V = I (5.3)

The k smallest and largest eigenvalues in D correspond to k leftmost/rightmost columns in V

(spatial filters) that yield smallest (largest) variance in class -1 and simultaneously largest (smallest)

variance in class +1.

Planned future work in this study includes the implementation of EEG source localization tech-

niques to identify areas associated with different fingers movements. The aim of the EEG source

localization techniques is visualize the effective EEG sources on the subject’s brain surface. In

order to do that, we need to solve the inverse and forward problems of EEG. The forward problem

can be computed given the geometry of the brain/skull/skin compartments, the conductivities of

different tissue types, and the electrode positions. We solve the inverse problem by solving many

forward problems. The mathematical steps for solving the inverse problem are as follow. If we

represent the scalp recorded potentials by X , the current density by S, and the volume conductor

model by L, the inverse problem refers to finding S given known X . This can be solved by solving

the following minimization problem.

min||X − LS||2 (5.4)
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The minimization problem will give us many solutions; therefore, we need to apply some con-

straints to constrain the sources. When we solve the minimization problem correctly, we will have

correct source localization.

The main goal of BCI work is to enable people with neural pathways that have been damaged

by any type of diseases to better control their environment. The potential for meeting this goal

can be demonstrated by controlling the fingers of a robotic grippe by translating the EEG signals

recorded by TCREs into movement commands. This can be done by using simple and inexpen-

sive components such as Arduino, optocouplers, and 3D-printed robotic arm. Our study shows

promising results for the use of brain signals recorded from the scalp using TCREs to be used in

controlling five individual fingers of a robotic prosthetic hand successfully.
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.1 Appendix

Software Listing

This appendix contains code used in this dissertation. The below codes were written in the

Python and C++ programming languages.

.1.1 Accelerometer code

# i n c l u d e <Wire . h>

# i n c l u d e <SPI . h>

# i n c l u d e <Adafrui t_LIS3DH . h>

# i n c l u d e < A d a f r u i t _ S e n s o r . h>

/ / I2C

Adafrui t_LIS3DH l i s = Adafrui t_LIS3DH ( ) ;

c o n s t i n t o u t P i n = 9 ;

vo id s e t u p ( vo id ) {

# i f n d e f ESP8266

w h i l e ( ! S e r i a l ) ; / / w i l l pause Zero , Leonardo , e t c u n t i l s e r i a l c o n s o l e

opens

# e n d i f

S e r i a l . b e g i n ( 1 1 5 2 0 0 ) ;

pinMode ( ou tP in , OUTPUT) ; / / S e t p i n 9 as ’ o u t p u t ’

i f ( ! l i s . b e g i n (0 x18 ) ) {

w h i l e ( 1 ) ;

}

}

vo id loop ( ) {

s e n s o r s _ e v e n t _ t e v e n t ;
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l i s . g e t E v e n t (& e v e n t ) ;

f l o a t y = e v e n t . a c c e l e r a t i o n . y ;

S e r i a l . p r i n t l n ( y ) ;

i f ( y > −0.4) {

d i g i t a l W r i t e ( ou tP in ,LOW) ;

}

S e r i a l . p r i n t l n ( y ) ;

e l s e {

d i g i t a l W r i t e ( ou tP in , HIGH) ;

}

}

}

.1.2 Python code for protocol displaying

i m p o r t t ime

i m p o r t s y s

i m p o r t m a t p l o t l i b

m a t p l o t l i b . use ( ’TkAgg ’ )

i m p o r t m a t p l o t l i b . p y p l o t a s p l t

i m p o r t m a t p l o t l i b . a n i m a t i o n as a n i m a t i o n

i m p o r t numpy as np

from t ime i m p o r t gmtime , s t r f t i m e

i m p o r t s i g n a l

i m p o r t s e r i a l

i m p o r t p y f i r m a t a

S1 = 3

S2 = 5
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board = p y f i r m a t a . Arduino ( ’COM3’ )

boa rd . d i g i t a l [ S1 ] . w r i t e ( 1 )

boa rd . d i g i t a l [ S2 ] . w r i t e ( 1 )

nChanne l s = 8

c l a s s P r o t o c o l ( o b j e c t ) :

# ###### I n i t i a l i z a t i o n #######

d e f _ _ i n i t _ _ ( s e l f , nChanne l s ) :

# C o n s t a n t P a r a m e t e r s

s e l f . nChanne l s = nChanne l s

s e l f . r e s t D u r a t i o n = 2 # s e c o n d s

s e l f . moveCommandDuration = 2 # s e c o n d s

s e l f . moveDura t ion = 2 # s e c o n d s

# S e t up d i s p l a y

s e l f . f i g = p l t . f i g u r e ( ) # f i g s i z e = ( 1 0 , 6 ) ) # ( 3 8 , 2 0 ) )

s e l f . f i g . p a t c h . s e t _ f a c e c o l o r ( ’ b l a c k ’ )

mng = p l t . g e t _ c u r r e n t _ f i g _ m a n a g e r ( )

mng . f u l l _ s c r e e n _ t o g g l e ( ) # t k on ubun tu

s e l f . ax = p l t . s u b p l o t ( 1 1 1 , x l im = ( 0 . , 6 + 1 . 5 ) , y l im =(4 + 2 , 0 . ) )

s e l f . t e x t = s e l f . ax . t e x t ( 3 , 3 , ’ t e s t ’ ,

f o n t s i z e =50 , f a m i l y = ’ monospace ’ ,

c o l o r = ’ w h i t e ’ , v e r t i c a l a l i g n m e n t = ’ bot tom ’ )

s e l f . ax . a x i s ( ’ o f f ’ )

# ###### I n i t i a l i z e t h e a n i m a t i o n #######

d e f i n i t A n i m a t i o n ( s e l f ) :
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" " " I n i t i a l i z e t h e a n i m a t i o n . " " "

s e l f . s t a t e = ’ r e s t ’ # o r ’command ’ o r ’move ’

s e l f . t e x t . s e t _ t e x t ( ’ ’ )

s e l f . e n d C u r r e n t E v e n t = t ime . t ime ( ) + s e l f . r e s t D u r a t i o n

s e l f . rea lMovement = True

r e t u r n [ s e l f . t e x t ]

# ###### Animat ion #######

d e f a n i m a t e ( s e l f , i ) :

" " " Update a n i m a t i o n one s t e p . " " "

now = t ime . t ime ( )

i f now > s e l f . e n d C u r r e n t E v e n t :

i f s e l f . s t a t e == ’ r e s t ’ :

s e l f . t e x t . s e t _ t e x t ( ’ + ’ )

boa rd . d i g i t a l [ S1 ] . w r i t e ( 0 )

s e l f . s t a t e = ’command ’

s e l f . e n d C u r r e n t E v e n t = t ime . t ime ( ) + s e l f . moveCommandDuration

e l i f s e l f . s t a t e == ’command ’ :

boa rd . d i g i t a l [ S1 ] . w r i t e ( 1 )

s e l f . s t a t e = ’move ’

s e l f . t e x t . s e t _ t e x t ( ’Move ’ ) # + s e l f . f i gu reNames [ s e l f . f i n g e r r

] )

boa rd . d i g i t a l [ S2 ] . w r i t e ( 0 )

s e l f . e n d C u r r e n t E v e n t = t ime . t ime ( ) + s e l f . moveDura t ion

e l i f s e l f . s t a t e == ’move ’ :

boa rd . d i g i t a l [ S2 ] . w r i t e ( 1 )
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s e l f . s t a t e = ’ r e s t ’

s e l f . marker = 0

s e l f . t e x t . s e t _ t e x t ( ’ ’ )

s e l f . e n d C u r r e n t E v e n t = t ime . t ime ( ) + s e l f . r e s t D u r a t i o n

r e t u r n [ s e l f . t e x t ]

p r o t o c o l = P r o t o c o l ( nChanne l s )

anim = a n i m a t i o n . FuncAnimat ion ( p r o t o c o l . f i g , p r o t o c o l . an imate ,

i n i t _ f u n c = p r o t o c o l . i n i t A n i m a t i o n ,

r e p e a t = F a l s e ,

i n t e r v a l = 0 . 0 ,

b l i t =True )

p l t . show ( )
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