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ABSTRACT

This dissertation describes the use of cortical surface potentials, recorded with
dense grids of microelectrodes, for brain-computer interfaces (BCls). The work presented
herein is an in-depth treatment of a broad and interdisciplinary topic, covering issues from
electronics to electrodes, signals, and applications.

Within the scope of this dissertation are several significant contributions. First,
this work was the first to demonstrate that speech and arm movements could be decoded
from surface local field potentials (LFPs) recorded in human subjects. Using surface LFPs
recorded over face-motor cortex and Wernicke’s area, 150 trials comprising vocalized
articulations of ten different words were classified on a trial-by-trial basis with 86%
accuracy. Surface LFPs recorded over the hand and arm area of motor cortex were used
to decode continuous hand movements, with correlation of 0.54 between the actual and
predicted position over 70 seconds of movement.

Second, this work is the first to make a detailed comparison of cortical field
potentials recorded intracortically with microelectrodes and at the cortical surface with both
micro- and macroelectrodes. Whereas coherence in macroelectrocorticography (ECoG)
decayed to half its maximum at 5.1 mm separation in high frequencies, spatial constants
of micro-ECoG signals were 530-700 um—much closer to the 110-160 pm calculated for
intracortical field potentials than to the macro-ECoG. These findings confirm that cortical
surface potentials contain millimeter-scale dynamics. Moreover, these fine spatiotemporal
features were important for the performance of speech and arm movement decoding.

In addition to contributions in the areas of signals and applications, this dissertation

includes a full characterization of the microelectrodes as well as collaborative work in which



a custom, low-power microcontroller, with features optimized for biomedical implants,
was taped out, fabricated in 65 nm CMOS technology, and tested. A new instruction was
implemented in this microcontroller which reduced energy consumption when moving
large amounts of data into memory by as much as 44%.

This dissertation represents a comprehensive investigation of surface LFPs as an
interfacing medium between man and machine. The nature of this work, in both the breadth
of topics and depth of interdisciplinary effort, demonstrates an important and developing

branch of engineering.
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CHAPTER 1

INTRODUCTION

Brain-computer interfaces (BCI) blend neuroscience and engineering to physically
interface with brain tissue, process acquired brain activity, and control an external device.
These topics comprise a rapidly expanding field of research as technological advances,
particularly in the areas of electrodes and electronics, have brought contemporary
research efforts ever closer to a chronic, practically useful, fully implantable BCI. Yet,
significant challenges remain as engineering and neuroscience continue to evolve, and
deep collaborations between these traditionally separate fields are more important now
than ever before. Thus, it is in both breadth (electronics, electrodes, and signals) and depth
(strong interdisciplinary collaborations) that this dissertation represents a comprehensive
treatment of BCI topics. The significant contribution of this work is that it is the first
in-depth investigation of cortical surface potentials recorded at the millimeter scale by
nonpenetrating microwires for BCI applications. No less significant, however, is that
the breadth of the work and the close collaborations represented herein demonstrate an
important and developing branch of engineering applied to innovate in new fields.

Among the many choices which must be made in the design of BCI systems,
selecting the appropriate signal to acquire represents perhaps the most central choice, and
governs all other aspects of the system design. Within the spectrum of signal choices,
electrical potentials recorded at the cortical surface (intracranially, but epicortically) are
attractive because they may be recorded without penetrating the cortex but still demonstrate

good signal fidelity due to their close approximation to the underlying neural sources.
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Small, dense grids of nonpenetrating microwires were conceived in an effort to capture
more detailed information from the cortical surface for applications like BCIs. It is these
nonpenetrating microelectrodes, and the surface local field potentials (LFPs) they record,
that form the foundation of this dissertation. Several chapters will be dedicated to exploring
fundamental properties of surface LFPs, characterizing the microelectrodes used to record
surface LFPs, and developing signal processing algorithms to classify and decode activity
from surface LFPs.

An additional and important aspect of BCI research is the design of integrated
circuits which will make possible chronically implantable, wireless BCI systems. Several
techniques for low-power, high-bandwidth digital processing were explored in this
dissertation in the context of the Wireless Integrated Microsystems (WIMS) microcontroller,
a custom 16-bit system with three pipeline stages, 24-bit address space, 32KB of on-chip
SRAM, and a variety of external interfaces. The WIMS microcontroller is a complex
digital system well tested in both simulation and implementation, similar to the type of
controller that may be needed in an embedded BCI for system-level coordination or low-
level computation. One chapter of this dissertation will be dedicated to these techniques
for digital electronics.

The remainder of this chapter will describe relevant concepts and prior work
in the field of BCI research, and briefly introduce the work which will be described
comprehensively in later chapters. Because the topics in electronics which are addressed in
this dissertation are somewhat disjoint to the remainder of the work, they will be discussed
separately and first. Afterward, electrodes, signals, and algorithms for BCI systems will be

discussed. The subsequent chapters of this dissertation will be laid out in a similar order.

Electronics for BCIs

Typical BCI research systems directly tether intracranial recording electrodes to a

suite of electronics for amplification and digitization, effectively confining the patient to
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a hospital bed in an intensive care unit. These systems perform the function of a BCI but
they are physically large, consume large amounts of power, and leave patients vulnerable
to infection. A practically useful BCI should be adaptable to personal transportation and
therefore small and power efficient. Safe, chronic operation precludes the use of a physical
transcutaneous link between electrodes and external hardware to mitigate the inherent risk of
infection in such connections. The advantages of VLSI technology could help to overcome
many of these limitations, since a single, physically small, power efficient system could be
designed to perform digitization, signal analysis, and wireless transmission.

BClIs are an example of a low-power embedded system designed to sense an
environment. This class of systems (e.g., [1-4]) often employs a microcontroller with an
analog front end to digitize and process data from a connected sensor, and typically includes
capability of periodically transferring processed information to another system. Minimizing
power under application-specific performance constraints is fundamental to extending the
battery life, and therefore the utility, of these systems. System-level power management
in digital systems has been the subject of considerable research [5-10], particularly as the
progress of CMOS technology has driven system integration and mobility.

A number of systems incorporating VLSI technology have been designed to
record and communicate neural data (Table 1.1) [11-24]. A related class of systems has
demonstrated using off-the-shelf components for the same purpose [25-27]. The functional
goals of most of these systems are to enable freedom of movement and to avoid permanent
transcutaneous wiring in order to reduce the risk of infection during chronic implantation.
Practically, most of these systems attempt to record and communicate as many channels
of data as possible for as little power as possible. These concurrent design goals are
contradictory and lead to a wide variety of system configurations.

Because wireless operation can consume large amounts of power, many systems
attempt to reduce the sensed data, either by compression or analysis, to reduce the power

consumed during communication. Systems in Table 1.1 which include processing of
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recorded data have focused exclusively on extracting action potential features from the
recorded data. The work of this dissertation diverges fundamentally from the approach of
these systems to focus instead on the development of methods for analyzing the continuous
field potential data. A few systems have been presented in the literature which take this
approach in related fields (see, e.g., [28] for a system for analyzing continuous ECG data).

The electronics of a full BCI system will require mixed-signal design with tight
integration from amplification, filtering, and digitization in an analog front end, to digital
processing and off-chip communication in the backend. While there are many research
opportunities in developing VLSI components for BCls, the relevant portion of this
dissertation has focused on a few specific ideas which could be integrated in future VLSI
implementations of neural interfaces. These topics include a set of instructions which
more efficiently load and store large amounts of data and a method for characterizing
the energy profile of a microcontroller. On their own, these methods are not intended to
represent a comprehensive investigation of electronics for BCI systems. However, they are
representative of the kinds of studies which will need to be incorporated collectively, with
further innovations in mixed-signal circuit designs, to create a system which can process

substantial amounts of data within the power budget of a medically implantable device.

Overview of signals for BCls

Electronics are an important element in BCI systems, but their relevance depends
on acquiring useful signals to process. Brain signals may be recorded at a variety of
spatiotemporal resolutions, from action potentials of single units to the summed activity
of large neuronal populations. Each of these recording scales offers a unique balance
of invasiveness and signal fidelity. Because the neural signal at each recording scale is
different, information-bearing features and corresponding methods of analysis also differ.

Single-unit action potentials (APs) are discrete events with information encoded

in rate, timing, and population statistics. APs constitute a fundamental mechanism of
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communication among neurons and therefore represent perhaps the most direct method
of observing cortical information processing. These events must be recorded by
microelectrodes which penetrate the cortex to rest close to neurons. Firing rates of neurons
have been shown to encode direction of arm movement [29-31] and hand trajectories [32],
and have been used to perform rapid decoding of continuous motor movements [33-35].
Because of the risks associated with implantation in language centers, few studies have
explored the use of penetrating electrodes for speech BCIs. One such study used a glass
electrode filled with a neurotrophic growth factor to encourage axonal growth into the
electrode [36]. Neural signal recorded from this unique electrode has been used to control
a cursor on a computer screen for indirect communication [37], as well as to directly decode
the formant frequencies of speech from neuronal activity in the left ventral premotor cortex
[38, 39].

In contrastto the almost digital nature of single unit activity, the continuous, aggregate
electrical activity of the brain may also be recorded with a variety of invasive and noninvasive
methods. The earliest studies of BCIs used noninvasive electroencephalographic (EEG)
electrodes to target several specific paradigms of neural signals, including slow cortical
potentials (SCP), sensorimotor rhythms (SMR), and the P300 wave [40-46], although
the SMR has been reported to be more easily learned than the P300 or SCP [47]. More
recently, a two-dimensional movement trajectory decode using SMR was performed to
control a cursor in a multitarget selection task, with similar timing, accuracy, and precision
as have been previously obtained using depth electrodes [48].

Similar continuous field potentials may be recorded more invasively with
electrocorticography (ECoG), which refers to the electrical activity of the brain recorded
at the cortical surface. ECoG has been used in the discrimination of finger movements
[49-52] and arm movements [53-56], two-dimensional movement trajectories [57, 58], and
other motor tasks [59, 60]. Researchers investigating speech BCIs with ECoG electrodes

have shown that cortical surface potentials could be used to discriminate between motor and
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speech tasks [60] and different phonemes [61]. In particular, event-related spectral power
increases in the gamma band (30-80 Hz) [62], more temporally and spatially discrete than
desynchronization seen in lower oscillatory bands, may provide spatiotemporal features
well correlated to the production of speech [63-65].

Continuous fields may also be recorded from within the cortex by the same electrodes
used to capture single unit activity. These signals have been called LFPs because smaller
volumes of tissue contribute to the potential formed at the microelectrodes, particularly in
comparison to ECoG and EEG electrodes. Many of the findings in ECoG, for example, that
gamma-band spectral power increases during motor activity, apply equally to intracortically
recorded LFP. In terms of motor-based BCI systems, LFPs have been used in studies
of movement intentions [66], reaching and grasping [67-70], and finger movements [71].
LFPs are a widely observed brain signal and have been further studied in the context of
many other activities which might have BCI application, such as vision [72, 73], audition
[74, 75], attention [76], and pathology [77, 78].

While each of these recording technologies has been used successfully in a brain-
computer interface (BCI), invasiveness and performance requirements should drive the
selection of the best electrode and neural signal for a particular application. In general,
invasiveness should be minimized to the extent that the corresponding signal provides
adequate information content for the application. While most BCIs have traditionally used
either scalp electrodes or penetrating electrodes, ECoG electrodes have attracted more
attention in the last decade for their intermediate balance of signal fidelity and limited
invasiveness. Due to their size and spacing, nonpenetrating microelectrodes may provide
even better signal fidelity for cortical surface potentials. These new electrodes could

provide an even better balance of information content while minimizing invasiveness.



Surface potentials for BCIs

ECoG-based BCIs exploit the proximity of the intracranial electrodes to the cortical
surface to provide higher signal-to-noise ratio and improved spatial resolution than their
extracranial EEG counterparts [79, 80]. These properties have allowed more in-depth
analysis of high gamma modulations during motor tasks, a neural source that has become
a foundational element of modern BCI research. However, millimeter-scale electrodes
and centimeter-scale interelectrode spacing may be too coarse for neural prosthetic
applications [60, 81, 82]. The root of this limitation lies in the size and spacing of clinical
ECoG electrodes relative to the underlying cortical structure for information processing.
One study of ECoG in human motor-sensory and temporal regions found that correlated
gamma modulation was limited to areas covered by only a few (i.e., two) macroelectrodes
[82]; similar findings have been noted in at least one other independent study [60]. The
local nature of these modulations implies the presence of neuronal assemblies working
synchronously to process related types of information needed to generate complex outputs
[83-85]. Multiple subpopulations of neurons, possibly engaged in processing distinct
stimuli, may contribute to the signal recorded by a single millimeter-scale electrode.
Consequently, the rhythmic activity of any one focal area may be obscured in the activity
of the several assemblies contributing to the voltage recorded by a single electrode.

Evidence of the spatial discrepancy between macroelectrodes and microscale
cortical processing was unavailable prior to the design of the clinical ECoG electrode,
and largely irrelevant to the design of electrodes for localizing epileptic foci. However,
nonpenetrating microelectrodes terminated at regular, millimeter-scale intervals have been
designed to record cortical surface field potentials at a higher spatiotemporal resolution.
The tight interelectrode spacing of these microelectrodes closely approximates the local
scale of modulations previously shown to correlate with motor activity [56, 81, 82, 86-89].
Similar microelectrode arrays have been shown to support high temporal- and spatial-

resolution recordings for BCI-like applications [56, 86].
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The signal recorded at the cortical surface consists of the summed contributions
of many neuronal sources located in the underlying region of cortex. Synchrony in and
among neuronal populations is thought to bind the processing of incoming stimuli [90],
representing at least one aspect of the brain’s information processing mechanism and
causing modulation of power in oscillatory bands. This neural activity may be viewed
from a variety of perspectives; for example, spatially localized activity may correspond
to distinct populations of neurons processing similar types of information. Modulation
of power in distinct frequency bands may correspond to the actual processing of stimuli.
Temporally varying features may represent the dynamic response of the cortex to time-
varying inputs and outputs. BClIs should consider the most pertinent information encoded
in each of these domains to properly interpret the dynamics of cortical activity.

A variety of methods for classifying or decoding movement from surface field
potentials have been demonstrated successfully using human and nonhuman primate neural
activity [50-53, 55, 57, 58, 61, 91-95]. Elaborate algorithms have been employed to select
features from neural data, including statistical methods [53, 91], wavelet decomposition
[92], principal component analysis [50], the genetic algorithm [92, 93, 95], system
identification using adaptive filtering [55], and linear and nonlinear regressions [93-95].
Various classifiers including support vector machines (SVM) [94, 95], Kalman filters [53],
statistical significance in difference between features [92], and linear classifiers [51, 93]
have been used. While complex and sophisticated methods may offer slightly improved

results, they often function as a black box, providing little insight into the underlying data.

Conclusion
As outlined previously, the significant contribution of this dissertation is to
demonstrate that cortical surface potentials can be usefully recorded at the millimeter scale

by dense grids of microelectrodes. Thus, the focus of the work was to explore signals
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and algorithms in order to better understand the observable mechanisms of the human
neocortex as, for example, speech is articulated, or an arm is extended to grasp an object.

Data for this work were acquired from human subjects in collaboration with the
Department of Neurosurgery and with the approval of the Institutional Review Board.
Several tasks were designed which engage patients while their neural activity is sensed by
nonpenetrating microelectrodes. For example, a motor task required a patient to move a
mouse on a computer tablet, and a speech task required a patient to repeat articulations of a
single word. While patients performed these tasks, their neural activity was recorded from
surface microelectrodes for later analysis.

Field potentials are typically analyzed in the frequency domain; however, one of
the findings of this work has been that patterns in space and time are at least as important
as those in the frequency domain. Relationships among these dimensions were explored
in some depth in order to understand the nature of the signals as well as the best features
to use for BCI applications. Classification methods were developed using straightforward
clustering techniques on the leading principal components of feature matrices. The Kalman
filter was also explored for proportional decodes.

Although the microelectrodes used in this work are approved by the FDA for use
in human patients, they had not been well characterized previously. The microelectrode
grids were manufactured using the same materials as clinical ECoG electrodes, only with
much smaller interelectrode spacing and exposed metal areas. Electrochemical impedance
spectroscopy (EIS) was performed on the nonpenetrating microelectrodes to evaluate
the complex impedance response. Correlation and coherence were used to explore
spatiotemporal linear relationships of the recorded signals.

The work described in this dissertation represents tightly integrated collaboration
between neuroscience, neurosurgery, and engineering to explore nonpenetrating
microelectrodes for BCI applications. Techniques for processing high-bandwidth sensor

data in low-power digital VLSI systems will contribute to the viable design of a low-
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power, implantable BCI system. Investigation of novel, nonpenetrating microelectrodes
will contribute to capabilities for recording high spatiotemporal resolution surface local
field potentials. Demonstration of classification algorithms for these novel surface LFP
signals will contribute to a better understanding of how the brain’s processing mechanisms
are represented in cortical surface field potentials.

While some novelty is inherent a new and exciting domain of research, this
dissertation also includes significant first-time achievements: for example, the first
published work to classify discrete words from brain activity recorded by nonpenetrating
microelectrodes over motor and speech areas of the cortex. This work also represents the
forefront of exploring the scale of information processing features in the spatiotemporal
dynamics of cortical activity at the cortical surface. In sum, this work represents important
advances in scientific and engineering knowledge to enable interfaces between machines

and the human cortex through high-density nonpenetrating microelectrode grids.
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CHAPTER 2

SELECTED TECHNIQUES FOR LOW-POWER DIGITAL VLSI

Modern VLSI technology enables integration of entire systems in a single chip,
thereby enabling or expanding many applications for research. Among the most compelling
of these opportunities are embedded systems for neural prosthetics. In these systems,
sensors record neural activity that is interpreted on-chip to direct actuation of a prosthetic
device. Chronic in vivo operation in the unique context of a neural interface precludes the
use of large batteries or tethered power supplies; additionally, excessive heat dissipation
could damage surrounding tissue. For these reasons, the components of an embedded neural
interface must be designed and characterized to operate on a limited energy supply in a
heat-sensitive environment. The WIMS microcontroller was designed as a control element
for implantable biosensor systems and has been shown to operate efficiently in previous
CMOS implementations [1, 2]. It is used in this work to explore methods which could
allow more efficient processing of high-bandwidth data in a power-limited environment.

Managing the power requirements of VLSI circuits has been an area of significant
research (e.g., [3, 4]). For many years, CMOS process scaling provided inherent
improvements, as power decreased with the square of supply voltage (which was lowered
with each new process) while increasing only linearly with operating frequency. However,
the increasing contribution of leakage to total system power consumption in submicron
processes has required substantial effort to continue to improve performance while
managing power [5]. Advances have been made at the physical or electrical level such as

high-K dielectrics [6], tri-gate devices [7], and body biasing [8, 9]. Other advances have
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been made at the architectural level, for example, clock gating [10], dynamic voltage and
frequency scaling [11], and parallel execution [12]. Still others have looked at software
level optimizations [13]. As the broad spectrum of topics represented in these studies
illustrates, power optimization is a holistic problem encompassing all aspects of a system
from silicon to software. This work has explored an architectural method for improving

power efficiency, and a CAD analysis technique to aid in power-related design decisions.

WIMS microcontroller

The WIMS acronym stands for Wireless Integrated Microsystems, and refers to
an NSF-funded Engineering Research Center whose goal was to develop microsystems
capable of sensing, processing, and communicating in a fully integrated platform. The
WIMS microcontroller architecture was developed in the context of the WIMS research
effort by students at the University of Michigan, with specific contributions acknowledged
by references in the text of this chapter. Development of the microcontroller continued at
the University of Utah as the program evolved. The scope of work required to design and
implement a pipelined microcontroller in a submicron CMOS process necessitates that it
be a collaborative effort. Contributions of this thesis, as described in this chapter, include
assisting in the implementation of the third generation of the WIMS microcontroller, and
making evolutionary changes to the architecture [14]. Previous students and current peers,
whose collaborative efforts made these contributions possible, are gratefully acknowledged.

The WIMS load-store instruction set architecture (ISA) contains 89 instructions
supporting eight addressing modes and single- and multiword arithmetic, shift, logical, and
control-flow operations. Instructions in the custom ISA were carefully chosen to minimize
decode complexity and power without sacrificing functionality. One level of interrupt and
subroutine support is available in hardware with more available through software control

of the hardware stack.
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A three-stage pipeline provides adequate performance with minimal pipeline
hardware overhead. The pipeline utilizes sixteen 16-bit general purpose registers and
fourteen 24-bit address registers, divided evenly over two windows. The windowing
scheme reduces the register encoding field to enable 16-bit instructions while providing
additional registers for temporary storage. When properly utilized, windowing corresponds
to as much as 19% reduction in power consumption and 30% improvement in performance
compared to a nonwindowed implementation [15].

The memory architecture is a banked style with 32KB of on-chip SRAM split
into four 8KB banks. This allows instruction and data accesses to occur simultaneously
without stalling the pipeline as long as they address different banks. This is easily achieved
with minimal organizational control by the software compiler. In addition, this memory
configuration allows for unused banks to be shut down on a cycle-by-cycle basis when not
being accessed, yielding an overall power savings in the memory.

Considerable power savings in the memory architecture is realized by the addition
of a low-power, 1 kB scratchpad memory. Unlike traditional caches, the scratchpad
memory is a tagless bank of low-power memory managed by the WIMS C compiler. The
scratchpad is intended to contain the most commonly executed instructions or accessed
data, typically found in program loops. Contents of the scratchpad are determined by the
compiler and are not under hardware control, as is typical of memory hierarchy caches. It
is possible to change the contents of the scratchpad memory dynamically by loading new
instructions or data into the scratchpad and resuming program execution. The scratchpad
memory introduces minimal hardware overhead due to the banked memory structure, but

yields significant power savings [16, 17].

Block transfer instructions

Modern neural signal acquisition systems acquire data in staggering volumes. A

typical system might support (at a minimum) 128 channels of data, each sampled 1000 or
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more times per second with 12 bits per sample. For a conservative algorithm, which might
operate on perhaps 0.5 seconds of data, the system must be able to store and process 93.75
KB of data on a continuous basis—a challenge for an embedded system with potentially
limited storage and energy resources. In this scenario, traditional load/store instructions,
which typically copy single words of data, suffer from an inefficient ratio of operational
overhead to work done.

To more efficiently move large amounts of data around the system, the Gen-3
WIMS ISA includes a family of instructions which transfer a variable amount of data to
and from registers, the scratchpad memory, and standard SRAM [14]. The four available
instructions allow relative or absolute addressing for both load and store operations.

Executing a block transfer instruction requires initialization of one 16-bit data
register, one 24-bit address register, and four memory-mapped registers. While this
overhead makes it unlikely that the block transfer will be more efficient than a simple load
or store instruction for small amounts of data, it is expected that for filling or emptying
the scratchpad memory, for example, the single instruction approach will save significant
amounts of energy over the fetch, decode, and execution of many single load or store

operations.

Characterizing energy use

Another factor influencing power consumption in a digital system is the efficiency of
the code which is executed by the microcontroller. The WIMS microcontroller implements
an energy-efficient ISA, but peak efficiency requires awareness of the energy implications
of software-level decisions such as instruction ordering, data flow, and memory access.
A power-aware compiler was designed to generate more efficient assembly code using
the energy profile of the ISA. To evaluate these energy requirements, test cases were
designed to measure the energy required by instructions using similar functional units,

such as add and subtract. The contribution of this dissertation was to measure the energy



24

per instruction of the most recently fabricated WIMS microcontroller, and to extend this
technique to work in simulation.

The method used for determining energy per instruction was first presented in the
context of the Gen-2 WIMS microcontroller [18]. The method was greatly simplified
by the absence of a dynamic caching subsystem in the WIMS architecture. To avoid
underestimating energy by continuously fetching and decoding the same or similar
bytecode, switching activity was modeled by interleaving no-ops between each instruction.
The presence of no-op instructions can also mitigate variance due to data-dependent micro-
architectural operation, e.g., by potentially reducing the occurrence of pipeline stalls.
Instructions using the same hardware, such as add and subtract, were grouped together to
reduce test complexity.

Fast, accurate circuit-level power simulators have made possible the extension of
this method to operate in simulation with some expectation of relative accuracy, if not
absolute accuracy. To achieve the highest correlation between hardware measurements
and simulated measurements, power simulations took into account information about the
layout of the circuit and technology parameters specific to the fabrication process. An
example of this level of modeling is not included here, but is a largely technical process
which may be developed with the assistance of vendor-provided documentation. While
instruction-level power simulations may not provide absolute accuracy, they allow fast,

efficient evaluation of both architecture and software during design and deployment.

Methods
Evaluation of block transfer instructions
Two specific scenarios were designed to analyze the efficiency of the block transfer
instructions. In each case, two test vectors were created: one using a single block transfer

instruction, and one using the traditional combination of load or store instructions.
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The first scenario was designed to find the point at which block transfers become
more efficient than traditional load/store sequences. The test for this scenario transferred
consecutively larger blocks of data (up to 512 bytes, in 16-byte chunks) between the low-
power scratchpad memory and a bank of SRAM. This scenario represents a potentially
frequent operation in an embedded neural interface, which would have to deal with large
amounts of data. An equivalent test using traditional load and store operations would
require each 16-bit word to be loaded into a data register and then stored to the destination
memory address.

A second scenario involved transferring the microcontroller state to the low-power
scratchpad memory prior to entering a standby mode. This test case used either the block
transfer commands or store instructions to copy all registers in a single register window
to the scratchpad memory—a total of 8 data registers, 8 address registers, and 4 auxiliary
registers such as the program counter and link registers. For the load/store equivalent,
no load instruction was needed before a store instruction copied a 16-bit data register to
the scratchpad memory. However, for 24-bit address registers, the data must be copied in
two sequences of 16 and 8 bits from the address register to a data register, and finally to

memory.

Measuring energy per instruction

Two test vectors were required to measure the energy per instruction of a single
family of instructions. A full test vector consisted of the instruction(s) of interest interleaved
with no-op instructions (Fig 2.1). The body of the test was preceded by some overhead
to prepare registers and was followed by a jump back to the beginning of the test. In each
case, a second “boot-up” vector was generated consisting of only the register initialization
and looping instructions. The boot-up energy was subtracted from the full test energy,
with the remainder equal to the energy required to execute a single iteration of the main

body of test code. Then, the energy per no-op instruction, multiplied by the number of



26

loop_start:
// Part A: initialize registers and memory data
1dbi 10, Oxff
I1dbi r1, 0xa0

// Part B: measure current for instruction group
add 10, r1

noop

sub 12, rl

noop

sub r4, r0

noop

// Part C: infinitely loop test case
jmp loop_start

Fig. 2.1. Sample program loop in assembly code

no-op instructions in the main body, was subtracted. Finally, this value was divided by the
number of non-no-op instructions in the main body to give the energy required to execute
a single instruction.

To measure no-op energy, a test case containing hundreds of random instructions
was created. Two versions, with and without interleaved no-op instructions, were run on
the fabricated chip and current measurements were recorded. The energy to execute a
single no-op instruction was determined by dividing the difference in energies between
these two versions by the number of no-op instructions in the first test vector.

Hardware measurements were taken with a Verigy 93000 tester using the 65nm
Gen-3 WIMS microcontroller clocked at 10MHz with a 0.8V supply. Test vectors were
run on the fabricated hardware and current measurements were recorded. The current
measurements were converted to energy measurements using the power supply voltage
(0.8V) and the time to execute a single loop iteration. The method described above was

used to derive energies per instruction family from the recorded measurements.
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Measuring energy per instruction in simulation

While accuracy can be very high when measuring energy per instruction in
fabricated chips, by that point measured results can only be used to improve hardware in
subsequent implementations. The ability to perform such a characterization in simulation
could be a useful tool during the design process, when architectural decisions need to be
made about the format of the ISA and the required hardware. With the availability of high
performance CAD tools, full-chip simulation can be performed with reasonable effort and
provide good accuracy.

Synopsys NanoSim, a fast, cycle-accurate functional Verilog simulator, was used
to estimate power dissipation and calculate the energy per instruction. A value change
dump (VCD) file was generated with ncverilog by simulating test cases with a Verilog
representation of the Gen-2 WIMS Microcontroller [1]. This VCD file was converted to
the VEC format using vcd2vec, a tool included with NanoSim. Post auto-place-and-route
parasitic capacitance and resistance values were extracted directly from GDS files using
Calibre xRC. Vendor-supplied technology parameters for the process, standard cells, and
memories provided accurate simulation models of physical hardware structures.

With a netlist description of the microcontroller, input vectors, and technology
parameters available, NanoSim was configured to run for the exact length of time recorded
in the VCD file. Simulations were run at 100MHz with the core voltage at 1.8V. Energy
was calculated by multiplying simulated current at the VDD node by the time spent in
simulation. Random code with and without no-ops was simulated to obtain the energy
per no-op instruction. All measurements were normalized to the no-op energy to account
for absolute inaccuracies. Overhead due to test initialization (i.e., Fig. 2.1, Part A) was
simulated separately and subtracted from the total test case energy. Next, no-op energy was
subtracted and the result was divided by the number of instructions executed.

The simulations presented here were performed on a different generation of the

WIMS microcontroller than the one used for the hardware measurements. While the
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results shown here cannot be expected to exactly match the hardware measurements, the
trends are valid, and the approach for obtaining energy per instruction from simulations is

demonstrated.

Results
Operational power
The third-generation digital pipeline along with the scratchpad memory and 32KB
of SRAM were fabricated in the IBM 65nm CMOS HVt process through the MOSIS
Educational Program (Fig. 2.2) [14]. Total pad area was 5.86 mm?, and digital logic area
including pipeline and memory was 0.96 mm? Fabricated chips underwent testing on
a Verigy 93000 tester. The minimum operating voltage of the digital logic was 0.7 V at
100 kHz, and at 1 V Vdd, it was functional up to 150MHz. With a core power supply of
0.8V, the chip consumed 350uW at 10MHz. Fig. 2.2 shows the power consumed by the

fabricated chip for several combinations of Vdd and frequency. To describe these results in
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Fig. 2.2. WIMS microcontroller photograph, layout, and power consumption. (Left)
WIMS microcontroller fabricated in 65nm IBM CMOS technology. The top portion of this
panel is a photograph of the fabricated chip, with most transistor features obscured due to
the metallization layer. The bottom portion is a screen capture from the design software.
(Right) Power consumption of the fabricated microcontroller at a number of operational
frequency and supply voltage points.
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practical terms, a 2 g, 20 mAh battery (e.g., QL0020B, Quallion LLC, Sylmar, CA) could
sustain the WIMS microcontroller for 45 hours of continuous operation; a 6 g, 230 mAh

battery (e.g., QL00230B) could do the same for three weeks.

Energy per instruction: hardware results

The method described earlier to calculate energy per instruction was performed
for the fabricated WIMS microcontroller. Based on the recorded current measurements,
instruction counts, and execution times, the energy per instruction group was calculated
with results shown in Table 2.1. These results bring to light several principles that will be
important in programming the microcontroller for low-energy operation.

The energy cost to fetch a 16-bit word was evident in the difference between the
absolute and relative loads, stores, and jumps. The absolute-addressed instructions required
a second 16-bit word in order to specify the full 24-bit address as an operand. Fetching
the extra word corresponded to a 73% increase in energy for the load, 30% increase for the
store, and 48% increase for the jump. Increases of this magnitude warrant extra care in
making the decision to use the convenience of absolute addressing.

Despite the large amount of energy required by a multiply or divide instruction, these
instructions were still more efficient than the corresponding sequence of adds, subtracts,
shifts, compares, and branches in most cases. The exception was when, for example, one
of the multiplicands is close to a power of two and the result could be determined by a
series of shifts and adds. Similar conclusions may be drawn about the efficiency of test-

and-set operations compared to the sum of their subcomponents.

Energy per instruction: simulation results
The simulated instruction energies, normalized to the no-op energy, are shown in
Table 2.1. Although the relative energies were not always accurate, simulation did preserve

architecture-specific trends. For example, multiply and divide required very similar
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Table 2.1. Energy of each WIMS instruction group. Measured data from hardware are
shown in in nJ and normalized to no-op energy; simulation data are normalized to no-op

energy.
Instruction Hardware Hardware Simulated Clock
Groups Energy (nJ) Energy Energy cycles

(normalized) (normalized)

add-sub 0.032 0.84 0.91 1
shift 0.029 0.76 1.00 1
boolean 0.034 0.89 0.94 1
compare 0.031 0.82 0.89 1
multiply 0.567 14.9 17.5 18
div 0.506 13.3 16.9 18
bit 0.102 2.68 2.78 2
load-abs 0.063 1.66 1.84 2
load-rel 0.036 0.94 1.85 1
store-abs 0.087 2.29 1.96 2
store-rel 0.067 1.76 0.90 1
swap 0.027 0.71 0.85 1
branch-nt 0.026 0.68 0.80 1
branch-t 0.091 2.39 2.83 3
jump 0.086 2.26 3.06 3
jmp-rel 0.053 1.39 2.15 2
jump-sub 0.078 2.05 2.19 3
jmp-rel-sub 0.062 1.63 0.78 2
ret 0.063 1.66 2.83 2
swi 0.086 2.26 3.27 2
noop 0.038 1 1 1
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energies to execute, and both required significantly more energy than all other families of
instructions. Simulation also showed the extra energy required to execute absolute stores
when compared to relative stores although this was not evident from the load absolute
and relative energies. The same held for branch taken compared to branch not taken (the
WIMS architecture assumes branches are not taken and so must flush the pipeline for taken
branches), and to a lesser degree for the jmp family of instructions.

On average, the normalized EPI from simulations fell within 30% of the normalized
hardware EPI. There was substantial error in some of the simulated results, however. For
example, returns, software interrupts, load relative, store relative, jump relative, and jump
relative to subroutine all displayed 40% or more error in either direction. It is worth noting
that most of these outliers incorporate relative addressing, a phenomenon which could
indicate, for example, that a block of transistors in the memory controller are difficult to
simulate both accurately and efficiently. It is also possible that software testing may need
to be more extensive, or that fewer instruction types should be included in these tests to get
better accuracy. Excluding these outliers, the simulation EPI results improved to within
16% of the hardware numbers.

As accuracy and runtimes improve, energy simulations will be increasingly valuable
for chip and system design and energy-aware compiler support. During the processor design
phase, the circuit may be simulated for functionality, performance, and energy to address a
growing concern across industry with energy consumption. Using this methodology with
post-layout simulations, instruction energies can be estimated and used to perform late
stage power simulations to verify that the design satisfies the required power specification

prior to fabrication.

Block transfer instructions
Energy was measured during tests transferring between 1 and 32 16-byte chunks

of data using either the new block transfer instruction or traditional load/store instructions.
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These measurements were normalized to the number of chunks being transferred. Fig. 2.3
shows the difference in energy per transferred chunk as a function of the number of chunks
being transferred. These results show that for small amounts of data, a combination of loads
and stores was more efficient than the block transfer (negative value in Fig. 2.3). However,
beginning at just 32 bytes, the block transfer became increasingly more efficient than the
load/store operations. The positive-sloping trend evident in Fig. 2.3 indicates the growing
efficiency of the block transfer instruction as more data is being transferred. This result is
not surprising, since the block-transfer overhead becomes less significant compared to the
memory copy operation.

In the case of saving re