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Improving the recovery of lost motor function in hemiplegic chronic stroke survivors is a critical 

need to improve the lives of these patients. Over the last several decades, neuroprosthetic 

systems have emerged as novel tools with the potential to restore function in a variety of patient 

populations. While traditional neuroprosthetics have focused on using neural activity 

contralateral to a moving limb for device control, an alternative control signal may be necessary 

to develop brain-computer interface (BCI) systems in stroke survivors that suffer damage to the 

cortical hemisphere contralateral to the affected limb. While movement-related neural activity 

also occurs in the hemisphere ipsilateral to a moving limb, it is uncertain if these signals can be 

used within BCI systems. This dissertation examines the motor activity ipsilateral to a moving 

limb and the potential use of these signals for neuroprosthetic applications in chronic stroke 

survivors. Patients performed three-dimensional (3D) reaching movements with the arm 

ipsilateral to an electrocorticography (ECoG) array in order to assess the extent of kinematic 

information that can be decoded from the cortex ipsilateral to a moving limb. Additionally, 

patients performed the same task with the arm contralateral to the same ECoG arrays, allowing 

us to compare the neural representations of contralateral and ipsilateral limb movements. While 



xi 

 

spectral power changes related to ipsilateral arm movements begin later and are lower in 

amplitude than power changes related to contralateral arm movements, 3D kinematics from both 

contralateral and ipsilateral arm trajectories can be decoded with similar accuracies. The ability 

to decode movement kinematics from the ipsilateral cortical hemisphere demonstrates the 

potential to use these signals within BCI applications for controlling multiple degrees of 

freedom. Next we examined the relationship between electrode invasiveness and signal quality. 

The ability to decode movement kinematics from neural activity was significantly decreased in 

simulated electroencephalography (EEG) signals relative to ECoG signals, indicating that 

invasive signals would be necessary to implement BCI systems with multiple degrees of 

freedom. For ECoG signals, the human dura also causes a significant decrease in signal quality 

when electrodes with small spatial sizes are used. This tradeoff between signal quality and 

electrode invasiveness should therefore be taken into account when designing ECoG BCI 

systems. Finally, chronic stroke survivors used activity associated with affected hand motor 

intentions, recorded from their unaffected hemisphere using EEG, to control simple BCI 

systems. This demonstrates that motor signals from the ipsilateral hemisphere are viable for BCI 

applications, not only in motor-intact patients, but also in chronic stroke survivors. Taken 

together, these experiments provide initial demonstrations that it is possible to develop BCI 

systems using the unaffected hemisphere in stroke survivors with multiple degrees of freedom. 

Further development of these BCI systems may eventually lead to improving function for a 

significant population of patients. 
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1 Introduction and Specific Aims 

1.1 Introduction 
A challenge in the treatment of stroke survivors is the restoration of chronically lost motor 

function. A large number of patients experience hemiparesis after stroke, and furthermore, motor 

recovery has been shown to plateau after approximately three months, leaving a significant 

number of stroke survivors chronically impaired (Duncan, Goldstein et al. 1992; Jorgensen, 

Nakayama et al. 1995; Go, Mozaffarian et al. 2014). Therefore, there is a critical need to develop 

methods to restore function after stroke that are independent of the location of the lesion and the 

level of residual motor function. 

We propose that a brain-computer interface system, or BCI, which is a system that uses signals 

recorded from the brain to control a computer system or other external assistive device, can be 

used to restore function after stroke. A large and well-developed body of work has shown that 

neural activity contralateral to a moving limb contains relevant information about motor intent, 

and furthermore, that this neural activity can be used to control a BCI system with multiple 

degrees-of-freedom (Taylor, Tillery et al. 2002; Leuthardt, Schalk et al. 2004; Wolpaw and 

McFarland 2004; Schalk, Miller et al. 2008; Velliste, Perel et al. 2008; Rouse and Moran 2009). 

In patients with unilateral damage to their cortex or the underlying white matter caused by a 

hemispheric stroke, a different control signal would be necessary. In addition to motor signals 

from the contralateral hemisphere that are the focus of most motor-BCI systems, a large body of 

work demonstrates the presence of motor-related activity in the hemisphere ipsilateral to a 

moving limb, both in motor-intact human subjects (Kim, Ashe et al. 1993a; Crone, Miglioretti et 
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al. 1998b; Pfurtscheller and Lopes da Silva 1999; Shibasaki and Hallett 2006; Wisneski, 

Anderson et al. 2008), and after stroke (Weiller, Chollet et al. 1992; Weiller, Ramsay et al. 1993; 

Green, Bialy et al. 1999; Johansen-Berg, Rushworth et al. 2002). This activity in the ipsilateral 

cortical hemisphere has the potential to be used to develop BCI applications for stroke. 

The central hypothesis for this work is that motor signals ipsilateral to the affected hand after 

stroke contain sufficient information to control a BCI system, and furthermore, that these signals 

can be used by stroke survivors to control a BCI system that will improve long-term function. If 

proven correct, BCI systems can be developed that may lead to multiple clinical end points as 

shown in Figure 1.1.  

 
Figure 1.1 Ipsilateral BCI systems for stroke 

A. In motor-intact humans, each hemisphere of the brain drives the opposite-sided limbs. B. After a stroke, hemiparesis can be 

caused either because of a broad cortical lesion or subcortical lesion. However, motor activity in the contralesional hemisphere 

that is related to the planning and execution of ipsilateral limb movements remains intact. C. This ipsilateral motor activity in the 

unaffected hemisphere may be able to drive a BCI system to restore function. D. In addition to chronic device control, a second 

clinical end-point may be to train with a BCI system that drives an external stimulator in order to strengthen contralesional motor 

pathways in the hopes of effecting functional rehabilitation. 

First, BCI systems recording activity from the healthy hemisphere may allow for reanimation of 

the affected limb through the control of external assistive devices. If reliable control over a 

sufficient number of degrees-of-freedom can be developed, long-term control of an external 

assistive device would allow for increased function. Second, pairing BCI control with a relevant 

external stimulation may strengthen existing pathways and lead to improved rehabilitation after a 

stroke. The rationale for this research is that we will develop a greater understanding of the 
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nature of ipsilateral motor activity and its potential use for a BCI system with multiple degrees-

of-freedom by defining the extent and type of information that can be decoded from the 

ipsilateral hemisphere. Furthermore, by both evaluating the ability to use less invasive recordings 

for BCI system development and determining if stroke survivors are able to control a BCI system 

with their motor intentions, we will further establish the technical requirements and the 

feasibility of BCI systems utilizing the unaffected hemisphere in stroke survivors. 

1.2  Specific Aims 

This dissertation will seek to test the central hypothesis and advance the development of 

neuroprosthetics in stroke survivors through the following specific aims: 

Aim 1: Determine the extent of kinematic information related to movements of the 

ipsilateral arm that is present in motor-intact human subjects. The working hypothesis for 

this aim is that electrocorticography (ECoG) signals from motor-intact human subjects, recorded 

ipsilateral to a moving arm, will contain sufficient information to decode kinematics of three-

dimensional (3D) arm movements. 

Aim 2: Determine the extent of separability of the kinematic information encoded by 

neural activity during ipsilateral and contralateral arm movements in motor-intact 

patients. We hypothesize that electrocorticography recordings from a single hemisphere can be 

used to decode kinematics about arm movements of either the contralateral or the ipsilateral 

limb. Furthermore, we hypothesize that the features used to decode arm movements of the 

contralateral and ipsilateral limbs will be distinct in terms of their cortical topography and 

spectral frequency. 
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Aim 3: Evaluate the effect of reducing the invasiveness of electrophysiological recordings 

on the signal quality and extent of information that can be decoded for BCI systems. We 

hypothesize that as we decrease the invasiveness of recording methods, that there will also be a 

decrease in signal quality leading to a decrease in the ability to decode information. We will test 

this in two sub-hypotheses. First, that electroencephalography (EEG) signals recorded from the 

scalp contain significantly less information about motor intent than ECoG recordings from the 

cortical surface. And second, that the human dura will cause more subtle effects on signal quality 

that will be relevant to BCI implementation. 

Aim 4: Determine if stroke survivors can utilize ipsilateral motor signals from unaffected 

cortex to control a BCI system. The working hypothesis is that ipsilateral motor signals (i.e. 

signals from the unaffected hemisphere which are distinct from brain signals associated with 

contralateral movement) will provide sufficient information to enable control of a cursor on a 

computer screen. 

1.3  Dissertation Overview and Organization 
This thesis is divided into six chapters. Chapter 2 places this dissertation into the context of the 

existing literature by providing the background and significance for this research. The motivation 

for developing BCI systems for stroke survivors is provided followed by a review of the role of 

ipsilateral motor physiology in controlling normal motor function and in controlling motor 

movements during recovery from stroke. The chapter concludes by describing existing 

neuroprosthetic systems and their applications in stroke 

Chapter 3 describes the methods and results addressing the first two hypotheses: that ECoG 

recordings can be used to decode kinematics of ipsilateral limb movements, and second, that the 
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neural representations of contralateral and ipsilateral limb movements are separable. Chapter 3 

also uses ECoG recordings to simulate of EEG signals in order to evaluate whether kinematics 

can be decoded non-invasively as described in aim 3. 

Chapter 4 covers the second component of specific aim 3 by evaluating the effect of the human 

dura on the signal quality of ECoG recordings at different spatial scales. The results highlight the 

tradeoff between reducing the invasive nature of electrode implantations and decreased signal 

quality that should be taken into account when designing and implementing BCI systems. This 

chapter is based upon a previously published manuscript (Bundy, Zellmer et al. 2014). 

Chapter 5 tests the final major hypothesis of the work by demonstrating the ability of chronic 

stroke survivors to control a BCI system using neural activity in their unaffected hemisphere. 

The results of this study demonstrate the feasibility for future BCI systems in stroke. This 

chapter is also based upon a previously published manuscript (Bundy, Wronkiewicz et al. 2012). 

Chapter 6 concludes this work with a discussion of the collection of the results presented, the 

implications of these findings, and several potential avenues for further examination based upon 

the findings of these studies. 

  



 

 

6 

2 Background 

2.1 Clinical Significance 
Stroke is the most common neurological disorder and leading cause of serious long-term 

disability in the United States with an incidence of 795,000 strokes per year and a prevalence of 

6.8 million adult Americans who have suffered a stroke (Go, Mozaffarian et al. 2014). Globally, 

approximately 15 million people suffer strokes annually leaving 5 million people per year 

disabled (Mackay, Mensah et al. 2004). Of survivors of stroke, 15-30% are left permanently 

disabled and 20% require institutional care (Go, Mozaffarian et al. 2014). These deficits are 

significant, as recovery from stroke has traditionally been thought to plateau after 3 months 

(Duncan, Goldstein et al. 1992; Jorgensen, Nakayama et al. 1995). While there are a number of 

therapies that have been shown to be effective in improving function after stroke such as 

constraint induced movement therapy (Wolf, Thompson et al. 2010), or electromyogram-

triggered stimulation (Francisco, Chae et al. 1998; Takahashi, Der-Yeghiaian et al. 2008; der-

Yeghiaian, Sharp et al. 2009), these therapies generally require a minimum level of volitional 

motor function, making them unsuitable for some patients. Because of this, the majority of 

patients with complete hemiparesis do not recover any level of function (Kwakkel, Kollen et al. 

2003), and the most significant predictors of upper limb recovery are initial post-stroke measures 

of upper limb impairment (Coupar, Pollock et al. 2012). Therefore, there is a substantial patient 

population affected by stroke in which motor deficits cause significant impacts, not only on 

individual patients and their families, but also on society as a whole. Because of the lack of 

effective methods to encourage functional recovery, particularly in the most severely affected 

patients, there is a critical need to develop novel tools to restore function after stroke. One 

potential way to meet this need is to develop neuroprosthetic systems that can translate a patient's 
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neural activity from the unaffected hemisphere into commands to control an assistive device or 

rehabilitation system. This chapter motivates the use of neuroprosthetics in stroke survivors and 

places this dissertation in the context of the existing body of literature. We begin by providing an 

overview of normal motor neurophysiology with a focus on the role of neural activity in the 

hemisphere ipsilateral to a moving limb. We follow this by describing the changes in motor 

physiology, particularly within the unaffected hemisphere, that take place during recovery from 

stroke. Finally, this chapter concludes with a description of neuroprosthetic systems that have 

been developed and the gaps in knowledge that remain in order to develop neuroprosthetic 

applications for stroke survivors. 

2.2 Motor Neurophysiology 
The neurophysiology associated with the planning and execution of motor actions has a long 

history based upon a wide array of paradigms, recording modalities, and techniques. This section 

describes the neural correlates of normal motor control by focusing on evidence from individual 

recording modalities and techniques. As the hemisphere ipsilateral to the affected limb has been 

identified as a potential mechanism for recovery after stroke, this section will particularly focus 

on the similarities and differences between neural activity during movements of the contralateral 

and ipsilateral limbs. 

2.2.1 Anatomical Pathways 

There are a number of anatomical pathways that play a potential role in the production of 

movements. While the majority of descending fibers from motor areas cross to the opposite side 

of the spinal cord, approximately 15% of fibers descend uncrossed in the spinal cord ipsilateral 

to their cortical origin in both animals (Glees and Cole 1952; Nyberg-Hansen and Brodal 1963) 

and humans (Barnes 1901; Nyberg‐Hansen and Rinvik 1963; Yakovlev and Rakic 1966). 
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Additionally, although primary motor areas make up the largest input to the corticospinal tract 

from a single region, a collectively larger number of descending fibers originate in non-primary 

motor areas, including the supplementary motor areas (SMA), cingulate motor areas (CMA), and 

premotor areas (Nyberg‐Hansen and Rinvik 1963; Dum and Strick 1991). Furthermore, motor 

cortex is strongly interconnected with non-primary motor areas in the frontal lobe and parietal 

lobe (Dum and Strick 1991) as well as the opposite hemisphere via the corpus callosum (Kaas 

1995). Therefore, it is important to keep in mind that both cortical hemispheres have the 

potential to play a role in planning and executing unilateral motor movements either through 

pathways that decusate and descend in the contralateral spinal cord, that descend directly in the 

ipsilateral spinal cord, or through interactions between motor areas within and across the cortical 

hemispheres. 

2.2.2 Single-Unit Electrophysiology 

In addition to the presence of anatomic pathways, functional measures of neural activity at 

different spatial and temporal scales can be used to investigate the relationship between neural 

activity and motor movements. The most direct measure of neural activity is to use implanted 

microelectrodes to record action potentials fired by individual neurons. Early studies 

investigating the activity of single units found individual neurons in the primary motor cortex of 

primates that either increase or decrease their firing during flexion or extension movements of 

the wrist (Evarts 1966). As the majority of cells were found to fire in relation to muscle force, it 

was postulated that neural activity in primary motor cortex was related to intrinsic muscle 

activation (Cheney and Fetz 1980). However, other studies that have utilized reaching 

movements to targets arranged around a two-dimensional (2D) plane have found that in the 

majority of motor cortical cells active during reaching movements, the rate of firing varies about 
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a preferred direction with a broadly tuned distribution that can be fit by a cosine function 

(Georgopoulos, Kalaska et al. 1982). Furthermore, by representing each of a population of tuned 

neurons as a vector making a weighted contribution to an overall population vector, movement 

directions in three-dimensional (3D) space could be determined from neural activity in motor 

areas (Georgopoulos, Schwartz et al. 1986). Additional work has built upon the population 

vector to show that population vectors are stable across 3D space (Caminiti, Johnson et al. 1991). 

Along with direction, motor cortical activity is also related to additional kinematic parameters 

including speed (Moran and Schwartz 1999b; Moran and Schwartz 1999a; Schwartz and Moran 

1999), position (Georgopoulos, Caminiti et al. 1984; Wang, Chan et al. 2007), hand rotation 

(Wang, Chan et al. 2010), as well as the object to be grasped in a reach-to-grasp task (Rouse, 

Roussin et al. 2014). There is still some debate about whether motor cortical cells encode low-

level muscle activations or higher-level kinematic parameters as neurons tuned to both types of 

parameters have been found in tasks designed to dissociate muscle contractions and extrinsic 

movement directions during movements of a single joint (Kakei, Hoffman et al. 1999). 

While the majority of studies examining the relationship between single-unit neurophysiology 

and motor activity have focused on movements of the limb contralateral to the site of recording, 

a number of studies have examined the relationship between single-unit neural activity and 

movements of the ipsilateral arm. In particular, although the majority of primary motor cortex 

neurons alter their firing rate with movements of the contralateral limb, a subset of neurons 

change their firing rate during movements of the same-sided limb in both humans (Goldring and 

Ratcheson 1972) and non-human primates (Evarts 1966; Tanji, Okano et al. 1987; Tanji, Okano 

et al. 1988; Aizawa, Mushiake et al. 1990). Specifically approximately 8% of neurons in primary 

motor cortex respond to distal movements of the limb ipsilateral to the site of recording with no 
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change in firing during movements of the contralateral limb (Tanji, Okano et al. 1988). 

Ipsilateral and bilateral neurons have also been found in larger quantities in a transitional zone 

between the hand and face representations of primary motor cortex (Aizawa, Mushiake et al. 

1990). When comparing neurons recorded from primary motor cortex to those recorded in non-

primary motor areas (i.e. premotor cortex or SMA), a larger percentage of neurons in non-

primary motor areas had context-dependent movement relationships, such as bilateral 

relationships (firing during either ipsilateral limb or contralateral limb movements), exclusive 

relationships (i.e. active during ipsilateral but not contralateral or bilateral movements, bilateral 

but not ipsilateral or contralateral limb movements, or unilateral movements but not bilateral 

movements) (Tanji, Okano et al. 1988). When focusing on bimanual synergies of movement, an 

equal number of neurons in primary motor cortex and SMA display activity during bimanual 

movements that cannot be accounted for by the activity during unimanual movements alone 

(Donchin, Gribova et al. 1998). Neurons with activity related to bimanual movements are also 

located in dorsal premotor cortex, CMA, and posterior parietal cortex (Kermadi, Liu et al. 2000).  

Further examination shows that kinematic parameters are also represented within the 

relationships between neural activity and ipsilateral limb movements. Cells in dorsal premotor 

cortex are strongly tuned to movement direction independent of the arm that will be moving, 

particularly during a pre-movement delay. Cells in primary motor cortex, on the other hand, 

exhibit stronger directional tuning with the contralateral arm, although several cells in primary 

motor cortex also have directional tuning to ipsilateral or bilateral arm movements (Cisek, 

Crammond et al. 2003).  Furthermore, population vectors for movements of both arms can be 

predicted simultaneously, even when the two arms move in opposite directions (Steinberg, 

Donchin et al. 2002). Therefore, neural activity is related not only to contralateral limb 
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movements, but also simple movements of the ipsilateral limb. Furthermore, during more natural 

and complex bimanual tasks, a more complicated relationship between neural activity and 

movements is apparent. 

2.2.3 Field Potentials 

Another useful tool in studying the relationship between neural activity and behavior is to 

examine the summed electrophysiological activity of a population of cortex. A variety of 

electrode sizes and locations can be used to measure field potentials with an inverse relationship 

between the invasiveness of the electrodes and the spatial specificity of the recorded signals.  

Spectral Power Changes 

With his invention of the electroencephalogram (EEG) and observation that the amplitude of 

occipital alpha oscillations increased when human subjects closed their eyes, Hans Berger first 

provided the ability to study the electrical activity of the brain non-invasively (Berger 1969). 

Changes in oscillatory activity related to behavior were extended to motor movements by Jasper 

and Andrews who observed decreases in the pre-central alpha rhythm during motor movements 

that was separable from Berger’s occipital alpha rhythm (Jasper and Andrews 1938). Using an 

early electrocorticogram recorded at the surface of the brain, the amplitude of the higher 

frequency beta band was also observed to decrease during voluntary movements of the 

contralateral arm, and although weaker, during voluntary movements of the ispsilateral arm as 

well (Jasper and Penfield 1949).  

Building upon the initial demonstrations, Pfurtscheller and colleagues characterized these low-

frequency phenomena more fully and termed the decrease in spectral power during activity as 

event-related desynchrnonization (ERD) and the rebound of power afterwards as event-related 

synchronization (ERS) (Pfurtscheller and Aranibar 1979). EEG and magnetoencephalography 



 

 

12 

(MEG) recordings show that alpha (8-12Hz) and beta (12-25Hz) band ERD begins 

approximately 1.75 seconds before movement onset in the hemisphere contralateral to the 

moving arm and becomes bilateral immediately before the movement onset (Pfurtscheller and 

Aranibar 1979; Pfurtscheller and Berghold 1989; Pfurtscheller and Lopes da Silva 1999). By 

examining electrode sites covering the whole head, ERD and ERS can be observed 

simultaneously with locations displaying ERD involved in task-relevant processing and locations 

displaying ERS at rest (Pfurtscheller 1992). Additionally, the alpha band was found to contain 

both a lower (8-10Hz) component and a more topographically specific higher (10-12Hz) 

component (Manganotti, Gerloff et al. 1998; Pfurtscheller, Neuper et al. 2000). Furthermore, the 

beta band is separable from the alpha band as it contains both a harmonic of the greek letter μ-

shaped alpha rhythm as well as an additional component (Pfurtscheller, Stancak et al. 1997) that 

is distinct from the alpha band both in the timing (Salmelin and Hari 1994) and topography 

(Pfurtscheller and Berghold 1989).  

While EEG allows examination of spectral power changes in low frequencies (below 30 Hz), 

EEG has poor spatial and spectral resolution, limiting the ability to examine spectral changes at 

higher frequencies (Cooper, Winter et al. 1965; Pfurtscheller and Cooper 1975). 

Electrocorticography (ECoG) recordings made from the surface of the brain allow for 

examination of the electrophysiological correlates of neural activity with increased spatial and 

spectral resolution. Studies of low frequencies confirmed observations made using EEG, 

showing that alpha and beta ERD occurs during movements of both the contralateral and 

ipsilateral limbs over a broad area of cortex (Arroyo, Lesser et al. 1993; Crone, Miglioretti et al. 

1998b). Additionally, ECoG allows for examination of electrophysiological activity in the 

gamma band (>30 Hz). Early studies of the gamma band activity using ECoG showed that 
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spectral power in two distinct gamma bands, a low gamma band (35-50 Hz) and a high gamma 

band (75-100 Hz), both increase during motor movements (Crone, Miglioretti et al. 1998a). 

Gamma band power changes are modulated in the opposite direction from alpha and beta band 

ERD, are more somatotopically specific than low frequency power changes, and were found only 

in the hemisphere contralateral to a moving limb (Crone, Miglioretti et al. 1998a). Several 

studies have also examined the relationship between high gamma band spectral power and 

movement kinematics and found tuning to contralateral arm kinematics in both LFP recordings 

(Heldman, Wang et al. 2006) and ECoG recordings (Schalk, Kubanek et al. 2007; Anderson, 

Blakely et al. 2012). While tuning also occurs between low frequency spectral power changes 

and arm kinematics, tuning between high frequency spectral power and arm kinematics occurs in 

a greater proportion of electrode sites (Heldman, Wang et al. 2006; Sharma, Gaona et al. 2009; 

Anderson, Blakely et al. 2012). 

With regards to ipsilateral arm movements, alpha and beta band ERD are consistently observed 

in the hemisphere ipsilateral to a moving limb (Pfurtscheller and Lopes da Silva 1999). During 

ipsilateral ERD, There is an increased period of excitability to transcranial magnetic stimulation 

(TMS) pulses, indicating that ERD ipsilateral to a moving limb may play a role in facilitating 

movements (Rau, Plewnia et al. 2003). Prior work from our lab has focused on the difference 

between cortical physiology related to movements of the ipsilateral and contralateral limbs, 

demonstrating that ECoG activity during ipsilateral limb movements occurs earlier, occupies 

different frequency ranges (ipsilateral arm movements: 37.5 Hz, contralateral arm movements: 

<30 Hz and >70Hz), and is preferentially located in premotor cortices (Wisneski, Anderson et al. 

2008). Additionally, ECoG spectral power is also tuned to kinematics of ipsilateral arm 

movements (Sharma, Gaona et al. 2009).  
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Movement-Related Cortical Potentials 

Along with observing changes in frequency-specific spectral power, temporal changes in field 

potentials occur before and during voluntary motor movements. By storing EEG signals from a 

simple motor task on tape, playing them in reverse, and averaging across trials, Kornhuber and 

Deecke discovered the bereitschaft (readiness) potential, a slowly increasing negativity in the 

EEG signal over motor areas that begins bilaterally about 2s before movement onset with the 

maximal negativity located at the vertex (Kornhuber and Deecke 1965). In addition to the 

bereitschaft potential, there is an increase in the negative slope of the cortical potential 

approximately 400ms before movement onset that has been termed the late bereitschaft potential 

(also referred to as the movement potential or NS’ component) with a maximal negativity over 

the contralateral hemisphere. Finally, a pre-motor positivity, a small positive potential that is 

bilaterally symmetric has also been found (Gilden, Vaughan et al. 1966; Deecke, Scheid et al. 

1969; Shibasaki and Hallett 2006). While volume conduction from bilateral motor cortices is a 

possible explanation for the maximal component of the bereitschaft potential being located at the 

vertex, in bilateral parkinsonian patients, the lateral components of the bereitschaft potential are 

abolished, but the component at the vertex remains (Deecke and Kornhuber 1978). Therefore, 

part of the mechanism underlying the bereitschaft potential must be explained independent of 

primary motor cortex, potentially relying on the SMA. Furthermore, a potential real-time 

measure of the bereitschaft potential, the local motor potential (LMP), which is obtained by low-

pass filtering EEG or ECoG signals, is tuned to movement direction (Schalk, Kubanek et al. 

2007). 

An important question is whether these movement-related cortical potentials originate from the 

same or different mechanisms as the spectral power changes described previously. There are 
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several pieces of evidence to suggest that movement-related cortical potentials are generated by 

separate mechanisms. First, the changes in topography of ERD and movement-related cortical 

potentials are opposite. Alpha and beta band ERD begin in the hemisphere contralateral to a 

moving limb and become bilateral immediately before movement onset while the early part of 

the bereitschaft potential is bilaterally symmetric and the late bereitschaft potential, occurring in 

the last 400ms before movement, is localized over the contralateral hemisphere. This finding has 

been confirmed using ECoG where it was found that movement-related cortical potentials start 

broadly and become focal in the contralateral hemisphere closer to movement onset, while alpha 

and beta band ERD starts in the contralateral hemisphere and becomes bilateral around 

movement onset (Toro, Deuschl et al. 1994). Additionally, in patients with primary lateral 

sclerosis, movement-related cortical potentials such as the bereitschaft potential are decreased, 

while beta band ERD is preserved, indicating that the physiological mechanisms responsible for 

movement-related cortical potentials and ERD are unique and separable. Therefore, field 

potentials contain multiple unique spectral and temporal components, which demonstrate 

relationships to motor movements of both the contralateral and ipsilateral limb.  

2.2.4 Functional Imaging 

Local increases in neural activity that are directly measured using electrophysiological methods 

are also correlated with increased blood flow and, to a lesser extent, increased oxygen 

consumption, providing a means to examine neural activity through positron emission 

tomography (PET) or functional Magnetic Resonance Imaging (fMRI) blood oxygen level 

dependent (BOLD) signals (Fox and Raichle 1986; Frostig, Lieke et al. 1990). While these 

functional imaging methods suffer from poor temporal resolution due to the slow time course of 

the hemodynamic response function, they allow for simultaneous investigation of whole-brain 
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activity with good spatial resolution. Early studies utilizing functional imaging methods to study 

voluntary motor movements found that during unilateral motor movements, the primary motor 

cortex is only active in the hemisphere opposite the moving limb, while SMA and premotor 

cortices are bilaterally active (Roland, Larsen et al. 1980; Roland, Meyer et al. 1982; Roland 

1985). 

Functional imaging has also shown a relationship between neural activity and ipsilateral limb 

movements. Early studies found that while the contralateral primary motor cortex and bilateral 

SMA and premotor cortices were active during both arm and hand movements, the ipsilateral 

primary motor cortex was only active during more proximal shoulder movements (Colebatch, 

Deiber et al. 1991). Later studies found that while activations of the primary motor cortex are 

stronger and occupy a greater cortical surface area during movements of the contralateral hand, 

the ipsilateral primary motor cortex is also active during distal hand movements (Yoshii, 

Ginsberg et al. 1989; Grafton, Mazziotta et al. 1992; Kawashima, Yamada et al. 1993; Kim, 

Ashe et al. 1993a; Kawashima, Roland et al. 1994). Taken together, SMA, premotor cortex, and 

primary motor cortex all demonstrate increased activity in relation to ipsilateral arm and hand 

movements. Activations during ipsilateral arm movements have been found to be stronger in the 

left hemisphere (Kim, Ashe et al. 1993b) and stronger during complex finger movement tasks as 

opposed to simple finger movement tasks (Rao, Binder et al. 1993). These task-specific effects 

on ipsilateral motor activity may indicate that activations of motor areas in the hemisphere 

ipsilateral to a moving limb are related to the increased planning load required from the 

dominant hemisphere in executing movements of either arm or the increased planning load 

necessary to execute more complex sequences of movements. Given the callosal connections 

between primary motor cortices (Kaas 1995), an alternative explanation for the activity in the 
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ipsilateral hemisphere is that it represents cross-callosal inhibition. Furthermore, the presence of 

interhemispheric inhibition has been directly demonstrated through paired pulse TMS 

experiments (Ferbert, Priori et al. 1992; Di Lazzaro, Oliviero et al. 1999). Several studies, 

however, have shown that activations in the ipsilateral hemisphere are shifted ventral, lateral, and 

anterior to the simultaneous activations in the contralateral hemisphere, showing that the 

observed activity in the ipsilateral hemisphere cannot be accounted for solely by homotopic 

cross-callosal inhibition (Cramer, Finklestein et al. 1999; Verstynen and Ivry 2011). While not 

homotopic cross-callosal inhibition, one function of ipsilateral motor activity may be to inhibit 

the production of mirror movements, as inhibition of the premotor cortex causes increased 

correlation between fMRI activity in the left and right motor cortices (Verstynen and Ivry 2011). 

Furthermore, during cued unimanual finger movements of individual digits, while the activity in 

the SMA and premotor cortices increase bilaterally, activity in primary motor cortex increases 

contralateral to the moving limb and decreases ipsilateral to the moving limb (Diedrichsen, 

Wiestler et al. 2013).  

While the functional imaging studies described above used simple movements and sequences of 

movements, more complex motor tasks give a more detailed view of motor-system activations. 

In addition to primary motor cortex, a large network of cortical areas in the parietal lobe and the 

frontal lobe are involved in visually guided reaching movements (Filimon 2010; Gallivan, 

McLean et al. 2013). During bimanual movements, while the fMRI activations in the primary 

motor cortex related to ipsilateral finger movements disappear, there are regions in the boundary 

between primary motor cortex and premotor cortex in which fMRI activity encodes both 

ipsilateral and contralateral finger movements (Diedrichsen, Wiestler et al. 2013). This broad 

network of motor areas is also highlighted by differences in the ability to decode limb-specific 
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action choices and action-specific limb choices with fMRI activity. In particular, the superior 

parieto-occipital cortex, the anterior intraparietal sulcus, SMA, and the primary motor cortex can 

be used to decode the action of the contralateral limb, the ventral premotor cortex and 

dorsolateral prefrontal cortex can be used to predict the action of either limb but not which limb 

is used, and the posterior intraparietal sulcus, the middle intraparietal sulcus, the dorsal premotor 

cortex, the pre-SMA, and movement planning activity from the primary motor cortex can be 

used to predict both the limb and action used (Gallivan, McLean et al. 2013). While the ability to 

predict the movement type from an area of cortex is not sufficient to determine if that region is 

actively involved in the planning and execution of movements, it is likely a necessary condition 

for its involvement. Taken together, the planning and execution of motor actions involves a 

broad and complex network of regions with activity in the ipsilateral hemisphere potentially 

involved both to inhibit mirror movements as well as contribute to the planning and execution of 

movements.  

2.2.5 Lesion Studies 

While measures of functional activity show that cortex ipsilateral to a moving limb may be 

involved in the planning and execution of motor movements, changes that occur after cortical 

lesions provide evidence for a direct role of the ipsilateral hemisphere in executing motor 

movements. First, after inducing a unilateral lesion in the primary motor cortex of non-human 

primates, a decrease in hand strength ipsilateral to the lesion occurs with a modest but 

statistically significant affect on function (Glees and Cole 1952; Bashir, Kaeser et al. 2012). 

These findings have been confirmed in human stroke survivors who have been found to have 

ipsilesional motor deficits both acutely (Baskett, Marshall et al. 1996; Yelnik, Bonan et al. 1996) 

and chronically (Sunderland 2000; Cramer, Mark et al. 2002; Haaland, Prestopnik et al. 2004). 
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These deficits were found not only in movements involving the whole arm, but also in aimed 

movements of a single distal joint (Yarosh, Hoffman et al. 2004).  

By comparing studies of ipsilesional motor deficits, it was observed that right hemisphere lesions 

impact tasks requiring sensorimotor integration (Baskett, Marshall et al. 1996), while lesions to 

the left hemisphere preferentially affect the initial component of movements (Haaland, 

Prestopnik et al. 2004). A potential explanation for the difference in ipsilesional deficits caused 

by right and left hemisphere lesions can be found in the dynamic dominance hypothesis for 

handedness (Sainburg and Kalakanis 2000; Sainburg and Schaefer 2004; Goble and Brown 2007; 

Goble and Brown 2008). The dynamic dominance hypothesis postulates that the non-dominant 

hemisphere is specialized for proprioceptive matching and final positioning, while the dominant 

hemisphere is specialized for planning dynamic components of movements, such as the 

trajectory, initial acceleration, or interaction torques. The dynamic dominance hypothesis also 

allows several predictions to be made about the types of ipsilesional deficits that will be 

associated with each hemisphere. These predictions have led to studies showing that when 

compared to normal controls and patients with right hemisphere damage, patients with left 

hemisphere damage had poorer scaling of acceleration amplitude with movement distance, a 

decreased ability to adapt initial movement trajectories to visuomotor rotations, and poor 

intersegmental coordination during corrective movements (Schaefer, Haaland et al. 2007; 

Schaefer, Haaland et al. 2009a; Schaefer, Mutha et al. 2012). On the other hand, patients with 

right hemisphere damage had decreases in the ability to scale acceleration duration leading to 

decreased accuracy, a decreased ability to correct their movement trajectory online after a 

visuomotor rotation, and performed corrective movements later and towards the wrong location 

in a task requiring corrective movements (Schaefer, Haaland et al. 2007; Schaefer, Haaland et al. 
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2009a; Schaefer, Mutha et al. 2012). These differences were specific to patients with 

contralesional hemiparesis (Haaland, Schaefer et al. 2009). Therefore the results of multiple 

studies demonstrate dissociable ipsilesional deficits, indicating that each hemisphere contributes 

to the planning and execution of ipsilateral limb movements.  

While the presence of ipsilesional motor deficits demonstrates that each hemisphere plays a role 

in the execution of same-sided limb movements, it is uncertain whether these deficits are caused 

by a disruption of activity descending in the ipsilateral spinal cord, or by a disruption of the 

balance of inter-hemispheric inhibition. Several examples showing that the ability to produce 

voluntary movements is maintained after large and significant lesions demonstrate the potential 

for generating ipsilateral limb movements in isolation from the contralateral hemisphere. In early 

descriptions of right hemispherectomies, several surgeons noted that patients could perform 

movements of the left (contralesional) limbs (Dandy 1928; Gardner 1933). Additionally, non-

human primates could perform movements with all four limbs even after removal of both 

premotor cortices and one primary motor cortex or after removal of one premotor cortex and 

bilateral primary motor cortices (Bucy 1933; Bucy and Fulton 1933). Therefore, each cortical 

hemisphere not only plays a role in the production of ipsilateral limb movements, but each 

hemisphere is also sufficient to execute movements of the ipsilateral limbs after contralateral 

lesions. 

2.2.6 Stimulation Studies 

A final piece of evidence for the role of individual motor areas in producing voluntary 

movements comes from electrical stimulation of the brain. As illustrated by the famous cartoons 

displaying the motor homunculus, stimulation of the human motor cortex produces movements 

of the opposite side of the body in a broadly overlapping representation of body parts (Penfield 
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and Boldrey 1937; Penfield and Rasmussen 1950). Motor and sensory representations are found 

not only with stimulation of the primary sensorimotor cortex, but sensory percepts are also 

generated with stimulation of secondary sensory areas and a representation of motor movements 

caused by stimulation is also found in the SMA (Penfield and Jasper 1954).   While stimulation 

of the primary motor cortex produces movements of body parts contralateral to the site of 

stimulation, multiple studies have also shown that stimulation of an area in the premotor cortex 

on the superior lip of the precentral sulcus of non-human primates produces movements of the 

ipsilateral extremities (Bucy and Fulton 1933; Wyss 1938; Aizawa, Mushiake et al. 1990). The 

ability to elicit movements of the ipsilateral limbs through cortical stimulation persists after a 

spinal hemisection and after sectioning of the corpus callosum with subsequent removal of the 

contralateral premotor cortex, demonstrating that the movements ipsilateral to the site of 

stimulation are not caused by a spinal circuit or pathways that have crossed to the contralateral 

hemisphere via the corpus callosum prior to descending (Bucy and Fulton 1933).  In contrast to 

premotor cortex, ipsilateral limb movements elicited from stimulation of primary motor cortex 

are normally dependent upon an intact contralateral motor system, but can still be produced 

independent of the contralateral motor system when the efficacy of the descending ipsilateral 

corticospinal system is augmented (Brus-Ramer, Carmel et al. 2009).  

2.2.7 Ipsilateral Motor Physiology Summary 

Taken together, studies utilizing a variety of recording modalities and methods demonstrate the 

existence of neural activity related to movements of the ipsilateral limbs with varied timing and 

cortical topography, indicating that a variety of cortical mechanisms are represented. 

Additionally, this neural activity has been found to contain specific information about ipsilateral 

limb movements such as the direction or movement type, indicating both that ipsilateral motor 
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activations may be necessary for the execution of ipsilateral limb movements and that these 

activations may be useful in developing neuroprosthetic systems. While the presence of 

dissociable ipsilesional deficits does not exclude the possibility that some of the motor-related 

activity in the ipsilateral hemisphere is used to inhibit mirrored activity from the contralateral 

hemisphere, it demonstrates that there is also an active role of each hemisphere in the execution 

of ipsilateral limb movements. Finally, the presence of ipsilesional movements after broad 

lesions and the fact that ipsilateral movements can be produced through cortical stimulation in 

isolation from the contralateral hemisphere indicates that descending pathways in the ipsilateral 

spinal cord can play a role in the execution of motor movements. Therefore, these same 

ipsilateral pathways may be useful for the recovery of motor function after a hemispheric lesion. 

2.3 Motor Physiology After Stroke 
In addition to playing a role in the planning and execution of motor movements in motor-intact 

subjects, the ipsilateral hemisphere may also play a role in the recovery of an impaired limb after 

stroke. Functional imaging has shown that ipsilateral activity from the unaffected hemisphere is 

increased when compared to normal controls after recovery from stroke (Weiller, Chollet et al. 

1992; Weiller, Ramsay et al. 1993; Cramer, Nelles et al. 1997; Nelles, Spiekramann et al. 1999). 

Similarly, ipsilateral activity in the unaffected hemisphere increases not only after normal 

recovery but is also increased after training with constraint induced movement therapy (Levy, 

Nichols et al. 2001; Schaechter, Kraft et al. 2002). Additionally, increases in neural activity in 

the unaffected hemisphere related to affected hand movements are not isolated to measures of 

cerebral blood flow. Studies utilizing EEG after recovery from stroke found that movement-

related cortical potentials are shifted towards the unaffected hemisphere during affected hand 

movements when compared to unaffected hand movements (Honda, Nagamine et al. 1997; 
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Green, Bialy et al. 1999). One possibility is that these increases in neural activity ipsilateral to 

the affected hand facilitate recovered motor function. Evidence for this possibility comes from 

the fact that TMS applied to disrupt the contralesional premotor cortex of stroke survivors 

slowed reaction times associated with affected hand movements (Johansen-Berg, Rushworth et 

al. 2002). Additionally, inhibitory repetitive TMS to the dorsal premotor cortex, the primary 

motor cortex, or the superior parietal lobe in the unaffected hemisphere of recovered stroke 

survivors led to decreases in recovered hand motor performance (Lotze, Markert et al. 2006). 

An alternative possibility is that increased ipsilateral motor activity in the contralesional 

hemisphere hinders motor recovery. In animal models of stroke, remapping of the perilesional 

motor representations occurs during motor recovery (Nudo, Wise et al. 1996). In human patients, 

decreases in ipsilateral motor activity from the unaffected hemisphere correlate with recovery in 

both longitudinal and cross-sectional studies of recovery from stroke (Ward, Brown et al. 2003a; 

Ward, Brown et al. 2003b). Similarly, while in the acute period after a stroke, ipsilateral motor 

activity is increased in the unaffected hemisphere, after recovery, motor activity becomes more 

lateralized due to increases in ipsilesional activity (Marshall, Perera et al. 2000). Along with 

measures of neural activity from functional imaging, decreases in the difference in TMS 

thresholds necessary to elicit affected limb movements from the contralesional hemisphere 

relative to the ipsilesional hemisphere are associated with poor motor recovery after stroke 

(Turton, Wroe et al. 1996; Netz, Lammers et al. 1997). Furthermore, training with CIMT has 

also been shown to lead to increases in contralateral motor representations in the ipsilesional 

hemisphere (Liepert, Miltner et al. 1998; Liepert, Bauder et al. 2000). As the contralesional 

primary motor cortex maintains increased inhibition of the ipsilesional primary motor cortex 
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during affected hand movements, ipsilesional hemisphere activity may limit recovery due to 

altered interhemispheric interactions (Murase, Duque et al. 2004). 

There are several important considerations to take into account when considering evidence for 

the potential mechanisms responsible for rehabilitation. First, a variety of different measures for 

rehabilitation have been used in studies. Therefore, patients with similar functional recovery may 

fall into the recovered group of one study and the impaired group of another study depending 

upon the measure used (Cramer 2004). Additionally, as increases in task complexity, subject 

attention, and perceived effort are associated with increased neural activity during voluntary 

motor movements (Manganotti, Kitamura 1993a, 1993b, Jankelowitz, Slobounov), changes in 

neural activity after recovery from stroke may represent alterations in the level of attention and 

effort needed for movement planning and execution. 

Although the previous evidence is conflicting, it may be possible to integrate these findings into 

a single view describing the role of the unaffected hemisphere after stroke. First, several of the 

studies described above have found increases in neural activity in both the affected and 

unaffected hemispheres during affected hand movements after recovery from stroke (Green, 

Bialy et al. 1999; Levy, Nichols et al. 2001). Additionally, cortico-muscular coherence between 

cortex and the affected hand is found in a wider area in stroke survivors than in normal controls, 

including in regions of the contralesional hemisphere (Rossiter, Eaves et al. 2012). This indicates 

that in some patients, the contralesional hemisphere can drive affected hand muscles after stroke. 

Furthermore, in a study using MEG to measure motor potentials after recovery from stroke, 

while patients who recovered completely showed normal lateralization of their neural activity 

during motor movements, patients who recovered incompletely had better recovery with 
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increased ipsilateral motor activity in the unaffected hemisphere (Tecchio, Zappasodi et al. 

2006). This difference in recovery makes sense when we consider that recovery after stroke is 

correlated with corticospinal tract integrity (Fries, Danek et al. 1993; Carter, Patel et al. 2012). 

Taken together, optimal recovery may be mediated by traditional contralateral motor pathways, 

however, in patients with extensive cortical or subcortical lesions, while function may not be 

completely restored, restoration of motor function may be mediated by ipsilateral motor activity 

from the contralesional hemisphere. 

2.4 Neuroprosthetic Applications 
Because of the relationships that have been observed between neural activity and movements of 

the ipsilateral limbs, these signals represent a potential control signal for brain-computer 

interface applications. A brain-computer interface (BCI) system or brain-machine interface 

(BMI) system is a system that records neural activity, translates that activity into a machine 

command, and uses that command to control an external assistive device based upon the 

intentions of the user. While the idea of using neural activity related to motor intentions to 

control a prosthetic system has existed for several decades (Brindley and Craggs 1972; Craggs 

1975), the past several years has seen significant developments in the ability to design and 

implement BCI systems using a variety of recording modalities. The ideal experiments studying 

BCI control involve closed-loop tasks in which the subject attempts to control the BCI system 

using only their brain signals. In addition to closed-loop experiments, many studies use machine 

learning algorithms to demonstrate the potential for open-loop prediction of behavioral 

parameters such as movement kinematics. While these open-loop studies do not model the affect 

of learning and adaptation that occurs with closed-loop BCI control, they enable investigators to 
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study the feasibility of BCI applications using various recording methods and decoding 

algorithms on a limited data set. 

2.4.1 Invasive BCI Systems 

To date, chronically implanted invasive microarrays have been used in animal and early human 

trials to produce BCI systems with the greatest number of degrees-of-freedom. These systems 

utilize either changes in the rate of single neuron or multi-neuron spiking or changes in local 

field potential activity to control prosthetic systems. Estimates for the number of neurons needed 

to simultaneously decode arm movements range between 150 neurons with serial single unit 

recordings and 600 units from multielectrode arrays (Georgopoulos, Kettner et al. 1988; 

Wessberg, Stambaugh et al. 2000). While a large number of neurons would be necessary to 

achieve optimal kinematic decoding, it is possible to decode kinematics in an open-loop setting 

using multielectrode arrays with 40-200 electrodes (Wessberg, Stambaugh et al. 2000; Taylor, 

Tillery et al. 2002; Wu, Black et al. 2003; Ganguly, Secundo et al. 2009). One study also 

demonstrated that it is possible to use multielectrode arrays to decode kinematics of ipsilateral 

arm movements in non-human primates (Ganguly, Secundo et al. 2009). 

Along with off-line decoding of movement kinematics, implanted multielectrode arrays can be 

used for closed-loop BCI control. In non-human primate models, these systems have been used 

to control a cursor in 3D space (Wessberg, Stambaugh et al. 2000; Serruya, Hatsopoulos et al. 

2002; Taylor, Tillery et al. 2002) as well as to control a robotic arm for collecting and eating 

food (Carmena, Lebedev et al. 2003; Velliste, Perel et al. 2008). Additionally, microelectrode 

arrays have been implanted in human patients with tetraplegia to control an artificial cursor and 

robotic arm (Kennedy and Bakay 1998; Hochberg, Serruya et al. 2006; Kim, Simeral et al. 

2008). Importantly, because of the ability of subjects to adapt their neural activity to BCI control 
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algorithms during closed-loop feedback, on-line BCI control can be achieved with fewer 

recorded units than needed for off-line movement decoding (Taylor, Tillery et al. 2002). 

While invasive microelectrode arrays can be used to implement BCI systems with several 

degrees of freedom, there are several limitations. Implanting microelectrode arrays entails very 

invasive surgical procedures with a risk of damage to the cortex around the implant site 

(Bjornsson, Oh et al. 2006) as well as significant clinical risks such as infection. Additionally, 

over several months, the brain’s immune response causes the implanted microelectrodes to 

become encapsulated, leading to increased impedance and a significant decrease in signal quality 

that causes decreases in BCI performance (Williams, Hippensteel et al. 2007). 

2.4.2 Non-invasive BCI Systems 

At the opposite end of the spectrum from invasive microelectrode arrays are non-invasive 

recording methods such as EEG. Because EEG is applied to the scalp, electrodes can be easily 

applied and can be easily utilized in patient populations. While a variety of signals have been 

used for EEG BCI systems (Pfurtscheller, Neuper et al. 2003) ERD-based BCI systems have 

particular relevance for motor-impaired populations, including stroke survivors, due to the fact 

that ERD occurs normally during motor execution (see section 2.1.3). Additionally, ERD has 

been shown to occur with imagined motor movements, indicating that it would be applicable to 

patient populations that are unable to execute motor movements (Pfurtscheller and Neuper 

1997). Furthermore, EEG ERD-based BCI systems have been used in normal controls and 

patient populations (Wolpaw, McFarland et al. 1991; Pfurtscheller, Muller et al. 2003; 

Pfurtscheller, Neuper et al. 2003; Wolpaw and McFarland 2004; McFarland, Sarnacki et al. 

2010). 
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While EEG is a powerful tool for BCI systems due to its ease of use and non-invasiveness, it 

suffers from poor signal quality and susceptibility to noise. To date the best performance of an 

EEG BCI system is 3 degrees-of-freedom (McFarland, Sarnacki et al. 2010), which was only 

achieved after months of intensive training. Additionally, EEG recordings have decreased spatial 

and spectral resolution when compared to invasive recordings (Cooper, Winter et al. 1965; 

Pfurtscheller and Cooper 1975), limiting the total number of degrees-of-freedom that can be 

simultaneously controlled. Furthermore, because of its location on the scalp, EEG recordings are 

very susceptible to artifacts such as EMG or eye blinks that can corrupt recordings and decrease 

BCI performance (Cooper, Winter et al. 1965; Wolpaw, McFarland et al. 2003).  

2.4.3 ECoG BCI Systems 

A third alternative that has been proposed for BCI systems as a compromise between the 

extremes of microelectrode arrays and EEG are ECoG recordings made from the surface of the 

brain. In humans, most studies investigating the use of ECoG as a control signal for BCI systems 

have generally used clinical electrodes implanted in epilepsy patients for localization of the 

epileptic foci with an electrode size on the order of a few millimeters and an interelectrode 

distance of approximately 1 cm.  

Spectral power changes in ECoG signals occur not only during overt motor movements, but also 

during imagined movements (Leuthardt, Schalk et al. 2004). Because of this, they may be useful 

in motor-impaired patients who are unable to perform overt motor movements. Furthermore, 

motor-intact human subjects can modulate the spectral power of ECoG signals to control a 

computer cursor (Leuthardt, Schalk et al. 2004; Wilson, Felton et al. 2006; Felton, Wilson et al. 

2007; Schalk, Miller et al. 2008). Additionally, ECoG has been utilized in a quadriplegic patient 

to generate a BCI system with 3 degrees-of-freedom based upon motor imagery of movements at 
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multiple independent joints with good signal quality for durations up to one month (Wang, 

Collinger et al. 2013). Micro-ECoG arrays with sub millimeter electrode sizes have also been 

proposed as a means to obtain signals with increased spatial specificity. These arrays have been 

utilized for online BCI control in experiments in non-human primates (Rouse and Moran 2009; 

Rouse, Williams et al. 2013) with stable signal quality demonstrated for up to four years (Moran, 

2015, Personal Communication).  

While closed-loop ECoG BCI systems have generally used either changes in spectral power 

associated with imagined movements of a single joint in humans or high gamma power in 

arbitrary electrodes in primates, a more natural format for device control may be to develop a 

biomimetic BCI that uses signals decoded from natural kinematic parameters of movements. By 

examining the ability to predict behavioral performance using ECoG activity, it is possible to 

begin to determine whether biomimetic device control is feasible. Additionally, off-line 

prediction of movement parameters allows investigation of a variety of potential BCI control 

strategies from a single data set, which is advantageous because of the short duration of electrode 

implantation in the human epilepsy patients studied with ECoG. 

Using invasive LFP recordings, it is possible to decode movement direction of 2D forelimb 

movements in rat motor cortex (Slutzky, Jordan et al. 2011) and 2D arm movements in non-

human primates (Rickert, Oliveira et al. 2005; Ince, Gupta et al. 2010; Flint, Lindberg et al. 

2012). In addition to LFPs derived from microelectrode arrays implanted into the parenchyma, 

ECoG signals recorded either subdurally or epidurally have also been utilized to decode 2D 

movement directions in rats (Slutzky, Jordan et al. 2011) and non-human primates (Flint, 

Lindberg et al. 2012) as well as to perform continuous decoding of movement kinematics from 
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2D (Flint, Lindberg et al. 2012; Marathe and Taylor 2013) and 3D arm movements in primates 

(Chao, Nagasaka et al. 2010; Chen, Shin et al. 2013). While most studies using LFP and ECoG 

recordings to decode movements have used recordings contralateral to the limb decoded, one 

study also demonstrated that LFP recordings in the hemisphere ipsilateral to a moving arm could 

be use to predict 2D arm movements in primates (Ganguly, Secundo et al. 2009). 

Along with decoding kinematics of motor movements in animal models, ECoG recordings from 

human epilepsy patients have been used to decode information about voluntary motor 

movements. Classification of movement direction of both arm and hand movements has been 

achieved using recordings from periods before and during movement execution (Reddy, Reddy 

et al. 2009; Wang, Gunduz et al. 2012; Chestek, Gilja et al. 2013). Additionally, ECoG signals 

can be used to decode continuous movement trajectories of finger flexion/extension movements 

(Chestek, Gilja et al. 2013) and 2D arm movements (Schalk, Kubanek et al. 2007; Pistohl, Ball et 

al. 2008; Sanchez, Gunduz et al. 2008). While a few studies have used ECoG recordings to 

predict trajectories of 3D movements, the behavioral tasks used had correlations between speed 

and movement direction, reducing the true dimensionality of the information decoded (Hotson, 

Fifer et al. 2012; Nakanishi, Yanagisawa et al. 2013). Therefore, to date, the extent of 

information about movement kinematics that can be decoded from human ECoG recordings is 

uncertain. A few studies have also demonstrated the ability to decode continuous kinematic 

trajectories of the arm ipsilateral to ECoG arrays implanted in motor-intact human patients 

(Ganguly, Secundo et al. 2009; Hotson, Fifer et al. 2014). While these studies demonstrate the 

ability to decode kinematics of ipsilateral limb movements from ECoG signals, it is unclear how 

the ability to decode kinematics of the ipsilateral and contralateral arm is related. 
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The ability to decode continuous kinematics of voluntary motor movements from ECoG 

recordings illustrates the potential use of ECoG signals in designing BCI systems that balance 

the need for generating accurate control signals representing multiple degrees-of-freedom with 

the need to limit the invasiveness of implant procedures and maximize signal stability. The 

previous studies demonstrate that linear decoding methods are often sufficient for decoding 

continuous trajectories of arm movements in primates and humans. While the potential feature 

space includes a large number of temporal and spectral features, slow temporal fluctuations of 

the local motor potential (LMP) and changes in high gamma band power have generally been the 

most important features in previous off-line decoding models (Schalk, Kubanek et al. 2007; 

Hotson, Fifer et al. 2014).  

2.4.4 BCIs for Stroke 

While the majority of work towards developing BCI systems has focused on patients with an 

intact cortex who suffer from conditions such as spinal cord injury or amyotrophic lateral 

sclerosis, BCIs may also be useful in patients suffering from hemispheric strokes. BCI systems 

for stroke survivors could be used to either control an assistive device such as a robotic arm or 

exoskeleton or as a tool to encourage rehabilitation. Several simple BCI systems have been 

implemented in hemispheric stroke survivors using EEG or MEG signals (Buch, Weber et al. 

2008; Daly, Cheng et al. 2009; Soekadar, Witkowski et al. 2011; Ramos-Murguialday, Broetz et 

al. 2013; Tung, Guan et al. 2013; Ang, Chua et al. 2014; Mukaino, Ono et al. 2014; Soekadar, 

Silvoni et al. 2015). Early results indicate that training with a BCI-based rehabilitation system 

can lead to functional gains after stroke (Ramos-Murguialday, Broetz et al. 2013), although 

additional studies will be needed to further develop our understanding of the role of lesion 

location, functional impairment, BCI-system design, and training dose in maximizing functional 
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improvement. While these studies have used activity in the ipsilesional hemisphere, because of 

the role of the contralesional hemisphere in recovery from stroke (see section 2.3) as well as the 

fact that the ability to modulate cortical activity decreases with increased cortical damage (Buch, 

Modir Shanechi et al. 2012), the contralesional hemisphere may be relevant for BCI applications 

after stroke. 

2.5 Summary 
Developing new methods to improve function after stroke represents an urgent clinical need. One 

possible mechanism for recovery is the remapping and strengthening of connections from the 

unaffected hemisphere. In normal motor control, the ipsilateral hemisphere plays a role in the 

execution of lateralized limb movements as exemplified by modulation of functional activity 

during movements of the ipsilateral limb. After stroke, while optimal recovery is generally 

associated with the involvement of the ipsilesional hemisphere, the contralesional hemisphere 

may facilitate recovery in some patients. Additionally, BCI systems have the potential to restore 

function after stroke either through the control of artificial assistive devices or through its use as 

a rehabilitation tool. While previous BCI systems for stroke have focused on the ipsilesional 

hemisphere, because of the potential role of the contralesional hemisphere in recovery from 

stroke and changes to neural activity after stroke, contralesional BCI systems may be beneficial 

for some patients.  

Based upon this rationale, there are several avenues of research that we will explore. First, while 

electrophysiological activity has been found in the hemisphere ipsilateral to a moving limb, the 

extent of information that can be decoded and used in a BCI system is uncertain. Furthermore, 

BCI systems in the ipsilateral hemisphere will require separable control of both limbs, therefore, 
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determining the similarities and differences between the encoding of ipsilateral and contralateral 

limb movements will be vital. Finally, to begin the process of implementing contralesional BCI 

systems in stroke survivors, it will be necessary to determine the level of information that can be 

decoded from invasive and non-invasive recordings, to better understand the technical 

requirements for invasive BCI implementation, and to determine if stroke survivors can 

intentionally modulate activity in their unaffected hemisphere to control a BCI system. 
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3 Electrocorticographic Decoding of 

Contralateral and Ipsilateral Reaches 

3.1 Introduction 
Brain-computer interface (BCI) systems have the potential to restore function in stroke survivors 

by using neural activity to control an external device. In healthy human subjects, movement-

related changes in neural activity occur in the hemisphere ipsilateral to a moving limb with 

cortical physiology that is distinct from the contralateral hemisphere (Wisneski, Anderson et al. 

2008). Furthermore, after recovery from stroke, affected hand movements are associated with 

increased activity in the ipsilateral hemisphere in some patients (Weiller, Chollet et al. 1992; 

Weiller, Ramsay et al. 1993; Cramer, Nelles et al. 1997; Honda, Nagamine et al. 1997; Green, 

Bialy et al. 1999; Nelles, Spiekramann et al. 1999; Levy, Nichols et al. 2001; Schaechter, Kraft 

et al. 2002). Taken together, contralesional hemisphere movement-related neural activity may be 

useful in BCI systems for stroke survivors. 

One method to establish the feasibility of BCI systems is to determine if neural activity can be 

used to decode behavioral intentions. In animal models, Electrocorticography (ECoG) signals 

have been used to decode kinematic trajectories of two-dimensional (2D) and three-dimensional 

(3D) movements of the upper limb (Chao, Nagasaka et al. 2010; Slutzky, Jordan et al. 2011; 

Flint, Lindberg et al. 2012; Chen, Shin et al. 2013; Marathe and Taylor 2013). In humans, ECoG 

signals have also been used to decode trajectories of 2D movements (Schalk, Kubanek et al. 

2007; Pistohl, Ball et al. 2008; Sanchez, Gunduz et al. 2008). While several studies have used 

ECoG to decode movement trajectories not constrained to two dimensions, speed and movement 

direction were correlated in at least one dimension, thereby reducing the dimensionality of 
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information decoded (Hotson, Fifer et al. 2012; Nakanishi, Yanagisawa et al. 2013; Hotson, Fifer 

et al. 2014). Therefore, the extent of kinematic information that can be decoded from human 

ECoG recordings is uncertain.  

While the majority of studies examining the ability to decode trajectories of reaching movements 

have used neural activity contralateral to the moving arm, the ipsilateral hemisphere may be 

useful for BCI systems in stroke survivors. Additionally, although human ECoG recordings have 

been used to decode time courses of ipsilateral limb kinematics in one or two dimensions 

(Ganguly, Secundo et al. 2009; Hotson, Fifer et al. 2012; Hotson, Fifer et al. 2014), the extent of 

information that is encoded in the hemisphere ipsilateral to a moving limb is unknown. 

Furthermore, the similarities and differences in the neural representations of contralateral and 

ipsilateral limb kinematics within a single hemisphere are also unknown. Understanding these 

differences will be important to ensure that BCI systems using neural activity from the ipsilateral 

cortex can be controlled independent of contralateral limb movements. 

This study sought to determine whether ECoG signals recorded from human patients could be 

used to decode 3D kinematics of contralateral and ipsilateral arm movements. This study is 

unique in that by having the same patients perform movements of both arms, we sought to define 

the differences in the accuracy and features used to decode kinematics of both limbs from a 

single hemisphere. Finally, by simulating EEG signals, we gained an understanding of the 

reduction in decoding accuracy with non-invasive recording methods. 
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3.2 Methods 

3.2.1 Patient Characteristics 

The participants in this study were patients with intractable epilepsy who underwent temporary 

placement of subdural ECoG electrode arrays for localization of their epileptic foci and mapping 

of eloquent cortices for pre-surgical planning. ECoG electrodes were implanted for a period of 

approximately one week (5 days – 14 days), during which time the recordings utilized in this 

study were collected.  The Institutional Review Board of the Washington University School of 

Medicine approved the study protocol, and all patients provided written informed consent prior 

to participating in the study. Table 3.1 contains patient characteristics for all 5 patients. Of the 

patients, 4 were right-handed, and all electrode arrays were located in the hemisphere 

contralateral to the dominant hand. Notably, one participant (Patient 2) had weakness of the arm 

contralateral to the site of electrode implantation due to mass effects from the implant. 

Table 3.1 Patient characteristics and electrode locations 

Electrode Locations
Epileptic Focus 

Location
Handedness

Age at Data 

Collection

Contralateral 

Trials

Ipsilateral  

Trials

Patient 1
Right temporal / frontal 

strips

Right Mesial 

Temporal
Left 40 288 128

Patient 2
Left frontotemporal 

grid and strips

Left 

Anterior/Mesial 

Temporal

Right 27 104 240

Patient 3
Left frontotemporal 

grid and strips

Left Anterior 

Temporal
Right 53 140 0

Patient 4
Left frontotemporal 

grid and strips

Left 

Frontal/Central
Right 18 256 256

Patient 5
Left Frontotemporal 

grid and strips

Left Anterior Sub-

Temporal
Right 56 256 256

 

3.2.2 Data Acquisition 

Clinical ECoG arrays (PMT Corporation, Chanhassen, MN or Ad-Tech, Racine, WI) were 

utilized for this study. Electrodes were platinum-iridium disks surrounded in silastic sheets. 
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Electrodes had a diameter of 4 mm (2.3 mm diameter exposed) and an inter-electrode distance of 

1 cm. Electrode arrays were configured in 8x8 grids, 1x4 strips, 1x6 strips, or 1x8 strips as 

shown in Figure 3.1A. In addition to the cortically facing recording electrodes, a 1x4 or 1x6 strip 

of electrodes was implanted facing the skull for use as ground and reference signals. Recordings 

were made using g.USBamp biosignal amplifiers (g.tec, Graz, Austria), which utilized 24-bit 

resolution analog-to-digital converters, an internal sampling rate of 38.4 kHz, and an internal 

anti-aliasing filter at 5 kHz. The BCI2000 software package (Schalk, McFarland et al. 2004a) 

was used to record ECoG signals with a sampling rate of 1200 Hz and no additional external 

filtering. 

 
Figure 3.1 Electrocorticography implants and electrode localization 

A. A photograph of a typical ECoG implant is shown. The electrodes were implanted beneath the dura as part of an 8x8 grid, 1x4 

strips, 1x6 strips, or 1x8 strips. Electrodes had an exposed diameter of 2.3mm and an inter-electrode spacing of 1 cm. B. 

Electrode locations for each patient were mapped onto an atlas brain, allowing for comparison of ECoG activity by cortical 

locations across patients. Electrode locations were based solely upon each patient's clinical needs. 

3.2.3 Electrode Localization 

Electrode locations were solely dependent upon the clinical needs of each patient. Electrode 

coordinates in atlas space were estimated from lateral radiographs collected after electrode 
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implantation. The getLOC package (Miller, Makeig et al. 2007) was used to approximate 

electrode coordinates with an accuracy of approximately 1 cm. Figure 3.1B displays the 

electrode locations for each of the 5 patients, showing that areas within the frontal and parietal 

lobe were well sampled across patients. To display the results of the analyses described in the 

following sections, we mapped quantitative results onto an atlas brain using a weighted spherical 

Gaussian kernel centered at each electrode location. Gaussian kernels from all electrodes were 

linearly superimposed onto the atlas brain and the contribution from each electrode was 

normalized based upon the number of nearby electrodes. Quantitative results were compared for 

all patients across cortical locations. 

3.2.4 Behavioral Task 

To examine the relationship between ECoG signals and reaching movements, a 3D center-out 

reaching task was used. Hand positions for the moving limb were collected using a Flock of 

Birds six degree-of-freedom motion capture system (Ascension Technology, Shelburne, VT). A 

single sensor was fixed to the index and middle fingers of the moving arm to track hand position. 

Hand positions in 3D space were sampled at 37.5 Hz. Kinematic data was recorded and 

synchronized with ECoG signals using a custom-programmed Flock of Birds filter that was 

integrated into the BCI2000 system. 

The center-out reaching task consisted of cued reaches to 8 targets positioned at the corners of a 

physical cube with 50 cm long sides that was set in front of the patient. All reaches began from a 

target at the center of the cube and progressed to one of the 8 corners of the cube. LED lights that 

were placed at the center target and each of the external targets provided patients with stimulus 

cues and reward feedback that was synchronized to the ECoG and kinematic recordings through 

a custom-built microcontroller circuit that interfaced with the BCI2000 system via a USB 
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interface and custom-programmed BCI2000 application module. During performance of the task, 

patients were seated in their hospital bed in a semi-recumbent position with the center target 

placed at the patient's midline approximately 40 cm away from their chest. Figure 3.2A shows 

the physical apparatus used for the reaching task. To compare contralateral and ipsilateral arm 

movements, in four of the five patients, the task was performed using the arm contralateral to the 

electrode array in one session and with the arm ipsilateral to the electrode array in a second 

recording session. 

Prior to beginning task performance, the task was calibrated to determine the location of the 

target positions and to account for any limitations in patient-specific range-of-motion. Figure 

3.2B shows the time-course for a correct trial. Each trial began with a visual cue for patients to 

move their hand to the center hold position at which time a hold-A period began, lasting for 500 

ms for Patient 1 and 1000 ms for Patients 2-5. During the hold-A period no other stimuli about 

the target for the current trial was provided. After completion of the hold-A period, a 2 second 

plan period began, during which time one of the external targets was illuminated and patients 

were instructed to plan a reaching movement to the target indicated. Patients were instructed to 

plan but not initiate the reaching movement and to maintain holding their hand at the center 

target. At the conclusion of the plan period, the indicated external target changed colors, cueing 

the patient to initiate a reaching movement to the external target. Upon reaching the external 

target, the LED at the specific target turned to green, indicating that the patient had correctly 

reached the target and cueing the beginning of a 500 ms hold-B period. At the conclusion of the 

hold-B period, the center target and each of the 8 external targets were illuminated in green to 

indicate a successful trial completion. If patients reached to an incorrect target or did not reach 

the correct target within the 4 second time period allowed for the movement, the trial was 



 

 

40 

aborted and all LED lights were illuminated in red to indicate an unsuccessful trial. In Patients 4 

and 5, a trial was also aborted if the patient moved before the end of the hold-A, plan, or hold-B 

periods. The 8 targets were presented in a random order and patients completed multiple runs 

with 2-4 trials to each target for a total of 16-32 total trials per run. Ideal task performance 

consisted of 8 runs of 32 trials, for a total of 256 trials. The total number of trials collected and 

duration of each run were adjusted based upon each patient’s stamina and comfort. Table 3.1 

contains the total number of trials performed by each patient with the contralateral and ipsilateral 

limbs. 

 
Figure 3.2 Behavioral task apparatus and trial timing 

A. The photograph displays the apparatus used for the center-out reaching task. A cube with 50 cm sides was placed in front of 

the patient. Target locations and reward feedback were provided with LED lights placed at the 8 corner targets and center target. 

B. Each trial began with a 1 second hold-A period in which the subject held their hand at the central target. A 2 second planning 

delay was used during which time the subject was cued to the target of the reach and instructed to plan but not initiate a reaching 

movement to the appropriate target. After the movement "go" cue, subjects initiated a reach to the target. A successful trial ended 

with completion of a hold-B period in which subjects held their hand at the exterior target location. 

3.2.5 Data Processing 

Data Preprocessing 

After data collection, a number of preprocessing steps were carried out. Initially, ECoG signals 

were visually inspected in both the spectral and temporal domain. Any channels that displayed 

non-physiologic activity or epileptic activity were excluded from all further analyses (Patient 1: 

7 electrodes, Patient 2: 7 electrodes, Patient 3: 10 electrodes, Patient 4: 4 electrodes, Patient 5: 19 

electrodes). Next, the spectral and temporal domain signals for each trial were examined. Trials 
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containing non-physiologic spikes or interictal epileptic activity were rejected. The hand position 

data collected for each trial were also visually examined and trials in which the hand position left 

the sampling range of the Flock of Birds receiver and trials in which patients initiated a reach to 

an incorrect target were also rejected. After this screening process, the total number of trials 

analyzed was: Patient 1: 245 contralateral, 119 ipsilateral; Patient 2: 76 contralateral, 187 

ipsilateral; Patient 3: 104 contralateral; Patient 4: 221 contralateral, 177 ipsilateral; Patient 5: 202 

contralateral, 208 ipsilateral. ECoG signals were then re-referenced to the common average. For 

8x8 channel ECoG grids spanning multiple amplifiers, individual common averages were 

calculated for each recording amplifier. For 1x4, 1x6, and 1x8 channel strips, individual common 

averages were calculated for each strip of electrodes. Finally, signals were band-pass filtered 

between 0.1 Hz and 260 Hz using a 3
rd

 order butterworth filter. Additionally, all noise harmonics 

below 260 Hz were removed from the data, including harmonics of the 60 Hz line frequency as 

well as harmonics of a 100 Hz artifact signal commonly observed in the system, using a 3
rd

 order 

butterworth notch filter with a 5 Hz bandwidth. Both the band-pass and notch filters were run 

forwards and backwards to avoid inserting phase distortions into the signals. 

Spectral Analysis Methods 

Next, ECoG signals were segmented into 300 ms time windows with shifts of 50 ms between 

windows. Spectral power was estimated in 2 Hz bins with center frequencies from 3 Hz to 253 

Hz using an autoregressive model with a model order of 75 (Marple 1987b). As ECoG power 

spectra are not normally distributed, power spectra were normalized using a log transform. 

Finally, power spectra were converted to z-score values, using the mean and standard deviation 

of spectral power from 200 ms after the beginning of the hold-A period until the end of the hold-

A period. The z-score operation accounts for the 1/f fall-off in spectral power by ensuring that 
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the mean and variance of spectral power is the same at each frequency. Additionally, positive 

and negative z-scores indicate respective increases and decreases in spectral power relative to the 

hold-A period. The hold-A period was chosen as the baseline period for the task as patients had 

not received any target information, were not moving, and were maintaining their hand in a 

similar position in all trials. Exemplar spectral power changes were examined by aligning the 

spectral power during each trial to the onset of movement. Frequency bins and time windows 

with significant power changes were identified by using a one-sample t-test comparing the mean 

of z-score values for a given frequency bin and time window to zero. 

For all later analysis procedures, spectral power was averaged into 7 canonical frequency bands: 

theta (4-8 Hz), mu (8-12 Hz), beta 1 (12-24 Hz), beta 2 (24-34 Hz), gamma 1 (34-55 Hz), 

gamma 2 (65-95 Hz), and gamma 3 (130-175 Hz). These 7 frequency bands were chosen to 

ensure inclusion of relevant frequency bands while avoiding all noise harmonics. Finally, the 

band-averaged spectral power was again z-scored relative to the hold-A period. The two z-score 

calculations were used to ensure first, that each frequency contributed equally to the band-

averaged power estimates, and second, that the variance was similar across frequency bands, 

irrespective of the number of frequencies contained within a single frequency band. 

Temporal Analysis Methods 

In addition to the spectral features described above, the local motor potential (LMP), which is 

obtained by filtering time domain signals with a smoothing filter, has been shown to contain 

information related to movement kinematics (Schalk, Kubanek et al. 2007; Pistohl, Ball et al. 

2008; Hotson, Fifer et al. 2014). To calculate the LMP, signals were segmented into 300 ms time 

windows with shifts of 50 ms between windows. A 2
nd

 order Savitzky-Golay smoothing filter 

was calculated for each 300 ms window. Finally, the LMP time series were z-scored relative to 
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the hold-A period. Therefore, the variance of the LMP was equalized to the variance of the 

spectral power in each of the canonical frequencies with positive and negative values indicating 

respective increases and decreases in the LMP amplitude relative to the baseline hold-A period. 

Kinematic Processing 

Kinematic data was recorded as 3D positions with the positive x-axis oriented towards the 

patient in the anterior-posterior direction, the positive y-axis oriented laterally to the left, and the 

positive z-axis oriented inferiorly. The hand position data recorded in 3D space was 

differentiated to determine the components of velocity in the three cardinal directions. Non-

directional hand speed was calculated by normalizing the velocity at each time point. The onset 

of movement for each trial was determined as the time point at which hand speed crossed 20% of 

the maximum hand speed for the trial. To align kinematic information with ECoG spectral and 

temporal features, kinematic information was segmented into 300 ms windows with shifts of 50 

ms between windows and was averaged within each window.  

To evaluate whether behavioral performance differed between the contralateral and ipsilateral 

arms, we calculated the reaction time and peak hand speed for each trial. Reaction times were 

calculated as the time from the movement cue until the onset of movement. Median reaction 

times were calculated after excluding reaction times that differed from the mean by more than 2 

standard deviations. We were unable to evaluate the reaction times for Patient 1 as they 

consistently initiating reaching movements before the movement cue. Patient 1 was included in 

all remaining analyses as these analyses focused on the execution of movement and not the 

planning of motor movements in isolation from execution. To examine the dimensionality of the 

kinematic dataset, we performed principle components analysis (PCA) on hand speed, velocity in 

the three cardinal directions, and position along the three cardinal axes after normalizing each of 



 

 

44 

the 7 kinematic parameters between 0 and 1. The percent of information explained by each 

principle component was compared.  

3.2.6 Electrophysiological Activity During Arm Reaches 

Several analyses were performed to investigate the changes in electrophysiological activity that 

occurred before and during the execution of contralateral and ipsilateral arm reaches. 

Additionally, we examined the relationship between these changes and specific characteristics of 

movements. 

Movement-Related Electrophysiological Activations 

To examine the timing, sign, and amplitude of changes in ECoG activity related to reaches of the 

contralateral and ipsilateral arms, time courses of z-scored ECoG features (spectral power in the 

7 canonical frequency bands outlined above and LMP amplitude) were aligned from 1 second 

before movement onset to 2 seconds after movement onset. Average z-scores were calculated for 

each electrode and feature. A one-sample t-test was used to determine if the mean z-score value 

for a specific electrode, feature, and time window was significantly different from zero. As a z-

score value of zero represents the average activity for the hold-A period, this measure was used 

to determine changes in electrophysiological activity from baseline. Multiple comparison 

correction was performed using the Benjamini-Hochberg-Yekutieli method (Benjamini and 

Hochberg 1995; Benjamini and Yekutieli 2001) of False Discovery Rate (FDR) correction to 

account for the correlated p-values caused by the overlapping time windows. The locations and 

timing of significant power changes were compared between contralateral and ipsilateral arm 

reaches. 

Electrophysiological Tuning to Movement Speed and Movement Target 

In addition to the presence or absence of significant changes in ECoG activity related to reaching 
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movements, the relationship between ECoG activity and kinematic parameters of contralateral 

and ipsilateral arm reaches was analyzed. To examine the correlation between ECoG activity and 

movement speed, z-scored values of ECoG features were concatenated across trials for time 

windows from 2 seconds before movement onset until the end of each trial. A linear correlation 

coefficient was calculated between the time course of movement speed and the time course of 

each ECoG feature. To account for differences in the timing of individual features, correlation 

coefficients were calculated for all lags between 0 seconds and 1 second in 50 ms steps, and the 

maximum absolute correlation coefficient for each channel and feature was stored. The 

relationship between the activity for each of the 8 features and movement speed was combined 

across patients and mapped onto an atlas brain as described above. The relationship between 

ECoG activity and movement speed of each arm was examined for each feature by calculating 

the correlation between the topography of speed tuning for the contralateral arm and the 

topography of tuning for the ipsilateral arm. 

To examine the directional tuning across features and cortical locations, we regressed the 

contribution of hand speed from the z-scored ECoG activity separately for each channel and 

feature. Next the average of the speed-regressed z-scores from movement onset until target 

acquisition was calculated for each feature, channel, and trial, and were grouped into 8 classes 

for each channel and feature based upon the movement target. Finally a one-way ANOVA was 

calculated to determine if there was a significant relationship between ECoG activity and target 

direction for each channel and feature. Each combination of electrode and feature was then 

classified as having contralateral tuning, ipsilateral tuning, bilateral tuning, or no directional 

tuning based upon whether significant (p<0.05) tuning was found after correcting for multiple 
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comparisons using FDR correction based upon the total number of electrodes, features, and hand 

conditions tested (Benjamini and Hochberg 1995). 

3.2.7 Prediction of Arm Movement Kinematics 

Beyond examining the relationship between changes in neural activity and reaching movements 

of each arm, if ECoG signals can also be used to decode kinematics, then this decoded 

information could be the basis for controlling a BCI system. Therefore, we examined the ability 

to decode kinematics from ECoG signals. Furthermore we compared the prediction accuracies 

and prediction models for the contralateral and ipsilateral arms. 

General Machine Learning Methods 

To examine the ability to decode reaching movement kinematics using ECoG signals, the 

datasets for the contralateral and ipsilateral arm movement conditions were each divided into 

training and testing sets. We generated a training set by randomly sampling 7/8
th

 of the trials and 

the remaining trials were held out as a test set. The full training and testing sets were constructed 

by concatenating each trial from 2 seconds before the onset of movement until the end of the 

trial. 

Machine Learning Strategy 

While the eventual goal was to develop a decoding model to predict time courses of speed, 

velocity, and position, because of the planning delay incorporated in the center-out task, the 

behavioral data consisted of two active conditions. First, the task had active rest periods, during 

which time patients held their hands in the center of the workspace, and second, the patients 

made active reaching movements to the external target. As previous studies have demonstrated 

improvements in kinematic decoding through the use of a hierarchical regression model 
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(Flamary and Rakotomamonjy 2012), we chose to implement a two-step hierarchical decoding 

model to decode kinematics of reaching movements as shown in Figure 3.3.  

 
Figure 3.3 General machine learning strategy 

To predict 3D kinematics, a hierarchical PLS regression model was used. After feature extraction, a logistic regression model 

classified time windows as either movement or rest. Two PLS regression models were trained, one relating ECoG features and 

kinematics during movement periods, and a second PLS model relating ECoG features and kinematics during non-movement 

periods. The final model output was generated from the outputs of the two PLS models by using the logistic regression output to 

switch between them. 

The first component of our hierarchical prediction method was to classify whether the patient 

was moving or not with a logistic regression model. A threshold of 10% of the maximum 

movement speed was applied to generate the movement and rest labels. The features used to train 

the model consisted of the z-scores of each of the 8 features (7 frequency bands and LMP). To 

account for potential differences in the optimal time lag between kinematics and neural activity 

for different channels and features, the correlation coefficient between training set hand speed 

and neural activity was calculated with time lags between 0 seconds and 1 second in 50 ms steps. 

For each channel and feature, the lag producing the maximum absolute correlation coefficient 

with movement speed was used in the logistic regression model. To train the logistic regression 

model, we minimized the loss function shown in Equation 3.1, where X is an n x d input feature 
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matrix of ECoG data, w is a d x 1 weight vector, y is an n x 1 vector of class labels (1 movement, 

-1 rest), and the    and    are the hyperparameter weights associated with the l1 and l2 norms 

respectively. 

 
     

 

 
                               

 

 (3.1) 

After finding the set of weights that minimize the loss function above, the output of the model 

was calculated as shown in Equation 3.2. 

 
        

 

     
 (3.2) 

The output of the logistic regression model can be considered as a probability that the current 

time window is from a movement period. Time windows with output probabilities above 0.5 

were classified as movement periods and time windows with output probabilities below 0.5 were 

classified as rest periods. Within the training set, 7 fold cross-validation was used to determine 

the optimal values for the regularization hyperparameters. After determining the 

hyperparameters, the entire training set was used to train the model and the testing set was used 

to evaluate the accuracy of the model. 

The output from this classification step was used to switch between two regression models, one 

to predict each kinematic parameter while patients were at rest and a second model to predict 

each kinematic parameter during movement periods. We used a similar method to a prior study 

that demonstrated the ability to use a partial-least squares (PLS) regression model to decode 

continuous traces of kinematic data from ECoG signals in primates (Chao, Nagasaka et al. 2010). 

The PLS model estimates a lower dimensional latent structure within the input data and uses this 

latent structure to fit a regression in order to avoid over-fitting (Wold, Ruhe et al. 1984). For our 
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model, the inputs consisted of the z-scored activity for each of the 7 canonical frequency bands 

and the LMP at each channel. Individual feature vectors were produced for all time lags between 

-500 ms and 1000 ms in 50 ms steps, with positive lags indicating neural activity leading 

kinematics and negative lags indicating neural activity lagging after kinematics. As the filters 

used during the preprocessing steps were run both forwards and backwards to avoid phase 

distortion, the neural activity in each time-window was not necessarily causal relative to the 

kinematic data, therefore we chose to use neural activity both leading and lagging the kinematic 

time courses to be predicted. Because of this, the results should be interpreted as representative 

of the entire sensorimotor system and not necessarily as causal activity related to motor planning 

alone. The outputs for the model consisted of non-directional movement speed, 3D movement 

velocity, and 3D hand position. The relationship between ECoG activity and kinematics is 

described by Equation 3.3, with M(t) representing a kinematic parameter and w representing a 

prediction weight for a specific channel, feature, and time lag. 

 

                                        

      

                        

 (3.3) 

Within the training set, 7 fold cross validation was used to determine the optimal number of 

latent features that minimized the mean squared prediction error. The final prediction model was 

generated from the full training set and the testing set was used to evaluate the accuracy. 

Evaluation of Prediction Accuracy 

To evaluate the accuracy of movement prediction, we generated 100 randomly sampled training 

and testing sets. Accuracy of the classification between movement and rest was calculated as the 

percent of the total test set windows that were correctly classified. Accuracy of the PLS 

regression model was evaluated by computing the correlation coefficient and root mean squared 
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error (rMSE) between the actual values and predicted values for each of the 7 kinematic 

parameters (speed, velocity: Vx, Vy, Vz, and position: X, Y, Z). To evaluate the accuracy of the 

PLS model in isolation from the performance of the logistic regression model, we used the true 

movement and rest labels to switch between the PLS regression model predictions for movement 

and rest.  

We evaluated the statistical significance of the models from chance using two surrogate 

predictions to ensure that the predictions were not affected by any systematic bias. To evaluate 

the significance of the temporal features within the model, we generated a surrogate kinematic 

dataset by randomly reordering the trials within the training set, randomly selecting a new trial 

onset from within each training set trial, and generating a new time course by wrapping data 

from the beginning of the trial to the end of the trial. This procedure ensured that the temporal 

relationship between the ECoG signals and kinematics was random, while maintaining the 

autocorrelation structure of the kinematics. Information regarding the construction of the 

temporal surrogates, exemplar surrogate time courses, and a comparison of the autocorrelation 

structures of the original and surrogate kinematics is contained in the supplementary information 

in the appendix. For each training and testing set, we trained one model using the original 

kinematic data and a second model using the surrogate kinematics. Both models were tested 

using the original testing set. A second surrogate method that was similar to one used in other 

studies of kinematic prediction (Chao, Nagasaka et al. 2010; Hotson, Fifer et al. 2014) was used 

to evaluate the significance of ECoG features and channel assignments. For each training set, we 

reshuffled the channel and frequency assignments of the prediction weights 100 times and 

generated test accuracies using both the original and reshuffled weights. The statistical 

significance of both the movement classification and kinematic prediction models was evaluated 
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using a Wilcoxon rank sum test to compare the median actual accuracy with the median 

surrogate accuracy. Bonferroni correction was used to correct for the total number of predictions 

tested. 

Evaluation of Feature Importance 

Because we equalized the variance of each ECoG feature prior to generating prediction models, 

the weights for each channel and feature could be compared to evaluate the importance of each 

feature type and cortical location between hand conditions. To examine the importance of 

features in the classification of movement and rest conditions, logistic regression prediction 

weights were averaged across each of the 100 training sets. For each frequency band, the 

magnitude and location of average model weights was mapped onto an atlas brain as described 

previously. For the PLS regression model predicting kinematics, the relative importance of 

cortical locations during the movement model was evaluated by normalizing the sum of the 

absolute value of the prediction weights for a given channel or feature with the sum of the 

absolute value of all prediction weights as shown in Equation 3.4. 

 
          

                              

                                    
 

            
                           

                                    
 

(3.4) 

Normalized feature weights were calculated for each channel, feature, and hand. Normalized 

weights for each channel were mapped onto a single atlas brain to combine weights across 

patients. 

3.2.8 Simulation of Non-Invasive Recordings 

We used ECoG recordings to simulate non-invasive electrophysiological recordings and used 

these simulated signals to evaluate the tradeoff in reduced decoding accuracy with reduced 
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invasiveness. The difference between ECoG and electroencephalography (EEG) recordings has 

been characterized as the result of a low-pass frequency filter and an additional spatial filter 

(Cooper, Winter et al. 1965; Pfurtscheller and Cooper 1975). Our EEG simulation method, 

shown in Figure 3.4, was based upon a method previously published (Freudenburg, Gaona et al. 

2014). Briefly, we low-pass filtered each ECoG signal with a 3
rd

 order butterworth filter with a 

cut-off frequency of 45 Hz. Next, the simulated EEG signals were derived by spatially filtering 

the low-pass filtered ECoG channels. Finally, as described in Section 3.2.5, we computed the 

LMP amplitude and the spectral power in 5 canonical frequency bands (theta: 4-8 Hz, mu: 8-12 

Hz, beta 1: 12-24 Hz, beta 2: 24-34 Hz, and gamma: 35-55 Hz). These 6 features were then used 

in a hierarchical regression model to predict speed and movement velocity as described in 

Section 3.2.7. Finally, the kinematic prediction accuracy for the original ECoG signals and 

simulated EEG signals were compared. This analysis was performed on three of the 5 patients 

(Patients 2, 4, and 5) as these patients had 8 x 8 electrode grids allowing for use of the 4 x 4 

spatial filter to generate EEG simulations. 

 
Figure 3.4 EEG simulation spatial methodology 

A. To simulate EEG signals from ECoG signals, a low-pass filter was applied to the entire 8x8 ECoG grid. B. A 4x4 spatial filter 

with the weights shown was applied to the low-pass filtered ECoG signals. C. The spatial filter was shifted along each row and 

column to generate a 25-channel array of simulated EEG signals from the original 8x8 channel ECoG array.  
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3.3 Results 

3.3.1 Behavioral Performance 

All patients were able to consistently and accurately perform reaching movements to the target 

locations. Table 3.2 contains behavioral data comparing contralateral and ipsilateral reaching 

movements. After excluding trials with reaction times greater than 2 standard deviations from the 

mean, median reaction times for contralateral and ipsilateral arms differed by less than 100 ms 

for Patient 2 and less than 50ms in Patients 4 and 5. Additionally, in all patients, median peak 

movement speed was also similar between the contralateral and ipsilateral arms, differing by at 

most 3 cm/s. To evaluate the true dimensionality of the reaching movements performed, we 

calculated the percent of variance explained by the principle components of the seven component 

kinematic parameters used: speed, velocity (Vx, Vy, Vz), and position (X, Y, Z). As shown in 

Table 3.2, the first principle component explained at most 35% of the variance. Additionally 

each of the first four principle components explained at least 11% of the variance in all patients 

and arm conditions, indicating that multiple independent degrees of freedom were truly 

controlled in the task. 

Table 3.2 Patient-specific behavioral performance 

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5-7

Contra N/A 20.65 22% 19% 17% 14% 27%

Ipsi N/A 22.16 23% 20% 18% 12% 27%

Contra 904 16.65 26% 22% 19% 13% 20%

Ipsi 820 16.35 26% 23% 20% 13% 19%

Contra 814 17.44 35% 21% 18% 11% 15%

Ipsi  -  -  -  -  -  -  - 

Contra 417 19.78 24% 23% 16% 13% 23%

Ipsi 408 21.8 27% 21% 19% 13% 21%

Contra 625 28.62 24% 22% 20% 14% 21%

Ipsi 579 31.62 23% 21% 20% 14% 21%

2

3

4

5

Principal Component VarianceMedian Reaction 

Time (ms)
Patient Hand

Median Peak 

Speed (cm/s)

1
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3.3.2 Movement Related Cortical Activity 

Each of the 5 patients had electrodes that demonstrated significant changes in spectral power and 

LMP amplitude immediately prior to and during the performance of reaching movements. Time-

frequency plots demonstrating changes in spectral power relative to baseline (hold-A) periods in 

exemplar electrodes are shown for contralateral and ipsilateral arm movements in Figure 3.5. In 

general, significant power changes around movement onset consisted of decreases in spectral 

power before and during movement execution in frequencies below 40 Hz, and increases in 

spectral power in high gamma band frequencies above 60 Hz. In the patient shown on the left, 

electrodes in premotor regions and primary sensorimotor cortices can be found that demonstrate 

either similar or different patterns of spectral power changes between contralateral and ipsilateral 

arm movements. For this patient in particular, in primary sensorimotor cortices, high gamma 

band power increases during contralateral but not ipsilateral arm movements. For electrodes in 

premotor regions, however, high gamma band power increases are associated with both 

contralateral and ipsilateral arm movements. One exemplar electrode even shows a larger 

amplitude increase in high gamma band power during ipsilateral arm movements when 

compared to the contralateral arm.  In contrast in a second patient, very similar spectral power 

changes are observed in contralateral and ipsilateral arm movements, even in primary 

sensorimotor regions. Additionally, in this patient, a finer-scale temporal relationship between 

high gamma band power and movement onset at different locations can be observed. Significant 

increases in high gamma band power occur first in the posterior parietal cortex, begin a few 

hundred milliseconds before movement onset in primary motor cortex, and have a peak after the 

onset of movement in sensory areas. 
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Figure 3.5 Exempar movement-related spectral power changes 

Exemplar significant (p<0.05 uncorrected) movement-related spectral power changes during movements of the contralateral and 

ipsilateral arms for selected electrodes from 2 patients. Time-frequency plots display significant spectral power changes. Color 

scales show z-scores of spectral power relative to the hold-A period. White traces show the average movement speed. In the 

patient shown on the left, significant high gamma (>60 Hz) power increases and mu and beta band ERD occur for contralateral 

arm movements, while for ipsilateral arm movements, no high gamma power increases occur (top plots). In non-primary motor 

areas, significant high gamma power increases are observed during both contralateral and ipsilateral arm movements (left plots). 

In the patient shown on the right, both low frequency ERD and high gamma power increases occur in every electrode shown. 

Posterior parietal cortex demonstrates the earliest onset of high gamma band power increases (top right), followed by primary 

motor cortex (top), followed by sensory areas where the peak high gamma band power increase follows movement onset (right). 

Figure 3.6 displays changes in the LMP signal averaged across trials in several exemplar 

electrodes from a single patient. Particularly in primary sensorimotor regions, a negative shift in 

LMP amplitude can be seen around the onset of movements of both the contralateral and 

ipsilateral limbs that follows the time course of the movement speed. 
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Figure 3.6 Exemplar movement-related local motor potential amplitude 

Exemplar LMP amplitude changes during contralateral and ipsilateral arm movements. Red traces show the uncorrected 95% 

confidence intervals of z-scored LMP amplitude, black traces show the 95% confidence interval for movement speed. In primary 

sensorimotor regions (top plots), a negative shift in LMP amplitude is observed around the onset of movement. In non-primary 

motor areas, a brief positive deflection in LMP amplitude is observed around the time of movement onset (left plots). 

Across patients, movement-related changes occur in multiple ECoG features. Changes to 

individual features occur with distinct amplitudes and timing relative to the onset of movements 

of the contralateral and ipsilateral arm. Figure 3.7 shows statistically significant changes of 

selected features occurring at selected time windows relative to movement onset. All features 

displayed are z-scores relative to the hold-A period.  
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Figure 3.7 Group averaged movement-related ECoG activations 

Movement-related ECoG activations, averaged across patients, show differences in ECoG activations during contralateral and 

ipsilateral limb movements. Top: Average movement speed for contralateral arm movements (solid lines) and ipsilateral arm 

movements (dashed lines). After aligning each trial to the onset of movement, the average time course of movements is similar 

across patients and hand conditions. Vertical lines indicate time points selected for the brain plots shown below. Middle: Average 
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ECoG activations during contralateral arm movements. Color scales represent averaged z-scores relative to the hold-A period. 

Dark grey areas on the atlas brain show areas without electrode coverage. Data were thresholded for significant (p<0.05) 

activations after FDR correction. Beta ERD occurs first, becoming broader around the onset of movement, followed by mu ERD. 

Next, high gamma band power increases occur over primary sensorimotor areas. Finally, focal decreases in LMP amplitude occur 

in primary sensorimotor cortices immediately before movement onset. Bottom: Average ECoG activations during ipsilateral arm 

movements. Beta and mu band ERD have similar amplitudes, but begin later than contralateral arm movements. High gamma 

band power increases occur later and are lower in amplitude in ipsilateral compared to contralateral arm movements.  

Across patients, beta and mu band event-related desynchronization (ERD) is observed broadly 

over sensorimotor regions before and during movement execution. For the contralateral arm, 

significant beta band ERD begins at least 1 second before movement onset followed by mu ERD, 

which begins 650 ms before movement onset. High gamma band power significantly increases 

beginning approximately 300 ms before movement onset. Finally, decreases in LMP amplitude 

are localized to the primary sensorimotor cortices with increases in LMP amplitude anterior and 

posterior. LMP amplitude changes begin immediately before movement onset. When compared 

to the contralateral arm, movement-related ECoG spectral power changes occur later relative to 

ipsilateral arm movements. Beta band ERD begins 500 ms before movement onset, mu band 

ERD begins 200 ms prior to movement onset, and high gamma band power increases occur 

immediately before movement onset. Furthermore, while mu and beta band ERD is similar in 

amplitude during contralateral and ipsilateral reaches, high gamma band power increases are 

lower in amplitude during ipsilateral arm movements.  Significant decreases of LMP amplitude 

related to ipsilateral arm movements begin earlier for ipsilateral than contralateral movements, 

but similar to contralateral arm movements, become broader throughout primary sensorimotor 

cortex immediately before movement onset. 

3.3.3 ECoG Encoding of Movement Kinematics 

Along with examining the changes in ECoG activity during reaching movements of the 

contralateral and ipsilateral limbs, we also investigated the similarities and differences in the 

relationship of these ECoG features to kinematics of contralateral and ipsilateral reaching 
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movements. Initially, we examined the relationship between ECoG features and the speed of 

movements in any direction. Figure 3.8 shows the relationship between ECoG activity and 

movement speed across patients in the form of topographies of statistically significant (p<0.05) 

correlation coefficients. Mu and beta band power are negatively correlated with movement speed 

in a broad region centered over primary sensorimotor cortices. A negative correlation also occurs 

between movement speed and LMP amplitude within a more focal region centered over primary 

sensorimotor cortices. In contrast, sensorimotor cortex high gamma band power is positively 

correlated with speed. Furthermore, each of these ECoG features displays very similar statistical 

tuning to both contralateral and ipsilateral arm movements. This similarity in the topography of 

tuning of ECoG activity to movement speed is shown by the strong correlation between the 

topographies of speed tuning especially in the mu, beta, and high gamma bands. Specifically, the 

correlation between the topographies of contralateral and ipsilateral speed tuning for each feature 

is LMP: 0.4541, theta: 0.4760, mu: 0.8541, beta 1: 0.8907, beta 2: 0.7326, gamma 1: 0.1767, 

gamma 2: 0.7201, and gamma 3: 0.6995. 

 
Figure 3.8 ECoG tuning to movement speed 

Individual brain plots show the relationship between movement speed and z-scores of ECoG activity averaged for individual 

cortical locations across patients. The color scale shows the correlation coefficient between movement speed and ECoG activity. 

Dark grey regions represent regions with no electrode coverage. There is a similar focal negative relationship between LMP 

amplitude and movement speed centered on the central sulcus for both contralateral and ipsilateral arms. Additionally, there is a 

similar negative relationship between mu and beta band power and movement speed in a broad area centered on primary motor 
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cortex for both contralateral and ipsilateral arms. For high gamma band power, while tuning for the ipsilateral arm is weaker than 

the contralateral arm, both display a relatively broad positive tuning between spectral power and movement speed. 

 In addition to movement speed, we also found that ECoG activity is tuned to movement 

direction. For each patient in which both contralateral and ipsilateral arms were used, we 

determined if a significant (p<0.05) relationship existed between ECoG activity and target 

direction. Electrodes with significant tuning were classified as contralateral if directional tuning 

was found for contralateral arm movements only, ipsilateral if directional tuning was found for 

ipsilateral arm movements only, or bilateral if tuning was found with both contralateral and 

ipsilateral arm movements. The locations of electrodes from each class are displayed in Figure 

3.9 and are tabulated by ECoG feature in Table 3.3. Electrodes displaying directional tuning are 

found for each of the features studied. In particular, electrodes displaying beta band and high 

gamma band directional tuning were focused in motor cortical areas. Additionally LMP 

amplitude was tuned to movement direction in the largest number of electrodes with cortical 

locations covering large regions of the primary motor cortex, parietal lobe, and frontal lobe.  

 
Figure 3.9 ECoG tuning to movement direction 

Individual brain plots show electrodes that have significant (p<0.05) tuning to movement direction for contralateral (blue), 

ipsilateral (yellow), and bilateral (green) movements. For beta and high gamma frequency bands, several electrodes show tuning 

in each of the three categories. For LMP amplitude, a very broad area located in primary sensorimotor cortices, parietal cortex, 
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and frontal cortex demonstrates significant tuning to movement direction of one or both arms. FDR correction was used to correct 

for the total number of comparisons made across electrodes, features, and limb sides. 

 Table 3.3 Directionally tuned electrodes 

Contralateral 

(n (%))

Ipsilateral      

(n (%))

Bilateral      

(n (%))

Any Tuning  

(n (%))

LMP 16 (8.0%) 36 (18.1%) 29 (14.6%) 81 (40.7%)

Theta               

(4-8 Hz)
1 (0.5%) 5 (2.5%) 0 (0.0%) 6 (3.0%)

Mu                     

(8-12 Hz)
2 (1.0%) 1 (0.5%) 0 (0.0%) 3 (1.5%)

Beta 1             

(12-24 Hz)
8 (4.0%) 5 (2.5%) 6 (3.0%) 19 (9.6%)

Beta 2              

(24-34 Hz)
6 (3.0%) 3 (1.5%) 2 (1.0%) 11 (5.5%)

Gamma 1      

(35-55 Hz)
6 (3.0%) 3 (1.5%) 1 (0.5%) 10 (5%)

Gamma 2      

(65-95 Hz)
6 (3.0%) 6 (3.0%) 7 (3.5%) 19 (9.6%)

Gamma 3 

(130-175 Hz)
12 (6.0%) 6 (3.0%) 5 (2.5%) 23 (11.6%)

 

3.3.4 ECoG Prediction of Movement Kinematics 

The features of ECoG signals related to the execution of motor movements were then used to 

decode continuous traces of kinematic information (speed, velocity, and position) of both arms.  

Classification of Movement and Rest 

The initial component of the decoding model involved training a logistic regression to classify 

each time point as either movement or rest. Exemplar binary predictions of movement and rest 

are shown for test sets from ipsilateral and contralateral arm movements of a single patient in 

Figure 3.10. The predicted movement states match the actual labels closely during both 

contralateral and ipsilateral arm movements, showing a good ability to predict whether a patient 

is moving or not using ECoG.  
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Figure 3.10 Exemplar classification of movement and rest periods 

Exemplar predictions of movement classes were generated using contiguous trials within held-out testing sets. Black traces show 

the actual hand speed that was used to generate true movement class labels shown in blue. Predicted movement class labels are 

shown in red and correspond well with the actual labels. 

Accuracies of predictions of movement and rest, which were calculated as the percent of 

individual time windows that were predicted correctly, are shown for contralateral and ipsilateral 

reaches in Table 3.4. Final prediction accuracies were compared to chance prediction levels 

produced with two surrogate datasets derived by shuffling the temporal relationship between 

movement class labels and ECoG data, or by shuffling the channel and feature assignments of 

the model weights. The true prediction accuracy is significantly higher than accuracy produced 

by either of the surrogate datasets in all patients after Bonferroni correction for the total number 

of comparisons. Furthermore, prediction accuracies produced by the surrogate methods were 

similar to the overall proportion of movement and rest classes in the dataset, demonstrating that 

the reshuffling strategies used were a good approximation for chance prediction. Exemplar 
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surrogate prediction traces are shown in the supplementary figures within the appendix. 

Table 3.4 Logistic regression prediction accuracies 

Contra 67.78% (2.02) 53.28% (1.97) <0.000001 50.92% (3.40) <0.000001

Ipsi 69.76% (2.44) 57.64% (2.29) <0.000001 53.62% (3.53) <0.000001

Contra 73.43% (3.93) 48.91% (5.59) <0.000001 50.08% (4.96) <0.000001

Ipsi 77.72% (2.90) 54.61% (2.78) <0.000001 53.37% (4.26) <0.000001

Contra 81.97% (3.23) 63.42% (2.28) <0.000001 60.82% (3.75) <0.000001

Ipsi  -   -  -  -  - 

Contra 85.08% (2.40) 60.22% (2.64) <0.000001 56.06% (4.40) <0.000001

Ipsi 84.08% (2.19) 63.065 (2.24) <0.000001 57.57% (3.49) <0.000001

Contra 90.10% (1.36) 70.97% (1.42) <0.000001 69.57% (2.18) <0.000001

Ipsi 90.93% (1.39) 72.44% (1.29) <0.000001 71.55% (1.66) <0.000001

p p

1

2

Shuffled Feature 

Accuracy

3

4

5

Original Accuracy
Shuffled Time 

Accuracy
HandPatient

 

Continuous Prediction of Kinematic Traces 

The second component of our machine learning model was composed of 2 PLS regression 

models, one to describe the relationship between ECoG features and seven kinematic parameters 

(speed, velocity: Vx, Vy, Vz, and position: X, Y, Z) during non-movement periods, and a second 

model to characterize the relationship between ECoG signals and the same kinematic parameters 

during movement periods. To examine the ability of this hierarchical PLS regression model to 

predict the time courses of kinematics during novel time periods, we trained each of the PLS 

regression models on a training set and used a separate test set to examine the accuracy of 

predictions. To evaluate the ideal performance of the PLS regression models in isolation from 

the ability to classify movement and rest periods, the actual movement and rest labels were used 

as the switch between the movement and rest PLS regression models.  

For non-directional movement speed, model predictions were significantly more correlated to 

actual hand speed than predictions generated with either of the surrogate method for both 

contralateral and ipsilateral arm movements in all patients as shown in Figure 3.11. Additionally 

model predictions of movement speed had significantly lower rMSE values than either of the 

surrogate models for both the contralateral and ipsilateral arm movements in all patients. 
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Because the true movement class labels were used to evaluate the accuracy of the PLS models 

alone, the surrogate models for speed had positive correlations with the actual hand speed, but 

these correlations were significantly lower than the actual model predictions in all patients. This 

is because the actual predictions fit the time course of movements much more closely than the 

surrogate predictions. Exemplar surrogate predictions using both surrogate methods are shown in 

the appendix. 

 
Figure 3.11 PLS speed prediction accuracy 

Distributions show the correlation coefficients between predicted and actual movement speed. Distributions were generated from 

test sets using the actual movement class labels to switch between PLS regression models. Prediction accuracies are similar in 

contralateral and ipsilateral arm movements for all patients. Distributions marked with a * symbol are significantly different from 

surrogate models generated by shuffling the temporal relationship between ECoG and kinematics. Distributions marked with a † 

are significantly different from surrogate models generated by shuffling feature and channel weights. All predictions are 

significantly better than both surrogate models. 

Ideal test accuracies across patients and hand conditions are shown in Figure 3.12 for directional 

kinematics (velocity and position). The PLS model accuracy for both directional and non-

directional kinematic variables are summarized in Table 3.5. Predictions of velocity had 

significantly greater correlations and significantly lower rMSE values than both surrogate 

models for 12 of the 15 velocity components (3 directions, 5 patients) and in 10 of 12 (3 

directions, 4 patients) velocity components of ipsilateral arm movements tested. Contralateral 

arm position predictions had significantly greater correlation coefficients and significantly lower 
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rMSE from both surrogate models in 10 of 15 (3 directions, 5 patients) position components 

tested and in 10 of 12 (3 directions, 4 patients) position components tested for ipsilateral arm 

movements. Therefore, components of 3D kinematics were predicted by our hierarchical PLS 

model with accuracies better than chance in multiple patients and for both contralateral and 

ipsilateral arm movements. In one patient in particular, prediction of kinematic time courses was 

highly significant for each of the seven kinematic components and for both the contralateral and 

ipsilateral arm movements. 

 
Figure 3.12 PLS directional kinematic prediction accuracy 

Distributions show the correlation coefficients between predicted and actual velocity (left column) and position (right column). 

Distributions were generated from test sets using the actual movement class labels to switch between PLS regression models. 
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Prediction accuracies are similar for contralateral and ipsilateral arm movements within each patient. Distributions marked with a 

* symbol are significantly better than chance based upon surrogate models generated by shuffling the temporal relationship 

between ECoG and kinematics. Distributions marked with a † are significantly better than chance based upon surrogate models 

generated by shuffling feature and channel weights. A number of velocity and position components are significant for both 

contralateral and ipsilateral arm movements. 

Table 3.5 PLS model prediction accuracies 

Vx Vy Vz X Y Z

Contra 0.7936*† 0.5156*† 0.6125*† 0.345*† 0.6201*† 0.4906*† 0.2171*†

Ipsi 0.8133*† 0.5629*† 0.5452*† 0.3962*† 0.5669*† 0.3340*† 0.3059*†

Contra 0.7664*† 0.3521*† 0.2015*† 0.5349*† 0.4285*† 0.2238*† 0.5620*†

Ipsi 0.8117*† 0.4607*† 0.1786*† 0.407*† 0.4366*† 0.1795*† 0.4135*†

Contra 0.8084*† 0.4908*† 0.1273*† 0.2756*† 0.4564*† 0.0507 0.1509*†

Ipsi  -   -  -  -  -  -  - 

Contra 0.8341*† 0.2285*† 0.2725*† 0.3451*† 0.2702*† 0.1544*† 0.3800*†

Ipsi 0.8299*† 0.5133*† 0.1854*† 0.3193*† 0.5581*† 0.1890*† 0.3151*†

Contra 0.9072*† 0.6796*† 0.5207*† 0.6076*† 0.6575*† 0.5004*† 0.5928*†

Ipsi 0.9119*† 0.7033*† 0.5823*† 0.5304*† 0.6532*† 0.6037*† 0.5275*†

Vx (cm/s) Vy (cm/s) Vz (cm/s) X (cm) Y (cm) Z (cm)

Contra 10.26*† 11.39*† 9.52*† 11.25*† 7.11*† 7.9*† 8.42†

Ipsi 10.53*† 12.7*† 10.05*† 10.92*† 8.14*† 9.99*† 8.75*†

Contra 8.6*† 8.19*† 10.35* 9.39*† 7.03*† 9.66† 7.43*†

Ipsi 8.32*† 8.15*† 10.6† 9.61*† 6.4*† 8.52† 7.42*†

Contra 8.86*† 8.47*† 11.05 9.31*† 5.86*† 8.52 6.89

Ipsi  -   -  -  -  -  -  - 

Contra 8.81*† 10.87† 10.99*† 10.32*† 7.35*† 8.48 8.43*†

Ipsi 9.61*† 9.37*† 11.41† 11.04*† 6.29*† 8.69 8.18*†

Contra 9.22*† 10.59*† 12.43*† 11.04*† 6.59*† 7.84*† 6.68*†

Ipsi 9.83*† 11.12*† 12.47*† 12.71*† 6.42*† 7.14*† 7.25*†

Correlation

Patient Hand Speed

1

PositionVelocity

Root Mean Square Error

Patient Hand Speed (cm/s)
Velocity Position

1

2

3

4

5

* - Siginificantly different from a surrogate model created using temporally reshuffled training data.

† -  Significantly different from a surrogate distribution created by reshuffling channel and feature weights.

2

3

4

5

 

Finally, the full model prediction accuracies were calculated on testing sets through utilizing the 

combination of the predicted logistic regression output to predict movement classes and switch 

between predictions from the two PLS regression models in order to generate predicted 

kinematic time courses. Average correlations between actual and predicted kinematics are shown 

in Table 3.6. Accuracies for the full model prediction are lower than the best-case scenario in 

which actual movement labels are used to switch between PLS regression models (Table 3.5). 

Additionally, velocity and position accuracies are highest along the x (anterior-posterior) axis 

and lowest along the y (lateral) axis. When using the predicted movement classes to switch 
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between PLS regression models for generating predicted kinematic traces, predictions of speed 

were significantly more correlated to the actual movement speed and had significantly lower 

rMSE values than both surrogate methods for both contralateral and ipsilateral arm movements 

in 4 of the 5 patients. Additionally, predictions of velocity components had significantly greater 

correlations and significantly lower rMSE than both surrogate models in 11 of 15 velocity 

components tested for contralateral arm movements and in 9 of 12 velocity components tested 

for ipsilateral arm movements. Contralateral arm position predictions had significantly greater 

correlations and significantly lower rMSE than both surrogate models in 9 of 15 position 

components tested. Position predictions were better than chance for 10 of 12 position 

components tested for ipsilateral arm movements. In one patient in particular, predictions were 

highly significant for each kinematic parameter tested for both contralateral and ipsilateral 

reaches. Exemplar time courses of actual and predicted kinematics using the full hierarchical 

PLS regression model are shown for this patient in Figure 3.13. As can be seen, time courses of 

predicted kinematics align well with the time courses of actual kinematics for both contralateral 

and ipsilateral arm reaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

68 

Table 3.6 Full model prediction accuracies 

Vx Vy Vz X Y Z

Contra 0.3144 0.3692*† 0.4455*† 0.1679*† 0.5605*† 0.4497*† 0.1624*†

Ipsi 0.3772 0.3725*† 0.3447*† 0.2798*† 0.5172*† 0.2848*† 0.2964*†

Contra 0.5881*† 0.3009*† 0.2002*† 0.4686*† 0.3934*† 0.204*† 0.5588*†

Ipsi 0.6355*† 0.4198*† 0.1571*† 0.3573*† 0.3918*† 0.1637*† 0.3891*†

Contra 0.6564*† 0.4267*† 0.1481*† 0.2397*† 0.4171*† 0.0696 0.1764*†

Ipsi  -  -  -  -  -  -  - 

Contra 0.749*† 0.2181*† 0.2518*† 0.3346*† 0.2543*† 0.1504*† 0.3685*†

Ipsi 0.7336*† 0.4739*† 0.1743*† 0.293*† 0.5284*† 0.1567*† 0.3022*†

Contra 0.7961*† 0.6302*† 0.4437*† 0.55*† 0.6579*† 0.5128*† 0.5486*†

Ipsi 0.8103*† 0.664*† 0.5339*† 0.4738*† 0.6691*† 0.6221*† 0.4891*†

Vx (cm/s) Vy (cm/s) Vz (cm/s) X (cm) Y (cm) Z (cm)

Contra 18.16 12.62*† 10.99*† 12.13† 7.50*† 8.07*† 8.62†

Ipsi 18.85 14.54*† 11.57*† 11.48† 8.50*† 10.17*† 8.83*†

Contra 11.20*† 8.44*† 10.44 9.85*† 7.27*† 9.64† 7.48*†

Ipsi 11.34*† 8.31*† 10.71† 9.80*† 6.54*† 8.50† 7.56*†

Contra 11.32*† 8.70*† 10.91 9.51*† 5.96† 8.34 6.81

Ipsi  -  -  -  -  -  -  - 

Contra 10.64*† 10.92† 11.09*† 10.26*† 7.41*† 8.45 8.45*†

Ipsi 11.79*† 9.54*† 11.38† 11.15*† 6.44*† 8.76 8.18*†

Contra 13.30*† 11.19*† 12.97*† 11.52*† 6.55*† 7.74*† 6.96*†

Ipsi 14.07*† 11.68*† 12.89*† 13.17*† 6.32*† 7.05*† 7.50*†

Speed

Correlation

Root Mean Square Error

Patient Hand Speed
Velocity Position

2

3

4

5

1

Velocity Position
Patient Hand

* - Siginificantly different from a surrogate model created using temporally reshuffled training data.

† -  Significantly different from a surrogate distribution created by reshuffling channel and feature weights.
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Figure 3.13 Exemplar kinematic predictions 

Full model predictions were generated using the predicted movement classes from the logistic regression to switch between 

predicted PLS model outputs. Actual kinematic traces are shown in blue and predicted traces are shown in red for the 

contralateral (left column) and ipsilateral (right column) arm movements. Predictions were generated from contiguous trials of a 

single test set for the contralateral and ipsilateral arms. Kinematic predictions match the directions and time courses of actual 

kinematics very well. 

Feature Importance 

To evaluate the differences between prediction models trained for contralateral and ipsilateral 

arm movements, we examined the importance of individual ECoG feature types and cortical 
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locations. Average model weights that were used to classify movement and rest periods across 

patients are shown for selected features in Figure 3.14. The location and strength of feature 

weights are similar between models trained for contralateral arm movements and ipsilateral arm 

movements. Beta band and LMP features, in particular, demonstrate the largest amplitude 

prediction weights with negative weights centered in primary sensorimotor areas, indicating that 

decreases in sensorimotor cortex beta band power and LMP amplitude are associated with 

movement periods. 

 
Figure 3.14 Logistic regression model weights 

Average logistic regression model weights are shown for selected features for contralateral and ipsilateral arm movements. Beta 

band power and LMP amplitude in primary sensorimotor cortices have the strongest prediction weights across patients with 

decreases in beta band power and LMP amplitude used to predict movement periods. Regions shown in dark grey represent 

regions with no electrode coverage. 

To evaluate the importance of individual features and cortical regions for the prediction of 

continuous kinematic parameters, we examined the movement period PLS regression models. As 

shown in Figure 3.15, prediction model weights were distributed in a broader area for directional 

kinematics as compared to speed and for contralateral as compared to ipsilateral arm movements. 

The location of the most important weights for models predicting contralateral and ipsilateral 

arm kinematics were both similarly located over primary sensorimotor regions.  
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Figure 3.15 Topography of PLS prediction weights 

Absolute values for movement-class PLS regression weights compared across cortical locations for all patients. The color scale 

represents the normalized absolute value of prediction weights by cortical location. Prediction of directional kinematics involves 

a broader area of cortex than needed to predict speed. Prediction of contralateral arm kinematics also involves prediction weights 

covering a broader topographic area than for ipsilateral arm kinematics. The most important cortical locations for all kinematic 

parameters are centered over primary sensorimotor areas for both contralateral and ipsilateral arm movements.  

Across temporal and spectral features, the LMP amplitude consistently had the largest prediction 

weights for predicting kinematics of both contralateral and ipsilateral arm movements. Within 

spectral power features, the largest absolute model weights were found for high gamma band 

features in the 65-95 Hz and 130-175 Hz ranges. The relative importance of temporal and 

spectral ECoG features is shown in Figure 3.16. 
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Figure 3.16 Importance of ECoG feature types for kinematic prediction 

Distributions represent the normalized absolute movement-class PLS prediction weights across patients and electrodes for each 

feature type. For speed, velocity, and position LMP amplitude has the greatest absolute prediction weights for both contralateral 

and ipsilateral arm movements. Of spectral power features, high gamma band features have the highest absolute prediction 

weights. 

3.3.5 Prediction of Movement Kinematics with Simulated EEG 

Finally, the ability to predict kinematic parameters using non-invasive recording modalities was 

evaluated by using ECoG recordings to generate simulated EEG signals, which were then used to 
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train our hierarchical PLS regression model and generate test accuracies. Figure 3.17 compares 

average speed and velocity prediction accuracies of ECoG and simulated EEG signals. For each 

of the patients, arms, and kinematic types, correlations between actual and predicted kinematics 

were significantly lower for simulated EEG signals when compared to ECoG signals. The 

accuracy of movement classification was also significantly worse when using simulated EEG 

signals than when using ECoG signals. This decrease in prediction accuracy with simulated EEG 

signals is shown in Figure 3.18, which displays actual and predicted kinematics for a single test 

fold from a single patient using both ECoG signals and simulated EEG signals. For movement 

speed, while the step-like increases seen in predicted speed indicate that movement periods are 

classified well from rest, using actual ECoG signals to prediction speed produces time courses 

that follow the actual kinematic time courses much more closely. For velocity, predictions using 

simulated EEG signals are lower in amplitude and are often in the incorrect direction. 

 
Figure 3.17 Comparison of ECoG and simulated EEG prediction accuracies 

Distributions of prediction accuracies were generated using original ECoG signals and simulated EEG signals. For both speed 

and velocity, kinematic predictions made using ECoG signals were significantly better than predictions made using simulated 
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EEG signals. Distributions were generated using the full model with the logistic regression prediction used to switch between 

PLS regression models in order to produce the final kinematic predictions. 

 
Figure 3.18 Exemplar kinematic prediction from simulated EEG signals 

Exemplar predictions were generated for speed and velocity using the original ECoG signals (red traces) and simulated EEG 

signals (green traces). Prediction traces were generated from contiguous trials from a single test fold. While movement class can 
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be predicted well for simulated EEG data as indicated by the correlation between speed and the EEG simulation prediction, the 

profile of speed predictions match the actual speed profiles better when using ECoG signals as compared to simulated EEG 

signals. For velocity, the predictions made using simulated EEG signals are lower in amplitude and oriented in the incorrect 

direction more frequently than when predicting kinematics from actual ECoG signals. 

3.4 Discussion 
This study demonstrates that kinematics of 3D reaching movements can be decoded from ECoG 

signals in human patients. In particular, while the amplitude of movement-related power changes 

during contralateral and ipsilateral arm movements are different, the relationship between ECoG 

activity and movement kinematics of the contralateral and ipsilateral arms are very similar. 

Furthermore, ECoG signals not only maintain a statistical relationship to movement kinematics, 

but recordings from a single hemisphere can be used to decode kinematics of reaching 

movements of either hand with accuracies greater than chance. The prediction models used show 

that the representations of contralateral and ipsilateral arm kinematics within ECoG signals are 

similar, both in the importance of cortical locations and the importance of ECoG feature types. 

The ability to use ECoG recordings to decode kinematics of the same-sided hand underscores the 

possibility for a stroke survivor to use signals recorded from their unaffected hemisphere to 

control a BCI system.  

While previous studies have shown that ECoG recordings in human patients can be used to 

decode 2D movement kinematics (Schalk, Kubanek et al. 2007; Pistohl, Ball et al. 2008; 

Sanchez, Gunduz et al. 2008), the extent of movement-related information that can be reliably 

decoded has been uncertain. Although previous studies have decoded movement trajectories of 

movements that were not constrained to two dimensions, these tasks had inherent correlations 

between movement directions and speed, reducing the true dimensionality of decoding (Hotson, 

Fifer et al. 2012; Nakanishi, Yanagisawa et al. 2013; Hotson, Fifer et al. 2014). In the task used 

in this study, the first kinematic principle component explained at most 35% of the variance in 
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any patient and the first 4 principle components each explained at least 11% of the variance in all 

patients, indicating that the movements performed truly included three independent directional 

dimensions and movement speed. Therefore, we believe that this study provides the first true 

demonstration of the ability to use ECoG recordings from human patients to decode 3D 

kinematics. While 3D kinematic decoding has also been demonstrated from ECoG recordings in 

non-human primates (Chao, Nagasaka et al. 2010; Shimoda, Nagasaka et al. 2012), the 

demonstration of kinematic decoding in humans is not trivial. Non-human primates typically 

require extensive periods of behavioral training prior to the recording of neural activity, leading 

to more consistent motor movements than would be expected in real-world behavior. 

Additionally, as long-term practice of a motor task leads to an increase in the size of the cortical 

area activated during task performance (Karni, Meyer et al. 1995), decoding of behavioral 

intentions during a trained motor task may not generalize to more typical novel behaviors. 

Importantly, time courses of 3D kinematics were decoded with similar levels of accuracy for 

both contralateral and ipsilateral arm reaches. When compared to contralateral arm movements, 

mu and beta band ERD occurs in similar cortical locations during ipsilateral arm movements, but 

begins later relative to the movement onset time. Additionally, increases in high gamma band 

power also occur later and are lower in amplitude during ipsilateral arm movements than during 

contralateral arm movements. These differences in the timing and strength of spectral power 

changes correspond well with the majority of previous studies of movement-related spectral 

power changes from both non-invasive and invasive recording methods (Pfurtscheller and 

Aranibar 1979; Crone, Miglioretti et al. 1998a; Crone, Miglioretti et al. 1998b; Pfurtscheller and 

Lopes da Silva 1999). Although these findings contrast with a previous study from our lab 

demonstrating a unique physiology associated with ipsilateral hand movements (Wisneski, 
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Anderson et al. 2008), potential explanations for this difference are the increased complexity and 

attention necessary to perform visually guided reaches as opposed to simple hand movements 

and the random order of hand side in the previous study. While we found that the amplitude and 

timing of spectral power changes related to contralateral and ipsilateral arm movements were 

distinct, the speed and directional tuning of ECoG spectral power features were similar for 

contralateral and ipsilateral movements in both the strength and topography of tuning. 

In addition to spectral power changes, the LMP signal was striking in the strength of its PLS 

prediction model weights and the broad distribution of directionally tuned electrodes. As the 

LMP is derived from low-pass filtering ECoG signals, it is likely that there is a correspondence 

between movement-related cortical potentials such as the bereitschaft potential and the LMP 

signal. Movement-related cortical potentials are characterized by a negative shift in signal 

amplitude with an increasing negativity immediately before the movement onset (Kornhuber and 

Deecke 1965; Deecke, Scheid et al. 1969; Shibasaki and Hallett 2006). Similarly, in this study, 

the LMP signal is negatively correlated with movement speed in electrodes located in primary 

sensorimotor areas. A number of previous studies have shown that LMP amplitude can be used 

to decode movement kinematics of the contralateral and ipsilateral arms (Schalk, Kubanek et al. 

2007; Pistohl, Ball et al. 2008; Ganguly, Secundo et al. 2009; Hotson, Fifer et al. 2014), 

therefore the large amplitude of prediction weights and the broad region of directional tuning 

found for LMP signals in this study are unsurprising. It should be noted that the use of time-

domain signals in on-line BCI control has been limited (Kennedy, Andreasen et al. 2004; 

Kennedy, Kirby et al. 2004), so it is uncertain if the significance of LMP signals for open-loop 

movement decoding will generalize to closed-loop BCI control where on-line adaption is 

necessary. 
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Because of the similarity between the neural representations of contralateral and ipsilateral limb 

movements, it is uncertain if kinematic decoding of contralateral and ipsilateral arm movements 

is separable. During each session, patients performed reaching movements with a single arm. As 

previous studies have shown that neural activity during bimanual movements is not simply a 

linear combination of neural activity observed during unimanual movements (Tanji, Okano et al. 

1988; Donchin, Gribova et al. 1998; Kermadi, Liu et al. 2000; Diedrichsen, Wiestler et al. 2013; 

Gallivan, McLean et al. 2013), additional studies would be necessary to determine the 

differences in ipsilateral motor representations during unimanual and bimanual motor 

movements. It may be possible to incorporate additional levels of hierarchy to decode whether a 

movement is a unimanual contralateral arm movement, a unimanual ipsilateral arm movement, 

or a bimanual movement. This additional level of hierarchy could be used after determining that 

a movement is occurring but prior to decoding kinematics. 

To implement a BCI system in stroke survivors, it would be ideal to avoid an invasive surgery if 

possible. Therefore, it is necessary to understand the decrease in signal quality that comes with 

non-invasive recording methods. While LMP signals from EEG recordings have been used to 

decode 3D movements with accuracies better than chance (Bradberry, Gentili et al. 2010), our 

predictions of kinematics using simulated EEG signals were significantly worse than predictions 

using actual ECoG signals. Although the simulated EEG signals used here did not cover the 

entire cortex as true EEG electrodes would, the ECoG signals were drawn from the same limited 

spatial locations. Furthermore, this decrease in decoding accuracy is expected because of the 

decreased spatial and spectral resolution of EEG signals relative to ECoG (Cooper, Winter et al. 

1965; Pfurtscheller and Cooper 1975). Additionally, while artifacts such as eye blinks can be 

controlled for in a laboratory setting, it is much harder to control for artifacts during on-line BCI 
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control in real-world settings. Therefore, to implement a BCI system with multiple degrees of 

freedom in stroke survivors, an invasive recording method such as ECoG would be necessary. 

The ability to classify movement from rest, however, indicates that a simple BCI system, such as 

one designed for rehabilitation after stroke, can be implemented with non-invasive recording 

methods.  

This study shows that the kinematics of ipsilateral and contralateral arm movements have similar 

representations in a single cortical hemisphere. There are several potential alternative 

considerations that should be noted. All of the recordings were made in patients with chronic 

epilepsy. Although care was taken to ensure that all seizures occurred at least 2 hours before or 

after recordings were made, and that trials with interictal activity were removed prior to analysis, 

it is difficult to determine if the results of this study were affected by the patient population used. 

As 4 of the 5 patients had epileptic foci located in the temporal lobe and the majority of effects 

were located in frontal and parietal areas, we believe that the results were not significantly 

affected by focal epileptic activity. Electrophysiological correlates of movements are also 

affected by a number of factors that may have been involved in this study. First, increased task 

complexity and effort increase movement-related cortical activations (Kitamura, Shibasaki et al. 

1993a; Kitamura, Shibasaki et al. 1993b; Manganotti, Gerloff et al. 1998; Slobounov, Hallett et 

al. 2004). While reaction time and movement speed were similar between the two arms, all 

ECoG electrodes were located contralateral to the dominant hand. Therefore, the strong 

ipsilateral signals may have been related to increased effort for non-dominant hand movements 

relative to dominant hand movements. Similarly, the dominant hemisphere has been associated 

with dynamics, including trajectory control of both arms (Sainburg and Kalakanis 2000; 

Sainburg and Schaefer 2004; Schaefer, Haaland et al. 2007; Schaefer, Haaland et al. 2009a; 



 

 

80 

Schaefer, Haaland et al. 2009b; Schaefer, Mutha et al. 2012). As all electrodes were contralateral 

to the dominant limb, further work would be necessary to isolate any differences in these results 

that may occur with non-dominant hemisphere recordings. Additionally, ipsilateral motor 

activity has been posited to preferentially relate to proximal muscle movements (Colebatch, 

Deiber et al. 1991; Jankelowitz and Colebatch 2002). As the reaches used involved the entire 

arm, it is uncertain if these results will generalize to isolated directed movements of more distal 

body parts. Finally, postural movements of the hemibody contralateral to the moving arm 

represent a potential confound. Because of this, the results of this study must be interpreted 

within the context of the activity of the entire motor system and not of any individual 

musculature. Regardless of the role of stabilizing movements in the neural activity observed, the 

fact that we can decode information with multiple degrees of freedom still demonstrates the 

potential for BCI system development.  

Overall, we have shown that ECoG signals from human patients can be used to decode 

kinematics of 3D reaches. Additionally, ECoG signals from a single cortical hemisphere can be 

used to decode kinematics not only of contralateral arm movements but also of the same-sided 

arm. Taken together, these results demonstrate that ECoG may be used to develop BCI systems 

with multiple degrees of freedom and that the unaffected hemisphere after stroke represents a 

potentially useful control signal for BCI applications. 
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4 Characterization of the Effects of the 

Human Dura on Macro- and Micro-

Electrocorticographic Recordings 
The results of the previous chapter show that there is a significant decrease in the accuracy of 

decoded kinematics when we use simulated non-invasive signals. Therefore, a neuroprosthetic 

system requiring control of multiple degrees of freedom will require implanted electrodes. A 

potential way to reduce the invasiveness of an electrocorticography (ECoG) implant would be to 

implant electrodes above the dura, however, it is important to understand the effect that the dura 

would have on signal quality. The body of this chapter is drawn from our previously published 

manuscript (Bundy, Zellmer et al. 2014)
1
. 

4.1 Introduction 
In recent years, ECoG recordings, made from either epidural or subdural electrode contacts on 

the surface of the cortex, have emerged both as an important means to study human cortical 

electrophysiology (Fried, Ojemann et al. 1981; Allison, McCarthy et al. 1994; Crone, Miglioretti 

et al. 1998a; Crone, Miglioretti et al. 1998b; Jerbi, Ossandon et al. 2009; Miller, Zanos et al. 

2009; Gaona, Sharma et al. 2011), as well as a signal platform for brain-computer interface 

(BCI) experiments when implanted beneath the dura acutely in humans (Leuthardt, Schalk et al. 

2004; Leuthardt, Miller et al. 2006; Wilson, Felton et al. 2006; Felton, Wilson et al. 2007; 

Schalk, Miller et al. 2008; Schalk and Leuthardt 2011) and epidurally for chronic experiments in 

non-human primates (Rouse, Stanslaski et al. 2011; Rouse, Williams et al. 2013) due to its 

                                                 
1
 As the first author of this manuscript I participated in ECoG data collection, designed and performed the ECoG 

data analysis, and led the writing of the manuscript. Acknowledgement should be given to Erik Zellmer who 

performed the Finite Element Modeling described. Thanks should be given to Jeff Ojemann who allowed us to use 

the macro-scale ECoG data.  
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balance of invasiveness and signal quality.  The initial work investigating the use of ECoG for 

BCI systems in humans was done using patients temporarily implanted with subdural ECoG 

grids as part of the clinical treatment for intractable epilepsy. These clinical electrode arrays 

typically have a diameter of a few millimeters and an inter-electrode spacing on the order of 1 

cm (Engel 1996). Recent work has also investigated the use of subdural micro-ECoG arrays with 

smaller electrode sizes (on the order of hundreds of microns or smaller) and denser spacing in 

human patients (Leuthardt, Freudenberg et al. 2009; Wang, Degenhart et al. 2009; Kellis, Miller 

et al. 2010). The increased spatial resolution and smaller size of micro-ECoG arrays are an 

important technical step towards developing a chronic BCI system for clinical use. An important 

factor to consider in the development of micro-ECoG arrays is the impact of the human dura 

mater on the electrophysiological signals. While an epidural electrode array may reduce the risks 

of infection due to isolating the implant from the intracranial space as well as removing the 

increased risk for infection caused by a cerebrospinal fluid (CSF) leak (Tenney, Vlahov et al. 

1985; Mollman and Haines 1986; Korinek 1997), it is important to understand the tradeoff in 

decreasing signal quality that would be experienced by moving the electrode arrays from a 

subdural to an epidural implantation. 

There have been a number of previous studies based upon animal models that have evaluated the 

effect of the dura mater on ECoG signals. Perhaps the first measure of the signal quality of 

epidural ECoG is the usefulness in controlling a BCI system. To this end, studies in non-human 

primates have shown that epidural ECoG can be used for on-line control (Rouse and Moran 

2009; Rouse, Stanslaski et al. 2011; Rouse, Williams et al. 2013) and that similar degrees of BCI 

performance are achieved using both local field potentials and epidural field potentials (Flint, 

Lindberg et al. 2012). Similarly, in offline analysis, epidural signals were used to effectively 
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decode forelimb movements in rats (Slutzky, Jordan et al. 2011). Furthermore, macro-scale 

epidural ECoG signals have been used off-line to decode continuous three-dimensional hand 

trajectories in non-human primates over the course of several months (Shimoda, Nagasaka et al. 

2012). Additionally, the optimal spacing of subdural and epidural electrode arrays was similar 

when comparing electrophysiological recordings made utilizing ECoG arrays with 125 μm 

electrode contacts in rats with a finite element model of the rat brain (Slutzky, Jordan et al. 

2010). While these studies indicate that epidural recordings may be similar to subdural 

recordings with regards to BCI applications in non-human models, there is a limited ability to 

generalize these studies to humans because of the different physiologic characteristics of the 

cortex and dura mater between humans and non-human animals (Shoshani, Kupsky et al. 2006; 

Treuting, Dintzis et al. 2012). 

To date, there are a limited number of studies that have sought to characterize the effect of the 

dura on electrophysiological recordings in humans (Slutzky, Jordan et al. 2010; Torres 

Valderrama, Oostenveld et al. 2010). Based on the rat model described above, a finite element 

model of human cortex was constructed and the authors concluded that the optimal electrode 

spacing was similar between epidural and subdural recordings (Slutzky, Jordan et al. 2010). 

There were, however, no electrophysiological recordings in humans to confirm this, and the 

analysis examined only the spacing of electrodes and not the effect of the dura on the amplitude 

of ECoG signals (Slutzky, Jordan et al. 2010). In another study, epidural BCI performance was 

simulated by acquiring epidural and subdural signals intraoperatively, and then applying a 

transfer function to BCI control derived from subsequent subdural signals acquired 

extraoperatively (Torres Valderrama, Oostenveld et al. 2010). Here again, the authors concluded 

that the dura had little effect. While the study found that the transformed signals would still 
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allow for adequate BCI performance, the study is limited for several reasons. First, the 

intraoperative condition in which the transfer function of the dura was evaluated is different from 

the alert brain state during BCI control. In particular, the consistent decreases in gamma band 

power caused by anesthesia (Breshears, Roland et al. 2010) means that while the transfer 

function may be accurate for low frequency rhythms, it may not extrapolate to the higher 

frequency gamma band. It is this high gamma range in particular, that is often used for ECoG 

BCI control (Rickert, Oliveira et al. 2005; Heldman, Wang et al. 2006; Leuthardt, Schalk et al. 

2009; Schalk and Leuthardt 2011). Second, the study only evaluated the effects of the dura on 

clinical electrode arrays, which are much larger and more spatially diffuse than the arrays that 

would likely be used for a chronically implanted BCI system. The different signal characteristics 

of micro-scale arrays, due to both sampling a smaller area of cortex and recording from 

electrodes with higher electrical impedances should be considered in evaluating the effects of the 

dura on ECoG signals.  

To address the question of how the dura affects electrophysiological recordings in humans, this 

study investigated the effects of the human dura on ECoG signals from humans during awake, 

resting periods at both the macro- and micro-scale. We use both simultaneous 

electrophysiological recordings of macro- and micro-scale ECoG arrays as well as a finite 

element model of human cortex. The results of both techniques show that while there is little 

difference in macro-scale ECoG signals from above or below the dura, that micro-scale ECoG 

signals have very different amplitudes, spectral resolution, and spatial resolution. 
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4.2 Methods 

4.2.1 Micro-ECoG Experiments 

Patients 

The patients that participated in this study underwent temporary placement of intracranial 

electrode grids to identify epileptic seizure foci. Four patients provided informed consent for the 

placement of two microelectrode arrays for research purposes (Figure 4.1A). In each subject, one 

microelectrode array was placed beneath the dura, in between or peripheral to the macro-scale 

contacts of a clinical ECoG grid. A second microelectrode array was slid below the skull 

superficial to the dura outside of the boundary of the craniotomy (Figure 4.1B). Electrode arrays 

were localized using radiographs and the “get location on cortex” technique (Figure 4.1C and 

4.1D) (Miller, Makeig et al. 2007). Additionally, all micro-ECoG grid locations were compared 

to the cortical areas identified by the epileptologists as seizure foci or propagation regions to 

confirm that they did not overlap. All patients provided informed consent for the study, which 

were reviewed and approved by the Institutional Review Board of Washington University School 

of Medicine. 

Electrocorticography Specifications 

A special research microelectrode array was designed and utilized (PMT Corporation, 

Chanhassen, MN). Each electrode array consisted of 16 platinum iridium micro-wires with a 

diameter of 75 μm and an interelectrode spacing of 1 mm. Figure 4.1A shows a schematic of the 

array and photographs of the microelectrode array alone and placed relative to a standard clinical 

electrode array. Of the 16 contacts on the research micro-array, 12 micro-wire contacts were 

cortically facing and the 4 contacts at the corners of the array (spaced 3 mm apart) were facing 

the skull. The skull-facing contacts were designed so that two of the 4 non-cortical, impedance-

matched contacts with good quality signals could be used as ground and reference contacts for 
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the recordings. Additionally, shielded cables were used to connect the micro-ECoG arrays to the 

amplifiers in order to increase the signal-to-noise ratio (SNR).  

 
Figure 4.1 Electrocorticography and finite element modeling methods 

A. A novel microelectrode with 70 µm electrode diameter and 1 mm inter-electrode spacing was implanted both epidurally and 

subdurally in 4 patients. The grids contained 12 cortically facing channels and 4 impedance-matched, skull-facing contacts to 

choose from for a ground and a reference contact. B. Subdural microgrids were implanted either in between or to the outside of 

clinical ECoG contacts. Epidural microgrids were slid between the dura and skull beyond the boundaries of the craniotomy. C. 

Locations of subdural and epidural microgrids across patients and cortical areas identified as epileptic foci or propagation 

regions. The seizure focus of Patient 3 is not visible as it was located sub-temporally. D. In an additional patient, due to an 

adherent dura during the implant surgery, a corner of the clinical ECoG grid was superior to the dura, allowing for comparison of 

epidural and subdural macro-ECoG signals in identical geometric configurations, allowing for comparison of the effect of the 

dura across electrode geometry. E. A schematic shows the geometric organization of the FE model. The model consisted of 

spherical subdomains with a radially oriented dipole placed within the gray matter layer. Electrodes of various diameters were 

simulated on the superior surface of the dura (epidural) or on the surface of the gray matter (subdural). 
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Electrocorticography Recordings and Preprocessing 

Electrocorticography signals were acquired using biosignal amplifiers manufactured by g.tec 

(Graz, Austria). The combination of two out of the four upward facing contacts producing the 

cleanest signals was selected for use as ground and reference channels. Signals were sampled 

with 24-bit resolution with an internal sampling rate of 38.4 kHz and an internal 5 kHz 

antialiasing filter. Data were recorded with a sampling rate of 2.4 kHz. No additional filters were 

used. 

The BCI2000 software package was utilized to record ECoG signals while patients were resting 

(Schalk, McFarland et al. 2004b). During the recordings, patients were positioned in their 

hospital bed in the semi-recumbent position. Patients were instructed to rest quietly and to 

remain as still as possible for the duration of the recordings. In Patients 2, 3, and 4, the epidural 

and subdural contacts were recorded simultaneously for a period of 5-10 consecutive minutes. In 

the final patient, Patient 1, the subdural and epidural contacts were recorded for distinct epochs 

of approximately 5 minutes each within a total time window of approximately 25 minutes. 

After initial data collection, a number of steps were taken to preprocess the data. First, the data 

was high-pass filtered at 0.5 Hz. Next, the data was notch filtered to remove all 60 Hz harmonics 

below the Nyquist frequency from the data. The signals were then manually inspected to 

determine noisy channels, which were then removed from further analysis. All remaining 

channels were then averaged and regressed from the signal by calculating a regression 

coefficient of the common average to each channel and removing the weighted common average 

signal from each channel.  Finally, the data was manually inspected to determine time intervals 

in which artifacts were present and the remaining time periods were segmented into 10 second 

windows with 5 second overlaps between windows for use in the analyses described below. 
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Figure 4.2 (upper plots) shows an exemplar 10 second time window from the subdural and 

epidural micro-ECoG grids from a single patient.  

Power Spectral Density Analysis 

An initial analysis was performed to examine the characteristics of the power spectrum in 

epidural and subdural recordings. The power spectral density (P(f,c,w) where f is the frequency 

bin, c is the channel, and w is the temporal window) was calculated as the square of the fast 

Fourier transform of each channel for each 10 second time window with a frequency resolution 

of 1 Hz. The power spectral densities for both epidural and subdural contacts were then 

converted to normalized spectra, PN, by dividing the spectra by the 99
th

 percentile of power from 

any epidural or subdural contact (P99) from the respective patient, as described in Equation 4.1. 

This allowed the power spectra (in decibels) of both epidural and subdural recordings to be 

compared on the same scale.  

           
        

   
 

(4.1) 

As ECoG power spectra are not normally distributed, they were normalized with a log transform. 

The log-transformed normalized spectra were concatenated across channels and time windows. 

Prior to comparing the epidural and subdural contacts, the normality of the distributions of log-

transformed amplitudes at each frequency band was verified through visual inspection of a 

subset of frequencies and by the Kolmogorov-Smirnov test. Finally, the average log-transformed 

power spectra across time windows and channels of the epidural and subdural recordings were 

compared through an independent samples t-test. Multiple comparison correction was performed 

using the Benjamini-Hochberg-Yekutieli method of False Discovery Rate (FDR) correction 
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(Benjamini and Hochberg 1995; Benjamini and Yekutieli 2001) to correct for the number of 

frequency bands compared while accounting for the correlated nature of the test statistics. 

Calculation of Noise Floor 

In addition to comparing the normalized amplitudes of epidural and subdural recordings, it was 

hypothesized that a more meaningful measure of signal quality would be the spectral noise floor 

of recordings. Spectral analyses of ECoG recordings are characterized by a 1/f decrease in 

amplitude at frequencies below the noise floor and a flat power spectrum at frequencies above 

the noise floor (Miller, Sorensen et al. 2009). To examine the noise floor in epidural and 

subdural recordings the noise floor of each micro-ECoG grid was estimated using the power 

spectrum from each channel and temporal window between 550 Hz and 597 Hz. This frequency 

band was chosen because the power spectra had plateaued, it is located below the Nyquist 

frequency, and is located between any 60 Hz harmonics. Next, the average log-transformed 

power spectra from the epidural and subdural recordings were compared to their respective noise 

floors using an independent samples t-test. Multiple comparison correction was performed using 

the Benjamini-Hochberg-Yekutieli method of False Discovery Rate (FDR) correction 

(Benjamini and Hochberg 1995; Benjamini and Yekutieli 2001).  

4.2.2 Macro-ECoG Experiment 

As a secondary analysis to evaluate the effect of the dura on human clinical macro-ECoG 

electrodes, we identified a single patient who performed BCI experiments described previously 

(Leuthardt, Miller et al. 2006). During the implantation surgery, the dura was found to be 

adherent to the brain, therefore a corner of the clinical ECoG grid was superior to the dura while 

the remainder of the grid was inferior to the dura, allowing for evaluation of the effects of the 

human dura on macro-ECoG signals with an exposed electrode diameter of 2 mm and an 
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interelectrode distance of 1 cm (Ad-Tech Corporation, Racine, WI) (Figure 4.1D). Signals were 

recorded with Synamps2 amplifiers (Neuroscan, El Paso, TX). Signals were bandpass filtered 

(0.1-220 Hz) and digitized at 1000 Hz. As in the micro-ECoG experiments described above, 

recordings were made while the patients rested quietly in their hospital bed in a semi-recumbent 

position. As 4 electrodes at the corner of the grid were located superior to the dura, 4 subdural 

electrodes in the same geometric configuration confirmed to be subdural and not located on the 

border of the cut dura were used for comparison. The preprocessing for the macro-ECoG signals 

was the same as for the micro-ECoG signals with the common average calculated from the entire 

ECoG array of 64 channels. Power spectral densities were calculated for the macro-ECoG 

contacts using the methods from the micro-ECoG experiments described above. As this 

recording was made with a band-pass filter (0.1-220 Hz), it was not possible to isolate the system 

noise floor from the hardware filters in order to determine the frequency at which the signals 

reached the system noise floor. While these recordings were from a single patient and made with 

a different recording system, they provided the unique opportunity to evaluate macro-ECoG 

signals from above and below the dura in awake humans and to compare the effect of the dura on 

ECoG recordings at different spatial scales from the micro-ECoG recordings described above 

and with existing literature examining of the effect of the dura on clinical ECoG recordings in an 

intraoperative setting (Torres Valderrama, Oostenveld et al. 2010). 

4.2.3 Modeling 

A finite element (FE) model of the human head was created using Comsol Multiphysics (V.3.4, 

Comsol, Stockholm, Sweden). The model consisted of spherical subdomains representing white 

matter, gray matter, CSF, dura mater, scalp and skin. The thickness and conductivity of each 

subdomain were assigned based on previously reported values and are summarized in Table 4.1. 
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Cortical source regions were modeled as radially oriented dipoles consisting of pairs of idealized 

current sources. A schematic of the geometric organization of the FE model is shown in Figure 

4.1E. The FE model was used to solve the potential distribution at the cortical surface and the 

surface of the dura for dipoles placed at different depths. This information was then used to 

calculate the potential generated at a point electrode from unitary current sources located at 

different radial displacements. Dipoles placed at varying depths (0.3-1.5 mm, 0.2 mm 

increments) were evaluated. The FE model was solved at ~800,000 tetrahedra with a maximum 

element size of 400 µm in the volume closest to the dipole.  

Table 4.1 Thickness and conductivity values for each explicitly represented subdomain 

Subdomain Conductivity [S/m] Thickness (mm) 

White matter 0.1428
c
 60

a
 

Gray matter 0.36
b
 3.7

a
 

CSF 1.70
b
 3.1

a
 

Dura mater 0.065
b
 0.36

a
 

Scalp 0.435
c
 5.0

a
 

Skull 0.02
b
 5.0

a
 

a (Slutzky, Jordan et al. 2010)b (Manola, Roelofsen et al. 2005)c(Ramon, Schimpf et al. 

2006) 

 

To evaluate the effect of different electrode diameters on recorded potentials, the potential-

distance relationships generated using the methodology described above was curve fitted in 

Matlab (2011a) using high order sums of sine and Gaussian functions, producing a set of 

expressions that can be used to calculate the potential generated at any point by a dipole at an 

arbitrary radial displacement. The surface area of the electrodes with diameters ranging from 75 

µm-10 mm was then discretized into ~800,000 points and a second set of potential-distance 

relationships were calculated by averaging the potentials generated across the surface area of the 

electrodes by dipoles at different radial displacements. 
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4.3 Results 
Recordings from each patient demonstrated significant effects of the dura on micro-ECoG 

recordings. Figure 4.2 (upper plots) demonstrates exemplar epidural and subdural micro-ECoG 

recordings. In particular, the micro-ECoG recordings have noticeably higher amplitudes in 

subdural signals as compared to epidural signals. The calculated averaged power spectral 

densities confirm the observed differences in amplitude between epidural and subdural micro-

ECoG recordings. Each patient’s averaged power spectral densities for subdural and epidural 

micro-ECoG signals are shown in Figure 4.3. In particular, each of the 4 patients demonstrated 

spectral power in subdural recordings that was significantly higher (p<0.05) than in epidural 

recordings in a range up to at least 150 Hz.  

 
Figure 4.2 Raw electrocorticography signals 

Within micro-ECoG recordings the signals were fairly correlated across channels and there was a large difference in amplitude 

between subdural and epidural signals. Macro-ECoG signals demonstrate smaller amplitude differences between subdural and 

epidural contacts. Macro-ECoG signals are also less correlated and have higher signal amplitudes than micro-ECoG signals. 
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Figure 4.3 Micro-ECoG power spectral densities 

Patient-specific averaged power spectral densities for epidural and subdural micro-ECoG contacts. Averaged power spectra were 

calculated across time windows and electrode channels. Confidence intervals represent the 95% confidence interval of the power 

spectral density. Areas highlighted in yellow represent frequencies with a significant (p<0.05) difference between power in 

epidural and subdural recordings corrected for multiple comparisons with false discovery rate. Power is higher in subdural 

recordings than epidural recordings in frequencies below 150 Hz in all patients and the 1/f decrease in amplitude is less steep in 

subdural recordings than epidural recordings. 

While the differences in spectral amplitudes are informative, it was also important to determine 

the spectral frequency at which the noise floor of the ECoG signals is reached. Figure 4.4 

displays the power spectral densities of micro-ECoG recordings along with the noise floor 

estimated using the power spectra between 550-597 Hz for the subdural and epidural grids 

respectively.  
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Figure 4.4 Micro-ECoG noise floor comparison 

Patient-specific power spectral densities averaged across channels and time windows are shown relative to the grid-specific noise 

floors. Noise floors were determined based upon the power between 550-597 Hz. In all patients power spectra are flat from the 

frequency at which the noise floor was reached through the end of the analysis range. Vertical lines indicate the lowest frequency 

at which the power spectrum was not significantly different from the noise floor. This location is reached at higher frequencies 

for subdural recordings than epidural recordings in each patient. Confidence intervals represent the 95% confidence interval of 

the power spectral density and noise floor. Areas highlighted in yellow represent frequencies with a significant (p<0.05) 

difference between power in epidural and subdural recordings and their respective noise floors, corrected for multiple 

comparisons with false discovery rate. 

As can be seen in the power spectral density plots (Figure 4.3) as well as the comparison of the 

power spectral density with the noise floor (Figure 4.4), micro-ECoG recordings displayed a 

decrease in amplitude with increasing frequency consistent with a 1/f trend. Furthermore, after 

flattening out, the power spectrum is flat up to the upper bound of the analysis (597 Hz), 

confirming that there are no other hardware filters affecting the analysis. Importantly, in micro-
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ECoG recordings, the frequency where the recorded signal and the noise floor converge (i.e. the 

lowest frequency at which they are first not significantly differently) was at least 83 Hz lower for 

epidural signals than for subdural signals in all 4 patients. In particular, the epidural power 

spectrum was first not significantly different from the noise floor at between 30 Hz and 123 Hz, 

while the subdural power spectrum was first not significantly different from the noise floor at 

between 160 Hz and 243 Hz. 

Additionally, the human dura was found to have a different effect on micro-ECoG signals when 

compared to macro-ECoG signals. In particular, the dura affects micro-ECoG signals much more 

than macro-ECoG signals. In comparing the exemplar macro- and micro-ECoG recordings 

(Figure 4.2), there is a large difference in amplitude between the macro- and micro-ECoG signals 

and the micro-ECoG traces appear more correlated to each other than the macro-ECoG traces. 

Both of these findings are expected due to the smaller electrode spacing and higher impedance of 

micro-scale electrodes. Furthermore, while less marked than the difference caused by electrode 

size, the macro-ECoG recordings appeared to have similar amplitudes for both subdural and 

epidural recordings, while there is a marked difference in amplitude between subdural and 

epidural micro-ECoG recordings. Additionally, the power spectra of the macro-ECoG recordings 

(Figure 4.5) show statistically significant differences in spectral amplitude between subdural and 

epidural contacts characterized by higher amplitudes in the epidural contacts in the 10-60 Hz 

range and higher amplitudes in the subdural contacts in the 90-240 Hz range.  
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Figure 4.5 Macro-ECoG power spectral densities 

Power spectral densities for epidural and subdural macro-ECoG contacts averaged across channels and time windows. 

Confidence intervals represent the 95% confidence intervals of the power spectral density. Areas highlighted in yellow represent 

frequencies with a significant (p<0.05) difference between power in epidural and subdural recordings corrected for multiple 

comparisons with false discovery rate. Although power is higher in epidural recordings at low frequencies and higher in subdural 

recordings in high frequencies, the 1/f decrease in power is similar in subdural and epidural recordings. 

Finally, simulations from a finite element model of the human head confirm the empirical 

results. Figure 4.6 and 4.7 display the amplitudes for various electrode sizes placed subdurally or 

epidurally at various radial displacements from a dipole source with a depth of 0.9 mm. In Figure 

4.6, signals are normalized to the maximum amplitude signal from any electrode size and 

location (a 75 μm subdural electrode placed directly over the source). In Figure 4.7, signals are 

normalized to the amplitude with no radial displacement. Overall, for small electrode sizes, there 

is a large difference in the raw amplitude between subdural and epidural contacts; for larger 

electrode sizes, the difference is much smaller (Figure 4.6). Furthermore, Figure 4.7 

demonstrates that the differences between subdural and epidural electrodes in the decrease in 

signal amplitude with increasing radial displacement from the source is much greater for smaller 

electrode sizes than larger electrode sizes. Simulations were performed at multiple dipole depths 
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in addition to the depth of 0.9 mm shown in Figures 4.6 and 4.7. At other depths, a similar effect 

was observed with the magnitude of the differences between epidural and subdural recordings 

inversely related to the depth of the dipole placement. 

 
Figure 4.6 Finite element model comparison of amplitude based upon electrode Size 

A finite element model was used to compare the amplitude produced by a dipole point source at electrodes with various 

diameters and varying radial displacements from the source. All traces are normalized to the maximum amplitude of the 75 µm 

subdural electrode. Small electrodes have large differences in amplitude between epidural and subdural electrodes, while at large 

diameters, electrodes have much smaller differences in amplitude between subdural and epidural electrodes. 

 
Figure 4.7 Finite element model comparison of spatial specificity based on electrode size 

A finite element model was used to compare the decrease in amplitude as radial displacement from a dipole point source 

increases in electrodes with various diameters. All traces are normalized to the amplitude at 0 mm radial displacement. Small 
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electrodes have large differences in the changes in amplitude with radial displacement between epidural and subdural electrodes, 

while at large diameters, electrodes have much smaller differences between subdural and epidural electrodes. 

4.4 Discussion 
This study provides a demonstration of the effect of the human dura mater on the signal 

characteristics of ECoG recordings at multiple scales utilizing both electrophysiological 

recordings and theoretical modeling. In particular, the signal amplitude of epidural micro-ECoG 

recordings is significantly smaller than that of subdural micro-ECoG recordings. Furthermore, 

although the signal amplitude derived from epidural macro-ECoG is statistically higher than 

subdural macro-ECoG in low frequencies (10-60 Hz) and lower than subdural macro-ECoG at 

high frequencies (90-240 Hz), given the small magnitude of these differences in macro-ECoG 

power spectra, these differences would probably not affect the ability for either subdural or 

epidural macro-ECoG electrodes to be used in a BCI system. Experimentally epidural micro-

ECoG signals have lower spectral amplitudes than subdural micro-ECoG signals across all 

frequency bands below the noise floor (which is reached at a lower frequency than for subdural 

micro-ECoG signals). Additionally, theoretical modeling demonstrates reduced amplitude and 

spread of voltage potential recorded from epidural contacts when compared to subdural contacts 

for micro-ECoG electrodes. However, as electrode size approaches that of currently used clinical 

macro-ECoG electrodes (~2 mm diameters), computer simulations suggest very little difference 

in signal amplitudes between subdural and epidural recordings. These findings have important 

implications for the development of chronic, implantable ECoG electrodes. 

This study is unique in the examination of the effect of the dura mater on the 

electrophysiological characteristics of ECoG recordings both in that the study focuses on humans 

and on different scales of electrode size. While macro-scale ECoG electrodes (on the order of 

millimeters in diameter with an interelectrode distance on the order of 1 cm), placed below the 
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dura, have been utilized clinically for many years (Penfield and Jasper 1954; Engel 1996), the 

advent of ECoG as a potential signal platform for BCI systems (Leuthardt, Schalk et al. 2004) 

introduced an important question as to the effect of the dura mater on ECoG signal quality. To be 

applied as a control signal for a chronically utilized BCI system, ECoG signals need to be 

chronically stable and must balance the desire for multiple independent degrees of freedom with 

the desire to minimize the invasiveness of the implant. Micro-scale ECoG recordings with 

smaller electrode size and spacing have demonstrated an improved spatial resolution and degree 

of behavioral information that can be decoded from ECoG signals (Leuthardt, Freudenberg et al. 

2009; Wang, Degenhart et al. 2009; Kellis, Miller et al. 2010) and could reduce the invasiveness 

of a chronic BCI system. Furthermore, as the outside of the dura is part of the peripheral immune 

system, epidural ECoG has been proposed as a method to limit the invasiveness of chronic 

implants and reduce the chances of an infection within the central nervous system (Tenney, 

Vlahov et al. 1985; Mollman and Haines 1986; Korinek 1997; Moran 2010). While implanting 

ECoG arrays epidurally would reduce the invasiveness of a chronic BCI system, it is important 

to understand the tradeoffs in terms of signal quality that would result from electrodes being 

further away from the brain, particularly for micro-scale electrode arrays. While a number of 

studies point to the ability to decode information from epidural contacts in animal models (Rouse 

and Moran 2009; Slutzky, Jordan et al. 2011; Flint, Lindberg et al. 2012; Shimoda, Nagasaka et 

al. 2012; Rouse, Williams et al. 2013), it is necessary to understand whether the different 

anatomy of the dura in humans would further impair epidural ECoG recordings (Shoshani, 

Kupsky et al. 2006; Treuting, Dintzis et al. 2012).  

The results of the study clearly show that at the micro-scale, the dura has significant effects on 

signal amplitude. Previous ECoG BCI studies have demonstrated the importance of the high 
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gamma band (70-105 Hz) for BCI applications (Leuthardt, Schalk et al. 2004; Leuthardt, Miller 

et al. 2006; Wilson, Felton et al. 2006; Felton, Wilson et al. 2007; Schalk, Miller et al. 2008; 

Rouse and Moran 2009; Schalk and Leuthardt 2011). While low frequency changes in power 

have also been shown to be important for BCI control (Leuthardt, Schalk et al. 2004), the high 

frequency power changes are more anatomically focal (Miller, Leuthardt et al. 2007), indicating 

that the high gamma band may allow for BCI systems with higher degrees of freedom. 

Importantly, the results demonstrate that the amplitude of subdural micro-ECoG signals is higher 

than the amplitude of epidural micro-ECoG signals at all frequencies below 150 Hz (Figure 4.3), 

indicating that subdural micro-ECoG signals will generally have a higher SNR. While there were 

also significant differences in spectral amplitude between epidural and subdural macro-ECoG 

signals, the magnitude of the differences are small and the theoretical modeling results 

demonstrate smaller effects of the dura on macro-ECoG signals than for micro-ECoG signals. 

While we cannot compare task-based activations between epidural and subdural micro-ECoG 

arrays due to their different cortical locations, it is reasonable to conclude that while it may be 

possible to record high-gamma band activity from epidural micro-ECoG electrodes, that the 

differences in spectral amplitude and noise floor locations between epidural and subdural micro-

ECoG arrays would lead to higher SNR in subdural electrodes during performance of a task. For 

all of these reasons, it appears that while the effect of the dura on micro-ECoG signals is 

statistically significant and would likely lead to poorer BCI performance with epidural electrodes 

than with subdural electrodes, that given the small magnitude of the differences between 

subdural and epidural macro-ECoG signals, epidural macro-ECoG contacts would likely not lead 

to large changes in BCI performance relative to subdural contacts.  
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It should also be noted that while there were several technical factors that optimized the quality 

of micro-ECoG recordings in this study, there are several future technical developments that 

could further improve the quality of the signals. The use of impedance matched, skull-facing 

ground and reference contacts as well as shielded connectors to connect the electrode arrays and 

amplifiers likely increased the SNR of the signals, allowing for recording of physiologic micro-

ECoG signals.  However, the high impedance of the electrode contacts due to their small size 

causes the amplitude of physiologic signals recorded to be low and therefore decreases the SNR. 

The development and use of coatings to increase the surface area of the electrode contacts would 

decrease the electrode impedance and increase the SNR (Venkatraman, Hendricks et al. 2011). 

Additionally, the development of FDA approved preamplifiers that could be located closer to the 

site of the electrode array could also increase the SNR of the signal. Although these 

developments would likely allow epidural micro-ECoG arrays to be better applied to BCI 

systems, they would also further improve the signal quality of subdural micro-ECoG arrays. 

Therefore while both epidural and subdural micro-ECoG signals could be further improved, the 

superiority of subdural micro-ECoG implants to epidural micro-ECoG implants would not 

change. 

While this work represents an important evaluation of the effect of the human dura on ECoG 

signal quality, there are several limitations and future considerations to note. Ultimately, the best 

measure of ECoG signal quality in relationship to BCI applications is the ability for behavioral 

intentions to be predicted from neural signals. Because of the differences in subject specific 

anatomy and the strength and characteristics of neural activity between patients, comparison of 

decoding from one or more cortical regions across patients would not be meaningful in 

examining the effects of the human dura on electrophysiological recordings. Additionally, the 
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differences in relationships between cortical activity and behavior across two different locations 

on cortex, even within a single functional (e.g. Brodmann’s) area, makes simultaneous 

comparison of signal quality from two grids within a single subject impossible. Because of this, 

we determined that the evaluation of signal characteristics during baseline activity from a single 

patient would provide the best possible method for evaluating the effect of the human dura on 

ECoG signals. There is also some concern that differences in cortical activity could affect the 

results, because the subdural and epidural recordings were made from different cortical areas. 

While it is impossible to entirely control a patient’s conscious thoughts, patient behavior was 

visually screened to ensure that subjects were truly resting and that periods of movement were 

removed from the recordings. Furthermore, the results were consistent across all 4 patients with 

subdural and epidural micro-ECoG grid locations that were widely distributed across the brain 

(Figure 4.1C). Therefore, it seems reasonable to assume that the differences in signal quality 

were not caused by behavior but by the placement of the electrodes relative to the dura. Since the 

patients utilized were chronic epilepsy patients, an additional concern is that signals measured 

may have been affected by epileptic activity. All of the patients had focal epilepsy and care was 

taken to avoid areas near the epileptic foci during implantation, which was confirmed by 

subsequent comparison with the clinically determined epileptic foci (Figure 4.1C). All 

recordings were also made with a buffer period of at least one hour before or after any 

generalized seizure activity. Therefore, it can be reasonably assumed that the results represent 

normal physiologic and not epileptic activity. Additionally, while care was taken to visually 

verify that subdural micro-ECoG grids were not placed on blood vessels, as the epidural micro-

ECoG grids were placed beyond the boundaries of the craniotomy, it was not possible to do this 

with the epidural arrays. While the effect of blood vessels on ECoG signals has been 
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demonstrated previously (Bleichner, Vansteensel et al. 2011), the consistency of the spectral 

differences between epidural and subdural micro-ECoG arrays across all 4 patients indicates that 

the results were not spuriously caused by the placement of electrodes on blood vessels. It should 

be noted that the macro-ECoG recordings were made from a single patient and utilized a 

different recording system. Additionally, there were adhesions between the cortex and the dura 

and a cut in the dura in the area of the recordings. While it is possible that this may account for 

some of the differences observed between macro- and micro-ECoG recordings, it is likely that 

any effect of the adhesions would be to thicken the dura and increase the effect of the dura on the 

ECoG signals. Furthermore, while the macro-ECoG results presented here were only derived 

from a single patient, they are in line with experiments demonstrating little effect of the dura on 

BCI performance when the gain of the dura was estimated under anesthesia intraoperatively 

(Torres Valderrama, Oostenveld et al. 2010). Finally, while the computational modeling results 

indicate a significant effect of the dura on micro-ECoG recordings with little effect on macro-

ECoG recordings, it is difficult to quantitatively determine the ideal electrode size 

computationally. As the signal profiles are sensitive to changes in geometries, particularly the 

width of the CSF layer (Slutzky, Jordan et al. 2010) and dipole depth, it is difficult to predict the 

optimal electrode size and spacing only from a computational model.  

In summary, these experimental and computational modeling results clearly demonstrate that for 

micro-ECoG arrays, subdural recordings have statistically significant differences from epidural 

recordings with magnitudes suggesting that the performance of BCI applications would suffer if 

epidural micro-ECoG electrodes were used, while for macro-ECoG arrays, subdural and epidural 

signals are similar. In particular, subdural micro-ECoG signals demonstrate increased signal 

amplitude, SNR, and spatial resolution. While implanting ECoG grids subdurally for chronic 
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BCI applications is more invasive, the advantage is that smaller, micro-scale electrodes can be 

used. When implanting less invasive epidural ECoG electrodes, larger scale electrodes should be 

used. It is a tradeoff that must be optimized to the goals of the treatment. 
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5 Using Ipsilateral Motor Signals in the 

Unaffected Cerebral Hemisphere as a Signal 

Platform for Brain-Computer Interfaces in 

Hemiplegic Stroke Survivors 
Although the experiments of Chapter 3 demonstrate that neural activity can be used to decode 

movement trajectories of the same-sided limb in motor-intact patients, it is uncertain if stroke 

survivors will be able to use these signals from their unaffected hemisphere to control a brain-

computer interface system. Although invasive electrodes would be required to control a system 

with multiple degrees of freedom, the EEG simulations in Chapter 3 along with several previous 

studies utilizing EEG for brain-computer interface systems indicate that it may be possible to 

decode movement from rest (Wolpaw, McFarland et al. 1991; Pfurtscheller, Muller et al. 2003; 

Pfurtscheller, Neuper et al. 2003; Wolpaw and McFarland 2004). This chapter sought to apply a 

neuroprosthetic system controlled from the unaffected hemisphere in chronic stroke survivors. 

The body of this chapter is drawn from our previously published manuscript (Bundy, 

Wronkiewicz et al. 2012)
2
. 

5.1 Introduction 
Currently a challenge in the treatment of stroke survivors is the rehabilitation of chronically lost 

motor functions. Several studies describing hemiparesis in chronic stroke survivors demonstrate 

that motor recovery plateaus 3 months post-stroke (Duncan, Goldstein et al. 1992; Jorgensen, 

Nakayama et al. 1995; Lloyd-Jones, Adams et al. 2009). A potential novel approach for the 

restoration of function and improving the quality of life of these patients could be the use of a 

                                                 
2
 As the first author of this manuscript I collected the data, screened for and implemented the BCI control, designed 

and performed the posthoc data analyses, and led the writing of the manuscript. 



 

 

106 

brain computer interface (BCI). These systems use signals recorded from the central nervous 

system as a control signal for operating a computer or other device. Restoring function could be 

accomplished either through controlling an assistive device independent of the unaffected hand, 

or through paired BCI control and peripheral stimulation to induce functional recovery through 

endogenous plasticity. Thus far, substantial research has shown that information from motor 

cortex contralateral to an intended limb encodes useful information about motor intent and can 

be used to control BCI systems with multiple degrees-of-freedom using a variety of recording 

modalities (Taylor, Tillery et al. 2002; Leuthardt, Schalk et al. 2004; Hochberg, Serruya et al. 

2006; Schalk, Miller et al. 2008; Velliste, Perel et al. 2008; Rouse and Moran 2009). While these 

physiologic signals are useful in controlling BCI systems designed for motor-impaired patients 

with intact cortices (Pfurtscheller, Guger et al. 2000; Taylor, Tillery et al. 2002; Leuthardt, 

Schalk et al. 2004; Kubler, Nijboer et al. 2005; Hochberg, Serruya et al. 2006), a different 

cortical signal would be necessary in hemiplegic stroke survivors that suffer damage to primary 

motor cortex contralateral to the affected limb. This is important both in a traditional BCI device 

(which enables brain-derived control of an assistive machine) and also in potentially encouraging 

functional rehabilitation (to facilitate endogenous recovery of limb function). Taken together, 

there is a substantive need to develop new methods for restoring function in chronic hemiplegic 

stroke survivors, which may be accomplished through utilizing novel cortical control signals in 

conjunction with a BCI system. 

Recent work by Wisneski et al. has demonstrated a separable and distinct cortical physiology 

associated with ipsilateral hand movements (i.e. movements on the same side as the respective 

hemisphere) that can be distinguished from cortical signals associated with movement 

contralateral to a given hemisphere (2008). Electrocorticographic (ECoG) signals were recorded 
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while motor-intact human patients engaged in specific ipsilateral or contralateral hand motor 

tasks. Ipsilateral hand movements were associated with electrophysiological changes that 

occurred in lower frequency spectra (average 37.5Hz), at distinct anatomic locations (most 

notably in premotor cortex), and earlier (by 160 ms) than changes associated with contralateral 

hand movements. Given that these cortical changes occurred earlier and were localized 

preferentially in premotor cortex compared to those associated with contralateral movements, the 

authors postulated that ipsilateral cortex is more associated with motor planning than its 

execution. Furthermore, while rehabilitation from stroke has traditionally been viewed as a 

"perilesional awakening" of cortex (Weiller, Chollet et al. 1992; Tecchio, Zappasodi et al. 2006), 

recent studies in stroke survivors have shown that the potential for recovery is inversely 

correlated to corticospinal tract damage (Carter, Patel et al. 2011). While in general, outcome is 

better when perilesional activity produces a more normal pattern of contralateral activation after 

stroke (Ward, Brown et al. 2003a; Ward, Brown et al. 2003b), this often may not occur because 

of the severity of the injury to the corticospinal tract or cortex. Furthermore, ipsilateral activity 

has been shown to play a role in the planning of arm movements (Schaefer, Haaland et al. 2009b; 

Schaefer, Haaland et al. 2009a), and activity from the ipsilateral unaffected hemisphere has been 

shown to increase with increases in functional outcome in some patients (Cramer, Nelles et al. 

1997; Tecchio, Zappasodi et al. 2006). Therefore, the unaffected hemisphere would provide an 

alternative pathway, allowing it to play a compensatory role in motor control in people with 

severe lesions. Additionally, it has been shown in hemiplegic stroke survivors that ipsilateral 

motor activity is independent of contralateral motor activity and that affected and unaffected 

limb movements can be discriminated from neural activity in a single hemisphere (Cramer, Mark 

et al. 2002). Taken together, these indicate that 1) there is a separable physiology associated with 
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actively planning and executing ipsilateral hand movements and 2) that this physiology appears 

to be involved in the functional reorganization of unaffected cortex and represents an alternative 

pathway that may facilitate some level of recovery in patients with large cortical lesions or 

lesions transecting the corticospinal tract. 

In the past, a few case studies have demonstrated the use of BCI systems utilizing perilesional 

cortex contralateral to the affected limb in individual stroke survivors (Buch, Weber et al. 2008; 

Daly, Cheng et al. 2009; Broetz, Braun et al. 2010). This project, however, sought to develop a 

wholly new approach by creating a contralesional BCI in stroke survivors. In this study, we 

examined whether the physiology associated with ipsilateral hand movements could be used as a 

control signal for a BCI in hemispheric stroke patients (Figure 5.1).  

 
Figure 5.1 Conceptual schematic of ipsilateral BCI using the unaffected hemisphere 

After a hemispheric stroke, motor-impaired stroke survivors will have damage to the contralateral primary and premotor cortices 

or their associated subcortical pathways.  In order to implement a BCI system, we propose that an effective alternative control 

signal is the ipsilateral premotor planning region in the unaffected hemisphere. 

Because brain signals were found to be optimal below 40 Hz and located in more prefrontal 

regions, we hypothesized that these signals would be accessible with electroencephalography 

(EEG) and provide sufficient information to control a simple device. We demonstrate for the first 

time that this ipsilateral cortical physiology can be effectively used to control a cursor in a one-

dimensional control task. These findings support the feasibility of using brain signals from the 
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unaffected hemisphere as a signal platform in the setting of unilateral stroke for potential 

functional restoration. This approach is especially salient in dense hemiplegics for whom there is 

an absence of rehabilitation options or alternatives because they have minimal functional 

capacity to participate in current rehabilitation paradigms. 

5.2 Methods 

5.2.1 Patients 

This study utilized four chronic first time (17-53 months post-stroke) hemispheric stroke 

survivors (age 48-61). Exclusion criteria included prior strokes. Additionally patients who had 

suffered strokes that resulted in dementia, inattention, or aphasia, which would prevent 

participants from performing the required cognitive tasks, were also excluded. The study was 

approved by the Institutional Review Board of the Human Research Protection Organization of 

the Washington University Medical Center. Prior to inclusion in the study, participants provided 

their written informed consent. Participants were enrolled from a previous study (Carter, 

Astafiev et al. 2010; Carter, Patel et al. 2011), which provided data on lesion localization and 

chronic functional evaluation. Prior to enrollment in the study, lesion locations and functional 

motor evaluations were considered from over 40 potential participants. The 4 patients utilized 

were selected considering the exclusion criteria as well as the fact that more severely impaired 

patients represent the population more likely to benefit from BCI applications. Before this study, 

patients had no prior training on the use of a BCI system. Demographic and clinical information 

for each of the four patients is shown in Table 5.1.  
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Table 5.1 Demographic and clinical information 

Total Grasp Grip Pinch Gross

1 48 M 53 Right MCA - - - - - - - 4/5 Contra; 

5/5 Ipsi

2 65 F 17 Right MCA 0/65 0 0 0 0 - - -

3 54 F 26 Left Scattered 

Lacunar

41/65 13 12 13 3 1.3 kg 19.7 kg -

4 61 M 20 Left MCA 30/65 18 8 2 2 4.7 kg 30.7 kg -

Clinical 

Hand 

Strength

Chronic Motor Function Evaluation

Patient Age Sex

Time 

from 

stroke 

(mos.)

Lesion 

Side

Lesion 

Location
ARAT Contra Scores Contra 

Grip 

Strength

Ipsi Grip 

Strength

 

5.2.2 Lesion Segmentation 

Segmentation of stroke lesions was performed as described in Carter et al. using T1-weighted 

MP-RAGE and T2-weighted spin echo images (Carter, Astafiev et al. 2010). Voxels were 

categorized into air, cerebrospinal fluid (CSF), gray matter, and white matter by an unsupervised 

fuzzy class means-based segmentation. Expert judgment was used to determine the boundary 

between CSF and lesioned parenchyma. Figure 5.2 shows the location and extent of lesions in 

each patient. 
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Figure 5.2 Lesion characteristics 

Lesion locations segmented from T1-weighted MP-RAGE and T2-weighted spin echo images.  Selected axial slices show upper, 

intermediate, and lower areas of the lesion (Left-on-left orientation). 

5.2.3 EEG Recordings 

In all patients, EEG was recorded from 33 (Patients 1 and 2) or 45 (Patients 3 and 4) scalp 

locations over frontal and parietal regions within the 10-20 system of electrode locations. 

Recording locations were channel positions AF5, AF3, AFZ, AF4, AF6, F5, F3, F1, FZ, F2, F4, 

F6, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, C5, C3, C1, CZ, C2, C4, C6, CP5, CP3, CP1, CPZ, 

CP2, CP4, CP6 (all patients) and P5, P3, P1, PZ, P2, P4, P6, PO5, PO3, POZ, PO4, PO6 

(Patients 3 and 4 only). Recordings were digitized using 16-channel digital amplifiers 

(g.USBamp, g.tec, Austria). The left and right ear lobes were used as the ground and reference 

respectively. Signals were spatially filtered using a bipolar derivation to enhance the spatial 

specificity of recordings. Recordings were sampled at 256 Hz (Patients 1 and 2) or 512 Hz 
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(Patients 3 and 4) and were high-pass filtered at 0.1 Hz prior to analysis. A Dell computer 

running the BCI2000 software platform was used to acquire, process, and store the EEG data for 

real-time stimulus presentation and time-locked acquisition and analysis of brain signals (Schalk, 

McFarland et al. 2004a).  

5.2.4 Control Feature Screening 

Initially, patients underwent screening to identify features of cortical activity to be used in 

subsequent closed-loop BCI control experiments. This procedure involved an experiment in 

which EEG signals were recorded while the patient performed overt or imagined self-timed, self-

selected finger-tapping movements of the right or left hand in isolation from the opposite hand or 

rested. Cues for the rest and finger movement conditions were presented as words (‘Right’, 

‘Left’) and a fixation cross (Rest) on a computer screen that was placed approximately 75cm in 

front of the patient. For the overt movement condition, patients with residual function in their 

affected hand (Patient 1) were instructed to perform overt movements of both hands, while those 

with less function in the affected hand were instructed to perform overt movements of the 

unaffected hand and intended movements of the affected hand. In a second screening task, all 

patients were instructed to perform imagined movements of both the affected and unaffected 

hands. Cues were presented in a random order with each stimulus presented for a period of 2.5 

seconds. Patients were instructed to perform the specified action for the duration of the stimulus 

presentation. In patients with chronic hemiplegia preventing individual finger movements of the 

affected hand (Patients 2, 3, and 4) the patients were instructed to overtly move their unaffected 

hand and imagine similar movements of the affected hand during the respective stimulus periods. 

All patients performed the overt movement task initially while being observed for successful task 

performance, followed by performance of the imagined movement task. 
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EEG data collected during the experiment were converted from the time domain to the frequency 

domain using the maximum entropy method for autoregressive spectral estimation (Marple 

1987a). Power spectra were estimated in 2 Hz bins ranging from 1 to 55 Hz. Candidate features 

were identified by calculating the signed coefficient of determination (r
2
) between the ‘rest’ 

interval spectral power levels and the affected hand movement spectral power levels. EEG 

features in particular electrodes and frequency bands with the greatest percentage of their 

variance explained by the task (i.e. the highest r
2
 values), were chosen as candidate control 

features for closed-loop BCI experiments. Selection of candidate control features was also 

further constrained to contain only electrodes over the unaffected hemisphere during movement 

or imagined movement of the affected hand. Where possible, candidate features were selected to 

discriminate affected hand movement from rest as well as affected hand movement from 

unaffected hand movement. 

5.2.5 Closed-loop BCI Evaluation 

After determining candidate EEG control features associated with intended movement of the 

affected hand using the screening procedure described previously, patients participated in closed-

loop BCI control evaluation (see Figure 5.3). For this evaluation, the patient's objective was to 

perform intended movements of the affected hand in order to hit a target with a cursor. The target 

was presented on either the right or left side of a screen and the cursor moved along a single 

dimension. Several control scenarios were tested; (1) overt movement of the affected hand versus 

rest (Patient 1), (2) intended movement of the affected hand versus rest (Patients 2, 3, and 4), and 

(3) imagined movement of the affected hand versus imagined movement of the unaffected hand 

(Patients 1 and 2). The various closed-loop control conditions used depended upon the 

discriminability of control features as well as patient attention and fatigue.  
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Figure 5.3 Closed-loop control with ipsilateral motor signals 

Experimental setup used for the closed-loop control task. The on screen cursor moves toward target with performance of 

appropriate intended motor movement. Cursor movement is driven by the pre-screened control features derived from the EEG 

signals recorded from the patient's unaffected hemisphere. 

The velocity of the cursor was calculated from the real-time EEG features through the BCI2000 

software package. The change in power from baseline of the selected EEG features (i.e. the 

power in the selected frequency bin(s) at the selected electrode location(s) over the unaffected 

hemisphere) were weighted and summed to allow the patient to control the cursor. As all of the 

features identified for these patients were power decreases, they were weighted negatively so the 

task-related score increased with task-related power decreases. The feature power levels were 

translated into the cursor score through BCI2000 (Schalk, McFarland et al. 2004a). In order to 

normalize the weighted and summed power levels, the normalizer was trained using several trials 

in each target direction in which the patient attempted to perform the selected control task (i.e. 

affected hand movement, resting) in order to control the cursor. The mean of the weighted and 

summated features was calculated after the training period (1-2 minutes) and was used to 

normalize the scores to have zero mean. The normalized score was then used to control the 

cursor velocity. The velocity of the cursor was updated every 40 ms based upon spectra 
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estimated from an autoregressive method using data acquired over the previous 280 ms. Patients 

performed consecutive trials in which they attempted to move the cursor to the presented target. 

Each trial began with the presentation of a target randomly selected to be at either the right or left 

side of the screen. After a 1 second delay, the cursor appeared in the middle of the screen with its 

motion in the horizontal dimension controlled by the patient's EEG signals. The patient was 

instructed to begin performing the particular hand movement task or rest condition to move the 

cursor to the selected target as soon as the target appeared on the screen. Each trial was assessed 

as a success (cursor hit the selected target), or failure (cursor hit the opposite target or time ran 

out before success occurred, 6-10 seconds). Trials were grouped into runs of 2 minutes with rest 

periods of approximately 1 minute in between runs. The accuracy was assessed as the number of 

successful trials divided by the total number of trials at the end of each run. The development of 

BCI control over time was assessed by comparing the accuracy at the end of each consecutive 

run after training with a particular task and associated EEG control features. Because each trial 

did not have to result in a target being hit, chance was not necessarily 50%. As described 

previously by Leuthardt et al., chance performance was determined by running multiple runs of 

control trials using Gaussian white noise signals yielding a mean chance performance of 46.2% 

(2.7% SD) (Leuthardt, Gaona et al. 2011). Patients performed between 85 and 246 control trials. 

5.3 Results 
Each patient demonstrated cortical activations in the unaffected hemisphere associated with 

intended movement of the affected hand. Figure 5.4 displays that for each patient there was a 

cortical activation during intended movement of the affected hand within the ipsilateral cortex 

(within the unaffected hemisphere).  
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Figure 5.4 Topography of screening task activations 

Topographical maps of the maximum coefficient-of-determination of significant (p<0.05) event-related power decreases between 

0 Hz and 50 Hz for affected hand movement vs. rest conditions in each patient.  As power decreases cause more negative signed 

r2 values, more negative areas in the topographic activations represent increased neural activity.  Green and red highlighting on 

the topographic plots illustrates the unaffected and affected hemisphere in each patient respectively.  Feature plots demonstrate 

significant ipsilateral coefficient-of-determination values from the unaffected hemisphere across the frequency spectrum, 

illustrating that the cortical activations are observed across the frequency spectrum, but particularly in the mu (8-12 Hz) and beta 

(12-30 Hz) bands. Channels displayed on the feature plots correspond to electrode positions AF5, AF3, AFZ, F5, F3, F1, FZ, 

FC5, FC3, FC1, FCZ, C5, C3, C1, CZ, CP5, CP3, CP1, CPZ (Patients 1 and 2) and AFZ, AF4, AF6, FZ, F2, F4, F6, FCZ, FC2, 

FC4, FC6, CZ, C2, C4, C6, CPZ, CP2, CP4, CP6, PZ, P2, P4, P6, POZ, PO4, PO6 (Patients 3 and 4). 

Notably, consistent with Wisneski el al., when these ipsilateral motor activations in the 

unaffected hemisphere associated with movement intentions of the affected hand were compared 

to cortical activations in the unaffected hemisphere associated with movement intentions of the 

unaffected hand (i.e. contralateral movements) there were notable differences in frequency 

spectra and anatomic locations (Wisneski, Anderson et al. 2008). Figure 5.5 illustrates this 

spectral distinction in cortical activity within a single exemplar patient (Patient 3). In this patient, 

the topography at 18 Hz is broad and fairly similar between ipsilateral and contralateral 

movement, while there are distinct differences in topography at the higher beta (26 Hz) and low 

gamma (>30 Hz) frequencies. Most notably there is a more extensive activation in the prefrontal 

region (in the left unaffected hemisphere) that demonstrates a 26 Hz power modulation with 

ipsilateral right hand movement that is not present with contralateral left hand movement.  
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Figure 5.5 Spectral specificity of neural activity within an exemplar patient 

Feature plots demonstrating the frequency specificity of movements of the affected (right) and unaffected (left) hands in an 

exemplar patient who had a stroke affecting the left hemisphere (Patient 3).  The topography at 18 Hz is broad and fairly similar 

between the two conditions, while there are distinct differences in topography at the higher beta (26 Hz) frequency. Channel 

numbers correspond to electrode locations AF5, AF3, AFZ, AF4, AF6, F5, F3, F1, FZ, F2, F4, F6, FC5, FC3, FC1, FCZ, FC2, 

FC4, FC6, C5, C3, C1, CZ, C2, C4, C6, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, P5, P3, P1, PZ, P2, P4, P6, PO5, PO3, POZ, PO4, 

PO6. 

Moreover, when examining all patients, various locations and EEG frequencies separated 

intended affected hand movements both from rest and from unaffected hand movements (Figure 

5.6). The locations that optimally separated ipsilateral from contralateral intentions in the 

unaffected hemisphere were located both over traditional sensorimotor regions, as well as more 

anterior areas associated with premotor planning. Furthermore, qualitatively it was observed that 

patients with more severe motor impairments demonstrate a more anterior shift in the activations 

within the unaffected hemisphere associated with intended movement of the ipsilateral affected 

hand. This shift in ipsilateral activity is similar to the anterior and ventral shift in ipsilateral 

activity shown by Cramer et al. with fMRI (Cramer, Finklestein et al. 1999).  
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Figure 5.6 Spectral specificity differentiates movement conditions across patients 

Feature plots demonstrate significant (p<0.05) r2 values differentiating affected hand movements from rest (left plots) and 

affected hand movement from unaffected hand movements (right plots) based upon electrodes located over the unaffected 

hemisphere.  All four patients show significant decreases in power related to intended movement of the ipsilateral, unaffected 

hand.  Additionally, 3 of the 4 patients have unique spatial and spectral activations differentiating affected hand and unaffected 

hand movements within the unaffected hemisphere either through decreases in power in the alpha (9-12Hz) or Beta (12-30Hz) 

bands (Patients 1 and 2) or increases in gamma band (>30 Hz) power (Patient 3).  Channels displayed correspond to electrode 

positions AF5, AF3, AFZ, F5, F3, F1, FZ, FC5, FC3, FC1, FCZ, C5, C3, C1, CZ, CP5, CP3, CP1, CPZ (Patients 1 and 2) and 

AFZ, AF4, AF6, FZ, F2, F4, F6, FCZ, FC2, FC4, FC6, CZ, C2, C4, C6, CPZ, CP2, CP4, CP6, PZ, P2, P4, P6, POZ, PO4, PO6 

(Patients 3 and 4). 

Select features were then identified for subsequent online BCI operation. Figure 5.7 illustrates 

the significant (p<0.05) activations differentiating movements of the affected hand from rest, the 

unaffected hand from rest, and the affected hand from the unaffected hand at frequencies utilized 

for subsequent BCI control by each patient.  
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Figure 5.7 Topography of screening task activations 

Topographical maps of significant (p<0.05) coefficient of determination values from the motor screening task are shown for all 

patients. The stroke injured hemisphere and affected hand area are labeled in red. Frequency bands shown correspond to those 

utilized in each patient’s respective closed-loop BCI control experiments. All patients demonstrated significant activations related 

to intended movements of their affected hand in their unaffected hemisphere (highlighted within the red boxes). 

The time course of each patient's performance during closed-loop BCI control is shown in Figure 

5.8. Peak target accuracies for all patients were all between 62.5% and 100% and final accuracies 

for all patients were between 53.6% and 100% and therefore were all above chance (46.2%, 

2.7% SD). This level of performance was achieved in BCI control experiments with durations 

ranging from 6 to 10 minutes. Table 5.2 summarizes the activities utilized for BCI control, the 

EEG features used, and the peak and final BCI accuracy achieved by each patient. 
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Figure 5.8 Learning curves for BCI control tasks 

All patients achieved peak accuracies greater than 62.5% with only 6 to 10 minutes of training time. 

Table 5.2 Closed-loop BCI performance data 

Patient Task (Direction) EEG Channels
Frequency 

Used

Peak 

Accuracy

Final 

Accuracy

Affected Hand (Left) vs. Rest (Right) Overt CP3, CP1 18 - 22 Hz 100% 90%

Affected Hand (Left) vs. Unaffected Hand (Right) Overt C1 12 - 18 Hz 100% 85%

Affected Hand (Left) vs. Unaffected Hand (Right) Imagined C1 12 - 18 Hz 70% 60%

Affected Hand (Left) vs. Rest (Right) Overt AF5, AF3, F3, F1 24 - 28 Hz 100% 100%

Affected Hand (Left) vs. Unaffected Hand (Right) Overt AF5, AF3, F3, F1 24 - 28 Hz 83.30% 79%

Affected Hand (Right) vs. Rest (Left) Overt FC2, FC4 16 - 18 Hz 80.90% 78.30%

Affected Hand (Right) vs. Rest (Left) Imagined FC2, FC4 16 - 18 Hz 62.50% 62.50%

4 Affected Hand (Right) vs. Rest (Left) Overt CP2, F2 12 - 14 Hz 79.30% 53.60%

1

2

3

 

The EEG recordings from the closed-loop control experiments were also examined post-hoc to 

compare the cortical activations associated with the screening task to those associated with the 

closed-loop task. The activations in the selected EEG control frequency for the affected hand 

movement versus rest conditions are shown for both the screening and control experiments in 

Figure 5.9. As can be seen, there is good correspondence between the topographies of the 

activations during the control and screening task, indicating that the successful BCI control 

performance was achieved through performance of the intended motor task and not a spurious or 

alternative strategy. Furthermore, correlations between the topography of activations in the 
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selected control frequency between screening and control tasks (Patient 1: R=0.82, p<0.0001; 

Patient 2: R=0.6108, p=0.0002; Patient 3: R=0.7098, p<0.0001; Patient 4: R=-0.0194; P=0.8994) 

were highly significant in 3 of the 4 patients. The discrepancy in Patient 4 can be attributed to the 

patient tiring towards the end of the session, likely leading to changes to cortical activations due 

to decreases in attention to the task. This decrease in attention and different neural activity would 

also explain the fact that Patient 4 demonstrated poorer peak and final BCI control accuracies 

than the other 3 patients. 

 
Figure 5.9 Comparison of neural activity during screening and BCI control 

Significant (p<0.05) coefficient of determination values for affected hand vs. rest conditions during motor screening and control 

tasks. The stroke injured hemisphere and affected hand area labeled in red.  Selected frequencies were utilized for overt/intended 
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affected hand vs. rest control in each patient.  Patients exhibit similar topographies of activations, indicating that patients likely 

utilized the screened motor activity to achieve BCI control.  Correlation values between topographies of the screening and control 

task were (Patient 1: R=0.82, p<0.0001; Patient 2: R=0.6108, p=0.0002; Patient 3: R=0.7098, p<0.0001; Patient 4: R=-0.0194; 

p=0.8994). 

5.4 Discussion 
This paper presents an important demonstration for the potential that hemispheric stroke 

survivors could use the unaffected side of their brain to potentially restore function after their 

unilateral motor deficit through the use of a BCI.  By identifying cortical signals associated with 

ipsilateral hand movements, an EEG-based BCI can capture the brain’s intention to move a 

paretic hand. This can be accomplished irrespective of their actual capacity to execute a motor 

movement due to their injured primary motor cortex and/or descending white matter tracts. In 

this study, we demonstrate that it is possible to detect in EEG over the unaffected cortex, real and 

imagined intentions to move the stroke affected hand and, for the first time, show that these 

unaffected hemisphere signals can be used for simple brain-derived control of a device. Patients 

achieved BCI control with peak accuracy rates between 62.5% and 100% rapidly, often with 

only a 30 minute screening task and less than 15 minutes of training. Importantly, these 

ipsilateral motor signals were distinct in anatomic location and spectral content from the cortical 

physiology associated with contralateral movements. This separable physiology and its ease of 

use for a BCI, provides an important first step towards using neuroprosthetic systems for a 

currently large and underserved patient population with motor disability. Given that stroke is the 

most common neurological disorder, affecting 795,000 patients per year in the U.S. alone 

(Lloyd-Jones, Adams et al. 2009), these findings can substantially extend the potential clinical 

impact of neuroprosthetic approaches.  

This work was unique in its focus on using neural activity in the unaffected hemisphere related to 

intended movement of the ipsilateral limb for controlling a BCI system. While other studies have 
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investigated the use of control signals from perilesional cortical areas (Buch, Weber et al. 2008; 

Daly, Cheng et al. 2009; Broetz, Braun et al. 2010), this is the first study to focus exclusively on 

ipsilateral motor activity from the unaffected hemisphere after stroke. This is important because 

BCI systems are likely to be most clinically relevant to stroke survivors with a chronic 

unrecovered hemiplegic motor deficit. Because stroke survivors with any residual motor 

functions are likely to be candidates for current rehabilitation methodologies (Takahashi, Der-

Yeghiaian et al. 2008; Wolf, Thompson et al. 2010), BCI systems are likely to be used either by 

the most severely motor-impaired patients who have had an absence of any function from the 

stroke onset (limiting their rehabilitation options), or have failed to recover function after 

extensive therapy. Often these patient populations are likely to have significant cortical and/or 

subcortical lesions that transect the corticospinal tract descending to contralateral motor 

pathways (Binkofski, Seitz et al. 1996; Schaechter, Perdue et al. 2008 ; Carter, Patel et al. 2011). 

Because of these significant lesions, these patients are likely to have atypical neural activity in 

the affected hemisphere during intended movement of the contralateral limb when compared 

with normal controls (Calford and Tweedale 1990). By using ipsilateral motor intentions in the 

undamaged hemisphere for a BCI control signal, the impact of the stroke with regards to the 

quality of the control signal will be minimized. Taken together, there are likely two ways in 

which this methodology could be applied, either as a chronic BCI system for long-term assistive 

device control, or as BCI-assisted rehabilitation tool. 

As in traditional BCI systems, stroke survivors could control an artificial device to aid in daily 

tasks or manipulate the hemiplegic limb. Building on work by Wisneski et al., who showed that 

motor-intact patients could use ipsilateral motor signals for BCI control, this study extended 

those findings by demonstrating that stroke survivors can intentionally modulate similar 
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ipsilateral motor signals from their unaffected hemisphere to control a BCI system. Several of 

the patients in this study had fairly significant motor impairments from their strokes (Patients 2, 

3, and 4). Importantly, these patients generally had shifts of the ipsilateral motor activity in their 

unaffected hemispheres to locations anterior to traditional sensorimotor cortices. This finding is 

in line with other results that have demonstrated changes in motor activity ipsilateral to the 

unaffected hemisphere (Cramer, Nelles et al. 1997; Green, Bialy et al. 1999; Tecchio, Zappasodi 

et al. 2006). It is important to note that the ipsilateral control signals were used to control a 

cursor on a screen as a proof of concept. This control could be easily extended to a simple one-

dimensional grasping hand orthotic that could facilitate activities of daily living (Lauer, Peckham 

et al. 1999). 

With regards to the choice of signal platform for utilizing an assistive BCI system after stroke, 

there are several considerations to take into account. In order to implement a traditional assistive 

BCI system, it will be important to scale the BCI control to a greater number of degrees of 

freedom. Currently, non-invasive BCI systems have produced at most 3 degrees-of-freedom in 

online task performance (McFarland, Sarnacki et al. 2010). This level of control required a large 

amount of training and utilized signals from both cortical hemispheres and midline electrodes 

that were related to movements of the feet and both hands. Given the broad cortical activations 

observed in EEG recordings, the necessity of developing BCI systems independent of the normal 

operation of the unaffected hand for completion of bimanual tasks, and cognitive limitations that 

will limit the total amount of BCI training time that some patients can undergo, it is doubtful that 

EEG would allow for discernment of grasping and kinematic hand movements necessary for 

scaling an ipsilateral BCI system to a higher number of degrees of freedom in stroke survivors. 

Therefore, more complex control may require more invasive approaches such as 
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electrocorticography (ECoG). To date, more complex movement kinematics of both hand and 

finger movements have been shown to be discernable using either macro-scale or micro-scale 

ECoG signals (Wisneski, Anderson et al. 2008; Zanos, Miller et al. 2008; Leuthardt, 

Freudenberg et al. 2009; Scherer, Zanos et al. 2009). Additionally, ECoG has allowed for off-

line decoding of 2D joystick movements from ipsilateral cortex (Ganguly, Secundo et al. 2009; 

Sharma, Gaona et al. 2009). Furthermore, the results presented in Chapter 3 also show that 

ECoG signals can be used for off-line decoding of 3D reaching movements from ipsilateral 

cortex. As work continues to develop BCI systems for chronic stroke survivors, it will be 

important to gain a better understanding of the changes to the specific cortical dynamics 

associated with ipsilateral motor activity after stroke and the optimal signal platform that 

provides the highest benefit relative to the clinical risk of implementation. 

In addition to providing a means for long-term assistive device control after stroke, BCI systems 

may provide a novel rehabilitation tool. The choice of motor signals from the unaffected 

hemisphere in this study has particular relevance to the potential for using BCI systems as a 

rehabilitation methodology. A number of previous studies have demonstrated changes in 

ipsilateral motor activity from the unaffected hemisphere after stroke. Functional imaging of 

chronic stroke survivors has shown increases in the ipsilateral motor activations of the unaffected 

hemisphere after recovery from stroke when compared to normal controls (Weiller, Chollet et al. 

1992; Weiller, Ramsay et al. 1993; Cramer, Nelles et al. 1997; Nelles, Spiekramann et al. 1999; 

Tecchio, Zappasodi et al. 2006) as well as increases in ipsilateral, contralesional activity after 

constraint induced movement therapy (CIMT) (Levy, Nichols et al. 2001; Schaechter, Kraft et al. 

2002). Furthermore, inhibitory transcranial magnetic stimulation in the unaffected premotor 

cortex slowed the reaction times for affected hand movements in stroke survivors (Johansen-
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Berg, Rushworth et al. 2002). While these results seem to indicate that ipsilateral activity from 

the unaffected hemisphere plays a facilitating role in recovery of motor function after stroke, 

there are also a number of studies that have shown potentially contradictory findings regarding 

increases in ipsilateral, contralesional motor activity after stroke. In particular, low ipsilateral 

TMS thresholds were associated with poor recovery after stroke (Turton, Wroe et al. 1996; Netz, 

Lammers et al. 1997) and decreases in ipsilateral activity from the unaffected hemisphere 

correlated with longitudinal and cross-sectional studies of recovery (Ward, Brown et al. 2003a; 

Ward, Brown et al. 2003b). It is important to note that several of the studies described above 

demonstrated both perilesional changes in activity, as well as ipsilateral activity from the 

unaffected hemisphere after recovery, indicating that both cortical areas may lead to recovery 

(Green, Bialy et al. 1999; Levy, Nichols et al. 2001). Furthermore, another study revealed that 

patients who recover completely showed few changes to the location of their contralesional 

motor activity, while patients that recovered incompletely showed better recovery with increased 

ipsilateral activity in the unaffected hemisphere (Tecchio, Zappasodi et al. 2006). This makes 

sense when one considers that corticospinal tract damage is highly correlated with motor 

impairment after stroke (Fries, Danek et al. 1993; Carter, Patel et al. 2011). While patients with 

some residual motor function will most likely rehabilitate through reorganization of residual 

motor pathways, those for whom it is totally obliterated will likely need to develop new cortical 

and subcortical pathways (i.e. contralesional/ipsilateral motor pathways) for a more limited 

recovery. Thus, the patients that are most likely to be candidates for a BCI-based therapy are 

those who have substantial damage to their corticospinal tract, requiring that an alternative 

pathway be utilized for functional rehabilitation to take place. Because of this, the results 

described in this paper demonstrating that stroke survivors can utilize ipsilateral motor activity 
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from their unaffected hemisphere to control a BCI system represent a significant step in the 

development of a BCI system for encouraging rehabilitation after stroke. Moreover, in the setting 

of rehabilitation where the BCI is only needed transiently and the goal is to augment cortical 

plasticity, lower degrees of freedom for a less invasive option may be an ideal tradeoff in this 

clinical context. 

While this work represents an exciting demonstration of the possibilities for stroke survivors to 

achieve increased function through controlling BCI systems with neural activity in their 

unaffected hemisphere, there are several limitations and future considerations. First, the work 

represents only a limited number of patients and while one patient (Patient 1), had some 

recovery, most of the patients were selected for participation because they had more significant 

motor impairments, making them more representative of the patient population most likely to 

benefit from BCI applications. Because of this it is unknown how well these results will 

generalize to the broader population of stroke survivors. However, the population included 

patients with lesions of both hemispheres as well as both cortical and subcortical infarcts (see 

Table 5.1), indicating that patients with various lesion types and locations can utilize BCI 

systems. Furthermore, because BCI systems will most likely be applied to the most significantly 

impaired patients, the study population does represent the intended clinical population. Second, it 

is impossible to ensure that the BCI control is truly achieved through the screened motor imagery 

task, particularly in cases in which patients have no visible motor control. In this study however, 

the similarity between neural activity during the screening and control tasks (see Figure 5.9) 

provide evidence that the patient is indeed performing the imagery task indicated. Additionally, a 

BCI system needs to function independently of the unaffected hand to allow for completion of 

bimanual tasks. Because of differences in the attentional requirements of attempting to move the 
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unaffected hand, it is difficult to truly assess the independence of the ipsilateral, contralesional 

motor signals and the traditional contralateral, contralesional motor signals during bimanual 

tasks, however, the ability of two patients (Patients 1 and 2) to achieve on-line control with 

alternating movements of the affected and unaffected hands provides evidence that ipsilateral, 

contralesional motor activity is independent from unaffected hand movement in this patient 

population. Finally, it is important to note that the observed increase in ipsilateral, contralesional 

activations after stroke may represent increases in the attentional requirements of attempting to 

move the affected hand (Johansen-Berg, Rushworth et al. 2002). Regardless of whether this 

represents increased attention as has been postulated from previous imaging literature or 

enhancements in motor planning, once this signal is identified and engaged by the user, its 

utilization becomes of importance to assistive technologies, or to functional reorganization of the 

cortex and its neural output for a novel purpose. In the future, it will be important to explicitly 

test the changes in neural activity in the unaffected hemisphere as stroke survivors use BCI 

systems for longer time periods. 

In summary, these results move the applications of BCI forward to potentially benefit the large 

number of motor-impaired hemispheric stroke survivors. The study shows in particular that 

hemispheric stroke patients can volitionally control signals from the unaffected hemisphere for 

device operation. This specific use of the contralesional hemisphere may provide a novel 

neuroprosthetic approach for increasing function in the more impaired stroke populations whose 

rehabilitation options are currently limited. 
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6 Conclusion 

6.1 Summary of Results 
The central hypothesis underlying this dissertation is that motor signals from the unaffected 

hemisphere that are related to intended movements of the same-sided affected hand after stroke 

contain sufficient information to control a brain-computer interface (BCI) system, and 

furthermore, that a BCI system controlled with these signals can improve long-term function. 

This work has sought to advance this central hypothesis through three directions: understanding 

the motor physiology of the same-sided hemisphere and its relevance and feasibility for BCI 

applications, understanding the tradeoff between electrode invasiveness and signal quality to 

determine its impact on BCI implementation, and finally, demonstrating the feasibility of these 

systems in the patient population of interest by determining if stroke survivors can control a BCI 

system using ipsilateral motor signals in their unaffected hemisphere. 

Chapter 3 demonstrates that electrocorticography (ECoG) signals recorded from a single cortical 

hemisphere can be used to decode kinematics of three-dimensional (3D) reaches of either the 

contralateral or the ipsilateral arm. The ability to decode kinematics of reaching movements with 

several degrees of freedom builds upon previous demonstrations that ECoG signals can be used 

to decode movement trajectories (Schalk, Kubanek et al. 2007; Pistohl, Ball et al. 2008; Sanchez, 

Gunduz et al. 2008; Ganguly, Secundo et al. 2009; Chao, Nagasaka et al. 2010; Shimoda, 

Nagasaka et al. 2012; Marathe and Taylor 2013) and is a good modality for closed-loop BCI 

control (Leuthardt, Schalk et al. 2004; Wilson, Felton et al. 2006; Felton, Wilson et al. 2007; 

Schalk, Miller et al. 2008; Rouse and Moran 2009; Rouse, Williams et al. 2013). Although a few 

previous studies have decoded movement trajectories from movements that were not constrained 
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to two dimensions (Hotson, Fifer et al. 2012; Chen, Shin et al. 2013; Hotson, Fifer et al. 2014), 

we believe that this is the first study to demonstrate that ECoG recordings in human patients can 

be used to decode movements that are independent in 3D space. Although the decoding model 

used neural activity both leading and lagging kinematic parameters, which would not be possible 

in causal on-line BCI control, the ability to use ECoG signals to decode movement kinematics 

underscores the degree of information that can be decoded from ECoG activity and is therefore a 

significant step towards the development of ECoG BCI applications for a wide variety of patient 

populations.  

Furthermore, the ability to decode not only kinematics of contralateral arm reaches, but also to 

decode kinematics of ipsilateral limb movements is particularly relevant to BCI applications for 

stroke survivors. In particular, given that ipsilateral limb kinematics can be decoded in motor-

intact patients, it is likely that similar signals from the unaffected hemisphere of stroke survivors 

can be used to control a BCI system. While other studies have also used ECoG signals to decode 

ipsilateral arm movements (Ganguly, Secundo et al. 2009; Hotson, Fifer et al. 2012; Hotson, 

Fifer et al. 2014), this study was unique both because we decoded kinematics of 3D arm 

movements and because the experiment was specifically designed to enable us to compare the 

ability to decode trajectories of contralateral and ipsilateral arm movements in the same patients. 

Specifically, we found that while the movement-related spectral power changes associated with 

contralateral and ipsilateral arm movements are distinct, the contralateral and ipsilateral limb 

decoding accuracies are very similar. Furthermore, the models used to predict contralateral and 

ipsilateral limb movements had the strongest prediction weights in the same cortical locations 

and ECoG features. Because of the similarity in the decoding models used, it is uncertain how 

separable the neural representations of contralateral and ipsilateral movement kinematics are. 
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In order to utilize the ability to decode movement kinematics to develop a BCI system, it is 

important to understand the relationship between signal quality and electrode invasiveness. 

Understanding this tradeoff will allow us to implement BCI systems using the most appropriate 

technical specifications to meet the necessary performance criteria. By using simulated 

electroencephalography (EEG) signals, we found that there is a significant decrease in the ability 

to decode movement kinematics with EEG signals when compared to ECoG signals. Because of 

this decrease in signal quality, for BCI applications requiring multiple degrees of freedom, more 

invasive electrodes, such as ECoG arrays, would be necessary. Because ECoG provides the 

signal quality needed to decode activity with multiple degrees of freedom, a further choice must 

be made to implant electrodes subdurally or epidurally. Chapter 4 presented the results of a study 

investigating the effect of the human dura on ECoG signal quality at various spatial scales. In 

particular, while subdural and epidural macro-ECoG signals are similar in spatial and spectral 

resolution, there is a significant effect of the human dura when ECoG electrodes with smaller 

sizes are used. It will be important to take this tradeoff between invasiveness and signal quality 

into consideration when designing BCI applications. 

Finally, the experiments included in Chapter 5 demonstrate that stroke survivors can utilize 

neural activity in their unaffected hemisphere to control a simple BCI system. In particular, 

stroke survivors have significant movement-related spectral power changes in the unaffected 

hemisphere that are associated with intended movements of the affected hand. Furthermore, 

these signals were used to control a simple BCI system rapidly and accurately. While a number 

of studies have used signals from the affected hemisphere for BCI control (Buch, Weber et al. 

2008; Daly, Cheng et al. 2009; Soekadar, Witkowski et al. 2011; Ramos-Murguialday, Broetz et 

al. 2013; Ang, Chua et al. 2014), this study provided the first demonstration that stroke survivors 
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can use ipsilateral motor signals from the unaffected hemisphere for BCI control (Bundy, 

Wronkiewicz et al. 2012). As the ability to modulate neural activity is impaired in patients with 

more significant lesions (Buch, Modir Shanechi et al. 2012), the unaffected hemisphere is likely 

an ideal control signal for BCI applications in many stroke survivors. 

6.2 Future Directions 
While we believe that the results of these studies are significant, there are also several future 

avenues of investigation that would allow us to develop a better understanding of ipsilateral 

motor physiology, would further the development of BCI systems in general, and would lead to 

further development of BCI applications for stroke survivors in particular. 

6.2.1 Understanding Ipsilateral Motor Physiology 

While the movement-related spectral power changes associated with contralateral and ipsilateral 

limb movements are distinct in both the amplitude and time course of power changes, kinematic 

parameters of contralateral and ipsilateral arm movements are represented at similar cortical 

locations and features. Several potential factors may have contributed to this similarity in speed 

and directional tuning. A number of task-related factors have been identified that can affect 

movement-related neural activity including: task complexity (Kitamura, Shibasaki et al. 1993a; 

Kitamura, Shibasaki et al. 1993b; Rao, Binder et al. 1993; Manganotti, Gerloff et al. 1998), 

perceived effort (Slobounov, Hallett et al. 2004), the specific muscles activated (Colebatch, 

Deiber et al. 1991; Jankelowitz and Colebatch 2002), hemispheric asymmetries (Kim, Ashe et al. 

1993b), and whether unilateral or bilateral movements are performed (Donchin, Gribova et al. 

1998; Kermadi, Liu et al. 2000; Steinberg, Donchin et al. 2002; Diedrichsen, Wiestler et al. 

2013). Future experiments could be designed to specifically investigate the interaction between 

ipsilateral motor activity and any one of these parameters to increase our understanding of the 
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role of ipsilateral motor activations. Significantly, BCI control derived from signals in the 

unaffected hemisphere of stroke survivors would need to be independent from normal 

movements of the unaffected limb. Therefore, understanding the similarities and differences in 

the neural activity related to unimanual contralateral limb movements, unimanual ipsilateral limb 

movements, synergistic bimanual movements, and non-synergistic bimanual movements would 

be especially important. In particular, both electrophysiological and functional imaging studies 

have shown that neural activity observed during bilateral movements cannot be accounted for by 

a linear combination of the neural activity that occurs during each of the component unimanual 

movements (Tanji, Okano et al. 1988; Kermadi, Liu et al. 2000; Steinberg, Donchin et al. 2002; 

Diedrichsen, Wiestler et al. 2013). Because the 3D reaching task used in our study was 

performed with either the contralateral or ipsilateral limb separately, it is uncertain how the 

findings would change in a bimanual reaching task. Specifically, it would be important to 

determine if ECoG signals still contain representations of ipsilateral limb kinematics during 

bimanual movements and how the location and features underlying this representation differed 

for unimanual and bimanual movements.  

6.2.2 Improving Kinematic Decoding 

In Chapter 3, we also observed that ECoG signals from a single cortical hemisphere encode 

kinematics of reaching movements of either arm. We used this relationship to decode kinematics 

with a hierarchical partial least-squares (PLS) regression model. Furthermore, we sought not 

only to demonstrate that ECoG can be used to decode movement kinematics, but also to use the 

model weights to interpret the most significant cortical locations and features for decoding 

contralateral and ipsilateral arm movements. To accomplish this, we chose to use the logistic 

regression and PLS regression methods in part because they are both linear. Therefore, as the 
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ECoG features were transformed to z-score values prior to training the prediction model, we 

were able to easily interpret and compare the importance of each cortical location and feature 

through the prediction weights. Future work could seek to improve upon the decoding accuracy 

through a number of potential preprocessing methods or machine learning algorithms. Potential 

methods to improve decoding accuracy include: calculating spatial filters through unsupervised 

methods such as independent component analysis (Makeig, Bell et al. 1996; Kachenoura, Albera 

et al. 2008), calculating spatial filters designed to maximize the discriminability of behavioral 

conditions using supervised learning methods such as common spatial patterns (Koles, Lazar et 

al. 1990; Koles 1991; Ramoser, Muller-Gerking et al. 2000; Blankertz, Tomioka et al. 2008; 

Ince, Gupta et al. 2010; Marathe and Taylor 2013), using a model such as a kalman filter that 

incorporates temporal filtering into the prediction model (Wu, Black et al. 2003; Marathe and 

Taylor 2013), or using any of a number of alternative linear or non-linear machine learning 

methods for decoding kinematic time courses (Wessberg, Stambaugh et al. 2000). It should be 

noted that these alternative methods are not guaranteed to increase prediction accuracies as they 

may be poorly suited to fit the relationship between ECoG activity and movement kinematics. 

Additionally several of these methods may be susceptible to overfitting. For example, while we 

attempted to use several variations of the common spatial patterns algorithm in our ECoG dataset 

(Blankertz, Tomioka et al. 2008; Lotte and Guan 2011; Falzon, Camilleri et al. 2012; Samek, 

Vidaurre et al. 2012), each method suffered from overfitting, leading to good training set 

performance and poor performance on the test set. 

Along with speed, velocity, and position, there are a number of alternative movement parameters 

that describe movement trajectories such as the component joint angles or muscle activations. 

One factor in choosing to begin by decoding speed, velocity, and position is their prevalence in 
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prior studies of single-unit motor control (Georgopoulos, Kalaska et al. 1982; Moran and 

Schwartz 1999b; Wang, Chan et al. 2007) and movement decoding with ECoG (Schalk, 

Kubanek et al. 2007; Pistohl, Ball et al. 2008; Ganguly, Secundo et al. 2009; Chao, Nagasaka et 

al. 2010; Marathe and Taylor 2013). While speed, position, and velocity can be decoded from 

ECoG recordings in human patients, it is uncertain if algorithms designed to decode alternative 

components of reaching movements will ultimately lead to increases in the accuracies of 

decoded movement trajectories. 

6.2.3 Optimizing ECoG Arrays for BCI Applications 

The ECoG arrays used for the analyses presented in Chapter 3 were implanted for clinical 

purposes. Therefore, the location, size, spacing, and extent of electrode coverage were all based 

upon clinical necessity. A number of previous studies have shown that ECoG electrodes with 

smaller sizes and spacing can be used to examine neural activity with increased spatial resolution 

(Leuthardt, Freudenberg et al. 2009; Wang, Degenhart et al. 2009; Kellis, Miller et al. 2010). 

Although smaller electrode sizes can increase the spatial specificity of recordings and will 

potentially decrease the invasiveness of an implant by decreasing its overall footprint, electrodes 

with smaller sizes have increased electrode impedances, causing a decrease in the signal-to-noise 

ratio of recordings. It is likely that the optimal ECoG implant for BCI applications will balance 

the spatial specificity and signal-to-noise ratio of recordings to allow for increased decoding 

performance. Along with implant specifications, studies of BCI applications can also optimize 

implant locations for decoding neural activity through the use of pre-operative functional 

imaging techniques (Wang, Collinger et al. 2013). Finally, in characterizing the effect of the 

human dura on ECoG recordings in Chapter 4, two extremes of electrode size were examined. In 

between these extremes, the computer modeling that was performed showed that the effect of the 
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dura on signal quality varies with electrode size. As the optimal ECoG specifications for BCI 

applications are identified, it will be important to use computer models such as this one and 

additional experimental recordings to specifically characterize the effect of the dura at the 

intermediate electrode sizes that are ultimately used. 

6.2.4 Transitioning from Movement Decoding to BCI Control 

The optimal method to evaluate the accuracy of a BCI system is ultimately through closed-loop 

experiments. While open-loop decoding of motor activity allows us to assess the feasibility of a 

BCI application, to compare the decoding performance of different signal modalities, and to test 

a variety of decoding methods with limited data sets, there are a number of important differences 

between open-loop and closed-loop methods. In particular, closed-loop BCI control provides 

feedback to the user, allowing them to learn to adapt their neural activity to improve the accuracy 

of the BCI system. This increase in accuracy due to on-line adaptation has been demonstrated not 

only for BCI systems driven by single unit recordings (Taylor, Tillery et al. 2002; Jarosiewicz, 

Chase et al. 2008), but also BCI systems using ECoG recordings in non-human primates (Rouse 

and Moran 2009; Rouse, Williams et al. 2013). Additionally, co-adaptively modifying the 

decoding model in conjunction with the subject’s ability to learn has led to further improvements 

in on-line BCI control (Williams 2013). The increase in accuracy with adaptation indicates that 

the open-loop accuracies demonstrated in this work could be further improved upon during 

closed-loop BCI control. 

Because decoding accuracy can improve though closed-loop adaptation, BCI systems should be 

designed to enhance the ability of the BCI user to learn and adapt. This additional constraint on 

BCI system design is illustrated by the fact that during control of a prosthetic simulator, although 

open-loop decoding accuracies were maximized through algorithms with slow temporal update 
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times, closed-loop decoding accuracies were maximized with fast temporal updates allowing for 

easier learning and adaptation (Cunningham, Nuyujukian et al. 2011). Therefore, it will be 

important for future studies to “close the loop” in order to ensure that algorithms that increase the 

accuracy of off-line kinematic decoding will also have corresponding increases in BCI control 

performance. Based upon this consideration and the results of Chapter 3, a further question is 

how valuable the local motor potential (LMP) will be for closed-loop control. In line with 

previous studies (Schalk, Kubanek et al. 2007; Pistohl, Ball et al. 2008; Hotson, Fifer et al. 

2014), we found that the LMP amplitude had a significant contribution to the decoding of 

kinematics. Although the LMP signal is clearly important for movement decoding, very few 

studies have used time domain signals of local field potentials for BCI control (Kennedy, 

Andreasen et al. 2004; Kennedy, Kirby et al. 2004). Because the LMP is derived from applying a 

low-pass smoothing filter to ECoG signals, it changes on a relatively slow time scale. This slow 

time scale may make it difficult for patients to adapt their LMP signals during BCI control. 

Future studies seeking to use LMP signals within closed-loop BCI control tasks with several 

degrees of freedom will be important to understand the advantages and disadvantages of the 

LMP signal within BCI systems. 

6.2.5 BCI Systems for Stroke 

Finally, the study described in Chapter 5 was the first demonstration that stroke survivors can 

control a BCI system using ipsilateral motor activity from the unaffected hemisphere. We 

envision that a BCI system using the unaffected hemisphere after stroke can be used to improve 

function in stroke survivors either through long-term control of an assistive device or through 

encouraging functional rehabilitation by encouraging neuroplasticity with paired BCI control and 
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external stimulation. Each of these clinical end-points has its own requirements and future work 

needed to translate them from our demonstration of feasibility into clinically significant devices. 

For meaningful long-term device control, BCI systems need to enable stable and long-term 

control of devices with multiple degrees of freedom and high levels of accuracy. Although this 

study provides evidence that ECoG signals can be used to decode 3D movements, the patients 

had an intact motor system. After a stroke, movement-related neural activity is altered in a 

variety of ways (Pfurtscheller, Ladurner et al. 1984; Honda, Nagamine et al. 1997; Green, Bialy 

et al. 1999; Buch, Modir Shanechi et al. 2012). Therefore, prior to implementing a BCI system, 

we will need to gain a better understanding of how the movement-related neural activity in 

stroke patients differs from motor-intact patients based upon the location and extent of the lesion. 

Understanding the changes in movement-related neural activity after stroke would inform the 

choices made in the implementation of BCI systems including the location, features, and type of 

electrodes used in each individual patient. 

Designing a BCI system as a rehabilitation tool requires us to answer a number of other 

questions. Because remodeling of perilesional areas has been associated with improved function 

after stroke (Nudo, Wise et al. 1996; Turton, Wroe et al. 1996; Netz, Lammers et al. 1997; Ward, 

Brown et al. 2003a; Ward, Brown et al. 2003b), previous BCI applications for rehabilitation after 

stroke have focused on areas in the affected hemisphere for BCI control (Buch, Weber et al. 

2008; Daly, Cheng et al. 2009; Ramos-Murguialday, Broetz et al. 2013). A number of studies 

have also shown that there are increases in ipsilateral motor activity in the contralesional 

hemisphere after recovery from stroke (Weiller, Chollet et al. 1992; Weiller, Ramsay et al. 1993; 

Cramer, Nelles et al. 1997; Green, Bialy et al. 1999; Levy, Nichols et al. 2001; Schaechter, Kraft 
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et al. 2002). A trial is currently underway to determine whether training with a BCI-controlled 

hand orthosis that is driven by ipsilateral motor signals in the unaffected hemisphere can lead to 

functional rehabilitation in chronic stroke survivors. Although demonstrations of increased 

function after BCI training are exciting it is imperative that larger clinical trials are conducted to 

determine the optimal strategies for BCI rehabilitation systems. In particular, it will be important 

to understand the complex interactions between rehabilitation and a number of factors including: 

the location of lesions, the residual motor function at trial onset, whether BCI feedback is given 

through electrical or mechanical stimulation, the latency between neural activity and external 

stimulation, the type of neural activity used for BCI control, the duration and volume of BCI 

training, and the combination of BCI training with additional therapies to enhance plasticity. 

Through well-designed and well-implemented studies to determine the roles of these factors, it 

will be possible to further develop and translate BCI systems into tools to improve patients’ 

lives.  

6.3 Final Thoughts 
Over the last several decades, there have been tremendous advancements that have brought BCI 

systems from the pages of science fiction novels to real-world systems that have been 

demonstrated to be feasible both in animal models and in individual human patients. Collectively 

this dissertation has advanced the development of BCI applications in general by demonstrating 

the feasibility of ECoG for decoding movement kinematics with multiple degrees of freedom and 

by further developing our understanding of the tradeoff between signal quality and electrode 

invasiveness. Furthermore, this body of work showed that ECoG signals could be used to decode 

kinematics of the ipsilateral limb, demonstrating the feasibility of BCI systems that would use 

these signals in stroke survivors. Finally, we found that these ipsilateral motor signals, recorded 
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from the unaffected hemisphere of stroke survivors, can be modulated to enable control of a 

computer cursor. In light of the recent progress towards developing BCI systems, the future is 

very bright. In particular, it will be exciting to go beyond demonstrations of feasibility and 

optimize the techniques for implementation and translation of BCI systems into patient 

populations. Finally, with the potential to use BCI systems not only for device control, but also 

to encourage neuroplasticity, it is clear that we have only just begun to explore the range of 

possible ways to apply BCI technology to aid a wide range of patient populations.  
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Appendix: Surrogate Models Used to 

Evaluate ECoG Predictions of Movements 
To examine whether the predictions of kinematic parameters were significantly different from 

chance, the prediction accuracy expected by chance was evaluated using two surrogate 

prediction methods to ensure that the results were not affected by any systematic bias. First, a 

surrogate kinematic dataset was created by randomly reordering training set trials, randomly 

choosing a time point within each trial as the beginning of the trial, and constructing a new 

kinematic time course of the same length for the trial by wrapping the kinematic data from the 

beginning of the trial onto the end of the trial. A surrogate prediction model was trained using the 

original ECoG data and the surrogate training kinematic data. The surrogate model accuracy was 

calculated using the original testing set. An example of the original and surrogate kinematic data 

from a single training fold is shown in Figure A.1. This method was used as it randomized the 

relationship between ECoG activity and kinematic parameters, while maintaining the 

autocorrelation structure of real movement kinematics. Figure A.2 shows the autocorrelation of 

the original kinematics and surrogate kinematic sets for all patients. For all patients, the shape of 

the autocorrelation is indeed similar between the original and temporal surrogates. 

For the second surrogate method, after training prediction models, the ECoG channels and 

features were shuffled by reordering the prediction weights. The surrogate model accuracy was 

calculated by using these reshuffled prediction weights with the original ECoG data to calculate 

predicted kinematics. Both surrogate methods were used to calculate the statistical significance 

of the logistic regression model predicting movement state as well as the PLS model predicting 

movement kinematics. 
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Figure A. 1 Exemplar original and surrogate kinematic training data 

The first method for establishing the prediction accuracy expected by chance involved calculating surrogate kinematic training 

data. The original kinematic training data (blue traces) and surrogate kinematic data (red traces) are shown for a single training 

fold for speed, velocity, and position. The surrogate data has a new and random relationship between kinematics and ECoG 

activity as seen by the different movement times and directions, but maintained the smooth temporal structure of the original 

kinematics. 
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Figure A.2 Autocorrelations of original and temporal surrogate kinematic data 

The temporal reshuffling strategy was designed to randomize the relationship between movement kinematics and ECoG activity 

while maintaining the autocorrelation structure between the two datasets. The plots show the average autocorrelation of each 
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kinematic parameter for each of the patients. In each of the kinematics, the shape of the autocorrelation is similar for both the 

original and surrogate data, demonstrating that the surrogates did indeed maintain the temporal structure inherent in the kinematic 

data. 

Figure A.3 Shows exemplar movement class predictions using the original model, a surrogate 

prediction from a model trained with temporally shuffled kinematics, and a surrogate prediction 

using reshuffled features. Figure A.4 Shows exemplar PLS predictions made using the original 

model as well as both of the surrogate methods. The accuracies for predictions made using both 

surrogate methods are worse than the original model, confirming the group results presented in 

the main text. 

 
Figure A.3 Exemplar Original and Surrogate Movement Class Predictions 

The original and surrogate predictions of movement class are shown for a testing set from a single exemplar patient. Both the 

surrogate predictions made using the temporal and feature surrogates fail to accurate classify movement from rest. 
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Figure A.4 Exemplar Original and Surrogate Kinematic Predictions 

The original and surrogate predictions of movement kinematics are shown for a testing set from a single exemplar patient. 

Surrogate predictions made with the models trained using the temporally reordered surrogate kinematics are shown on the left. 

Surrogate predictions generated from reshuffling the features and channels within the model are shown on the left. Original and 

surrogate predictions were generated by using the actual movement class labels to switch between the PLS regression models for 

the rest and movement classes. While surrogate predictions for speed are correlated with the actual speed, the surrogate 

predictions cluster around the average speed during rest and movement classes and do not fit the time course of speed as well as 

the original model predictions. For directional kinematics, both of the surrogate predictions are directed towards the incorrect 

direction much more frequently than the original model predictions. 
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