8,393 research outputs found

    Brain-mediated Transfer Learning of Convolutional Neural Networks

    Full text link
    The human brain can effectively learn a new task from a small number of samples, which indicate that the brain can transfer its prior knowledge to solve tasks in different domains. This function is analogous to transfer learning (TL) in the field of machine learning. TL uses a well-trained feature space in a specific task domain to improve performance in new tasks with insufficient training data. TL with rich feature representations, such as features of convolutional neural networks (CNNs), shows high generalization ability across different task domains. However, such TL is still insufficient in making machine learning attain generalization ability comparable to that of the human brain. To examine if the internal representation of the brain could be used to achieve more efficient TL, we introduce a method for TL mediated by human brains. Our method transforms feature representations of audiovisual inputs in CNNs into those in activation patterns of individual brains via their association learned ahead using measured brain responses. Then, to estimate labels reflecting human cognition and behavior induced by the audiovisual inputs, the transformed representations are used for TL. We demonstrate that our brain-mediated TL (BTL) shows higher performance in the label estimation than the standard TL. In addition, we illustrate that the estimations mediated by different brains vary from brain to brain, and the variability reflects the individual variability in perception. Thus, our BTL provides a framework to improve the generalization ability of machine-learning feature representations and enable machine learning to estimate human-like cognition and behavior, including individual variability

    Do Deep Neural Networks Model Nonlinear Compositionality in the Neural Representation of Human-Object Interactions?

    Get PDF
    Visual scene understanding often requires the processing of human-object interactions. Here we seek to explore if and how well Deep Neural Network (DNN) models capture features similar to the brain's representation of humans, objects, and their interactions. We investigate brain regions which process human-, object-, or interaction-specific information, and establish correspondences between them and DNN features. Our results suggest that we can infer the selectivity of these regions to particular visual stimuli using DNN representations. We also map features from the DNN to the regions, thus linking the DNN representations to those found in specific parts of the visual cortex. In particular, our results suggest that a typical DNN representation contains encoding of compositional information for human-object interactions which goes beyond a linear combination of the encodings for the two components, thus suggesting that DNNs may be able to model this important property of biological vision.Comment: 4 pages, 2 figures; presented at CCN 201

    Domain-general and Domain-specific Patterns of Activity Support Metacognition in Human Prefrontal Cortex

    Get PDF
    Metacognition is the capacity to evaluate the success of one's own cognitive processes in various domains; for example, memory and perception. It remains controversial whether metacognition relies on a domain-general resource that is applied to different tasks or if self-evaluative processes are domain specific. Here, we investigated this issue directly by examining the neural substrates engaged when metacognitive judgments were made by human participants of both sexes during perceptual and memory tasks matched for stimulus and performance characteristics. By comparing patterns of fMRI activity while subjects evaluated their performance, we revealed both domain-specific and domain-general metacognitive representations. Multivoxel activity patterns in anterior prefrontal cortex predicted levels of confidence in a domain-specific fashion, whereas domain-general signals predicting confidence and accuracy were found in a widespread network in the frontal and posterior midline. The demonstration of domain-specific metacognitive representations suggests the presence of a content-rich mechanism available to introspection and cognitive control

    Machine Learning for Neuroimaging with Scikit-Learn

    Get PDF
    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.Comment: Frontiers in neuroscience, Frontiers Research Foundation, 2013, pp.1
    corecore