
HAL Id: hal-01093971
https://hal.inria.fr/hal-01093971

Submitted on 11 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning for Neuroimaging with Scikit-Learn
Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais,
Andreas Muller, Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, Gaël

Varoquaux

To cite this version:
Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas Muller, et al..
Machine Learning for Neuroimaging with Scikit-Learn. Frontiers in Neuroscience, Frontiers, 2013,
pp.15. �10.3389/fninf.2014.00014�. �hal-01093971�

https://hal.inria.fr/hal-01093971
https://hal.archives-ouvertes.fr

Frontiers in Neurosciences 12December 2014

Machine Learning for Neuroimaging with
Scikit-Learn
Alexandre Abraham 1,2,∗, Fabian Pedregosa 1,2, Michael Eickenberg 1,2,
Philippe Gervais 1,2, Andreas Muller 3, Jean Kossaifi 4, Alexandre
Gramfort 1,2,5, Bertrand Thirion 1,2 and Gaël Varoquaux 1,2

1Parietal Team, INRIA Saclay-Île-de-France, Saclay, France
2Neurospin, I 2BM, DSV, CEA, 91191 Gif-Sur-Yvette, France
3Institute of Computer Science VI, University of Bonn, Germany
4Department of Computing, Imperial College London, U.K.
5Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, 75014 Paris, France
Correspondence*:
Alexandre Abraham
Parietal Team, INRIA Saclay-Île-de-France, Saclay, France,
alexandre.abraham@inria.fr

Research Topic

ABSTRACT
Statistical machine learning methods are increasingly used for neuroimaging data analysis.

Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis
of activation images or resting-state time series. Supervised learning is typically used in
decoding or encoding settings to relate brain images to behavioral or clinical observations,
while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state
functional MRI) or find sub-populations in large cohorts. By considering different functional
neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can
be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical
learning algorithms, both supervised and unsupervised, and its application to neuroimaging data
provides a versatile tool to study the brain.
Keywords: machine learning, statistical learning, neuroimaging, scikit-learn, Python

1 INTRODUCTION
Interest in applying statistical machine learning to neuroimaging data analysis is growing. Neuroscientists
use it as a powerful, albeit complex, tool for statistical inference. The tools are developed by computer
scientists who may lack a deep understanding of the neuroscience questions. This paper aims to fill the gap
between machine learning and neuroimaging by demonstrating how a general-purpose machine-learning
toolbox, scikit-learn, can provide state-of-the-art methods for neuroimaging analysis while keeping the
code simple and understandable by both worlds. Here, we focus on software; for a more conceptual
introduction to machine learning methods in fMRI analysis, see Pereira et al. (2009) or Mur et al. (2009),
while Hastie et al. (2001) provides a good reference on machine learning. We discuss the use of the
scikit-learn toolkit as it is a reference machine learning tool and has and a variety of algorithms that is
matched by few packages, but also because it is implemented in Python, and thus dovetails nicely in the
rich neuroimaging Python ecosystem.

This paper explores a few applications of statistical learning to resolve common neuroimaging needs,
detailing the corresponding code, the choice of the methods, and the underlying assumptions. We discuss

1

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

not only prediction scores, but also the interpretability of the results, which leads us to explore the internal
model of various methods. Importantly, the GitHub repository of the paper1 provides complete scripts
to generate figures. The scope of this paper is not to present a neuroimaging-specific library, but rather
code patterns related to scikit-learn. However, the nilearn library –http://nilearn.github.io–
is a software package under development that seeks to simplify the use of scikit-learn for neuroimaging.
Rather than relying on an immature and black-box library, we prefer here to unravel simple and didactic
examples of code that enable readers to build their own analysis strategies.

The paper is organized as follows. After introducing the scikit-learn toolbox, we show how to prepare
the data to apply scikit-learn routines. Then we describe the application of supervised learning techniques
to learn the links between brain images and stimuli. Finally we demonstrate how unsupervised learning
techniques can extract useful structure from the images.

2 OUR TOOLS: SCIKIT-LEARN AND THE PYTHON ECOSYSTEM
2.1 BASIC SCIENTIFIC PYTHON TOOLS FOR THE NEUROIMAGER
With its mature scientific stack, Python is a growing contender in the landscape of neuroimaging data
analysis with tools such as Nipy (Millman and Brett, 2007) or Nipype (Gorgolewski et al., 2011). The
scientific Python libraries used in this paper are:

• NumPy. Provides the ndarray data type to python, an efcient n-dimensional data representation
for array-based numerical computation, similar to that used in Matlab (Van Der Walt et al., 2011).
It handles efficient array persistance (input and output) and provides basic operations such as dot
product. Most scientific Python libraries, including scikit-learn, use NumPy arrays as input and output
data type.

• SciPy: higher level mathematical functions that operate on ndarrays for a variety of domains including
linear algebra, optimization and signal processing. SciPy is linked to compiled libraries to ensure high
performances (BLAS, Arpack and MKL for linear algebra and mathematical operations). Together,
NumPy and SciPy provide a robust scientific environment for numerical computing and they are the
elementary bricks that we use in all our algorithms.

• Matplotlib, a plotting library tightly integrated into the scientific Python stack (Hunter, 2007). It
offers publication-quality figures in different formats and is used to generate the figures in this paper.

• Nibabel, to access data in neuroimaging file formats. We use it at the beginning of all our scripts.

2.2 SCIKIT-LEARN AND THE MACHINE LEARNING ECOSYSTEM
Scikit-learn (Pedregosa et al., 2011) is a general purpose machine learning library written in Python.
It provides efficient implementations of state-of-the-art algorithms, accessible to non-machine learning
experts, and reusable across scientific disciplines and application fields. It also takes advantage of
Python interactivity and modularity to supply fast and easy prototyping. There is a variety of other
learning packages. For instance, in Python, PyBrain (Schaul et al., 2010) is best at neural networks and
reinforcement learning approaches, but its models are fairly black box, and do not match our need to
interpret the results. Beyond Python, Weka (Hall et al., 2009) is a rich machine learning framework
written in Java, however it is more oriented toward data mining.

Some higher level frameworks provides full pipeline to apply machine learning techniques to
neuroimaging. PyMVPA (Hanke et al., 2009) is a Python packaging that does data preparation, loading
and analysis, as well as result visualization. It performs multi-variate pattern analysis and can make use
of external tools such as R, scikit-learn or Shogun (Sonnenburg et al., 2010). PRoNTo (Schrouff et al.,
2013) is written in Matlab and can easily interface with SPM but does not propose many machine learning
algorithms. Here, rather than full-blown neuroimaging analysis pipelines, we discuss lower-level patterns
that break down how neuroimaging data is input to scikit-learn and processed with it. Indeed, the breadth

1 http://www.github.com/AlexandreAbraham/frontiers2013

Frontiers in Neurosciences 2

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

of machine learning techniques in scikit-learn and the variety of possible applications are too wide to be
fully exposed in a high-level interface. Note that a package like PyMVPA that can rely on scikit-learn for
neuroimaging data analysis implements similar patterns behind its high-level interface.

2.3 SCIKIT-LEARN CONCEPTS
In scikit-learn, all objects and algorithms accept input data in the form of 2-dimensional arrays of size
samples × features. This convention makes it generic and domain-independent. Scikit-learn objects share
a uniform set of methods that depends on their purpose: estimators can fit models from data, predictors
can make predictions on new data and transformers convert data from one representation to another.

• Estimator. The estimator interface, the core of the library, exposes a fit method for learning
model parameters from training data. All supervised and unsupervised learning algorithms (e.g., for
classification, regression or clustering) are available as objects implementing this interface. Machine
learning tasks such as feature selection or dimensionality reduction are also provided as estimators.

• Predictor. A predictor is an estimator with a predict method that takes an input array X test
and makes predictions for each sample in it. We denote this input parameter “X test” in order to
emphasize that predict generalizes to new data. In the case of supervised learning estimators, this
method typically returns the predicted labels or values computed from the estimated model.

• Transformer. As it is common to modify or filter data before feeding it to a learning algorithm, some
estimators, named transformers, implement a transform method. Preprocessing, feature selection
and dimensionality reduction algorithms are all provided as transformers within the library. If the
transformation can be inverted, a method called inverse transform also exists.

When testing an estimator or setting hyperparameters, one needs a reliable metric to evaluate its
performance. Using the same data for training and testing is not acceptable because it leads to overly
confident model performance, a phenomenon also known as overfitting. Cross-validation is a technique
that allows one to reliably evaluate an estimator on a given dataset. It consists in iteratively fitting the
estimator on a fraction of the data, called training set, and testing it on the left-out unseen data, called test
set. Several strategies exists to partition the data. For example, k-fold cross-validation consists in dividing
(randomly or not) the samples in k subsets: each subset is then used once as testing set while the others
k − 1 subsets are used to train the estimator. This is one of the simplest and most widely used cross-
validation strategies. The parameter k is commonly set to 5 or 10. Another strategy, sometimes called
Monte-Carlo cross-validation, uses many random partitions in the data.

For a given model and some fixed value of hyperparameters, the scores on the various test sets can be
averaged to give a quantitative score to assess how good the model is. Maximizing this cross-validation
score offers a principled way to set hyperparameters and allows to choose between different models. This
procedure is known as model selection. In scikit-learn, hyperparameters tuning can be conviently done
with the GridSearchCV estimator. It takes as input an estimator and a set of candidate hyperparameters.
Cross-validation scores are then computed for all hyperparameters combinations, possibly in parallel, in
order to find the best one. In this paper, we set the regularization coefficient with grid search in section 5.

3 DATA PREPARATION: FROM MR VOLUMES TO A DATA MATRIX
Before applying statistical learning to neuroimaging data, standard preprocessing must be applied. For
fMRI, this includes motion correction, slice timing correction, coregistration with an anatomical image
and normalization to a common template like the MNI (Montreal Neurologic Institute) one if necessary.
Reference softwares for these tasks are SPM (Friston, 2007) and FSL (Smith et al., 2004). A Python
interface to these tools is available in nipype Python library (Gorgolewski et al., 2011). Below we discuss
shaping preprocessed data into a format that can be fed to scikit-learn. For the machine learning settings,
we need a data matrix, that we will denote X , and optionally a target variable to predict, y.

Frontiers in Neurosciences 3

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

3.1 SPATIAL RESAMPLING
Neuroimaging data often come as Nifti files, 4-dimensional data (3D scans with time series at each
location or voxel) along with a transformation matrix (called affine) used to compute voxel locations
from array indices to world coordinates. When working with several subjects, each individual data is
registered on a common template (MNI, Talairach...), hence on a common affine, during preprocessing.

Affine matrix can express data anisotropy, when the distance between two voxels is not the same
depending on the direction. This information is used by algorithms relying on the spatial structure of
the data, for instance the Searchlight.

SciPy routine scipy.ndimage.affine transform can be used to perform image resampling:
changing the spatial resolution of the data2. This is an interpolation and alters the data, that is why it
should be used carefully. Downsampling is commonly used to reduce the size of data to process. Typical
sizes are 2mm or 3mm resolution, but scan spatial resolution is increasing with progress in MR physics.
The affine matrix can encode the scaling factors for each direction.

3.2 SIGNAL CLEANING
Due to its complex and indirect acquisition process, neuroimaging data often have a low signal-to-noise
ratio. They contain trends and artifacts that must be removed to ensure maximum machine learning
algorithms efficiency. Signal cleaning includes:

• Detrending removes a linear trend over the time series of each voxel. This is a useful step
when studying fMRI data, as the voxel intensity itself has no meaning and we want to
study its variation and correlation with other voxels. Detrending can be done thanks to SciPy
(scipy.signal.detrend).

• Normalization consists in setting the timeseries variance to 1. This harmonization is necessary as
some machine learning algorithms are sensible to different value ranges.

• Frequency filtering consists in removing high or low frequency signals. Low-frequency signals in
fMRI data are caused by physiological mechanisms or scanner drifts. Filtering can be done thanks to
a Fourier transform (scipy.fftpack.fft) or a Butterworth filter (scipy.signal.butter).

3.3 FROM 4-DIMENSIONAL IMAGES TO 2-DIMENSIONAL ARRAY: MASKING
Neuroimaging data are represented in 4 dimensions: 3 spatial dimensions, and one dimension to index
time or trials. Scikit-learn algorithms, on the other hand, only accept 2-dimensional samples × features
matrices (see Section 2.3). Depending on the setting, voxels and time series can be considered as features
or samples. For example, in spatial independent component analysis (ICA), voxels are samples.

The reduction process from 4D-images to feature vectors comes with the loss of spatial structure. It
however allows to discard uninformative voxels, such as the ones outside of the brain. Such voxels that
only carry noise and scanner artifacts would reduce SNR and affect the quality of the estimation. The
selected voxels form a brain mask. Such a mask is often given along with the datasets or can be computed
with software tools such as FSL or SPM.

Applying the mask is made easy by NumPy advanced indexing using boolean arrays. Two-dimensional
masked data will be referred to as X to follow scikit-learn conventions:
mask = nibabel.load(’ mask . n i i ’).get_data()
func_data = nibabel.load(’ e p i . n i i ’).get_data()
Ensure that the mask is boolean
mask = mask.astype(bool)
Apply the mask, X = timeseries * voxels
X = func_data[mask].T

Unmask data

2 An easy-to-use implementation is proposed in nilearn

Frontiers in Neurosciences 4

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

Figure 1: Conversion of brain scans into 2-dimensional data

unmasked_data = numpy.zeros(mask.shape, dtype=X.dtype)
unmasked_data[mask] = X

3.4 DATA VISUALISATION
Across all our examples, voxels of interest are represented on an axial slice of the brain. Some
transformations of the original matrix data are required to match matplotlib data format. The following
snippet of code shows how to load and display an axial slice overlaid with an activation map. The
background is an anatomical scan and its highest voxels are used as synthetic activations.
Load image
bg_img = nibabel.load(’ bg . n i i . gz ’)
bg = bg_img.get_data()
Keep values over 6000 as artificial activation map
act = bg.copy()
act[act < 6000] = 0.

Display the background
plt.imshow(bg[..., 10].T, origin= ’ lower ’, interpolation= ’ n e a r e s t ’,

cmap= ’ g r ay ’)
Mask background values of activation map
masked_act = np.ma.masked_equal(act, 0.)
plt.imshow(masked_act[..., 10].T, origin= ’ l ower ’, interpolation= ’

n e a r e s t ’, cmap= ’ h o t ’)
Cosmetics: disable axis
plt.axis(’ o f f ’)
plt.show()

Note that a background is needed to display partial maps. Overlaying two images can be done thanks
to the numpy.ma.masked array data structure. Several options exist to enhance the overall aspect of
the plot. Some of them can be found in the full scripts provided with this paper. It generally boils down to
a good knowledge of Matplotlib. Note that the Nipy package provides a plot map function that is tuned
to display activation maps (a background is even provided if needed).

4 DECODING THE MENTAL REPRESENTATION OF OBJECTS IN THE BRAIN
In the context of neuroimaging, decoding refers to learning a model that predicts behavioral or phenotypic
variables from brain imaging data. The alternative that consists in predicting the imaging data given
external variables, such as stimuli descriptors, is called encoding (Naselaris et al., 2011). It is further
discussed in the next section.

First, we illustrate decoding with a simplified version of the experiment presented in Haxby et al. (2001).
In the original work, visual stimuli from 8 different categories are presented to 6 subjects during 12

Frontiers in Neurosciences 5

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

sessions. The goal is to predict the category of the stimulus presented to the subject given the recorded
fMRI volumes. This example has already been widely analyzed (Hanson et al., 2004; Detre et al., 2006;
O’Toole et al., 2007; Hanson and Halchenko, 2008; Hanke et al., 2009) and has become a reference
example in matter of decoding. For the sake of simplicity, we restrict the example to one subject and to
two categories, faces and houses.

As there is a target variable y to predict, this is a supervised learning problem. Here y represents the
two object categories, a.k.a. classes in machine-learning terms. In such settings, where y takes discrete
values the learning problem is known as classification, as opposed to regression when the variable y can
take continuous values, such as age.

4.1 CLASSIFICATION WITH FEATURE SELECTION AND LINEAR SVM
Many classification methods are available in scikit-learn. In this example we chose to combine the use of
univariate feature selection and Support Vector Machines (SVM). Such a classification strategy is simple
yet efficient when used on neuroimaging data.

After applying a brain mask, the data consist of 40 000 voxels, here the features, for only 1 400 volumes,
here the samples. Machine learning with many more features than samples is challenging, due to the so-
called curse of dimensionality. Several strategies exist to reduce the number of features. A first one is
based on prior neuroscientific knowledge. Here one could restrict the mask to occipital areas, where the
visual cortex is located. Feature selection is a second, data-driven, approach that relies on a univariate
statistical test for each individual feature. Variables with high individual discriminative power are kept.

Scikit-learn offers a panel of strategies to select features. In supervised learning, the most popular
feature selection method is the F-test. The null hypothesis of this test is that the feature takes the same
value independently of the value of y to predict. In scikit-learn, sklearn.feature_selection
proposes a panel of feature selection strategies. One can choose to take a percentile of the features
(SelectPercentile), or a fixed number of features (SelectKBest). All these objects are
implemented as transformers (see section 2.3). The code below uses the f_classif function (ANOVA
F-Test) along with the selection of a fixed number of features.

On the reduced feature set, we use a linear SVM classifier, sklearn.svm.SVC, to find the hyperplane
that maximally separates the samples belonging to the different classes. Classifying a new sample boils
down to determining on which side of the hyperplane it lies. With a linear kernel, the separating
hyperplane is defined in the input data space and its coefficients can be related to the voxels. Such
coefficients can therefore be visualized as an image (after unmasking step described in 3.3) where voxels
with high values have more influence on the prediction than the others (see figure 2).
feature_selection = SelectKBest(f_classif, k=500)
clf = SVC(kernel= ’ l i n e a r ’)
X_reduced = feature_selection.fit_transform(X)
clf.fit(X_reduced, y)
Look at the discriminating weights
coef = clf.coef_
Reverse feature selection
coef = feature_selection.inverse_transform(coef)

4.2 SEARCHLIGHT
Searchlight (Kriegeskorte et al., 2006) is a popular algorithm in the neuroimaging community. It runs
a predictive model on a spatial neighborhood of each voxel and tests the out-of-sample prediction
performance as proxy measure of the link between the local brain activity and the target behavioral
variable. In practice, it entails performing cross-validation of the model, most often an SVM, on voxels
contained in balls centered on each voxel of interest. The procedure implies solving a large number of
SVMs and is computationally expensive. Detailing an efficient implementation of this algorithm is beyond
the scope of this paper. However, code for searchlight and to generate figure 2 is available in the GitHub
repository accompanying the paper.

Frontiers in Neurosciences 6

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

4.3 RESULTS

Figure 2: Maps derived by different methods for face versus house recognition in the Haxby experiment
– left: standard analysis; center: SVM weights after screening voxels with an ANOVA; right: Searchlight
map. The masks derived from standard analysis in the original paper (Haxby et al., 2001) are displayed in
blue and green.

Results are shown in figure 2: first F-score, that is standard analysis in brain mapping but also the statistic
used to select features; second the SVC weights after feature selection and last the Searchlight map. Note
that the voxels with larger weights roughly match for all methods and are located in the house-responsive
areas as defined by the original paper. The Searchlight is more expanded and blurry than the other methods
as it iterates over a ball around the voxels.

These results match neuroscientific knowledge as they highlight the high level regions of the ventral
visual cortex which is known to contain category-specific visual areas. While Searchlight only gives a
score to each voxel, the SVC can be used afterward to classify unseen brain scans.

Most of the final example script (haxby decoding.py on GitHub) is for data loading and result
visualization. Only 5 lines are needed to run a scikit-learn classifier. In addition, thanks to the scikit-
learn modularity, the SVC can be easily replaced by any other classifier in this example. As all linear
models share the same interface, replacing the SVC by another linear model, such as ElasticNet or
LogisticRegression, requires changing only one line. Gaussian Naive Bayes is a non-linear classifier that
should perform well in this case, and modifiying display can be done by replacing coef by theta .

5 ENCODING BRAIN ACTIVITY AND DECODING IMAGES
In the previous experiment, the category of a visual stimulus was inferred from brain activity measured in
the visual cortex. One can go further by inferring a direct link between the image seen by the subject and
the associated fMRI data.

In the experiment of Miyawaki et al. (2008) several series of 10×10 binary images are presented to
two subjects while activity on the visual cortex is recorded. In the original paper, the training set is
composed of random images (where black and white pixels are balanced) while the testing set is composed
of structured images containing geometric shapes (square, cross...) and letters. Here, for the sake of
simplicity, we consider only the training set and use cross-validation to obtain scores on unseen data. In

Frontiers in Neurosciences 7

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

the following example, we study the relation between stimuli pixels and brain voxels in both directions:
the reconstruction of the visual stimuli from fMRI, which is a decoding task, and the prediction of fMRI
data from descriptors of the visual stimuli, which is an encoding task.

5.1 DECODING
In this setting, we want to infer the binary visual stimulus presented to the subject from the recorded fMRI
data. As the stimuli are binary, we will treat this problem as a classification problem. This implies that the
method presented here cannot be extended as-is to natural stimuli described with gray values.

In the original work, Miyawaki et al. (2008) uses a Bayesian logistic regression promoting sparsity along
with a sophisticated multi-scale strategy. As one can indeed expect the number of predictive voxels to be
limited, we compare the `2 SVM used above with a logistic regression and a SVM penalized with the `1
norm known to promote sparsity. The `1 penalized SVM classifier compared here uses a square-hinge loss
while the logistic regression uses a logit function.

C value 0.0005 0.001 0.005 0.01 0.05 0.1
`1 Logistic Regression 0.50 ± .02 0.50 ± .02 0.57 ± .13 0.63 ± .11 0.70 ± .12 0.70 ± .12
`2 Logistic Regression 0.60 ± .11 0.61 ± .12 0.63 ± .13 0.63 ± .13 0.64 ± .13 0.64 ± .13
`1 SVM classifier (SVC) 0.50 ± .06 0.55 ± .12 0.69 ± .11 0.71 ± .12 0.69 ± .12 0.68 ± .12
`2 SVM classifier (SVC) 0.67 ± .12 0.67 ± .12 0.67 ± .12 0.66 ± .12 0.65 ± .12 0.65 ± .12

Table 1. 5-fold cross validation accuracy scores obtained for different values of parameter C (± standard deviation).

Table 1 reports the performance of the different classifiers for various values of C using a 5-fold cross-
validation. We first observe that setting the parameter C is crucial as performance drops for inappropriate
values of C. It is particularly true for `1 regularized models. Both `1 logistic regression and SVM yield
similar performances, which is not surprising as they implement similar models.
from sklearn.linear_model import LogisticRegression as LR
from sklearn.cross_validation import cross_val_score

pipeline_LR = Pipeline([(’ s e l e c t i o n ’, SelectKBest(f_classif, 500)),
(’ c l f ’, LR(penalty= ’ l 1 ’, C=0.05)])

scores_lr = []
y_train = n_samples x n_voxels
To iterate on voxels, we transpose it.
for pixel in y_train.T:

score = cross_val_score(pipeline_LR, X_train, pixel, cv=5)
scores_lr.append(score)

5.2 ENCODING
Given an appropriate model of the stimulus, e.g. one which can provide an approximately linear
representation of BOLD activation, an encoding approach allows one to quantify for each voxel to what
extent its variability is captured by the model. A popular evaluation method is the predictive r2 score,
which uses a prediction on left out data to quantify the decrease in residual norm brought about by fitting
a regression function as opposed to fitting a constant. The remaining variance consists of potentially
unmodelled, but reproducible signal and spurious noise.

On the Miyawaki dataset, we can observe that mere black and white pixel values can explain a large part
of the BOLD variance in many visual voxels. Sticking to the notation that X represesents BOLD signal
and y the stimulus, we can write an encoding model using the ridge regression estimator:

Frontiers in Neurosciences 8

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

from sklearn.linear_model import Ridge
from sklearn.cross_validation import KFold

cv = KFold(len(y_train), 10)
Fit ridge model, calculate predictions on left out data
and evaluate rˆ2 score for each voxel
scores = []
for train, test in cv:

pred = (Ridge(alpha=100.).fit(y_train[train], X_train[train])
.predict(y_train[test]))

X_true = X_train[test]
scores.append(

1. - ((X_true - pred) ** 2).sum(axis=0) /
((X_true - X_true.mean(axis=0)) ** 2).sum(axis=0))

mean_scores = np.mean(scores, axis=0)

Note here that the Ridge can be replaced by a Lasso estimator, which can give better prediction
performance at the cost of computation time.

5.2.1 Receptive fields Given the retinotopic structure of early visual areas, it is expected that the voxels
well predicted by the presence of a black or white pixel are strongly localized in so-called population
receptive fields (prf). This suggests that only very few stimulus pixels should suffice to explain the activity
in each brain voxel of the posterior visual cortex. This information can be exploited by using a sparse
linear regression –the Lasso (Tibshirani, 1996)– to find the receptive fields. Here we use the LassoLarsCV
estimator that relies on the LARS algorithm (Efron et al., 2004) and cross-validation to set the Lasso
parameter.
from sklearn.linear_model import LassoLarsCV

choose number of voxels to treat, set to None for all voxels
n_voxels = 50
choose best voxels
indices = mean_scores.argsort()[::-1][:n_voxels]

lasso = LassoLarsCV(max_iter=10)

receptive_fields = []
for index in indices:

lasso.fit(y_train, X_train[:, index])
receptive_fields.append(lasso.coef_.reshape(10, 10))

5.3 RESULTS
Figure 3 gives encoding and decoding results: the relationship between a given image pixel and four
voxels of interest in the brain. In decoding settings, Figures 3a and 3c show the classifier’s weights as
brain maps for both methods. They both give roughly the same results and we can see that the weights are
centered in the V1 and nearby retinotopic areas. Figures 3b and 3d show reconstruction accuracy score
using Logistic Regression (LR) and SVM (variable mean scores in the code above). Both methods give
almost identical results. As in the original work (Miyawaki et al., 2008), reconstruction is more accurate
in the fovea. This is explained by the higher density of neurons dedicated to foveal representation in the
primary visual area.

Frontiers in Neurosciences 9

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

In encoding settings, figure 3e shows classifiers weights for encoding, that we interpret as receptive
fields. We can see that receptive fields of neighboring voxels are neighboring pixels, which is expected
from retinotopy: primary visual cortex maps the visual field in a topologically organized manner.

Both encoding and decoding analysis show a link between the selected pixel and brain voxels. In the
absence of ground truth, seeing that different methods come to the same conclusion comes as face validity.

Figure 3: Miyawaki results in both decoding and encoding. Relations between one pixel and four brain
voxels is highlighted for both methods. Top: Decoding. Classifier weights for the pixel highlighted
(a. Logistic regression, c. SVM). Reconstruction accuracy per pixel (b. Logistic regression, c. SVM).
Bottom: Encoding. e: receptive fields corresponding to voxels with highest scores and its neighbors. f :
reconstruction accuracy depending on pixel position in the stimulus. — Note that the pixels and voxels
highlighted are the same in both decoding and encoding figures and that encoding and decoding roughly
match as both approach highlight a relationship between the same pixel and voxels.

6 RESTING-STATE AND FUNCTIONAL CONNECTIVITY ANALYSIS
Even in the absence of external behavioral or clinical variable, studying the structure of brain signals
can reveal interesting information. Indeed, Biswal et al. (1995) have shown that brain activation exhibits
coherent spatial patterns during rest. These correlated voxel activations form functional networks that are
consistent with known task-related networks (Smith et al., 2009).

Biomarkers found via predictive modeling on resting-state fMRI would be particularly useful, as they
could be applied to diminished subjects that cannot execute a specific task. Here we use a dataset

Frontiers in Neurosciences 10

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

containing control and ADHD (Attention Disorder Hyperactivity Disorder) patients resting state data
(subjects are scanned without giving them any specific task to capture the cerebral background activity).

Resting state fMRI is unlabeled data in the sense that the brain activity at a given instant in time cannot
be related to an output variable. In machine learning, this class of problems is known as unsupervised
learning. To extract functional networks or regions, we use methods that group together similar voxels by
comparing their time series. In neuroimaging, the most popular method is ICA that is the subject of our
first example. We then show how to obtained functionally-homogeneous regions with clustering methods.

6.1 INDEPENDENT COMPONENT ANALYSIS (ICA) TO EXTRACT NETWORKS
ICA is a blind source separation method. Its principle is to separate a multivariate signal into several
components by maximizing their non-Gaussianity. A typical example is the cocktail party problem where
ICA is able to separate voices from several people using signal from microphones located across the room.

6.1.1 ICA in neuroimaging ICA is the reference method to extract networks from resting state fMRI
(Kiviniemi et al., 2003). Several strategies have been used to syndicate ICA results across several
subjects. Calhoun et al. (2001) propose a dimension reduction (using PCA) followed by a concatenation
of timeseries (used in this example). Varoquaux et al. (2010) use dimension reduction and canonical
correlation analysis to aggregate subject data. Melodic (Beckmann and Smith, 2004), the ICA tool in the
FSL suite, uses a concatenation approach not detailed here.

6.1.2 Application As data preparation steps, we not only center, but also detrend the time series
to avoid capturing linear trends with the ICA. Applying to the resulting time series the FastICA
algorithm (Hyvärinen and Oja, 2000) with scikit-learn is straightforward thanks to the transformer
concept. The data matrix must be transposed, as we are using spatial ICA, in other words the direction
considered as random is that of the voxels and not the time points. The maps obtained capture different
components of the signal, including noise components as well as resting-state functional networks. To
produce the figures, we extract only 10 components, as we are interested here in exploring only the main
signal structures.
Here we start with Xs: a list of subject-level data matrices
First we concatenate them in the time-direction, thus implementing
a concat-ICA
X = np.vstack(Xs)
from sklearn.decomposition import FastICA
ica = FastICA(n_components=10)
components_masked = ica.fit_transform(data_masked.T).T

6.1.3 Results On fig. 4 we compare a simple concat ICA as implemented by the code above to more
sophisticated multi-subject methods, namely Melodic’s concat ICA and CanICA–also implemented using
scikit-learn although we do not discuss the code here. We display here only the default mode network as it
is a well-known resting-state network. It is hard to draw conclusions from a single map but, at first sight,
it seems that both CanICA and Melodic approaches are less subject to noise and give similar results.

Scikit-learn proposes several other matrix decomposition strategies listed in the module
‘sklearn.decomposition‘. A good alternative to ICA is the dictionary learning that applies a `1
regularization on the extracted components (Varoquaux et al., 2011). This leads to more sparse and
compact components than ICA ones, which are full-brain and require thresholding.

6.2 LEARNING FUNCTIONALLY HOMOGENEOUS REGIONS WITH CLUSTERING
From a machine learning perspective, a clustering method aggregates samples into groups (called clusters)
maximizing a measure of similarity between samples within each cluster. If we consider voxels of a
functional brain image as samples, this measure can be based on functional similarity, leading to clusters
of voxels that form functionally homogeneous regions (Thirion et al., 2006).

Frontiers in Neurosciences 11

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

Figure 4: Default mode network extracted using different approaches: left: the simple Concat-ICA
approach detailed in this article; middle: CanICA, as implemented in nilearn; right: Melodic’s
concat-ICA. Data have been normalized (set to unit variance) for display purposes.

6.2.1 Approaches Several clustering approaches exists, each one having its own pros and cons. Most
require setting the number of clusters extracted. This choice depends on the application: a large number of
clusters will give a more fine-grained description of the data, with a higher fidelity to the original signal,
but also a higher model complexity. Some clustering approaches can make use of spatial information and
yield spatially contiguous clusters, i.e. parcels. Here we will describe two clustering approaches that are
simple and fast.
Ward clustering uses a bottom-up hierarchical approach: voxels are progressively agglomerated
together into clusters. In scikit-learn, structural information can be specified via a connectivity
graph given to the Ward clustering estimator. This graph is used to allow only merges
between neighboring voxels, thus readily producing contiguous parcels. We will rely on the
sklearn.feature extraction.image.grid to graph function to construct such a graph
using the neighbor structure of an image grid, with optionally a brain mask.
K-Means is a more top-down approach, seeking cluster centers to evenly explain the variance of the data.
Each voxels are then assigned to the nearest center, thus forming clusters. As imposing a spatial model in
K-means is not easy, it is often advisable to spatially smooth the data.

To apply the clustering algorithms, we run the common data preparation steps and produce a data
matrix. As both Ward clustering and K-means rely on second-order statistics, we can speed up the
algorithms by reducing the dimensionality while preserving these second-order statistics with a PCA.
Note that clustering algorithms group samples and that here we want to group voxels. So if the data
matrix is, as previously a (time points × voxels) matrix, we need to transpose it before running the scikit-
learn clustering estimators. Scikit-learn provides a WardAgglomeration object to do this feature
agglomeration with Ward clustering (Michel et al., 2012), but this is not the case when using K-Means.
connectivity = grid_to_graph(n_x=mask.shape[0], n_y=mask.shape[1],

n_z=mask.shape[2], mask=mask)
ward = WardAgglomeration(n_clusters=1000, connectivity=connectivity)
ward.fit(X)
The maps of cluster assignment can be retrieved and unmasked
cluster_labels = numpy.zeros(mask.shape, dtype=int)
cluster_labels[mask] = ward.labels_

Frontiers in Neurosciences 12

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

6.2.2 Results Clustering results are shown in figure 5. While clustering extracts some known large
scale structure, such as the calcarine sulcus on fig 5.a, it is not guaranteed to delineate functionally specific
brain regions. Rather, it can be considered as a compression, that is a useful method of summarizing
information, as it groups together similar voxels. Note that, as K-means does not extract spatially-
contiguous clusters, it gives a number of regions that can be much larger than the number of clusters
specified, although some of these regions can be very small. On the opposite, spatially-constrained Ward
directly creates regions. As it is a bottom-up process, it tends to perform best with a large number of
clusters. There exist many more clustering techniques exposed in scikit-learn. Determining which is the
best one to process fMRI time-series requires a more precise definition of the target application.

Ward’s clustering and K-Means are among the simplest approaches proposed in the scikit-learn.
Craddock et al. (2011) applied spectral clustering on neuroimaging data, a similar application is available
in nilearn as an example.

Figure 5: Brain parcellations extracted by clustering. Colors are random.

7 CONCLUSION
In this paper we have illustrated with simple examples how machine learning techniques can be applied to
fMRI data using the scikit-learn Python toolkit in order to tackle neuroscientific problems. Encoding and
decoding can rely on supervised learning to link brain images with stimuli. Unsupervised learning can
extract structure such as functional networks or brain regions from resting-state data. The accompanying
Python code for the machine learning tasks is straightforward. Difficulties lie in applying proper
preprocessing to the data, choosing the right model for the problem, and interpreting the results. Tackling
these difficulties while providing the scientists with simple and readable code requires building a domain-
specific library, dedicated to applying scikit-learn to neuroimaging data. This effort is underway in a
nascent project, nilearn, that aims to facilitate the use of scikit-learn on neuroimaging data.

The examples covered in this paper only scratch the surface of applications of statistical learning to
neuroimaging. The tool stack presented here shines uniquely in this regard as it opens the door to any
combination of the wide range of machine learning methods present in scikit-learn with neuroimaging-
related code. For instance, sparse inverse covariance can extract the functional interaction structure from
fMRI time-series (Varoquaux and Craddock, 2013) using the graph-lasso estimator. Modern neuroimaging
data analysis entails fitting rich models on limited data quantities. These are high-dimensional statistics
problems which call for statistical-learning techniques. We hope that bridging a general-purpose machine
learning tool, scikit-learn, to domain-specific data preparation code will foster new scientific advances.

Frontiers in Neurosciences 13

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

DISCLOSURE/CONFLICT-OF-INTEREST STATEMENT
The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.
Funding: We acknowledge funding from the NiConnect project and NIDA R21 DA034954, SUBSample
project from the DIGITEO Institute, France.

REFERENCES
Pereira, F., Mitchell, T., and Botvinick, M. (2009) Machine learning classifiers and fMRI: a tutorial

overview. Neuroimage 45 S199–S209.
Mur, M., Bandettini, P. A., and Kriegeskorte, N. (2009) Revealing representational content with pattern-

information fMRI–an introductory guide. Social cognitive and affective neuroscience 4 101–109.
Hastie, T., Tibshirani, R., and Friedman, J. J. H., The elements of statistical learning, volume 1 (Springer

New York, 2001).
Millman, K. J. and Brett, M. (2007) Analysis of functional magnetic resonance imaging in python.

Computing in Science & Engineering 9 52–55.
Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., et al. (2011)

Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python.
Front Neuroinform 5. doi:10.3389/fninf.2011.00013.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011) The numpy array: a structure for efficient
numerical computation. Computing in Science & Engineering 13 22–30.

Hunter, J. D. (2007) Matplotlib: A 2d graphics environment. Computing In Science & Engineering 9
90–95.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011) Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12 2825.

Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., et al. (2010) PyBrain. Journal of
Machine Learning Research 11 743–746.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009) The weka data
mining software: an update. ACM SIGKDD Explorations Newsletter 11 10–18.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., and Pollmann, S. (2009)
PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics 7 37–53.

Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., et al. (2010) The SHOGUN
Machine Learning Toolbox. Journal of Machine Learning Research 11 1799.

Schrouff, J., Rosa, M. J., Rondina, J., Marquand, A., Chu, C., Ashburner, J., et al. (2013) Pronto: Pattern
recognition for neuroimaging toolbox. Neuroinformatics 1–19.

Friston, K., Statistical parametric mapping: the analysis of functional brain images (Academic Press,
2007).

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H.,
et al. (2004) Advances in functional and structural MR image analysis and implementation as FSL.
Neuroimage 23 S208–S219.

Naselaris, T., Kay, K. N., Nishimoto, S., and Gallant, J. L. (2011) Encoding and decoding in fMRI.
Neuroimage 56 400–410.

Haxby, J. V., Gobbini, I. M., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini, P. (2001) Distributed
and overlapping representations of faces and objects in ventral temporal cortex. Science 293 2425.

Hanson, S. J., Matsuka, T., and Haxby, J. V. (2004) Combinatorial codes in ventral temporal lobe for
object recognition: Haxby (2001) revisited: is there a face area? Neuroimage 23 156–166.

Detre, G., Polyn, S., Moore, C., Natu, V., Singer, B., Cohen, J., et al., The multi-voxel pattern analysis
(mvpa) toolbox. Poster presented at the Annual Meeting of the Organization for Human Brain Mapping
(Florence, Italy). Available at: http://www. csbmb. princeton. edu/mvpa (2006).

O’Toole, A. J., Jiang, F., Abdi, H., Pénard, N., Dunlop, J. P., and Parent, M. A. (2007) Theoretical,
statistical, and practical perspectives on pattern-based classification approaches to the analysis of
functional neuroimaging data. Journal of cognitive neuroscience 19 1735–1752.

Frontiers in Neurosciences 14

Alexandre Abraham et al Machine Learning for Neuroimaging with Scikit-Learn

Hanson, S. J. and Halchenko, Y. O. (2008) Brain reading using full brain support vector machines for
object recognition: there is no face identification area. Neural Computation 20 486–503.

Kriegeskorte, N., Goebel, R., and Bandettini, P. (2006) Information-based functional brain mapping.
Proceedings of the National Academy of Sciences of the United States of America 103 3863–3868.

Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M.-a., Morito, Y., Tanabe, H. C., et al. (2008)
Visual image reconstruction from human brain activity using a combination of multiscale local image
decoders. Neuron 60 915–929.

Tibshirani, R. (1996) Regression shrinkage and selection via the Lasso. J.R. Statist. Soc. 58 267–288.
Efron, B., Hastie, T., Johnstone, L., and Tibshirani, R. (2004) Least angle regression. Annals of Statistics

32 407–499.
Biswal, B., Zerrin Yetkin, F., Haughton, V., and Hyde, J. (1995) Functional connectivity in the motor

cortex of resting human brain using echo-planar MRI. Magn Reson Med 34 53719.
Smith, S., Fox, P., Miller, K., Glahn, D., Fox, P., Mackay, C., et al. (2009) Correspondence of the brain’s

functional architecture during activation and rest. Proc Natl Acad Sci 106 13040.
Kiviniemi, V., Kantola, J., Jauhiainen, J., Hyvärinen, A., and Tervonen, O. (2003) Independent component

analysis of nondeterministic fmri signal sources. Neuroimage 19 253.
Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001) A method for making group inferences

from fMRI data using independent component analysis. Hum Brain Mapp 14 140.
Varoquaux, G., Sadaghiani, S., Pinel, P., Kleinschmidt, A., Poline, J. B., and Thirion, B. (2010) A group

model for stable multi-subject ICA on fMRI datasets. NeuroImage 51 288.
Beckmann, C. F. and Smith, S. M. (2004) Probabilistic independent component analysis for functional

magnetic resonance imaging. Trans Med Im 23 137–152.
Hyvärinen, A. and Oja, E. (2000) Independent component analysis: algorithms and applications. Neural

networks .
Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., and Thirion, B., Multi-subject dictionary learning

to segment an atlas of brain spontaneous activity. Inf Proc Med Imag (2011), 562–573.
Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., and Poline, J. (2006) Dealing with the

shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum brain map
27 678.

Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., and Thirion, B. (2012) A supervised
clustering approach for fMRI-based inference of brain states. Pattern Recognition 45 2041.

Craddock, R., James, G., Holtzheimer III, P., Hu, X., and Mayberg, H. (2011) A whole brain fmri atlas
generated via spatially constrained spectral clustering. Hum Brain Mapp .

Varoquaux, G. and Craddock, R. C. (2013) Learning and comparing functional connectomes across
subjects. NeuroImage 80 405.

Frontiers in Neurosciences 15

