334 research outputs found

    Feature Grouping-based Feature Selection

    Get PDF

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Hybrid metaheuristics for solving multi-depot pickup and delivery problems

    Get PDF
    In today's logistics businesses, increasing petrol prices, fierce competition, dynamic business environments and volume volatility put pressure on logistics service providers (LSPs) or third party logistics providers (3PLs) to be efficient, differentiated, adaptive, and horizontally collaborative in order to survive and remain competitive. In this climate, efficient computerised-decision support tools play an essential role. Especially, for freight transportation, e efficiently solving a Pickup and Delivery Problem (PDP) and its variants by an optimisation engine is the core capability required in making operational planning and decisions. For PDPs, it is required to determine minimum-cost routes to serve a number of requests, each associated with paired pickup and delivery points. A robust solution method for solving PDPs is crucial to the success of implementing decision support tools, which are integrated with Geographic Information System (GIS) and Fleet Telematics so that the flexibility, agility, visibility and transparency are fulfilled. If these tools are effectively implemented, competitive advantage can be gained in the area of cost leadership and service differentiation. In this research, variants of PDPs, which multiple depots or providers are considered, are investigated. These are so called Multi-depot Pickup and Delivery Problems (MDPDPs). To increase geographical coverage, continue growth and encourage horizontal collaboration, efficiently solving the MDPDPs is vital to operational planning and its total costs. This research deals with designing optimisation algorithms for solving a variety of real-world applications. Mixed Integer Linear Programming (MILP) formulations of the MDPDPs are presented. Due to being NP-hard, the computational time for solving by exact methods becomes prohibitive. Several metaheuristics and hybrid metaheuristics are investigated in this thesis. The extensive computational experiments are carried out to demonstrate their speed, preciseness and robustness.Open Acces

    Energy management for user’s thermal and power needs:A survey

    Get PDF
    The increasing world energy consumption, the diversity in energy sources, and the pressing environmental goals have made the energy supply–demand balance a major challenge. Additionally, as reducing energy costs is a crucial target in the short term, while sustainability is essential in the long term, the challenge is twofold and contains clashing goals. A more sustainable system and end-users’ behavior can be promoted by offering economic incentives to manage energy use, while saving on energy bills. In this paper, we survey the state-of-the-art in energy management systems for operation scheduling of distributed energy resources and satisfying end-user’s electrical and thermal demands. We address questions such as: how can the energy management problem be formulated? Which are the most common optimization methods and how to deal with forecast uncertainties? Quantitatively, what kind of improvements can be obtained? We provide a novel overview of concepts, models, techniques, and potential economic and emission savings to enhance energy management systems design

    Demand Response in Smart Grids

    Get PDF
    The Special Issue “Demand Response in Smart Grids” includes 11 papers on a variety of topics. The success of this Special Issue demonstrates the relevance of demand response programs and events in the operation of power and energy systems at both the distribution level and at the wide power system level. This reprint addresses the design, implementation, and operation of demand response programs, with focus on methods and techniques to achieve an optimized operation as well as on the electricity consumer

    LOCATION-ALLOCATION-ROUTING APPROACH TO SOLID WASTE COLLECTION AND DISPOSAL

    Get PDF
    Various studies have indicated that the collection phase of solid wastes, which comprises of the initial col- lection at the source of generation and the transportation to the disposal sites, is by far the most expensive. Two fundamental issues of concern in solid waste collection are the locations of initial collection and the period of collection by the dedicated vehicles. However, considering the prevailing conditions of adhoc lo- cation of waste containers and the faulty roads in many developing countries, this research was conducted to develop two e�ective models for solid waste collection and disposal such that new parameters measuring the capacity of waste ow from each source unit and road accessibility were introduced and incorporated in the mathematical formulations of the models. To formulate the problems, two classes of integer pro- gramming problems namely, Facility Location Problem (FLP) and the Vehicle Routing Problem (VRP), were used for the collection and disposal respectively. The clustering process involved in the model for the collection phase was based on the Euclidean distance relationship among the various entities within the study area. In this model, the study area was considered as a universal set and simply partitioned with each element representing a cluster. At this stage, a threshold distance was de�ned as the maximum allowable distance between a cluster and the potential collection sites. In the VRP formulation of the disposal model, two new parameters, called the accessibility ratio and road attribute, were introduced and included in the formulation. The inclusion of these parameters ensure that a waste collection vehicle uses only roads with high attributes. The solution to the model on the collection phase was based on the Lagrangian re- laxation of the set of constraints where decision variables are linked, while in the model on waste vehicle routing, the assignment constraints were relaxed. Both resulting Lagrangian dual problems were solved using sub-gradient optimization algorithm. It was shown that the resulting Lagrangian dual functions were non-di�erentiable concave functions and thus the application of the sub-gradient optimization method was justi�ed. By applying these techniques, strong lower bounds on the optimal values of the decision variables were obtained. All model implementations were based on randomly generated data that mimic real-life experience of the study area (Eti-Osa Local Government Area of Lagos State, Nigeria), as well as large-scale standard benchmark data instances in literature. These computational experiments were carried out using the CPLEX and MINOS optimization solvers on AIMMS and AMPL modeling environments. Results from the computational experiments revealed that the models are capable of addressing the challenge of solid waste collection and disposal. For instance, more than 60% reductions were obtained for the number of collection points to be activated and the container allocations for the different wastes considered. Numerical results from the disposal model showed that there is a general reduction in the total distance covered by a vehicle and a slight improvement in the number of customers visited. Result comparison with those found in literature suggested that our models are very efficient

    Energy and performance-optimized scheduling of tasks in distributed cloud and edge computing systems

    Get PDF
    Infrastructure resources in distributed cloud data centers (CDCs) are shared by heterogeneous applications in a high-performance and cost-effective way. Edge computing has emerged as a new paradigm to provide access to computing capacities in end devices. Yet it suffers from such problems as load imbalance, long scheduling time, and limited power of its edge nodes. Therefore, intelligent task scheduling in CDCs and edge nodes is critically important to construct energy-efficient cloud and edge computing systems. Current approaches cannot smartly minimize the total cost of CDCs, maximize their profit and improve quality of service (QoS) of tasks because of aperiodic arrival and heterogeneity of tasks. This dissertation proposes a class of energy and performance-optimized scheduling algorithms built on top of several intelligent optimization algorithms. This dissertation includes two parts, including background work, i.e., Chapters 3–6, and new contributions, i.e., Chapters 7–11. 1) Background work of this dissertation. Chapter 3 proposes a spatial task scheduling and resource optimization method to minimize the total cost of CDCs where bandwidth prices of Internet service providers, power grid prices, and renewable energy all vary with locations. Chapter 4 presents a geography-aware task scheduling approach by considering spatial variations in CDCs to maximize the profit of their providers by intelligently scheduling tasks. Chapter 5 presents a spatio-temporal task scheduling algorithm to minimize energy cost by scheduling heterogeneous tasks among CDCs while meeting their delay constraints. Chapter 6 gives a temporal scheduling algorithm considering temporal variations of revenue, electricity prices, green energy and prices of public clouds. 2) Contributions of this dissertation. Chapter 7 proposes a multi-objective optimization method for CDCs to maximize their profit, and minimize the average loss possibility of tasks by determining task allocation among Internet service providers, and task service rates of each CDC. A simulated annealing-based bi-objective differential evolution algorithm is proposed to obtain an approximate Pareto optimal set. A knee solution is selected to schedule tasks in a high-profit and high-quality-of-service way. Chapter 8 formulates a bi-objective constrained optimization problem, and designs a novel optimization method to cope with energy cost reduction and QoS improvement. It jointly minimizes both energy cost of CDCs, and average response time of all tasks by intelligently allocating tasks among CDCs and changing task service rate of each CDC. Chapter 9 formulates a constrained bi-objective optimization problem for joint optimization of revenue and energy cost of CDCs. It is solved with an improved multi-objective evolutionary algorithm based on decomposition. It determines a high-quality trade-off between revenue maximization and energy cost minimization by considering CDCs’ spatial differences in energy cost while meeting tasks’ delay constraints. Chapter 10 proposes a simulated annealing-based bees algorithm to find a close-to-optimal solution. Then, a fine-grained spatial task scheduling algorithm is designed to minimize energy cost of CDCs by allocating tasks among multiple green clouds, and specifies running speeds of their servers. Chapter 11 proposes a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are met in cloud-edge computing systems. A single-objective constrained optimization problem is solved by a proposed simulated annealing-based migrating birds optimization. This dissertation evaluates these algorithms, models and software with real-life data and proves that they improve scheduling precision and cost-effectiveness of distributed cloud and edge computing systems
    • …
    corecore