122,676 research outputs found

    Improved resource efficiency and cascading utilisation of renewable materials

    Get PDF
    In light of various environmental problems and challenges concerning resource allocation, the utilisation of renewable resources is increasingly important for the efficient use of raw materials. Therefore, cascading utilisation (i.e., the multiple material utilisations of renewable resources prior to their conversion into energy) and approaches that aim to further increase resource efficiency (e.g., the utilisation of by-products) can be considered guiding principles. This paper therefore introduces the Special Volume “Improved Resource Efficiency and Cascading Utilisation of Renewable Materials”. Because both research aspects, resource efficiency and cascading utilisation, belong to several disciplines, the Special Volume adopts an interdisciplinary perspective and presents 16 articles, which can be divided into four subjects: Innovative Materials based on Renewable Resources and their Impact on Sustainability and Resource Efficiency, Quantitative Models for the Integrated Optimisation of Production and Distribution in Networks for Renewable Resources, Information Technology-based Collaboration in Value Generating Networks for Renewable Resources, and Consumer Behaviour towards Eco-friendly Products. The interdisciplinary perspective allows a comprehensive overview of current research on resource efficiency, which is supplemented with 15 book reviews showing the extent to which textbooks of selected disciplines already refer to resource efficiency. This introductory article highlights the relevance of the four subjects, presents summaries of all papers, and discusses future research directions. The overall contribution of the Special Volume is that it bridges the resource efficiency research of selected disciplines and that it presents several approaches for more environmentally sound production and consumption

    Optimising for energy or robustness? Trade-offs for VM consolidation in virtualized datacenters under uncertainty

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11590-016-1065-xReducing the energy consumption of virtualized datacenters and the Cloud is very important in order to lower CO2 footprint and operational cost of a Cloud operator. However, there is a trade-off between energy consumption and perceived application performance. In order to save energy, Cloud operators want to consolidate as many Virtual Machines (VM) on the fewest possible physical servers, possibly involving overbooking of resources. However, that may involve SLA violations when many VMs run on peak load. Such consolidation is typically done using VM migration techniques, which stress the network. As a consequence, it is important to find the right balance between the energy consumption and the number of migrations to perform. Unfortunately, the resources that a VM requires are not precisely known in advance, which makes it very difficult to optimise the VM migration schedule. In this paper, we therefore propose a novel approach based on the theory of robust optimisation. We model the VM consolidation problem as a robust Mixed Integer Linear Program and allow to specify bounds for e.g. resource requirements of the VMs. We show that, by using our model, Cloud operators can effectively trade-off uncertainty of resource requirements with total energy consumption. Also, our model allows us to quantify the price of the robustness in terms of energy saving against resource requirement violations.Peer ReviewedPostprint (author's final draft

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Robust optimization for energy transactions in multi-microgrids under uncertainty

    Get PDF
    Independent operation of single microgrids (MGs) faces problems such as low self-consumption of local renewable energy, high operation cost and frequent power exchange with the grid. Interconnecting multiple MGs as a multi-microgrid (MMG) is an effective way to improve operational and economic performance. However, ensuring the optimal collaborative operation of a MMG is a challenging problem, especially under disturbances of intermittent renewable energy. In this paper, the economic and collaborative operation of MMGs is formulated as a unit commitment problem to describe the discrete characteristics of energy transaction combinations among MGs. A two-stage adaptive robust optimization based collaborative operation approach for a residential MMG is constructed to derive the scheduling scheme which minimizes the MMG operating cost under the worst realization of uncertain PV output. Transformed by its KKT optimality conditions, the reformulated model is efficiently solved by a column-and-constraint generation (C&CG) method. Case studies verify the effectiveness of the proposed model and evaluate the benefits of energy transactions in MMGs. The results show that the developed MMG operation approach is able to minimize the daily MMG operating cost while mitigating the disturbances of uncertainty in renewable energy sources. Compared to the non-interactive model, the proposed model can not only reduce the MMG operating cost but also mitigate the frequent energy interaction between the MMG and the grid
    • …
    corecore