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Abstract Reducing the energy consumption of virtualized datacenters and the Cloud is very important in order
to lower CO2 footprint and operational cost of a Cloud operator. However, there is a trade-off between energy
consumption and perceived application performance. In order to save energy, Cloud operators want to consoli-
date as many Virtual Machines (VM) on the fewest possible physical servers, possibly involving overbooking of
resources. However, that may involve SLA violations when many VMs run on peak load. Such consolidation is
typically done using VM migration techniques, which stress the network. As a consequence, it is important to find
the right balance between the energy consumption and the number of migrations to perform. Unfortunately, the
resources that a VM requires are not precisely known in advance, which makes it very difficult to optimise the
VM migration schedule. In this paper, we therefore propose a novel approach based on the theory of Robust Opti-
misation (RO). We model the VM consolidation problem as a robust Mixed Integer Linear Program and allow to
specify bounds for e.g. resource requirements of the VMs. We show that, by using our model, Cloud operators can
effectively trade-off uncertainty of resource requirements with total energy consumption. Also, our model allows
us to quantify the price of the robustness in terms of energy saving against resource requirement violations.

Keywords Virtual machine consolidation · energy saving · mixed integer optimisation · robust optimisation ·
green datacenter

1 Introduction

Energy efficiency is a big concern for datacenter operators. While operators of large datacenters such as Google or
Facebook are constantly reducing their energy consumption by e.g. replacing old hardware (HW) by more energy
efficient one or introducing more efficient cooling systems, still the total energy consumption is increasing due to
the massive expansion of capacity in order to support increasing user demand. For example, the energy consumed
by all datacenters of Facebook in 2012 was 678m kWh, an increase of almost 30% from the year before1. But
replacing datacenter HW is difficult to do for small or medium datacenter operators, who need to manage between
hundreds and thousands of servers due to the extra CAPEX involved. Yet, energy cost contributes significantly to
the OPEX of datacenters. Even more important is to save energy in order to reduce the global CO2 footprint.

According to [18], in 2013 US data centers consumed in total around 91 billion kWh annually, which is
equivalent of 34 large coal-fired power plants. By 2020, such electricity consumption is projected to increase
to around 140 billion kWh. Clearly, reducing the total energy consumption is an important aspect in order to
lower operational costs as well as CO2 footprint. Also as stated in [18], the main problem for energy reduction is
that typically within a data center, servers are used very inefficiently consuming power 24/7 while being heavily
underutilized. This underutilization is mainly due to peak provisioning but operators do not turn down unused
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servers during low load phases. In addition, in current datacenters the deployment of virtualization is still low,
but virtualization allows the consolidation of workloads onto fewer servers using dynamic Virtual Machine (VM)
consolidation. Finally, a large number of servers that are no longer being used still consume energy because no
one is decomissioning them.

Virtualization technology in modern datacenters allows for dynamic VM consolidation during runtime. Such
consolidation is supported by the process of VM Live Migration, which transfers e.g. CPU, memory and disc states
from one physical host to another with minimum service interruption. In order to save energy, it is imperative to
reduce the total number of powered on servers required in a datacenter. As resource demands of applications are
typically much lower during nights and weekends, a smaller set of servers would be sufficient during off-hours to
host the given VMs. As a consequence, an important method to reduce the energy consumption is the consolidation
of the VMs on the minimum number of physical rack servers that are required for the requested resources and the
powering down of the unused ones. There has been significant progress over the last years in the area of VM
migration technology and Live VM migration support is integrated into many Public and Private Cloud solutions
such as e.g. Openstack. However, finding an optimal allocation of VMs to support their resource demands on the
given set of physical servers in order to minimise e.g. energy consumption is a very hard computational problem
and has led to a number of interesting mathematical modelling approaches in recent years [1,11,14,15,17,19,20].

Common to all those models is the assumption that input data that drives those models is known precisely,
which is very difficult to achieve in practice. For example, it is difficult to quantify exactly the required resources
of each VM or the power consumption of the servers in a accurate way beforehand. Unfortunately, the presence
of uncertain data in an optimisation problem may lead to solutions that are useless in practice [2, 5]. This is
because, for several models, small deviations in input data values may lead to situations where a found optimal
solution is even not feasible any more. As a consequence, we need to develop models that allow to work with
data uncertainty such as Stochastic Programming or Robust Optimisation (RO). In Robust Optimisation [2, 4, 5],
robustness is sought against uncertainty or deterministic variability in input parameters [21]. Unlike stochastic
optimisation, RO assumes that probability distribution of uncertain data is not known beforehand; rather, the
uncertain data is assumed to belong to a so called uncertainty set. As a consequence, robust solutions are by
construction deterministically immune to realizations of the uncertain parameters in certain sets.

In this paper, we develop a model based on RO [2, 5] for the problem of energy efficient VM consolidation in
modern datacenters under the assumption that we do not know the input to our model precisely. Such RO is based
on the concept of an uncertainty set that allows a datacenter operator to specify his risk aversions. The cardinality
constrained uncertainty set as defined by Bertsimas and Sim is used, which defines a family of polyhedral uncer-
tainty sets [4] that presents a budget of uncertainty in terms of cardinality constraints (i.e., maximum number of
parameters that are allowed to deviate from their nominal value). Our model allows then to calculate solutions
that provide protection against data deviations (e.g. uncertainty in resource demand of VMs that are subject to
consolidation) leading to the so-called price of robustness [4]: the optimal value of the robust model counterpart
may in general lead to higher energy consumption compared to the optimal value of the original problem. The
price of robustness, however, allows to trade-off two important aspects for a datacenter operator: by taking higher
risk aversion, our model will take into account more severe and unlikely deviations, leading to higher protection
but also higher energy consumption. Alternatively, if one wants to take a higher risk, the solution will offer less
protection at lower energy consumption.

The remainder of this paper is structured as follows. Sec. 2 provides a summary of the robust optimisation
theory from Bertsimas et al. used in this work. In Sec. 3, we describe the problem of power efficient consolidation
in modern datacenter as means of energy saving. The robust formulation is detailed in Sec. 3.1; Sec. 3.2 introduces
the robust counterpart according to Bertsimas et. al theory, while Sec. 3.3 provides the probabilistic bounds of
constraint violation. A simple use case is introduced in Sec. 4, which is useful to understand the dynamics of the
robust problem. The impact of the uncertainty on the power consumed by a server and on the amount of CPU
needed to run a VM is analyzed. A more realistic use case is considered in Sec. 4.4 and the trade-off between
energy saving and resource requirement violation is analyzed. Sec. 5 concludes the paper.

2 Introduction to Robust Optimisation Theory

The aim of Robust Optimisation [2–5] is to mitigate problems that arise when dealing with optimisation prob-
lems affected by uncertainty on the input data. According to the robust approach in [4, 5], the uncertain linear
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optimisation problem can be written as:

min cTx
s.t. Ax≤ b, x ∈ X , A ∈A (1)

where x is the vector of decision variables and X is a deterministic polyhedron. The uncertain parameters A may
assume arbitrary values from a given uncertainty set A . The aim is to find the minimum cost solutions x* among
all feasible ones for any possible realization of the unknown coefficients. In other words, the constraints need to
be satisfied for all the possible values out of the given uncertainty set A . The problem can be translated into the
robust counterpart (see Eq. 4 in [5]), as:

min cTx

s.t. min
ai∈A

aT
i x≤ bi, ∀i, x ∈ X (2)

where ai is the i-th row of the uncertain matrix AT. We call a solution robust feasible if it satisfies all the uncertain
constraints aT

i x≤ bi ∀i and any optimal solution of (2) is called a robust optimal solution. The robust counterpart
(2) has typically infinitely many constraints and provides solutions that are worse than the ones provided by the
original (non-robust) problem, since RO tries to mitigate the effects of uncertainty.

An important aspect of robust optimisation is the correct definition of an robust uncertainty set. For example,
Bertsimas and Sim [4] allow to specify a sort of uncertainty budget Γ ≥ 0. For a given uncertain matrix A = (ai j)
we can assume that each coefficient ai j has a nominal value āi j and a possible symmetric maximum deviation
âi j ≥ 0, thus lying in the interval [āi j − âi j, āi j + âi j]. We allow now that at most Γi coefficients of row i may
deviate from their nominal value and Γi denotes the budget of uncertainty of constraint i. Then, we can define the
robust uncertainty set as all values where the sum of the relative deviations from their nominal values is at most
Γi. More formally, we can define a scaled variation φi j of parameter ai j from its nominal value as:

φi j =
ai j− āi j

âi j
(3)

and require
n

∑
j=1

∣∣φi j
∣∣≤ Γi, ∀i,

∣∣φi j
∣∣≤ 1 ∀i, j. (4)

Problem (2) can be reformulated as a single convex programming problem [5] for any convex uncertainty set
A =

{
(ai j) | ai j = āi j + âi jφi j, ∀i, j, φ ∈Φ

}
. The tractable equivalent linear formulation of (2) is expressed by

Eq. (7) in [4].
This definition corresponds to the scenario where at most Γi values of the uncertain set may deviate simulta-

neously towards their maximum value. By tuning Γi, we can now calculate more robust solutions characterized by
higher Γi and leading to worse objective function values, but, at the same time, protecting from more parameter
deviations. For example, when Γi = 0, a zero deviation is allowed on the i-th constraint, thus all the values are at
their nominal ones; in this case, the solutions are not protected against any uncertainty. On the other hand, Γi = n,
the i-th constraint is fully protected against uncertainty, leading to the most conservative solution (i.e., worst-case
scenario). Any tradeoff in between is possible, e.g. we can accept more opportunistic solutions with a lower Γi,
leading to better objective values, but also to a higher risk. An upper bound to the probability of constraints viola-
tion can be calculated [4], as it is also described in Sec. 3.3. Consequently, a robust solution remains feasible with
high probability and Γi allows to control the trade-off between the constraint violation probability and the impact
on the objective function.

3 Robust Virtual Machine Consolidation Problem

In order to save energy in virtualized datacenters, Cloud operators need to apply techniques that allow a dynamic
reconfiguration of their infrastructure to reduce the total power consumption. This is important in order to reduce
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Table 1 Model Parameters

Input parameters:

m Total number of VMs
xO

jk

is 1 if VM k is allocated to server j

n Total number of servers before consolidation, and 0 otherwise

P0
j initial power at server j before consolidation rik amount of resource i needed to allocate VM k

Pidle
j idle power consumption of server j si j amount of resource i available at server j

Pmax
j maximum power consumption of server j Γ protection level over the uncertain variables

Decision variables:

y j is 1 if j is active after consolidation, 0 otherwise pN
j uncertain power at server j

xN
jk

is 1 if VM k is allocated to server j r1k uncertain CPU consumption for VM k

after consolidation, and 0 otherwise z−>jk is 1 if VM k migrates from server j

PN
j power consumption at server j after consolidation z<−jk is 1 if VM k migrates to server j

both total CO2 emission as well as operational cost. Such dynamic reconfiguration is supported by modern vir-
tualization techniques and the process of live VM migration, which transfers execution states, memory and disc
allocations from one physical server to another without significantly interrupting the service.

The key idea is to migrate the VMs towards the smallest number of physical servers while powering down
unused ones. As an example, consider the case where we have three VMs and three servers. If each server runs a
single VM, the energy consumption is much higher compared to the case where all VMs are migrated to a single
server and two servers are powered down. This is however only possible if the single server has enough resources
to fulfill the demands of the VMs. An important aspect to consider is the fact that each VM migration introduces
significant overhead and may lead to additional stress on the servers [20]. As a consequence, one has to find a good
balance between minimising the total energy of the datacenter and minimising the total stress that is imposed due
to performing the live VM migrations [15]. Unfortunately, several parameters in such optimisation problem are not
known beforehand or are only known in a very imprecise way as we will detail below. This motivates us to develop
a mathematical model based on the RO concept [2, 4, 5], which can effectively deal with imprecise information.

3.1 Robust Problem Formulation

In this section, we build upon the model proposed by Marotta and Avallone in [15]. Contrary to them, we assume
that two parameters are not exactly known and define them as uncertain variables in our model: 1) the power
consumed by a server; 2) the CPU resources required by the VM to execute its jobs.

As in [15], the objective (5) is to minimize the overall power consumption while keeping the total number of
migrations low:

min f = α
∑

n
j=1 PN

j

∑
n
j=1 P0

j
+(1−α)

∑
n
j=1 ∑

m
k=1

(z<−jk +z−>jk )

2

m
(5)

α is the weighting parameter between the two objectives. A total number of n servers and m VMs are considered.
PN

j is a decision variable representing the power consumed by server j after consolidation, P0
j is the power con-

sumed by server j before consolidation, and z−>jk (z<−jk ) is a binary decision variable representing whether VM k
migrates from (to) server j. The problem can be modelled through a Mixed Integer Linear Problem (MILP); all
the parameters and decision variables of the model are provided in Table 1.

3.1.1 Uncertainty on the Power Model for Servers

Similar to [15], we assume that the power required for the physical servers varies somehow linearly2 between
the idle power of the servers (servers are just powered on but do not have any VM allocated to them) and the

2 We explicitly acknowledge the fact that the power model used is simple but the model can be easily extended to a more complex one.
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maximum power (when the resources such as CPUs are fully utilised). When the host is idle, it can be consolidated
and switched off. However, it is difficult to model the energy consumption of a server precisely. For example, [16]
shows that the total system power can be modelled with around 3% accuracy for single core and 2-6% for multicore
systems. Nevertheless, when using a linear model, the error may rise up to 10-14% on average or even higher
due to processor optimisations, cache states, etc. As a consequence, it is rational that we can assume that we
possess just estimates of the power consumption following a somewhat imprecise linear model. We assume we
have knowledge of a nominal value and define an interval of variation, whose bounds reflect the reliability of the
limited information that we have.

We decompose the total power of a given server therefore into three components: 1) the power consumed
by physical components like transistors during idle load; 2) the power consumed by each running VM, which is
linearly dependent on the utilization ui j of the resource i at server j (i.e., CPU, RAM, network interfaces, etc.);
3) the uncertain power consumption, which is modeled through a random variable pN

j symmetrically distributed

between
[
−p̂N

j ,+p̂N
j

]
and with mean p̄N

j = 0. The constraints on the uncertain power can be written as:

n

∑
j=1

∣∣∣∣∣ pN
j

p̂N
j

∣∣∣∣∣≤ Γ
POW ,

∣∣∣∣∣ pN
j

p̂N
j

∣∣∣∣∣≤ 1, ∀ j, Γ
POW ∈ {0, ...,n} (6)

The power consumption at server j after consolidation is given by:

PN
j = Pidle

j y j +(Pmax
j −Pidle

j )ui j + pN
j y j, i = 1,∀ j (7)

The following constraints set the lower and upper bounds on the power consumption:

Pidle
j y j ≤ PN

j ≤ Pmax
j y j ∀ j (8)

When none of the k VMs are allocated to server j after consolidation (i.e., xN
jk=0 ∀k), then server j is not used

(i.e., y j=0), thus PN
j is zero; when it is active, the power consumption stays between Pidle

j and Pmax
j . Pidle

j is the
power consumption of server j when there is no load on that server; Pmax

j is the power consumed by server j
when its resources are fully utilised. As the most impacting resource depending on the system load on the power
consumption is the CPU [16], only the CPU resource is considered [15] (i.e., i=1 in (7)). y j is a binary decision
variable representing whether server j is active after consolidation.

ui j represents the utilization of resource i at server k after consolidation and can be written as:

ui j =
∑

m
k=1 rikxN

jk

si j
, ∀i, j (9)

where rik is the amount of resource i needed to allocate VM k, xN
jk is a decision variable representing whether VM

k is allocated to server j after consolidation, and si j is the amount of resource i available at server j.

3.1.2 Uncertainty on the Resource demands for VMs

As the power consumption significantly depends on the workload of the running VMs, it is very important to
quantify the resource requirements accurately. This is even more important as most of related work requires
precise information on resource demand as input to their optimisation models, see [1, 11, 15, 17, 20]. However,
having exact knowledge on e.g. CPU or memory demands to run given application workloads is very difficult.
This is also because typical enterprise workloads vary during the day and generally decrease during off-hours or
weekends.

Similar to the uncertainty of the power model, we assume that the exact value of some resource demands
is not known precisely. For simplicity, in this work we only consider uncertainty on the CPU requirement, thus
assuming exact knowledge on the memory demand (i.e., r2k = r̄2k). The uncertainty in CPU requirements for VM k
is modelled through a random variable r1k, which is symmetrically distributed between [−r̂1k,+r̂1k] (i=1) and with
mean r̄1k. One of the key ideas of RO is the fact that it is very unlikely that the whole uncertainty is taking place
at the same time over all the coefficients (i.e., all the n servers, or all the m VMs). For example, in a datacenter
with thousands of VMs, it is very unlikely that all VMs at the same time run at maximum CPU variation from the
mean. With our model and the theory from RO, a datacenter operator can tune against how much of this variability
on the whole system he wants to protect from. We define Γ CPU as this protection level; the following constraints

5



impose that the sum of the deviations of each uncertain coefficient should be smaller than Γ CPU , as defined by
Bertsimas et al. in [5] Eq. 6:

m

∑
k=1

∣∣∣∣ r1k− r̄1k

r̂1k

∣∣∣∣≤ Γ
CPU ,

∣∣∣∣ r1k− r̄1k

r̂1k

∣∣∣∣≤ 1, ∀k, Γ
CPU ∈ {0, ...,m} (10)

We will discuss more on the trade-offs that we can make with our model by varying Γ CPU in Section 4.

3.1.3 Additional Constraints

The activation of server j is related to the utilization of the resources at the server through the following constraint:

y j ≤
m

∑
k=1

xN
jk, y j ∈ {0,1} (11)

As in [15], we set the following budget constraint on the resources: for each server j and for each resource
i, the amount of resources held by the old assignment and the resources needed or freed by the migrating VMs
should not exceed the maximum available amount of resources at the server:

m

∑
k=1

(r̄ikxO
jk + rik(z<−jk − z−>jk ))≤ si jy j, ∀ j, ∀i (12)

xO
jk represents whether VM k is allocated on server j before consolidation.

Additional constraints (13) are needed [15] in order to avoid unacceptable combinations of the migration and
allocation variables (e.g., x jk old and new both 1 for the same server and VM, or z jk to and from both 1 for the
same server and VM).

xO
jk + xN

jk + z−>jk + z<−jk ≤ 2, xO
jk− (xN

jk + z−>jk )≤ 0, xN
jk− (xO

jk + z<−jk )≤ 0, ∀ j,k

xO
jk + xN

jk ≥ b jk, z−>jk + z<−jk ≤ b jk, xN
jk ≤ yi ≤

n

∑
j=1

xN
jk,

n

∑
j=1

xN
jk = 1, ∀ j,k

xO
jk, xN

jk, z−>jk , z<−jk , b jk ∈ {0,1} ∀ j,k

(13)

3.2 Robust Counterpart of the VM Consolidation Problem

The robust problem described in Sec. 3.1 is implemented in the ROME toolkit [12], which converts the robust
formulation into its deterministic form (i.e., according to the robust approach by Bertsimas et al in [4, 5]). The
translated problem is then solved by CPLEX [13]. To make it clearer how this translation is done, in the following
we show how the problem can be formulated as a robust linear problem by applying the theory summarized in
Sec. 2. First, without loss of generality, we only consider uncertainty on the CPU required by a VM to run in a
node (i.e., resource i=1 in our model). In this way, uncertainty only affects the constraint coefficients3. We assume
that at most Γ CPU ∈ {0,1, ...,m} resources may deviate simultaneously from the nominal value r̄1k. The convex
uncertainty set R is defined as:

R = {(r1k) | r1k = r̄1k + r̂1k φk, ∀k, φ ∈Φ} (14)

and:

Φ =

{
φ
∣∣ |φk| ≤ 1 ∀k,

m

∑
k=1
|φk| ≤ Γ

CPU

}
. (15)

r̄1k is the estimate (average) of the uncertain variable r1k, and r̂1k represents the precision of the estimate. Γ CPU is
the so called budget of uncertainty.

3 Please note that Bertsimas and Thiele in [5] show how to reformulate problem (1) in the case that uncertainty also affects the cost vector
c and the right-hand side b of problem (1).
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As the uncertainty only affects future migrations and not the initial placement, following the formulation in [9],
constraints (12) can be replaced by:

m

∑
k=1

r̄1k(z<−jk − z−>jk )+ max
φk∈Φ

m

∑
k=1

(z<−jk − z−>jk )≤ b j, ∀ j,

b j = s1 j y j−
m

∑
k=1

r̄1kx0
jk

(16)

For other equations that contain the uncertain variable r1k (e.g., (9)) one can apply a similar transformation,
which we skip here to keep the explanation simple.

By exploiting LP duality, the tractable linear equivalent formulation of our VM consolidation problem under
uncertainty can thus be rewritten as:

min (5)
s.t. (6)− (11), (13),

m

∑
k=1

r̄1k(z<−jk − z−>jk )+Γ
CPU d j +

m

∑
k=1

e jk ≤ b j ∀ j

d j + e jk ≥ r̂1k tk ∀ j,k

− tk ≤ (z<−jk − z−>jk )≤ tk ∀ j,k

d j,e jk, tk ≥ 0 ∀ j,k

z<−jk ,z−>jk ∈Z

(17)

where Z is a subset of our variables space.

3.3 RO and the Probability of Constraint Violation

As discussed before, RO is based on the concept of an uncertainty set, which identifies the deviations of coeffi-
cients against the nominal values [2,4,5]. In our model we have defined e.g. mean values for CPU demands of VMs
and the maximum possible deviation for each such VM. Protection against such deviations is introduced through
hard constraints that cut off feasible solutions that may become infeasible ones for some deviations included in
the uncertainty set. A RO solution of the original problem is then a solution that is feasible for all the coefficient
matrices in the whole uncertainty set. The Cloud operator can now make a trade-off to accept more robust so-
lutions or more opportunistic ones. The price of robustness [4] guarantees protection against data deviations. As
a consequence, the optimal value of the robust solution is typically worse than the optimal value of the original
problem because the feasible set needs to be restricted to only robust solutions. By taking higher risk aversion, our
model takes into account more severe and unlikely deviations, leading to higher protection but also higher energy
consumption as we will see later. Alternatively, if the datacenter operator wants to take a higher risk, the solution
will offer less protection at lower energy consumption.

Our RO model considers so-called row-wise uncertainty. As a consequence, protection against deviations is
separately defined for each constraint subject to uncertainty as we consider the worst total deviation that the
constraint may experience. We use a cardinality constrained uncertainty set [3], which leads to the renowned
Γ -robustness model by Bertsimas and Sim [4]. As stated there, we can define an upper bound on the number of
coefficients that may deviate to their worst value. The key benefits of this type of uncertainty set are: 1) a protection
level (known as ‘budget of uncertainty’) against deviations of the coefficients specified by the adopted uncertainty;
and 2) the possibility to calculate probabilistic bounds for constraint violation for a given protection level. The
non-linearity of the robust counterpart can then be solved by exploiting strong duality and defining a larger but
compact and linear robust counterpart, see [4, 7, 8]. A good estimate of the amount of protection Γ to set in the
RO problem where ω coefficients may deviate is the probability of constraints violation Pr(ω,Γ ). According to
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Table 2 Experimental values for the simple example

Parameter Value Parameter Value

Num of servers (n) 5 CPU cores (r̄1,k) (4, 5, 3, 7, 1, 5, 3, 3, 4, 6)

Num of VMs (m) 10 Avail. CPU cores (s1, j) (3.2, 1.1, 1.8, 0.8, 1.2)

α 0.9 RAM [GB] (r̄2,k) (1.0, 1.5, 5.0, 4.0, 4.0, 1.0, 5.0, 2.5, 2.0, 3.5)

r̂1k From 0.1 to 0.5 of r̄1,k Avail. RAM [GB] (s2, j) (6.4, 1.7, 2.2, 1.2, 1.6)

p̂N
j [W] 0.05 Pmax

j Pmax
j [W] (220, 190, 240, 180, 260)

Pidle
j 0.2 of Pmax

j P0
j [W] (126.5, 190, 176, 90, 0)

Eq. (18) in [4], an upper bound can be computed as:

Pr(ω,Γ )≤ (1−µ)C(ω,bνc)+
ω

∑
l=bνc+1

C(ω, l),

C(ω, l) =

{ 1
2ω , if l = 0 or l = ω;

1√
2π

√
ω

(ω−l)l exp(ω log( ω

2(ω−l) )+ l log(ω−l
l )), otherwise

µ = ν−bνc, ν = (Γ +ω)/2

(18)

For small ω , it is necessary to ensure full protection (i.e., Γ ' ω) in order to guarantee a small violation
probability [4]; when Γ = ω , the worst case scenario is taken into account.

4 Numerical Results

In order to illustrate how the robust consolidation model works, a simple use case with 10 VMs and 5 servers
is used. We implemented the robust optimisation model using the ROME toolkit [12], which converts the robust
formulation into its deterministic form which is then solved by CPLEX [13]. The CPLEX solver uses linear
programming based branch and bound and cutting plane algorithms (branch & cut search) to solve the MILP
problem to optimality. Table 2 shows the values for this example. We use decimal values for CPU and RAM
requirements of the VMs, so that 0.1 for CPU means 1 core and 0.1 for RAM means 521 MB basic memory
unit [15]. The VMs are initially allocated as follows: server 1 hosts VMS 6 to 9; server 2 hosts VMs 1, 5 and 10;
server 3 hosts VMs 2 and 4; server 4 hosts VM 3. Server 5 is shut down since it does not run any VM.

4.1 Uncertainty in Power Consumption

We first study the scenario where only the power model parameters are set as uncertain with maximum 5% de-
viation ( p̂N

j = 0.05Pmax
j ). In Fig. 1, the black curves represent the expected and risk adjusted power for different

protection levels; the green plot represents the probability of constraint violation. The protection level Γ POW 4

changes from 0 to 5; however, the optimal solution is always using 2 servers and switching off the other 3. When
Γ = 0, four VMs are migrated to server 1 (VM 3, 4, 5 and 10) and one VM (VM 1) to server 3, thus also servers
2 and 4 are switched off. The new allocation maximizes the CPU utilization at server 1 (i.e., u1,1 = 1), which con-
sumes 220 W (i.e., Pmax,1). Server 3 already hosts one VM, for a total power of 144 W, provided that u1,3 = 0.5.
The total power consumption in this case is 364 W: since no risk is taken (Γ = 0), both the risk adjusted power and
the expected power are the same. The probability of constraint violation is 69%, which means that for the given
optimally calculated consolidation (assuming we have total knowledge on the power model), the probability that
a constraint is violated is 69% if the power of minimum one server deviates from the nominal value. We want to
highlight that the original model in [15] provides the same results as our model when Γ = 0.

4 For simplicity, we refer to it as Γ in this section.
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When Γ = 1, the VMs allocation is protected against the possibility that the power of up to one server exhibits
the whole amount of variability (i.e., 11 W on server 1, or 12 W on server 3, etc.). In this case, server 1 hosts eight
VMs (VM 1, 3, 5 to 10), for a CPU utilization of 90.6%, which leads to a reduction in its power consumption
(203.5 W). In case of uncertainty taking place on server 1, the solution is totally protected and constraint 8 for
j=1 never violated. On the other hand, server 3 hosts two VMs (CPU utilization is 66.7%) and consumes 176 W.
The expected power consumption is higher (379.5 W), as server 1 is under-utilized so to protect it from power
deviation. The risk adjusted power is 12 W more than the expected (i.e., maximum p̂N

j of the two active nodes). The
probability of constraint violation in this case is Pr(5,1) = 53%. For Γ ≥ 2 the risk adjusted power stabilizes to
402.5 W, as a higher protection level does not influence the power of the two active servers. Besides, the probability
of constraint violation is still high due to the very small number of uncertain parameters (i.e., ω = 5) [4].

Fig. 2 shows the expected (dashed line) and risk adjusted power (solid line), relative to the power consumed
before consolidation, for three different maximum power deviations: 1) p̂N

j = 0.05 for all servers (black line); 2)
p̂N

j = 0.1 for all servers (blue line); and 3) p̂N
j = 0.1 ∀ j 6= 3 and p̂N

3 = 0.3 (red line). When the maximum allowed
deviation increases, both the expected and the risk adjusted power increase, as expected. However, when more
deviation is considered on server 3, at some point (Γ = 0.9) it is preferable to use two servers (i.e., servers 2 and
4). It should be noticed that, in this case, as we are using 3 servers, the risk adjusted power stabilized for Γ ≥ 3.

4.2 Variability in Resource Requirements of VMs

Let us now assume that CPU requirements of VMs are uncertain but distributed between 10% and 50% of r1,k.
The protection level Γ CPU (Γ from now on) changes from 0 to 10. Fig. 3 shows the risk adjusted power, relative
to the power consumed before consolidation, for different protection levels Γ and different uncertainty bounds.
For Γ = 0, only two nodes are activated: the relative power is the same for any maximum allowed CPU deviation.
Looking at each fixed maximum deviation, when Γ is increased the power increases, as expected. Also, this
increase is higher for higher maximum CPU uncertainty: for r̂1k = 0.1r̄1k, the relative risk adjusted power increases
from 0.625 (Γ = 0) to 0.7 (Γ ≥ 10); for r̂1k = 0.5r̄1k, it increases from 0.625 (Γ = 0) to 1.23 (Γ ≥ 10). In the
latter case, we observe a steep rising at Γ = 2 and 5 (highlighted with a black and a white circle in the figure),
as more servers (three and four, respectively) are switched on for coping with the increased uncertainty on the
CPU requirements of the VMs. A similar behavior is also observed when r̂1k ≥ 0.3r̄1k. Also, when we increase the
protection level, the risk adjusted power may be higher than the initial power consumption (i.e., for Γ > 6 when
r̂1k = 0.4r̄1k, and for Γ ≥ 4 when r̂1k = 0.5r̄1k). This is marked with a grey square in the figure.

The expected power, relative to the initial power consumption, is always lower than 1, see Fig. 4. That is,
the allocation provided through the robust model reduces energy consumption compared to the initial allocation.
Increasing the maximum variability allowed on the CPU, the expected power stabilizes at higher values of Γ .
From Fig. 5, it can be inferred that a good trade-off between the amount of risk taken and the robustness of the
solution is given with Γ > 8, for which the probability of constraint violation is less than 1%. As already stated
before, in this small deployment we almost need to fully protect the solution to get some good result.

9



0
2

4
6

8
10

12

0.1

0.2

0.3

0.4

0.5
0.625

0.7

0.78

0.96

1.05

1.23

 

Γ

Max CPU uncertainty

 

R
e

la
ti

v
e

 p
o

w
e

r 
c

o
n

s
u

m
p

ti
o

n
 (

P
/P

in
i)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.33 active servers
4 active servers
Total power > Total initial power

Fig. 3 Relative risk adjusted power consumption for different
maximum CPU uncertainty (r̂1k).

0
2

4
6

8
10

12

0.1

0.2

0.3

0.4

0.5

0.625

0.68

0.8

0.9

1

1.2

 

Γ

Max CPU uncertainty

 

R
e

la
ti

v
e

 p
o

w
e

r 
c

o
n

s
u

m
p

ti
o

n
 (

P
/P

in
i)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Fig. 4 Relative expected power consumption for different maximum
CPU uncertainty (r̂1k).

0 2 4 6 8 10 12

0.0001

0.001

0.01

0.1

0.64

Γ

P
r(

ω
=

1
0

,Γ
)

Fig. 5 Probability of constraint violation for different Γ .

0
2

4
6

8
10

12

0

0.1

0.2

0.3

0.4

0.5
0.625

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 

Γ

Max CPU uncertainty

 

R
e

la
ti

v
e

 p
o

w
e

r 
c

o
n

s
u

m
p

ti
o

n
 (

P
/P

in
i)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.53 active servers
4 active servers
Total power > Total initial power

Fig. 6 Relative risk adjusted power consumption for different
maximum CPU uncertainty (r̂1k) and with 5% variability on Pmax

j .

0
2

4
6

8
10

12

0

0.1

0.2

0.3

0.4

0.5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 

Γ

Max CPU uncertainty

 

R
e

la
ti

v
e

 p
o

w
e

r 
c

o
n

s
u

m
p

ti
o

n
 (

P
/P

in
i)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Fig. 7 Relative expected power consumption for different maximum
CPU uncertainty (r̂1k) and with 5% variability on Pmax

j .

4.3 Variability in both Power and Resource Consumption

Finally, we investigate a scenario where both the power consumption at each server and the amount of CPU
needed to run a VM are not precisely known. The maximum variability allowed on the CPU is varied (i.e., r̂1k =
[0, ..,0.5]r̄1k, ∀k) while the maximum variability on the power is set always to 5% of Pmax

j (i.e., p̂N
j = 0.05). Fig.

6 shows the risk adjusted power, relative to the power consumed before consolidation, for different protection
levels Γ and different uncertainty bounds on the CPU. The trend is very similar to the one in Fig. 3. When
r̂1k = 0, we obtain the same results as in Section 4.1. If the maximum deviation on the CPU is very small (i.e.,
r̂1k ≤ 0.1r̄1k), two active servers are enough to cope with the whole uncertainty on both parameters and the energy
of the whole system is always reduced compared to the initial setup and regardless of the uncertainty on the
power consumption (i.e., the relative risk adjusted power is always smaller than 0.8). When the maximum CPU
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uncertainty is increased, more servers are needed and the power consumption increases, as expected. In this case,
to ensure enough protection we cannot save much energy; for r̂1k > 0.3r̄1k, even with small Γ the relative risk
adjusted power is higher than 1 due to the increased uncertainty that we want to protect from. Besides, we need to
take Γ > 7 to ensure a probability of constraints violation less than 5%, or Γ > 10 for less than 1%.

The expected power (Fig. 7) in this multi-uncertainty scenario is higher than the one in Section 4.2, as expected.
When r̂1k > 0.3r̄1k, the expected power relative to the initial power allocation is higher than 0.9; that is, when the
uncertainty on the CPU needed to run the VMs is high, we cannot expect to reduce much the energy consumed
by the physical servers. This clearly demonstrates the drawback of many of the previously applied modelling
approaches that assumed total and exact knowledge of the resource demands and power model. Our results indicate
that, while those approaches may lead to very energy efficient placement strategies, they may also lead to constraint
violations if actual VM resource requirements deviate from assumed ones. However, if one wants to protect against
such constraint violations, one needs to use different consolidation schedules that may lead to higher energy
consumption.

4.4 Evaluation for a Larger Use Case

In this section, we illustrate our concept for a small virtualized datacenter that hosts 30 physical servers. We
assume that in total 600 VMs are running and need to be consolidated. Let’s assume that the power of the VMs
are uncertain but distributed from 5% to 15% of Pmax

j . The protection level Γ is allowed to change between 0 and
30. Besides this uncertainty, we aim at answering the following question: which is the best consolidation strategy
in order to minimize the energy consumption and allow a maximum of 1% chance of constraint violation?

Fig. 8 shows the power consumption, relative to the power consumed in the initial deployment (i.e., before
consolidation), for different maximum power deviations. Both risk adjusted and expected power are shown, in solid
and dotted lines, respectively. When Γ = 0, twenty servers are needed to allocate all the 600 VMs. If no uncertainty
is taking place, more than 25% of the initial energy can be saved after the migration takes place according to
the calculated schedule by powering off ten servers. However, the probability of constraint violation is 57.72%
in this case. When higher risk is taken into account during the consolidation (i.e., higher Γ ), the risk adjusted
power consumption increases, as expected. Also, as p̂N

j increases, the number of servers needed to accomodate
the running VMs increases: from 20 to 25 when p̂N

j is increased from 0.05 (black curves in Fig. 8), to 0.15 (red
curves). Provided the unlikeliness of all the deviation taking place at the same time on all the 30 servers, the worst
case scenario (i.e., Γ = 30) seems too conservative. When Γ =15, the probability of constraint violation is 0.54%,
meaning that the robust allocation provides a good trade-off between the power consumption and the protection
from more severe and unlikely deviations of the uncertain power. In this case, the Cloud operator can save at least
20% of the initial power allocation when p̂N

j =0.05, 11% when p̂N
j =0.10, and 2% when p̂N

j =0.15, while on average
it can save 13% in the latter case.

Fig. 9 shows the unused resources at the active servers, relative to their available resources. When increasing
the protection level Γ or the maximum deviation p̂N

j , a general increase in the unused resources is observed. For
example, when Γ = 0, 2.4% of the available resources remain unused in the active servers, as a more compact
consolidation is done at the expense of an higher probability of constraint violation. When Γ is set to 15, the
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unused resources increase to 7.7% for p̂N
j = 0.05, to 16.5% for p̂N

j = 0.10, and to 22.36% for p̂N
j = 0.15. Higher

deviations results to higher uncertainty, which results in a less compact allocation of the VMs on the active servers
in order to provide room for the additional uncertainty.

4.5 Impact on Cost and CO2 footprint savings

Our model clearly helps to reduce the total energy consumed by a virtualized datacenter by powering down the
not necessary servers after VM consolidation, as given by our model. This helps to reduce the running costs
in a datacenter, which depend on the load the datacenter experiences. In addition, there is further energy sources
within a datacenter. For example, [10] analyses the energy distribution within a typical 5000 square foot datacenter
composed of 1064 servers and concludes that the total energy demand is composed of 10 kW lighting, 72 kW
UPS, 429 kW for cooling, 28 kW for building switchgear and 588 kW for Computing. Out of this 588 kW,
which are based on compute demand, approximately 44% are for processor, server power supply and other server
components (in total 258 kW), 4% for storage and 4% for communication equipment. Our model thus tries to
optimise the 258 kW which are demand based energy requirements.

In order to assess the impact of our model in terms of total energy reduction, monetary cost savings and
CO2 reduction, we need to consider the energy price as well as the amount of CO2 required to produce a certain
amount of energy, which depends on the energy mix. For example, nuclear power or solar has less CO2 footprint
compared to coal or oil as an energy source power. However, the energy mix is different for different countries.
For example, in the U.S., around 71% of the electricity is generated by oil, gas and coal, while 20% is based on
nuclear power and the remaining 9% based on renewable energy. For France on the other hand, 78% is based
on nuclear power whereas oil, gas and coal makes up 12% and 10% renewable energy sources [6]. In [6], three
main factors impacting the CO2 footprint of a datacenter are listed, which are the location (which identifies the
energy mix and the need for cooling), the Compute Load (which may vary based on locality and who puts the
virtual machines in what datacenter) and the electrical efficiency (data center design, cooling architecture, etc). In
the following, we use the Data Center Carbon Calculator from [6] in order to assess the monetary savings of our
method along with reduction in CO2 footprint. The calculator is based on [22] in order to derive carbon emissions
based on state and country data. In order to translate that to car equivalent, we assume 4.5 tonnes of CO2 per year
and car according to EPA. We note that we assume a linear relation between energy savings and savings in terms
of monetary cost and CO2. Consequently, as our model calculates the optimal energy savings, it also calculates
the savings in terms of monetary cost and CO2. Using [22] allows us to factor in country specific savings due to
different energy mix and price.

In order to extrapolate what kind of monetary and CO2 savings our model can achieve, we compare the above
typical datacenter composed of 1064 servers for 4 different locations: Australia, USA, Sweden and China. Each
location has different cost per kWh, a different energy mix and thus a different amount of CO2 per kWh. According
to [22], for Australia the electricity cost is 0.11 $ per kWh, the CO2 emission footprint is 0.924 kg/kWh while the
CO2 emissions avoided results in 1.096 kg/kWh (the latter one reflects the reduction in cost because of less energy
required will result in shutdown of fossil-fired plants). For USA (California), the cost is 0.13 USD per kWh, while
the CO2 footprint is 0.275 kg/kWh and the avoided CO2 amounts to 0.659 kg/kWh, The numbers for Sweden are
1.04 SEK per kWh, CO2 footprint is significantly lower at 0.048 kg/kWh due to the large number or renewable
and nuclear power sources used and the reduction of CO2 is 0.537 kg/kWh. Finally, the energy cost in China is
assumed to be 0.68 Yuan, the CO2 footprint 0.839 kg/kWh and the avoided CO2 amounts to 1.081 kg/kWh.

According to [10], every reduction in terms of demand based energy leads to additional savings in the support
systems energy (building switchgear, cooling, UPS). For example, a reduction of the operational energy by 1 Watt
leads to an additional saving of 1.84 Watts in the power supply, cooling, etc. which translates to a total saving of
2.84 Watts for the whole datacenter facility. Going back to our example of the medium sized datacenter above and
assuming the demand based power consumption of 258 kW, assuming the data center operator can save 20% of the
demand-based power consumption due to our model that results in migrations and powering down unused servers,
this translates into annual savings of around 167,000 USD for California, 1,335,000 SEK for Sweden, 872,000
Yuan for China and 141,000 $ for Australia. This translates to a reduction in CO2 footprint of 353t for California,
62t for Sweden, 1.077t for China and 1.190t for Australia. In terms of total CO2 footprint avoided, that would be
equivalent to 846t CO2 for California, 690t for Sweden, 1.387t for China or 1.407t for Australia. In terms of fewer
cars on the road, that would be around 310 cars in Australia or China, 150 for Sweden or 188 for California.
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5 Conclusions

Energy conservation is an important aspect in modern datacenters in order to reduce total CO2 consumption and
OPEX of the operator. An important tool for energy reduction is the VM consolidation process leveraging live VM
migration technology. In VM consolidation, the goal is to migrate the set of VMs towards the minimum number
of servers that are able to support the given resource demands in terms of e.g. CPU and memory, and power off
unused servers. This problem can be modeled as a mixed integer linear program. Unfortunately, many parameters
and coefficients that constitute such MILP are not known in advance precisely, leading to a decision-making
process under data uncertainty which may provide solutions that may be useless in real settings.

In this paper, we have developed a mathematical model for such energy aware VM consolidation under data
and coefficient uncertainty, and applied the theory of robust optimisation to calculate the price of robustness.
Consequently, data center operators can have a choice of selecting more robust solutions at a higher energy or
more opportunistic solutions that have a higher probability of constraint violation but at a lower energy cost. We
have evaluated our model under several scenarios and uncertainty in different parameters of the model such as
CPU demands or power consumption. Our evaluation nicely shows the trade-off between energy consumption and
risk that datacenter operators can take.

As future work, we intend to extend our model to include the datacenter network related energy consumption of
routers and switches as well as the latency requirements between communicating VMs. This will guide us towards
a robust VM consolidation method taking into account network related SLAs between communicating VMs. Also,
we intend to develop fast heuristics for larger problem sizes and integrate them into our local OpenStack testbed.
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