469 research outputs found

    High-speed radix-10 multiplication using partial shifter adder tree-based convertor

    Get PDF
    A radix-10 multiplication is the foremost frequent operations employed by several monetary business and user-oriented applications, decimal multiplier using in state of art digital systems are significantly good but can be upgraded with time delay and area optimization. This work is proposed a more area and time delay optimized new design of overloaded decimal digit set (ODDS) architecture-based radix-10 multiplier for signed numbers. Binary coded decimal (BCD) to binary followed by binary multiplication and finally binary to BCD conversion are 3 major modules employed in radix-10 multiplication. This paperwork presents a replacement technique for binary coded decimal (BCD) to binary and vice-versa convertors in radix-10 multiplication. A novel addition tree structure called as partial shifter adder (PSA) tree-based approach has been developed for BCD to binary conversion, and it is used to add partially generated products. To meet our major concern i.e. speed, we need particular high-speed multiplication, hence the proposed PSA based radix-10 multiplier is using vertical cross binary multiplication and concurrent shifter-based addition method. The design has been tested on 45nm technology-based Zynq-7 field programmable gate array (FPGA) devices with a 6-input lookup table (LUTs). A combinational implementation maps quite well into the slice structure of the Xilinx Zynq-7 families field programmable gate array. The synthesis results for a Zynq-7 device indicate that our design outperforms in terms of the area and time delay

    Hardware Implementation of the GPS authentication

    Get PDF
    In this paper, we explore new area/throughput trade- offs for the Girault, Poupard and Stern authentication protocol (GPS). This authentication protocol was selected in the NESSIE competition and is even part of the standard ISO/IEC 9798. The originality of our work comes from the fact that we exploit a fixed key to increase the throughput. It leads us to implement GPS using the Chapman constant multiplier. This parallel implementation is 40 times faster but 10 times bigger than the reference serial one. We propose to serialize this multiplier to reduce its area at the cost of lower throughput. Our hybrid Chapman's multiplier is 8 times faster but only twice bigger than the reference. Results presented here allow designers to adapt the performance of GPS authentication to their hardware resources. The complete GPS prover side is also integrated in the network stack of the PowWow sensor which contains an Actel IGLOO AGL250 FPGA as a proof of concept.Comment: ReConFig - International Conference on ReConFigurable Computing and FPGAs (2012

    Hardware Implementation of Efficient Elliptic Curve Scalar Multiplication using Vedic Multiplier

    Get PDF
    This paper presents an area efficient and high-speed FPGA implementation of scalar multiplication using a Vedic multiplier. Scalar multiplication is the most important operation in Elliptic Curve Cryptography(ECC), which used for public key generation and the performance of ECC greatly depends on it. The scalar multiplication is multiplying integer k with scalar P to compute  Q=kP, where k is private key and P is a base point on the Elliptic curve. The Scalar multiplication underlying finite field arithmetic operation i.e. addition multiplication, squaring and inversion to compute Q. From these finite field operations, multiplication is the most time-consuming operation, occupy more device space and it dominates the speed of Scalar multiplication. This paper presents an efficient implementation of finite field multiplication using a Vedic multiplier.  The scalar multiplier is designed over Galois Binary field GF(2233) for field size=233-bit which is secured curve according to NIST.  The performances of the proposed design are evaluated by comparing it with  Karatsuba based scalar multiplier for area and delay. The results show that the proposed scalar multiplication using Vedic multiplier has consumed 22% less area on FPGA and also has 12% less delay, than Karatsuba, based scalar multiplier. The scalar multiplier is coded in Verilog HDL, synthesize and simulated in Xilinx 13.2 ISE on Virtex6 FPGA

    Floating-Point Matrix Product on FPGA

    Get PDF
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.---- Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE
    corecore