760 research outputs found

    Canonized Rewriting and Ground AC Completion Modulo Shostak Theories : Design and Implementation

    Get PDF
    AC-completion efficiently handles equality modulo associative and commutative function symbols. When the input is ground, the procedure terminates and provides a decision algorithm for the word problem. In this paper, we present a modular extension of ground AC-completion for deciding formulas in the combination of the theory of equality with user-defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint Shostak theory X. Our algorithm, called AC(X), is obtained by augmenting in a modular way ground AC-completion with the canonizer and solver present for the theory X. This integration rests on canonized rewriting, a new relation reminiscent to normalized rewriting, which integrates canonizers in rewriting steps. AC(X) is proved sound, complete and terminating, and is implemented to extend the core of the Alt-Ergo theorem prover.Comment: 30 pages, full version of the paper TACAS'11 paper "Canonized Rewriting and Ground AC-Completion Modulo Shostak Theories" accepted for publication by LMCS (Logical Methods in Computer Science

    A connection between concurrency and language theory

    Get PDF
    We show that three fixed point structures equipped with (sequential) composition, a sum operation, and a fixed point operation share the same valid equations. These are the theories of (context-free) languages, (regular) tree languages, and simulation equivalence classes of (regular) synchronization trees (or processes). The results reveal a close relationship between classical language theory and process algebra

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page

    Hierarchical combination of intruder theories

    Get PDF
    International audienceRecently automated deduction tools have proved to be very effective for detecting attacks on cryptographic protocols. These analysis can be improved, for finding more subtle weaknesses, by a more accurate modelling of operators employed by protocols. Several works have shown how to handle a single algebraic operator (associated with a fixed intruder theory) or how to combine several operators satisfying disjoint theories. However several interesting equational theories, such as exponentiation with an abelian group law for exponents remain out of the scope of these techniques. This has motivated us to introduce a new notion of hierarchical combination for non-disjoint intruder theories and to show decidability results for the deduction problem in these theories. We have also shown that under natural hypotheses hierarchical intruder constraints can be decided. This result applies to an exponentiation theory that appears to be more general than the one considered before

    Combination techniques and decision problems for disunification

    Get PDF
    Previous work on combination techniques considered the question of how to combine unification algorithms for disjoint equational theories E_{1} ,...,E_{n} in order to obtain a unification algorithm for the union E1 unified ... unified En of the theories. Here we want to show that variants of this method may be used to decide solvability and ground solvability of disunification problems in E_{1}cup...cup E_{n}. Our first result says that solvability of disunification problems in the free algebra of the combined theory E_{1}cup...cup E_{n} is decidable if solvability of disunification problems with linear constant restrictions in the free algebras of the theories E_{i}(i = 1,...,n) is decidable. In order to decide ground solvability (i.e., solvability in the initial algebra) of disunification problems in E_{1}cup...cup E_{n} we have to consider a new kind of subproblem for the particular theories Ei, namely solvability (in the free algebra) of disunification problems with linear constant restriction under the additional constraint that values of variables are not Ei-equivalent to variables. The correspondence between ground solvability and this new kind of solvability holds, (1) if one theory Ei is the free theory with at least one function symbol and one constant, or (2) if the initial algebras of all theories Ei are infinite. Our results can be used to show that the existential fragment of the theory of the (ground) term algebra modulo associativity of a finite number of function symbols is decidable; the same result follows for function symbols which are associative and commutative, or associative, commutative and idempotent

    Combining Decision Algorithms for Matching in the Union of Disjoint Equational Theories

    Get PDF
    AbstractThis paper addresses the problem of systematically building a matching algorithm for the union of two disjoint theoriesE1âˆȘE2provided that matching algorithms are known in both theoriesE1andE2. In general, the blind use of combination techniques introduces unification. Two different restrictions are considered in order to reduce this unification to matching. First, we show that combining matching algorithms (with linear constant restriction) is always sufficient for solving a pure fragment of combined matching problems. Second, the investigated method is complete for the largest class of theories where unification is not needed, including regular collapse-free theories and linear theories. Syntactic conditions are given to define this class of theories in which solving the combined matching problem is performed in a modular way

    Set Unification

    Full text link
    The unification problem in algebras capable of describing sets has been tackled, directly or indirectly, by many researchers and it finds important applications in various research areas--e.g., deductive databases, theorem proving, static analysis, rapid software prototyping. The various solutions proposed are spread across a large literature. In this paper we provide a uniform presentation of unification of sets, formalizing it at the level of set theory. We address the problem of deciding existence of solutions at an abstract level. This provides also the ability to classify different types of set unification problems. Unification algorithms are uniformly proposed to solve the unification problem in each of such classes. The algorithms presented are partly drawn from the literature--and properly revisited and analyzed--and partly novel proposals. In particular, we present a new goal-driven algorithm for general ACI1 unification and a new simpler algorithm for general (Ab)(Cl) unification.Comment: 58 pages, 9 figures, 1 table. To appear in Theory and Practice of Logic Programming (TPLP
    • 

    corecore