83 research outputs found

    Linear groups and computation

    Get PDF
    Funding: A. S. Detinko is supported by a Marie SkƂodowska-Curie Individual Fellowship grant (Horizon 2020, EU Framework Programme for Research and Innovation).We present an exposition of our ongoing project in a new area of applicable mathematics: practical computation with finitely generated linear groups over infinite fields. Methodology and algorithms available for practical computation in this class of groups are surveyed. We illustrate the solution of hard mathematical problems by computer experimentation. Possible avenues for further progress are discussed.PostprintPeer reviewe

    Linear groups and computation

    Get PDF
    We present an exposition of our ongoing project in a new area of applicable mathematics: practical computation with finitely generated linear groups over infinite fields. Methodology and algorithms available for this class of groups are surveyed. We illustrate the solution of hard mathematical problems by computer experimentation. Possible avenues for further progress are discussed

    Recent advances in algorithmic problems for semigroups

    Full text link
    In this article we survey recent progress in the algorithmic theory of matrix semigroups. The main objective in this area of study is to construct algorithms that decide various properties of finitely generated subsemigroups of an infinite group GG, often represented as a matrix group. Such problems might not be decidable in general. In fact, they gave rise to some of the earliest undecidability results in algorithmic theory. However, the situation changes when the group GG satisfies additional constraints. In this survey, we give an overview of the decidability and the complexity of several algorithmic problems in the cases where GG is a low-dimensional matrix group, or a group with additional structures such as commutativity, nilpotency and solvability.Comment: survey article for SIGLOG New

    Algorithms for group isomorphism via group extensions and cohomology

    Full text link
    The isomorphism problem for finite groups of order n (GpI) has long been known to be solvable in nlog⁥n+O(1)n^{\log n+O(1)} time, but only recently were polynomial-time algorithms designed for several interesting group classes. Inspired by recent progress, we revisit the strategy for GpI via the extension theory of groups. The extension theory describes how a normal subgroup N is related to G/N via G, and this naturally leads to a divide-and-conquer strategy that splits GpI into two subproblems: one regarding group actions on other groups, and one regarding group cohomology. When the normal subgroup N is abelian, this strategy is well-known. Our first contribution is to extend this strategy to handle the case when N is not necessarily abelian. This allows us to provide a unified explanation of all recent polynomial-time algorithms for special group classes. Guided by this strategy, to make further progress on GpI, we consider central-radical groups, proposed in Babai et al. (SODA 2011): the class of groups such that G mod its center has no abelian normal subgroups. This class is a natural extension of the group class considered by Babai et al. (ICALP 2012), namely those groups with no abelian normal subgroups. Following the above strategy, we solve GpI in nO(log⁥log⁥n)n^{O(\log \log n)} time for central-radical groups, and in polynomial time for several prominent subclasses of central-radical groups. We also solve GpI in nO(log⁥log⁥n)n^{O(\log\log n)} time for groups whose solvable normal subgroups are elementary abelian but not necessarily central. As far as we are aware, this is the first time there have been worst-case guarantees on a no(log⁥n)n^{o(\log n)}-time algorithm that tackles both aspects of GpI---actions and cohomology---simultaneously.Comment: 54 pages + 14-page appendix. Significantly improved presentation, with some new result
    • 

    corecore