632 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    On the decidability and complexity of the structural congruence for beta-binders

    Get PDF
    AbstractBeta-binders is a recent process calculus developed for modelling and simulating biological systems. As usual for process calculi, the semantic definition heavily relies on a structural congruence. The treatment of the structural congruence is essential for implementation. We present a subset of the calculus for which the structural congruence is decidable and a subset for which it is also efficiently solvable. The obtained results are a first step towards implementations

    Clausal Resolution for Modal Logics of Confluence

    Get PDF
    We present a clausal resolution-based method for normal multimodal logics of confluence, whose Kripke semantics are based on frames characterised by appropriate instances of the Church-Rosser property. Here we restrict attention to eight families of such logics. We show how the inference rules related to the normal logics of confluence can be systematically obtained from the parametrised axioms that characterise such systems. We discuss soundness, completeness, and termination of the method. In particular, completeness can be modularly proved by showing that the conclusions of each newly added inference rule ensures that the corresponding conditions on frames hold. Some examples are given in order to illustrate the use of the method.Comment: 15 pages, 1 figure. Preprint of the paper accepted to IJCAR 201

    Acta Cybernetica : Tomus 7. Fasciculus 1.

    Get PDF

    Guide to Discrete Mathematics

    Get PDF

    08271 Abstracts Collection -- Topological and Game-Theoretic Aspects of Infinite Computations

    Get PDF
    From June 29, 2008, to July 4, 2008, the Dagstuhl Seminar 08271 ``Topological and Game-Theoretic Aspects of Infinite Computations\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, many participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    On Expressiveness of Halpern-Shoham Logic and its Horn Fragments

    Get PDF
    Abstract: Halpern and Shoham\u27s modal logic of time intervals (HS in short) is an elegant and highly influential propositional interval-based logic. Its Horn fragments and their hybrid extensions have been recently intensively studied and successfully applied in real-world use cases. Detailed investigation of their decidability and computational complexity has been conducted, however, there has been significantly less research on their expressive power. In this paper we make a step towards filling this gap. We (1) show what time structures are definable in the language of HS, and (2) determine which HS fragments are capable of expressing: hybrid machinery, i.e., nominals and satisfaction operators, and somewhere, difference, and everywhere modal operators. These results enable us to classify HS Horn fragments according to their expressive power and to gain insight in the interplay between their decidability/computational complexity and expressiveness

    Register automata with linear arithmetic

    Full text link
    We propose a novel automata model over the alphabet of rational numbers, which we call register automata over the rationals (RA-Q). It reads a sequence of rational numbers and outputs another rational number. RA-Q is an extension of the well-known register automata (RA) over infinite alphabets, which are finite automata equipped with a finite number of registers/variables for storing values. Like in the standard RA, the RA-Q model allows both equality and ordering tests between values. It, moreover, allows to perform linear arithmetic between certain variables. The model is quite expressive: in addition to the standard RA, it also generalizes other well-known models such as affine programs and arithmetic circuits. The main feature of RA-Q is that despite the use of linear arithmetic, the so-called invariant problem---a generalization of the standard non-emptiness problem---is decidable. We also investigate other natural decision problems, namely, commutativity, equivalence, and reachability. For deterministic RA-Q, commutativity and equivalence are polynomial-time inter-reducible with the invariant problem
    • …
    corecore