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Abstract
Halpern and Shoham’s modal logic of time intervals (HS in short) is an elegant and highly
influential propositional interval-based logic. Its Horn fragments and their hybrid extensions
have been recently intensively studied and successfully applied in real-world use cases. Detailed
investigation of their decidability and computational complexity has been conducted, however,
there has been significantly less research on their expressive power. In this paper we make a step
towards filling this gap. We (1) show what time structures are definable in the language of HS,
and (2) determine which HS fragments are capable of expressing: hybrid machinery, i.e., nominals
and satisfaction operators, and somewhere, difference, and everywhere modal operators. These
results enable us to classify HS Horn fragments according to their expressive power and to gain
insight in the interplay between their decidability/computational complexity and expressiveness.
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1 Introduction

The aim of this paper is to investigate the expressive power of the temporal logic of Halpern
and Shoham (HS in short) [13] and its Horn fragments [9, 8]. The latter are especially
interesting due to their relatively low computational complexity [9, 17, 3] and the range
of potential applications, e.g, real-world use cases in temporal ontology-based data access
(OBDA) [14]. Although decidability and computational complexity of these fragments
have been intensively studied [9, 17, 3], their expressive power is yet to be studied in any
significant depth. Our research aims at filling this gap and enabling a better understanding
of the interplay between decidability/computational complexity and expressive power of HS
fragments.

Halpern-Shoham logic is a propositional multimodal logic which enables reasoning about
relations between time-intervals in a one dimensional timeline. The HS language contains
12 modal operators, each corresponding to one of the Allen’s binary relations between
intervals [1], namely adjacent to, begins, during, ends, later than, overlaps, and their inverses
(Allen’s algebra contains also identity as the 13th relation). A model of HS is a linear ordering
of time-points (a temporal frame), where propositional variables are interpreted by sets of
intervals over this temporal frame. The HS language is very expressive and the satisfiability
problem of its formulas is undecidable over a range of interesting linear orders including
N, Z, Q, and R [13]. As a result, restrictions on HS have been intensively investigated in
order to establish fragments of relatively low computational complexity, whose expressive
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22:2 On Expressiveness of Halpern-Shoham Logic and its Horn Fragments

Table 1 Semantics definable in HS under irreflexive and reflexive semantics, respectively.

Under irreflexive semantics: Under reflexive semantics:
Definable semantics: (Dis), (Den), (S), (Non-S) (Non-S)

power is high enough for a variety of applications. A number of methods to specify HS
fragments have been proposed, e.g., restricting the set of modal operators occurring in
the language [11, 12, 6], softening semantics of modal operators [15], and restricting the
nesting-depth of modal operators [7]. Recently, a twofold method has been proposed to
obtain HS fragments [9]: firstly, by imposing restrictions on the use of classical propositional
connectives in the language, giving rise to fragments called Horn, Krom, and core, and
secondly, by additionally disallowing diamond (or box) modal operators. This new approach
has led to the identification of tractable fragments (precisely P-complete) [3], which were
already applied in real-world use cases within temporal OBDA [14]. The success of this
approach motivated applying the same technique in other logics in order to establish their
low complexity fragments. Namely, it was applied in modal logics K, T, K4, S4 [10], and in
Metric Temporal Logic [5].

In this paper we investigate the expressiveness of HS and its Horn fragments, and show
how it depends on the structure of a temporal frame. Namely, we will follow an idea from [8]
and distinguish between HS-models (i) with irreflexive (<) (originally introduced by Halpern
and Shoham in [13]) and reflexive (≤) (obtained by softening semantics as described in [8, 7])
semantics of relations between intervals, (ii) over discrete (Dis) and dense (Den) frames,
and (iii) under strict (S) (i.e., without punctual-intervals) and non-strict (Non-S) (i.e., with
punctual-intervals) semantics. Combinations of the above 3 lines of distinction give us 8
distinct semantics. A precise description of HS, its Horn fragments, as well as all 8 semantics,
is presented in Section 2. Our contributions are as follows.

First, in Section 3 we study which semantics are definable in the language of HS, where
a semantics is definable by a formula, if the formula is true exactly in frames satisfying
conditions imposed on this semantics. We show that if the irreflexive semantics of relations
is assumed, then not only (Dis) and (Den) semantics are definable (as proved in [13]) but
also (S), and (Non-S). Moreover, we show that under reflexive semantics (Non-S) is definable
but it is an open question if (Dis), (Den), and (S) are definable or not – see Table 1.

Second, in Section 4 we study the expressive power of HS, Horn fragment HShorn, and
its further restrictions, namely HS♦

horn obtained by deleting box modal operators from the
language and HS�

horn in which diamond operators are deleted. We show which of the following
expressions are expressible in these languages: somewhere p (Ep), in a different interval p
(Dp), and everywhere p (Ap), where p is a propositional variable. Moreover, we show in
which fragments nominals (i), and satisfaction operators (@i) are expressible – see Table 2.
Nominals and satisfaction operators constitute a standard hybrid machinery exploited in
order to overcome the local nature of a modal language [2, 4].

Furthermore, we show that the expressive power of HS�,i
horn (which stands for HS�

horn

whose language is extended with nominals) and HS�,i,@
horn (i.e., HS�,i

horn extended by satisfaction
operators) is the same in any semantics. A Hasse diagram of HS fragments is depicted
in Figure 1a where an arrow indicates a syntactical extension. Our research resulted in
a classification of these fragments according to their expressive power. A map of expressiveness
under all semantics except (≤,Dis,Non-S) and (≤,Den,Non-S) is presented in Figure 1b, where
≈ stands for the same expressive power and < for greater-or-equal expressive power.
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Table 2 Summarized expressiveness results.

Ep Dp Ap i i and @i

HS 3 3∗ 3 3∗ 3∗

HShorn 3 ? 3 3∗ 3∗

HS♦
horn 3 − 3 3∗ 3∗

HS�
horn −∗ −∗ 3 −∗ −∗

3 : definable in all semantics;
3∗ : definable in all semantics except

(≤,Dis,Non-S) and (≤,Den,Non-S);
− : undefinable in any semantics;
−∗ : undefinable in (<,Den,S), (<,Den,Non-S),

(≤,Dis,Non-S), (≤,Den,S), (≤,Den,Non-S);
? : unknown.

HSi,@

HSi

HS HSi,@horn

HSihorn

HShorn

HS♦,i,@
horn

HS♦,i
horn

HS♦
horn

HS�,i,@
horn

HS�,i
horn

HS�
horn

(a)

HS ≈ HSi ≈ HSi,@

HShorn ≈ HSihorn ≈ HSi,@horn

HS♦,i,@
horn

HS♦,i
horn

HS♦
horn

HS�,i,@
horn

HS�,i
horn

HS�
horn

<

<

≈
≈

<

≈

<

(b)

Figure 1 Syntactical dependencies of HS fragments (a) and expressive power dependencies in HS
fragments under all semantics except (≤,Dis,Non-S) and (≤,Den,Non-S) (b).

2 Halpern-Shoham Logic and its Horn Fragments

The language of Halpern-Shoham logic consists of a set of propositional variables PROP,
propositional constants > (true) and ⊥ (false), classical propositional connectives ¬,∧,∨,→,
12 modal operators of the form 〈R〉, called diamonds, and their duals of the form [R], called
boxes, where R ∈ {B,B,D,D,E,E,O,O,A,A, L, L} (in what follows, we denote this set by
HSrel). Well-formed HS-formulas are defined by the following abstract grammar:

ϕ := > | ⊥ | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | 〈R〉ϕ | [R]ϕ,

where p ∈ PROP and R ∈ HSrel. We follow [8] and define an HS-model as a pair (D, V )
such that D = (D,≤), called a temporal frame (or simply a frame), is a non-strict linear
order (reflexive, antisymmetric, transitive, and total relation) of time-points, I

(
D) is a set of

intervals over D (defined in what follows), and V : PROP→ P (I(D)) assigns a set of intervals
to each propositional variable (notice that the original definition from [13] of an HS-model is
more general). In what follows, we also use “x < y” as an abbreviation for “x ≤ y and x 6= y”.
In the paper we restrict attention to orderings D which contain an infinitely ascending and
descending chains. As proposed in [8], semantics of HS may be specified according to the
following lines of division. The first distinction deals with a definition of binary relations

TIME 2017



22:4 On Expressiveness of Halpern-Shoham Logic and its Horn Fragments

between intervals, namely begins (relB), during (relD), ends (relE), overlaps (relO), adjacent
to (relA), later than (relL), and opposite relations: relB, relD, relE, relO, relA, relL (“dashed”
relations are not always inverses of their “not dashed” counterparts, e.g., relA is not an inverse
of relA in non-strict semantics):

(<) Irreflexive semantics: a relation between intervals [x, y] and [x′, y′] is defined as:
x y

[x, y]relL[x′, y′] iff y′ < x x′ y′

[x, y]relA[x′, y′] iff x′ < y′, y′ = x x′ y′

[x, y]relO[x′, y′] iff x′ < x < y′ < y x′ y′

[x, y]relB[x′, y′] iff x = x′, y′ < y x′ y′

[x, y]relD[x′, y′] iff x < x′, y′ < y x′ y′

[x, y]relE[x′, y′] iff x < x′, y = y′ x′ y′

[x, y]relO[x′, y′] iff x < x′ < y < y′ x′ y′

[x, y]relA[x′, y′] iff y = x′, x′ < y′ x′ y′

[x, y]relL[x′, y′] iff y < x′ x′ y′

[x, y]relE[x′, y′] iff x′ < x, y = y′ x′ y′

[x, y]relD[x′, y′] iff x′ < x, y < y′ x′ y′

[x, y]relB[x′, y′] iff x = x′, y < y′ x′ y′

(≤) Reflexive semantics: each occurrence of “<” is replaced by “≤” with respect to the
definition of relations under irreflexive semantics.

The second distinction is between:

(Dis) Discrete frames: any x ∈ D has an immediate <-successor, and an immediate <-
predecessor;

(Den) Dense frames: for any x, y ∈ D such that x < y there is z ∈ D such that x < z < y.

The third distinction differentiates between:

(S) Strict semantics: punctual intervals are disallowed, i.e., a set of all intervals over D is
defined as I

(
D) = {[x, y] | x, y ∈ D and x < y};

(Non-S) Non-Strict semantics: punctual intervals are allowed, i.e., a set of all intervals over
D is defined as I

(
D) = {[x, y] | x, y ∈ D and x ≤ y};

where [x, y] = {z | z ∈ D and x ≤ z ≤ y}. Independently of the semantics, the relations
between non-identical intervals are exhaustive in the sense that between any two non-identical
intervals necessarily holds some relation. In irreflexive semantics the relations are also disjoint,
and consequently exactly one relation holds between any two non-identical intervals.
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Figure 2 One-dimensional (a) and two-dimensional (b) representations of the same HS-model, in
which [x, y]L[a, b] ([a, b] is earlier than [x, y]) and [x, y]B[x, c] ([x, c] is begun by [x, y]).

The satisfaction relation for an HS-modelM and an interval [x, y] is defined as follows:

M, [x, y] |= > for all [x, y] ∈ I(D);
M, [x, y] 6|= ⊥ for all [x, y] ∈ I(D);
M, [x, y] |= p iff [x, y] ∈ V (p), for any p ∈ PROP;
M, [x, y] |= ¬ϕ iff M, [x, y] 6|= ϕ;
M, [x, y] |= ϕ ∧ ψ iff M, [x, y] |= ϕ andM, [x, y] |= ψ;
M, [x, y] |= ϕ ∨ ψ iff M, [x, y] |= ϕ orM, [x, y] |= ψ;
M, [x, y] |= ϕ→ ψ iff ifM, [x, y] |= ϕ, thenM, [x, y] |= ψ;
M, [x, y] |= 〈R〉ϕ iff there exists [x′, y′] ∈ I(D) such that [x, y]relR[x′, y′]

andM, [x′, y′] |= ϕ;
M, [x, y] |= [R]ϕ iff for every [x′, y′] ∈ I(D) such that [x, y]relR[x′, y′]

it holds thatM, [x′, y′] |= ϕ;

for any R ∈ HSrel, and any HS-formulas ϕ, ψ. An HS-formula ϕ is true in an HS-modelM
(in symbols: M |= ϕ) iff for all [x, y] ∈ I(D) it holds thatM, [x, y] |= ϕ. An HS-formula ϕ
is true in a frame D (in symbols: D |= ϕ) iff for any HS-modelM based on D it holds that
M |= ϕ. An HS-formula ϕ is valid (in symbols: |= ϕ) iff for any HS-frame D we have D |= ϕ.

A convenient representation of a temporal frame (e.g., for decidability and computational
complexity proofs [8]) is obtained by treating an interval [x, y] as a point in a two-dimensional
Cartesian space D ×D, where the abscissa has a value x and the ordinate has a value y [16].
In the two-dimensional representation, intervals correspond to the points in the north-western
half-plane of D ×D, and points on the diagonal correspond to punctual-intervals. In such
a representation relations between intervals obtain a spatial interpretation. Let [x, y] be a
fixed interval, then a relation between [x, y] and any other interval [x′, y′] may be determined
on the basis of a relative position of points (x, y) and (x′, y′) as presented in Figure 2.

Decidability of the HS-formulas satisfiability problem (HS-satisfiability) depends on the
semantics. However, for most interesting frames it is undecidable, e.g., it was already shown
in [13] that the problem is undecidable under irreflexive and non-strict semantics for any
class of temporal frames that contains an infinite ascending chain (e.g., N, Z, and Q). These
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negative results motivated searching for decidable and tractable fragments of HS which would
be still interesting from the expressiveness point of view.

As observed in [8], any HS-formula can be transformed into an equisatisfiable formula
defined by the following grammar, and vice versa:

ϕ := λ | ¬λ | [U](λ ∧ . . . ∧ λ→ λ ∨ . . . ∨ λ) | ϕ ∧ ϕ, (1)

where [U] is the universal modality, i.e., [U]ψ is satisfied iff ψ is satisfied in every [x, y] ∈ I(D)
whereas λ, the so-called positive temporal literal, is a formula defined by the grammar:

λ := > | ⊥ | p | 〈R〉λ | [R]λ, (2)

where p ∈ PROP and R ∈ HSrel. Horn fragments of HS (proposed in [9, 8]) are obtained by
imposing limitations on the grammars (1) and (2) as follows:

First, the limitation of the grammar (1) gives rise to an HS fragment denoted by HShorn,
in which (1) is restricted to the grammar:

ϕ := λ | [U](λ ∧ . . . ∧ λ→ λ) | ϕ ∧ ϕ.

Second, additional limitations on the grammar of positive temporal literals (2) in HShorn
give rise to fragments denoted by HS♦

horn and HS�
horn. In the case of HS♦

horn the grammar
of positive temporal literals is restricted to:

λ := > | ⊥ | p | 〈R〉λ,

whereas in the case HS�
horn grammar (2) is restricted to:

λ := > | ⊥ | p | [R]λ.

HS�
horn is particularly interesting, as it is both decidable and tractable (P-complete) under

(<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and (≤,Den,Non-S) semantics [9, 8].

3 Defining Semantics

A formula ϕ defines a semantics Sem if the following are equivalent:
ϕ is true in a frame D;
D satisfies the conditions imposed by Sem.

We will show that under the standard, i.e., irreflexive semantics (<), the semantics (Dis),
(Den), (S), and (Non-S) are definable but under the softened semantics, i.e., reflexive (≤) we
only know how to define (Non-S). We treat existence and non-existence of punctual-intervals
as a property of a frame. At first assume that the semantics is irreflexive. As showed in [13],
(Dis) is definable in the language of HS by the formula:

[B]⊥ ∨
(
〈B〉> ∧ [B][B]⊥

)
∨
(
〈B〉
(
〈B〉> ∧ [B][B]⊥

)
∧ 〈E〉

(
〈B〉> ∧ [B][B]⊥

))
;

and (Den) by the formula:

¬
(
〈B〉> ∧ [B][B]⊥

)
.

We show that (S) and (Non-S) are also definable in the language of HS.

I Theorem 1. (S) is definable in the language of HS under irreflexive semantics by:

ϕ<,S := 〈A〉[B]⊥ ∨ [A]¬〈B〉[B]⊥.
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Proof. Fix any HS-frame D. First, assume that D |= ϕ<,S. We will show that the semantics
is strict. Fix any time-point y. To show that [y, y] is not an interval. Fix any x < y and any
HS-modelM based on D. It follows thatM, [x, y] |= ϕ<,S.
(Case 1) M, [x, y] |= 〈A〉[B]⊥. Hence, there is z > y such that M, [y, z] |= [B]⊥. If [y, y]

was an interval, we would haveM, [y, z] 6|= [B]⊥. Hence, [y, y] cannot be an interval.
(Case 2) M, [x, y] |= [A]¬〈B〉[B]⊥. Suppose that [y, y] is an interval, so M, [y, y] |= [B]⊥.

Hence, for any z > y we have [y, z]relB[y, y]. Then M, [x, y] |= [A]〈B〉[B]⊥. Since D
contains an infinite ascending chain, we have reached a contradiction, so [y, y] is not an
interval.

As a result, for any time-point y, [y, y] is not an interval, hence the semantics is strict.
Second, assume that the semantics is non-strict. We will show that D 6|= ϕ<,S. Fix any

punctual-interval [y, y] and any HS-modelM based on D. To show thatM, [y, y] 6|= ϕ<,S,
i.e.,M, [y, y] 6|= 〈A〉[B]⊥ ∨ [A]¬〈B〉[B]⊥.
M, [y, y] 6|= 〈A〉[B]⊥, because an interval [u,w] is in relation relA with [y, y] whenever

u = y and w > y. It follows that w > u, so M, [u,w] 6|= [B]⊥. M, [y, y] 6|= [A]¬〈B〉[B]⊥,
because if z > y then [y, y]relA[y, z], [y, z]relB[y, y], andM, [y, y] |= [B]⊥. J

I Theorem 2. (Non-S) is definable in the language of HS under irreflexive semantics by:

ϕ<,Non-S := [A]¬[B]⊥ ∧ [A]〈B〉[B]⊥.

Proof. Fix any HS-frame D. First, assume that D |= ϕ<,Non-S. To show that the semantics
is non-strict. Fix any time-point y. We will show that [y, y] is an interval. Fix any HS-model
M based on D and x < y. It follows thatM, [x, y] |= ϕ<,Non-S.

From the one hand,M, [x, y] |= [A]¬[B]⊥, hence for any z > y we haveM, [y, z] 6|= [B]⊥.
On the other hand, M, [x, y] |= [A]〈B〉[B]⊥. Fix any w > y. Then M, [y, w] |= 〈B〉[B]⊥.
Hence, for all u such that y < u < w we have M, [y, u] |= 〈B〉[B]⊥, which leads to a
contradiction

Second, assume that the semantics is strict. To show that D 6|= ϕ<,Non-S. Fix any interval
[x, y] and any HS-modelM based on D. To show thatM, [x, y] 6|= ϕ<,Non-S.
(Case 1) y has an immediate >-successor. Let z be the immediate >-successor of y. Then
M, [y, z] |= [B]⊥, soM, [x, y] 6|= [A]¬[B]⊥. HenceM, [x, y] 6|= ϕ<,Non-S.

(Case 2) y does not have an immediate >-successor. Hence, there is no z > y such that
M, [y, z] |= [B]⊥. As a resultM, [x, y] 6|= [A]〈B〉[B]⊥, soM, [x, y] 6|= ϕ<,Non-S. J

Finally, we show that under reflexive semantics HS is expressive enough to define non-strict
semantics.

I Theorem 3. (Non-S) is definable in the language of HS under reflexive semantics by:

ϕ≤,Non-S := [E]p→ 〈A〉p.

Proof. Fix any HS-frame D. First, assume that the semantics is non-strict. To show that
D |= ϕ≤,Non-S. Fix any interval [x, y] and any HS-model M based on D. Assume that
M, [x, y] |= [E]p. It follows thatM, [y, y] |= p. Since [x, y]relA[y, y], we haveM, [x, y] |= 〈A〉p.
It follows that D |= ϕ≤,Non-S.

Second, assume that the semantics is strict. We will show that D 6|= ϕS. Fix any interval
[x, y] and any HS-model M = (D, V ) such that V (p) = {[z, y] | z ≥ x}. To show that
M, [x, y] 6|= ϕ≥,Non-S. By the definition of V it follows that M, [x, y] |= [E]p. However,
M, [x, y] 6|= 〈A〉p, soM, [x, y] 6|= ϕ≥,Non-S. J

TIME 2017
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4 Hybrid Machinery and Additional Operators

In this section we will study whether HS and its Horn fragments are expressive enough
to define hybrid machinery (nominals and satisfaction operators) and the somewhere (E),
difference (D), and universal (A) operators (notice that, following the standard notation,
we use symbols E, D, and A in two meanings, namely as elements of HSrel and as above
mentioned modal operators). The satisfaction relation in an HS-modelM and an interval
[x, y] is defined for E, D, and A as follows:

M, [x, y] |= Eϕ iff there is [x′, y′] ∈ I(D) such thatM, [x′, y′] |= ϕ;
M, [x, y] |= Dϕ iff there is [x′, y′] ∈ I(D) such that

[x′, y′] 6= [x, y] andM, [x′, y′] |= ϕ;
M, [x, y] |= Aϕ iff for all [x′, y′] ∈ I(D) it holds thatM, [x′, y′] |= ϕ;

where ϕ is any HS-formula. Notice that A has the same meaning as [U] occurring in (1).
Hybrid machinery is obtained by enriching the language with the second sort of atoms,

called nominals (we denote the set of all nominals by NOM) and satisfaction operators @i

indexed by nominals. Intuitively, a nominal is a special kind of atom which is satisfied in
exactly one interval, whereas an expression of the form @iϕ is satisfied if ϕ is satisfied in the
interval in which i is satisfied.

Formally, a hybrid HS-modelM is a pair (D, V ), such that V : ATOM→ P (I(D)) assigns
a set of intervals to each atom (ATOM = PROP ∪ NOM) with an additional restriction that
V (i) is a singleton for any i ∈ NOM. The satisfaction relation conditions for nominals and @
operators are as follows:

M, [x, y] |= i iff V (i) = {[x, y]}, for any i ∈ NOM;
M, [x, y] |= @iϕ iff M, [x′, y′] |= ϕ, where V (i) = {[x′, y′]} and i ∈ NOM.

Hybrid extensions of HS fragments were introduced in [17] and their Hasse diagram is depicted
in Figure 1a, where “i” in the superscript of a fragment’s symbol means that an expression
of the form i (for i ∈ NOM) is added to the grammar of positive temporal literals, whereas
“i,@” in the superscript denotes a further extension obtained by adding an expression of the
form @iλ (for i ∈ NOM) to the grammar of positive temporal literals.

Interestingly, it has been shown in [17] that the satisfiability problems in HS�,i,@
horn and in

HS�,i
horn are NP-complete under (<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and

(≤,Den,Non-S) semantics, whereas the satisfiability problem in HS�
horn is known to be P-

complete under these semantics [9, 8]. However, differences in expressive power of HS�
horn,

HS�,i
horn, and HS�,i,@

horn have, thus far, not been investigated.

4.1 The Case of Full Halpern-Shoham Logic
Our aim is to determine if the hybrid machinery is definable in the full HS language, and
whether the choice of semantics affects the answer to this problem. We start by recalling a
general result established in [2], stating that we can eliminate all occurrences of nominals
and @ operators in a hybrid modal logic formula by simulating them using the D operator .

I Theorem 4 (Areces, Blackburn, Marx [2]). There is a polynomial reduction which preserves
satisfaction from any hybrid language enabling unrestricted use of classical propositional
connectives, containing nominals and @ operators, to the fragment without nominals and @
operators but enabling to polynomially define D.
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Theorem 4 holds if there are no restrictions on the use of classical connectives. As noticed in
[2] in the case of HS under irreflexive semantics, i.e., (<,Dis,S), (<,Den,S), (<,Dis,Non-S),
and (<,Den,Non-S), operator the D is definable as follows:

Dϕ :=
∨

R∈HSrel

〈R〉ϕ. (3)

Hence, by Theorem 4 nominals and @ operators are definable in the language of HS under
any irreflexive semantics. However, in the reflexive semantics the definition (3) would not
be correct because it is not the case that relR is irreflexive for any R ∈ HSrel. Nevertheless,
under (≤,Dis,S) and (≤,Den,S) we can define D as follows:

Dϕ := 〈B〉〈B〉〈A〉ϕ ∨ 〈A〉〈B〉〈B〉ϕ ∨ 〈A〉〈E〉〈E〉ϕ ∨ 〈E〉〈E〉〈A〉ϕ. (4)

The key is to observe that under (≤,Dis,S) and (≤,Den,S) if [x, y]relA[x′, y′] then y′ > y.
Moreover, if [x, y]relA[x′, y′] then x′ < x. To describe what formula (4) means let the current
interval be [x, y]. Then (4) states that ϕ holds in some [x′, y′] such that (i) x′ > x, or (ii)
x′ < x, or (iii) y′ > y, or (iv) y′ < y. As a result, (4) states that ϕ holds in some [x′, y′] such
that [x′, y′] 6= [x, y].

Next, we will show that in the remaining semantics, i.e., (≤,Dis,Non-S) and (≤,Den,Non-S)
neither D nor nominals are definable. For this purpose, we will construct a bisimulation (see,
e.g., [4, Chapter 2]), which is a relation between models, which makes them indistinguishable
by any modal formula. We say that HS-modelsM = (D, V ) andM′ = (D′, V ′) are bisimilar
(in symbolsM -M′) if there is a relation (a bisimulation) Z ⊆ I(D)× I(D′), which satisfies
the following conditions:
(atom) For any intervals [x, y], [x′, y′] such that [x, y]Z[x′, y′] it holds thatM, [x, y] |= p iff
M′, [x′, y′] |= p, for any p ∈ PROP;

(zig) If [x, y]Z[x′, y′] and [x, y]relR[u,w], then there exists [u′, w′] (in M′) such that
[x′, y′]relR′[u′, w′] and [u,w]Z[u′, w′], for any R ∈ HSrel;

(zag) If [x, y]Z[x′, y′] and [x′, y′]relR′[u′, w′], then there exists [u,w] (in M) such that
[x, y]relR[u,w] and [u,w]Z[u′, w′], for any R ∈ HSrel.

It is easy to show by induction on an HS-formula construction that HS is invariant for
bisimulation in the following sense.

I Lemma 5. Let M, M′ be any HS-models, and Z a bisimulation between them. For
any intervals [x, y], [x′, y′] if [x, y]Z[x′, y′], then for any HS-formula ϕ the following are
equivalent:
1. M, [x, y] |= ϕ;
2. M′, [x′, y′] |= ϕ.

I Lemma 6. Nominals are not definable in HS under (≤,Dis,Non-S) and (≤,Den,Non-S).

Proof. Fix an HS-modelM = (D, V ) under (≤,Dis,Non-S) or (≤,Den,Non-S) such that in
the case of the former semantics D is Z (i.e., the standard ordering of integers), whereas in
the latter case D is Q (i.e., the standard ordering of rational numbers). Fix a nominal and
towards a contradiction suppose that there is an HS-formula ϕ which under (≤,Dis,Non-S) or
(≤,Den,Non-S) enables us to simulate this nominal. It follows that ϕ is satisfied in exactly
one interval inM, say [a, b].

In what follows, we will construct an HS-model M′ = (D′, V ′) and a bisimulation Z

between M and M′ such that [a, b] is bisimilar with more than one interval. Then, by
Lemma 5, ϕ is satisfied in more than one interval inM′ hence we will obtain a contradiction
with the statement that ϕ simulates a nominal.

TIME 2017
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Figure 3 Bisimulation Z between modelsM andM′.

First, we divide D into areas A1–A6 as follows:

[x, y] ∈ A1 iff (x < a and y < a); [x, y] ∈ A4 iff (x = a and y = a);
[x, y] ∈ A2 iff (x < a and y = a); [x, y] ∈ A5 iff (x = a and y > a);
[x, y] ∈ A3 iff (x < a and y > a); [x, y] ∈ A6 iff (x > a and y > a).

LetM′ = (D′, V ′) be such that D′ = D. Then, we exploit areas A1–A6 to define the intended
bisimulation Z ⊆ I(D)× I(D′) between intervals inM andM′ (see Figure 3) as follows (we
use a standard functional notation below, i.e., Z([x, y]) = {[x′, y′] | [x, y]Z[x′, y′]}):

∀[x, y] ∈ A1 Z([x, y]) = {[x− 1, y − 1]};
∀[x, y] ∈ A2 Z([x, y]) = {[x, y′] | a− 1 ≤ y′ ≤ a};
∀[x, y] ∈ A3 Z([x, y]) = {[x− 1, y]};
∀[x, y] ∈ A4 Z([x, y]) = {[x′, y′] | a− 1 ≤ x′ ≤ a, and a− 1 ≤ y′ ≤ a};
∀[x, y] ∈ A5 Z([x, y]) = {[x′, y] | a− 1 ≤ x′ ≤ a};
∀[x, y] ∈ A6 Z([x, y]) = {[x, y]}.

To finish definingM′ let V ′ be such that for any [x, y] ∈ I(D) and any p ∈ PROP:

[x, y] ∈ V ′(p) iff Z−1[x, y] ∈ V (p).

Let’s check if Z is a bisimulation betweenM andM′. Condition (atom) follows directly from
the definition of V ′. To show that (zig) and (zag) hold for Z, observe that we may restrict the
set of modal operators in the language of HS to 〈R〉 and [R] such that R ∈ {B,B,E,E,A,A}.
Other operators are definable as follows:

〈D〉ϕ := 〈E〉〈B〉ϕ; 〈O〉ϕ := 〈E〉〈B〉ϕ; 〈L〉ϕ := 〈A〉〈E〉ϕ;
〈D〉ϕ := 〈E〉〈B〉ϕ; 〈O〉ϕ := 〈B〉〈E〉ϕ; 〈L〉ϕ := 〈A〉〈B〉ϕ;

where ϕ is any HS-formula and the translation for box modalities is obtained by replacing
〈R〉 with [R] for any R ∈ HSrel in the above definitions. Hence it remains to perform a routine
inspection of all relR such that R ∈ {B,B,E,E,A,A} against (zig) and (zag) conditions. We
leave this inspection to the reader.

Hence, ϕ does not simulate a nominal. It follows that a nominal cannot be defined in HS
under (≤,Dis,Non-S) and (≤,Den,Non-S). J
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Let us summarize the results obtained so far in this subsection.

I Theorem 7. Nominals and @ operators are definable in HS under all semantics except
(≤,Dis,Non-S) and (≤,Den,Non-S) in which even nominals are not definable.

Notice that discreteness/density of a time frame has no influence on definability of the hybrid
machinery in HS. Next, we examine whether expressions of the form Ep, Dp, and Ap, where
p is a propositional variable are definable in HS and if the choice of semantics affects the
answer to this problem.

I Theorem 8. For any p ∈ PROP expressions of the form Ep and Ap are definable in HS
under all semantics. Dp is definable in HS under all semantics except (≤,Dis,Non-S) and
(≤,Den,Non-S).

Proof. Expressions of the form Ep and Ap are definable in HS as follows:

Ep :=〈L〉〈L〉p; (5)
Ap :=[L][L]p. (6)

An expression of the form Dp is definable in HS under (<,Dis,S), (<,Den,S), (<,Dis,Non-S),
and (<,Den,Non-S) by (3), whereas under (≤,Dis,S) and (≤,Den,S) by (4).

To show that Dp is not definable in HS under (≤,Dis,Non-S) and (≤,Den,Non-S) suppose
that Dp is definable in these semantics. Then by Theorem 4 we obtain that nominals are
definable in HS under (≤,Dis,Non-S) and (≤,Den,Non-S). However, by Lemma 6 we know
that it is not the case, so we obtain a contradiction. J

4.2 The Case of Horn Fragments of Halpern-Shoham Logic
In what follows, we show that hybrid machinery is definable in HS♦

horn under all semantics
except (≤,Dis,Non-S) and (≤,Den,Non-S). However, we can no longer use Theorem 4, which
holds if there are no restrictions on the use of classical propositional connectives (¬, ∧, ∨,
→). As a result, we need to conduct the proof exploiting other techniques.

I Lemma 9. Nominals and satisfaction operators are definable in the language of HS♦
horn

under (<,Dis,S), (<,Den,S), (<,Dis,Non-S), (<,Den,Non-S), (≤,Dis,S), and (≤,Den,S).

Proof. Let ϕ be a formula in the language of HS♦,i,@
horn . We show how to construct under

(<,Dis,S), (<,Den,S), (<,Dis,Non-S), (<,Den,Non-S), (≤,Dis,S), and (≤,Den,S) an equisatis-
fiable formula ϕ′ in the language of HS♦

horn of size linear with respect to |ϕ| (where |ϕ| is the
length of ϕ).

We will simulate any nominal i occurring in ϕ with a propositional variable pi. We
introduce a formula ψi expressing that pi is satisfied in exactly one interval. In the case of
any irreflexive semantics define:

ψi :=〈L〉〈L〉pi ∧ (7)
[U](pi ∧ 〈B〉〈E〉〈E〉pi → ⊥) ∧ (8)
[U](pi ∧ 〈E〉〈B〉〈B〉pi → ⊥). (9)

In the case of (Dis,≤,S) and (Den,≤,S) define ψi as:

ψi :=〈L〉〈L〉pi ∧ (10)
[U](pi ∧ 〈A〉〈E〉〈E〉pi → ⊥) ∧ (11)
[U](pi ∧ 〈A〉〈B〉〈B〉pi → ⊥). (12)

TIME 2017
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Under any irreflexive semantics (7) states that pi is satisfied somewhere, (8) expresses that pi
cannot be satisfied in any two intervals [x, y], [x′, y′] such that y′ > y, whereas (9) disallows
pi being satisfied in any two intervals [x, y], [x′, y′] such that x′ < x. Formulas (10)–(12)
have the analogous meaning under (≤,Dis,S) and (≤,Den,S). As a result, (7)–(9) as well as
(10)–(12) enable us to simulate a nominal i with a propositional variable pi.

Importantly, in (≤,Dis,Non-S) and (≤,Den,Non-S) none of the above encodings enable us
to state that pi holds in exactly one interval. (7)–(9) would not work because in reflexive
semantics relE, relE, relB, and relB are reflexive. On the other hand, (10)–(12) would also
fail because under (≤,Dis,Non-S) and (≤,Den,Non-S) relations relA and relA are reflexive
in punctual-intervals, i.e., for any interval of the form [x, x] we have [x, x]relA[x, x], and
[x, x]relA[x, x].

Let ϕ1 be obtained from ϕ by replacing each occurrence of a nominal i (except symbols
of nominals occurring in the index of a satisfaction operator) by a propositional variable
pi and by adding to the obtained formula a conjunction of the form

∧
i∈NOM(ϕ) ψi, where

NOM(ϕ) is a set of nominals occurring in ϕ.
Next, we show how to replace occurrences of satisfaction operators @i in ϕ1 in order to

obtain an equisatisfiable formula in the language of HS♦
horn. The construction is by induction

on the number of @i operators occurring in ϕ1. In each step of the construction choose any
positive temporal literal λ in the so far constructed formula, such that some satisfaction
operator occurs in λ. Find the left-most satisfaction operator occurring in λ, i.e., an operator
@i such that λ = 〈R1〉 . . . 〈Rn〉@iη with 〈R1〉 . . . 〈Rn〉 being a (possibly empty) sequence
of diamond modal operators and η a subformula of λ. Replace this occurrence of @iη by
〈L〉〈L〉p@iη, where p@iη is a fresh propositional variable which did not occur in the so far
constructed formula. Moreover, add to the constructed formula the following conjunction:

[U](pi ∧ η → p@iη) ∧ [U](p@iη → pi) ∧ [U](p@iη → η). (13)

Formula (13) states that p@iη is satisfied exactly in an interval in which pi ∧ η is satisfied.
Hence, 〈L〉〈L〉p@iη – stating that p@iη is satisfied somewhere – is equisatisfiable with @iη.

The construction terminates when all occurrences of satisfaction operators are eliminated
and we denote the finally obtained formula by ϕ′. It is easy to see that ϕ′ is equisatisfiable
with ϕ and, since we have eliminated all occurrences of nominals and satisfaction operators,
ϕ′ is in the language of HS♦

horn. Moreover, the size of ϕ′ is linear in the size of ϕ because
within the construction of ϕ′ for each occurrence of a nominal and a satisfaction operator we
have added only a constant number of symbols to the formula. J

As a corollary to Lemma 6 we obtain that nominals are not definable in HS♦
horn under

(≤,Dis,Non-S) and (≤,Den,Non-S). Hence, we get the following result.

I Theorem 10. Nominals and satisfaction operators are definable in HS♦
horn under all

semantics except (≤,Dis,Non-S) and (≤,Den,Non-S) in which nominals are not definable.

Interestingly, although nominals and satisfaction operators are definable in HS♦
horn (except

(≤,Dis,Non-S) and (≤,Den,Non-S)), we will show now that D is not.

I Theorem 11. For any p ∈ PROP expressions of the form Ep and Ap are definable in
HS♦

horn but Dp is not. This result holds for all semantics.

Proof Sketch. An expression of the form Ep is definable by (5), whereas Ap is definable
as follows: Ap := [U](> → p). To show that an expression of the form Dp is not definable
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Figure 4 Isomorphic HS-modelsM,M′, andM′′.

in HS♦
horn consider HS-models M = (D, V ), M′ = (D′, V ′), and M′′ = (D′′, V ′′) (in any

semantics), where D = (D,≤), D′ = (D′,≤), D′′ = (D′′,≤), and:

V (p) = {[x, y]}; V ′(p) = {[x1, y1]}; V ′′(p) = {[x2, y2]};

where V (q) = V ′(q) = V ′′(q) = ∅ for any propositional variable q 6= p. D′ is an isomorphic
translation by an integer c < 0 (to the left) of D ([x1, y1] is an image of [x, y] with respect to
this translation). Analogously, D′′ is an isomorphic translation by an integer c > 0 (to the
right) of D ([x2, y2] is an image of [x, y] with respect to this translation) – see Figure 4.
Towards a contradiction suppose that there is an HS♦

horn-formula ϕDp expressing Dp. Hence,
M, [x, y] 6|= ϕDp, M′, [x, y] |= ϕDp, and M′′, [x, y] |= ϕDp. We will show that (?) for any
HS♦

horn-formula ϕ ifM′, [x, y] |= ϕ andM′′, [x, y] |= ϕ, thenM, [x, y] |= ϕ which will give
rise to a contradiction and finish the proof.

Let ψ be any conjunct of ϕ. Then ψ is of a form [U](λ1 ∧ . . . ∧ λn → λn+1) or λ, where
λi and λ are generated by the grammar λ := > | ⊥ | r | 〈R〉λ. (Case 1): ψ is of a form
[U](λ1 ∧ . . . ∧ λn → λn+1). Since the formula is preceded by [U] and modelsM,M′, and
M′′ are isomorphic, then ψ is true in all three models or false in all of them, hence (?) holds.
(Case 2): ψ is of the form >, ⊥, 〈R1〉 . . . 〈Rn〉>, 〈R1〉 . . . 〈Rn〉⊥, p, q, or 〈R1〉 . . . 〈Rn〉q, where
q 6= p and Ri ∈ HSrel. Then it is easy to see that (?) holds. (Case 3) ψ = 〈R1〉 . . . 〈Rn〉p for
any R1, . . . ,Rn ∈ HSrel. As showed previously we may consider only Ri ∈ {B,B,E,E,A,A}.
Assume thatM′, [x, y] |= ψ andM′′, [x, y] |= ψ. To show thatM, [x, y] |= ψ it suffices to
prove the following statement:
(??) For any sequence R1, . . . ,Rn of relations from {B,B,E,E,A,A} the following holds:

if for some intervals [x, y], [x′, y′], [x′′, y′′] we have [x, y]relR1 ◦ . . . ◦ relRn [x′, y′] and
[x, y]relR1 ◦ . . . ◦ relRn [x′′, y′′], then for any interval [s, t] such that min(x′, x′′) ≤ s ≤
max(x′, x′′), and min(y′, y′′) ≤ t ≤ max(y′, y′′), and t− s ≥ min(y′−x′, y′′−x′′) it holds
that [x, y]relR1 ◦ . . . ◦ relRn [s, t],

where ◦ is the composition operator and for any interval [x, y] we use “x− y” to denote the
number of time-points between x and y (notice that in the case of a dense frame x− y equals
0 or infinity). Because of space limits we leave the proof of (??) to the reader. The proof may
be conducted by an induction on the number n. Showing that (??) finishes the proof. J

In the remaining part of this subsection we consider expressiveness of HS�
horn. We will

show that under (<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and (≤,Den,Non-S),
HS�

horn is not expressive enough to define the somewhere and difference modalities, as well
as nominals. However, the universal modality is still definable in HS�

horn.

I Theorem 12. Nominals and expressions of the form Ep and Dp for p ∈ PROP are
not definable in HS�

horn under (<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and
(≤,Den,Non-S). Whereas, Ap is definable in HS�

horn under all semantics.

TIME 2017
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Proof. An expression of the form Ap is definable as Ap := [U](> → p). To show that
nominals, Ep, and Dp are not definable under (<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S),
(≤,Den,S), and (≤,Den,Non-S) we will use a result from [8], where under these semantics a
construction of a canonical HS�

horn-model K[a,b]
ϕ of an HS-formula ϕ in an interval [a, b] is

presented. The model is canonical in the following sense [8, Theorem 3.2]:
(a) If in some HS-modelM it holds thatM, [a, b] |= ϕ, then K[a,b]

ϕ , [a, b] |= ϕ, and
(b) For any interval [x, y] and any p ∈ PROP if K[a,b]

ϕ , [x, y] |= p, then in any HS-modelM
such thatM, [a, b] |= ϕ we haveM, [x, y] |= p.

Towards a contradiction let us suppose that nominals, Ep, and Dp are definable in HS�
horn

under (<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and (≤,Den,Non-S). Let ϕ be an
HS�

horn-formula expressing that (i) p ∈ PROP simulates a nominal i, or (ii) Ep, or (iii) Dp.
We will reach a contradiction no matter in which of these forms ϕ is.

Let M = (D, V ) and M′ = (D, V ′) be HS-models such that V (p) = {[x, y]}, V ′(p) =
{[x′, y′]}, and [x, y] 6= [x′, y′]. Let [a, b] be an interval distinct from [x, y] and [x′, y′]. Hence,
M, [a, b] |= ϕ and M′, [a, b] |= ϕ. By (a) K[a,b]

ϕ , [a, b] |= ϕ. From the definition of ϕ –
see (i), (ii), and (iii) – it follows that there is [u,w] such that K[a,b]

ϕ , [u,w] |= p. Then
by (b) we obtain that M, [u,w] |= p and M′, [u,w] |= p. (Case 1): [u,w] 6= [x, y]. Then
M, [u,w] 6|= p. (Case 2): [u,w] 6= [x′, y′]. Then M′, [u,w] 6|= p. We have obtained a
contradiction in both cases, hence nominals, Ep, and Dp are not definable in HS�

horn under
(<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and (≤,Den,Non-S). J

As a corollary to the above theorem we obtain that adding nominals to the language of HS�
horn

(which results in obtaining HS�,i
horn) strictly increases expressive power of the language (in the

listed semantics). In what follows, we will show that the further extension of HS�,i
horn obtained

by adding satisfaction operators (i.e., reaching HS�,i,@
horn ) does not increase its expressiveness

in any semantics.

I Theorem 13. @ operators are definable in the language of HS�,i
horn under all semantics.

Proof. Let ϕ be an HS�,i,@
horn -formula. Construction of an equisatisfiable HS�,i

horn-formula
ϕ′ is by induction on the number of @i operators occurring in ϕ. In each step of the
construction choose any positive temporal literal λ in which occurs a satisfaction operator
and find the left-most satisfaction operator occurring in λ, i.e., an operator @i such that
λ = [R1] . . . [Rn]@iη with [R1] . . . [Rn] being a (possibly empty) sequence of box modal
operators and η a subformula of λ. We replace this occurrence of @iη by [L][L]p@iη, where
p@iη is a fresh propositional variable that did not occur in the so far constructed formula.
Moreover, add to the constructed formula the following conjunction:

[U](i ∧ η → [L][L]p@iη) ∧ [U]([L][L]p@iη ∧ i→ η), (14)

where (14) allows us to simulate @iη with [L][L]p@iη. The construction terminates when all
occurrences of satisfaction operators are eliminated. The resulting formula is in the language
of HS�,i

horn and is equisatisfiable with ϕ. J

5 Conclusions

Recently, decidability and computational complexity of Horn fragments of HS have been
intensively investigated. However, significantly less research has focused on their expressive
power. In this paper we address this gap by showing which semantics are definable in full HS
and which operators (nominals, satisfaction operators, somewhere, difference, and everywhere
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operators) are definable in various Horn fragments of HS. Our results on the relative
expressive power of HS Horn fragments are summarised diagrammatically in Figure 1b.

There are still numerous open problems concerning the expressive power of HS fragments.
For instance, not much is known about the expressive power of core fragments of HS [8, 9],
which are obtained by imposing further restrictions on Horn fragments. In particular, an
interesting open question is whether the expressive power diagram for such fragments is
analogous to the one for Horn fragments presented in Figure 1b.
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A Appendix (proofs)

Proof of Lemma 5. Fix HS-modelsM,M′, a bisimulation Z between them and bisimilar
intervals [x, y], [x′, y′], i.e., intervals such that [x, y]Z[x′, y′]. We show by induction on
a construction of an HS-formula that for any HS-formula ϕ the following conditions are
equivalent:
1. M, [x, y] |= ϕ;
2. M′, [x′, y′] |= ϕ.

(Case 1) ϕ ∈ PROP. By (atom) it follows thatM, [x, y] |= ϕ iffM′, [x′, y′] |= ϕ.
(Case 2) ϕ = ¬ψ for any HS-formula ψ. By the inductive assumption M, [x, y] |= ψ iff
M′, [x′, y′] |= ψ. As a result,M, [x, y] |= ϕ iffM′, [x′, y′] |= ϕ.

(Case 3) ϕ = ψ ∧ ξ for any HS-formulas ψ, ξ. By the inductive assumptionM, [x, y] |= ψ

iff M′, [x′, y′] |= ψ, and M, [x, y] |= ξ iff M′, [x′, y′] |= ξ. Hence, M, [x, y] |= ϕ iff
M′, [x′, y′] |= ϕ.

(Case 4) ϕ = 〈R〉ψ for any R ∈ HSrel and any HS-formula ψ.
(1 ⇒ 2) Assume M, [x, y] |= ϕ. Then, there is [u,w] such that [x, y]relR[u,w] and
M, [u,w] |= ψ. [x, y]Z[x′, y′] so by (zig) there is [u′, w′] such that [x′, y′]relR′[u′, w′] and
[u,w]Z[u′, w′]. Therefore, by the inductive assumptionM′, [u′, w′] |= ψ, soM′, [x′, y′] |=
ϕ.
(1⇐ 2) Is proved analogously as (1⇒ 2) but using (zag) instead of (zig).

(Case 5) ϕ = [R]ψ for any R ∈ HSrel and any HS-formula ψ.
(1 ⇒ 2) Assume M, [x, y] |= ϕ. To show M′, [x′, y′] |= ϕ. Fix any [u′, w′] such that
[x′, y′]relR′[u′, w′]. To show thatM′, [u′, w′] |= ψ. [x, y]Z[x′, y′] so by (zag) there is [u,w]
such that [x, y]relR[u,w] and [u,w]Z[u′, w′]. M, [x, y] |= [R]ψ, soM, [u,w] |= ψ. By the
inductive assumptionM′, [u′, w′] |= ψ, hence we obtainM′, [x′, y′] |= ϕ.
(1⇐ 2) Is proved analogously as (1⇒ 2) but using (zig) instead of (zag). J

Theorem 4 was stated in [2] without a proof. In what follows, we present a proof of this
theorem.

Proof of Theorem 4. Let L be a modal language in which the difference operator D is
polynomially definable. Then, let Lext be an extension of L with nominals and @ operators.
Fix any ϕext ∈ Lext. To prove the theorem we show a polynomial (with respect to the size
of ϕext) translation of ϕext into ϕ ∈ L such that ϕext is satisfiable iff ϕ is.

First, we show that E and A are polynomially definable in L. Indeed, they are defined as:

Eψ := ψ ∨ Dψ;
Aψ := ¬E¬ψ.
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Now, we show a step by step construction of ϕ. For any i occurring in ϕext as an nominal or
an index of some @ operator occurring in ϕext, we introduce a fresh propositional variable
pi (i.e., not occurring in ϕext) such that all pi’s are pairwise different. Then we proceed as
follows.

First, inductively apply the following procedure to ϕext. Let @iψ be any subformula of
ϕext such that ψ does not contain any occurrence of @ operators. Construct ϕ′ by replacing
@iψ with a new variable qk and let:

θk = (Aqk ∨ A¬qk)∧
(Aqk → E(pi ∧ ψ))∧
(A¬qk → A¬ψ) ;

χi = Epi ∧ A(pi → ¬Dpi).

It is easy to see that ϕext is satisfiable iff ϕ′ ∧ θk ∧ χi is. The procedure finishes when no
more @ operators are in the constructed formula. Let ϕ′′ be a conjunction of the finally
constructed formula with all θk’s and all χi’s constructed so far. Obviously, ϕ′′ does not
contain @ operators and ϕext is satisfiable iff ϕ′′ is.

Second, for any nominal j occurring in ϕ′′ replace all its occurrences in ϕ′′ by pj and let

γj = Epj ∧ A(pj → ¬Dpj).

A conjunction of the obtained formula with all γj ’s is the final formula ϕ.
Formula ϕ does not contain @ operators nor nominals, and ϕext is satisfiable iff ϕ is.

Furthermore, the translation of ϕext to ϕ is polynomial. More precisely, it is at most quadratic
in the size of ϕext. J

Completion of the proof of Theorem 11. To finish the proof it remains to prove the fol-
lowing statement:
(??) For any sequence R1, . . . ,Rn of relations from {B,B,E,E,A,A} the following holds:

if for some intervals [x, y], [x′, y′], [x′′, y′′] we have [x, y]relR1 ◦ . . . ◦ relRn [x′, y′] and
[x, y]relR1 ◦ . . . ◦ relRn [x′′, y′′], then for any interval [s, t] such that min(x′, x′′) ≤ s ≤
max(x′, x′′), and min(y′, y′′) ≤ t ≤ max(y′, y′′), and t− s ≥ min(y′−x′, y′′−x′′) it holds
that [x, y]relR1 ◦ . . . ◦ relRn [s, t],

where ◦ is the composition operator and for any interval [x, y] we use “x− y” to denote a
number of time-points between x and y (in the case of dense time frame x− y equals 0 or
infinity).

We will prove (??) by induction on the number n of relations. Let us fix an interval [x, y]
and assume that the statement holds for k relations, i.e., for any R1, . . . ,Rk ∈ {B,B,E,E,A,A}.
Let

X = {[x′, y′] | [x, y]relR1 ◦ . . . ◦ relRk [x′, y′]}.

We will shows that the statement holds for any k + 1 relations, i.e., for any R1, . . . ,Rk+1 ∈
{B,B,E,E,A,A}. Let us fix any Rk+1 ∈ {B,B,E,E,A,A} and define

X ′ = {[x′, y′] | [x, y]relR1 ◦ . . . ◦ relRk+1 [x′, y′]}.

Fix any intervals [x′, y′], [x′′, y′′] ∈ X ′ and any interval [s, t] such that min(x′, x′′) ≤ s ≤
max(x′, x′′) and min(y′, y′′) ≤ t ≤ max(y′, y′′). We need to show that [s, t] ∈ X ′. In what
follows we will assume that the semantics is irreflexive but for any reflexive semantics the
proof is analogous (namely by replacing “<” with “≤” in the remaining part of the proof).
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(Case 1) Rk+1 = B. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relB[x′, y′]
and [u′′, w′′]relB[x′′, y′′]. By the definition of relB it follows that u′ = x′, w′ > y′, u′′ = x′′,
and w′′ > y′′. Let z = max(w′, w′′), then by the inductive assumption we obtain [s, z] ∈ X.
It follows that z > y′ and z > y′′, so z > t. Then [s, z]relB[s, t], so [s, t] ∈ X ′.

(Case 2) Rk+1 = B. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relB[x′, y′]
and [u′′, w′′]relB[x′′, y′′]. By the definition of relB it follows that u′ = x′, w′ < y′, u′′ = x′′,
and w′′ < y′′. Let [s, z] be such an interval that z−s = min(w′−u′, w′′−u′′), then by the
inductive assumption [s, z] ∈ X. Since w′ < y′ and w′′ < y′′, z−s < min(y′−x′, y′′−x′′).
Hence z − s < t− s, so z < t. It follows that [s, z]relB[s, t] and so [s, t] ∈ X ′.

(Case 3) Rk+1 = E. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relE[x′, y′]
and [u′′, w′′]relE[x′′, y′′]. By the definition of relE it follows that u′ < x′, w′ = y′, u′′ < x′′,
and w′′ = y′′. Let z = min(u′, u′′), then by the inductive assumption we obtain [z, t] ∈ X.
It follows that z < x′ and z < x′′, so z < s. Then [z, t]relE[s, t], so [s, t] ∈ X ′.

(Case 4) Rk+1 = E. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relE[x′, y′]
and [u′′, w′′]relE[x′′, y′′]. By the definition of relE it follows that u′ > x′, w′ = y′, u′′ > x′′,
and w′′ = y′′. Let [z, t] be such an interval that t−z = min(w′−u′, w′′−u′′), then by the
inductive assumption [z, t] ∈ X. Since u′ > x′ and u′′ > x′′, t− z < min(y′− x′, y′′− x′′).
Hence t− z < t− s, so s < z. It follows that [z, t]relE[s, t] and so [s, t] ∈ X ′.

(Case 5) Rk+1 = A. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relA[x′, y′]
and [u′′, w′′]relA[x′′, y′′]. By the definition of relA it follows that w′ = x′ and w′′ = x′′.
Let z = min(u′, u′′), then by the inductive assumption we obtain [z, s] ∈ X. Then
[z, s]relA[s, t], so [s, t] ∈ X ′.

(Case 6) Rk+1 = A. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relA[x′, y′]
and [u′′, w′′]relA[x′′, y′′]. By the definition of relA it follows that u′ = y′ and u′′ = y′′.
Let z = max(w′, w′′), then by the inductive assumption we obtain [t, z] ∈ X. Then
[t, z]relA[s, t], so [s, t] ∈ X ′. J
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