
Theoretical Computer Science 404 (2008) 156–169

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On the decidability and complexity of the structural congruence for
beta-bindersI

A. Romanel ∗, C. Priami
CoSBi, Piazza Manci 17, I-38100 Povo, Trento, Italy
Dipartimento di Ingegneria e Scienza dell’Informazione, Università degli Studi di Trento, Via Sommarive 14, I-38100 Povo, Trento, Italy

a r t i c l e i n f o

Keywords:
Process calculi
Structural congruence
Decidability
Complexity

a b s t r a c t

Beta-binders is a recent process calculus developed formodelling and simulating biological
systems. As usual for process calculi, the semantic definition heavily relies on a structural
congruence. The treatment of the structural congruence is essential for implementation.
We present a subset of the calculus for which the structural congruence is decidable and a
subset for which it is also efficiently solvable. The obtained results are a first step towards
implementations.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Systems Biology studies the behaviour and relationships of the elements composing a particular biological system.
Recently, some authors [2] argued that concurrency theory and process calculi [3,4] are useful to specify and simulate
the behaviour of living matter. As a consequence, a number of process calculi have been adapted or newly developed
for applications in systems biology [5–8]. Moreover, there is an increasing interest in new and correct implementation
techniques for this kind of process calculi, in order to allow their execution. In particular, the definition of new computational
models for stochastic process calculi allows to define new methodologies for the implementation of efficient stochastic
simulators for biological processes.

Most of these process calculi are providedwith stochastic extensions (i.e. quantitative information about speed of actions
is provided with systems specifications) and rely on Gillespie’s stochastic simulation [9,10] for analysis, an exact stochastic
simulation algorithm for homogeneous, well-mixed chemical reaction systems. An example is the Biochemical stochastic
π-calculus [5] and its stochastic simulators BioSpi [5] and SPiM [11].

In these implementations each biological entity, composing the system, is seen as a distinct π-calculus process. For
example, if we simulate a biological system composed of 10.000 molecules of the species A and 10.000 molecules of the
species B, these simulators instantiates 20.000 distinct processes.

The interpretation of each biological entity as a single and distinct process is not themost efficient solution to implement
theGillespie approach [9]. Indeed, each simulation step of theGillespie’s algorithm is computed using the actual propensities
of reactions, which are calculated from the reactions rate constants and themultiplicities of the involved species (see [10] for
details). As a consequence, the one-to-one correspondence between biological entities and processes causes an explosion
of processes due to their multiplicities and not to their semantics. In other words, we will have many copies of the same
process to represent the instances of the same biological entities in a given volume.

I Revised and extended version of [C. Priami, A. Romanel, The decidability of the structural congruence for beta-binders, Electron. Notes Theor. Comput.
Sci. 171 (2) (2007) 155–170].
∗ Corresponding author at: CoSBi, Piazza Manci 17, I-38100 Povo, Trento, Italy.

E-mail addresses: romanel@cosbi.eu (A. Romanel), priami@cosbi.eu (C. Priami).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.04.007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82351879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:romanel@cosbi.eu
mailto:priami@cosbi.eu
http://dx.doi.org/10.1016/j.tcs.2008.04.007

A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169 157

Table 1
Free names of pi-processes

f n(nil) = f n(τ) = ∅ f n(x(y).P) = (f n(P) ∪ {x}) \ {y}
f n(P|Q) = f n(P) ∪ f n(Q) f n(x〈y〉.P) = f n(P) ∪ {x, y}
f n((νy)P) = f n(P) \ {y} f n(hide(x).P) = f n(unhide(x).P) = f n(P) ∪ {x}
f n(!P) = f n(P) f n(expose(x,Γ).P) = f n(P) \ {x}

To overcome the multiple copies problem, it makes sense to instantiate objects that represent species and to maintain
for each of this object the information about its multiplicity. We obviously need to establish what a species is and to define
an efficient procedure for determining whether or not a biological entity belongs to a species.

This paper focuses on Beta-binders [8], a process calculus thought from the beginning for biology and introduced to
represent biological interaction mechanisms. In the stochastic extension of Beta-binders, a species is defined as a class of
structural congruent beta-processes. For this reason, with the idea of developing a computational model for Beta-binders
that considers the species, we decided first to develop on the structural congruence of the calculus, in order to establish a
subset for which the structural congruence is decidable and a subset for which its evaluation is also efficiently solvable. For
a more detailed description of how to realize a stochastic abstract machine for Beta-binders using this kind of technique,
we refer the reader to [12].

The remainder of the paper is structured as follows. In Section 2 a short introduction to Beta-binders is reported, along
with the description of some particular normal forms and an overview of the decidability of the structural congruence for the
π-calculus. In Section 3 and Section 4 the proof of the decidability of the structural congruence for Beta-binders is presented.
In Section 5 a generalization of the proof is given and in Section 6 a subset of Beta-binders with efficiently solvable structural
congruence is presented.

All the proofs omitted in this paper can be found in [1].

2. Preliminaries

In this section we briefly review Beta-binders and the most important results regarding the decidability of the structural
congruence for the π-calculus.

2.1. Beta-binders

Beta-binders [8,13] is a process algebra developed for representing the interactions between biological entities. Themain
idea is to encapsulate π-calculus processes into boxes with interaction capabilities, also called beta-processes. Like the π-
calculus also Beta-binders is based on the notion of naming. Thus, we assume the existence of a countably infinite set N
of names (ranged over by lower-case letter). The processes wrapped into boxes, also called pi-processes, are given by the
following context free grammar:

P ::= nil | π.P | P|P | (νy)P | !P
π ::= x〈y〉 | x(y) | τ | expose(x,Γ) | hide(x) | unhide(x).

The syntax of theπ-calculus is enriched by the last three options forπ tomanipulate the interactions sites of the boxes. Beta-
processes are defined as pi-processes prefixed by specialised binders that represent interaction capabilities. An elementary
beta binder has the form β(x,Γ) (active) or βh(x,Γ) (hidden) where the name x is the subject of the beta binder and Γ

represents the type of x. With β̂ we denote either β or βh. A well-formed beta binder (ranged over by B, B1, B′, . . .) is a non-
empty string of elementary beta binders where subjects are all distinct. The function sub(B) returns the set of all the beta
binder subjects in B. Moreover, B∗ denote either a well-formed beta binder or the empty string. The usual definitions of free
names (denoted by f n(−)) is extended in Table 1 by stipulating that expose(x,Γ).P is a binder for x in P. The definitions of
bound names (denoted by bn(−)) and of name substitution are extended consequently.

Beta-processes (ranged over by B, B1, B′, . . .) are generated by the following context free grammar:
B ::= Nil | B[P] | B || B.

The system is either the deadlock beta-process Nil or a parallel composition of boxes B[P]. We denote by P and BB, the
pi-processes and the beta-processes generated by the grammar, respectively. Moreover, we denote by T the set of all the
Beta-binders types. Free and bound names for beta-processes are defined by specifying f n(B[P]) = f n(P)\sub(B).

The structural congruence for Beta-binders is defined through a structural congruence over pi-processes and a structural
congruence over beta-processes.
Definition 1. The structural congruence over pi-processes, denoted by ≡, is the smallest relation which satisfies the laws
in Fig. 1 (group a) and the structural congruence over beta-processes, denoted by ≡, is the smallest relation which satisfies
the laws in Fig. 1 (group b).

Notice that the same symbol is used to denote both congruences. The intended relation is disambiguated by the context
of application. Moreover, as usual two pi-processes P and Q are α-equivalent if Q can be obtained from P by renaming one
or more bound names in P, and vice versa.

158 A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169

Fig. 1. Structural laws for Beta-binders.

Fig. 2. Bipartite graph os(P) of the process P = (νx)(νy)((x〈y〉|!y〈v〉)|(νz)z〈x〉).

In the stochastic extension of Beta-binders [14] the syntax is enriched in order to allow a Gillespie’s stochastic simulation
algorithm implementation. The prefix π.P is replaced by (π, r).P, where r is the single parameter defining an exponential
distribution that drives the stochastic behaviour of the action corresponding to the prefix π.1 Moreover, the classical
replication !P is replaced by the so called guarded replication !π.P. In order to manage this type of replication, the structural
law !P ≡ P | !P is replaced by the law !(π, r).P ≡ (π, r).(P|!(π, r).P).

Notice that for the purpose of this paper we are not interested in the semantic of the language. We refer the reader to
[8,13,14] for a more detailed description of both the qualitative and quantitative version of Beta-binders.

2.2. Normal forms

In [15] two normal forms for π-calculus processes, called webform and super webform, are introduced.
With f n(−) and bn(−) we indicate the usual definitions of free and bound names of π-calculus processes, with guard we

indicate an action not prefixed by other actions and with P ≡α Q we indicate α-equivalent processes.
A process P is fresh if x 6∈ f n(P) whenever (νx) is not in the scope of any guard or replication (called outer restriction) in P,

and every restriction (νx) occurs at most once as outer restriction in P. For each process P there exists a fresh process P′ such
that P′

≡α P. Let P be a fresh process. Let os(P), the outer subterms of P, be the set of occurrences of subterm π.Q and !Q of P
that are not in the scope of any guard or replication. Let or(P), the outer restrictions of P, be the set of names x such that (νx)
is not in the scope of any guard or replication in P and such that x occurs free in some outer subterm of P. Finally, let og(P),
the outer graph of P, be the undirected bipartite graph with nodes os(P) ∪ or(P) and with an edge between R ∈ os(P) and x ∈

or(P) if x ∈ f n(R). Consider the fresh process P = (νx)(νy)((x〈y〉|!y〈v〉)|(νz)z〈x〉). The graph og(P) is shown in Fig. 2.
A process P = (νx1) . . . (νxk)(P1 | · · · | Pm) with k ≥ 0 and m ≥ 1 is a web if: (1) every process Pi is a replication !Q or a

guarded process π.Q; (2) x1, . . . , xk are all distinct (P is fresh); (3) for each xj there exists a process Pi such that xj ∈ f n(Pi); (4)
og(P) is connected. Every replication !P and every guarded process π.P is a web (with k = 0 andm = 1). No web is congruent
to the inactive process nil. A web should be denoted with the set {x1, . . . , xk, P1, . . . , Pm} which lists the names of the outer
restrictions and the outer subterms. A webform of a fresh process P, denoted with wf (P), is the composition of all the webs
(νx1) . . . (νxk)(P1 | · · · | Pm) such that {x1, . . . , xk, P1, . . . , Pm} is a connected component of og(P). If og(P) is the empty graph,
then wf (P) = nil. In [15] (Lemma 3.8) an inductive decidable computation of wf (P) is presented and here reported in Fig. 3.

1 An exponential distribution with rate r is a function F(t) = 1 − e−rt , where t is the time parameter. The parameter r determines the shape of the
curve. The greater the r parameter, the faster F(t) approaches its asymptotic value. The probability of performing an action with parameter r within time t
is F(t) = 1 − e−rt , so r determines the time t needed to obtain a probability near to 1. The exponential density function is f (t) = re−rt .

A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169 159

Fig. 3. Inductive computation of the webform.

The super webform of a fresh process P, denoted with swf(P), is inductively defined in the following way: swf(P) =

wf (subwf(P)) where, by definition, subwf(P) is obtained from P by replacing every outer subterm π.Q of P with π.swf(Q)
and every outer subterm !Q with !swf(Q). See [15] for a more detailed description.

2.3. The decidability of the structural congruence for the π-calculus

The most important results for the decidability of the structural congruence for the π-calculus are those presented by
Engelfriet in [16] and by Engelfriet and Gelsema in [17–19,15]. They consider the syntax of the small π-calculus (presented
in [20]) and the congruences over the set of processes generated by a subcollection of the structural laws presented in Fig. 4
(where, for our purpose, we add the congruence ≡

min). The standard structural congruence, defined in [16,17] and denoted
with≡

std, is determined by the laws (α), (1.1), (1.2), (1.3), (2.1), (2.2), (2.3) and (3.1). In [18], themiddle congruence, denoted
with ≡

md, was introduced to give a different view of the treatment of replication. The decidability of the middle congruence
was shown in [19]. They reduce it to the decidability of extended structural congruence, denoted with ≡

ext, that was shown
in [17]. In [15], instead,was shown the decidability of the replication free congruence, denotedwith≡

!fr, and the decidability
of the standard congruence for the subclass of replication restricted processes. Formally, a process P is replication restricted
if for every subterm !R of P and every (νx) that covers !R in P, if x ∈ f n(R), then x ∈ f n(S) for every component S of R where
with component we mean a web. The decidability of the structural congruence for this subclass of processes is reduced to
the problem of solving certain systems of linear equations with coefficients in N.

3. Structural congruence over beta-processes

The structural laws for Beta-binders, presented in Fig. 1, are divided in two groups: the laws for pi-processes (group a)
and the laws for beta-processes (group b). From law b.1 it turns out that the decidability of the structural congruence over
pi-processes is a necessary condition for the decidability of the structural congruence over beta-processes.

The congruences that we consider in this paper are ≡
min
bb and ≡

std
bb . Congruence ≡

min
bb is generated by the structural laws

of group a and the laws b.1, b.5 and b.6. Congruence ≡
std
bb is generated by all the structural laws of group a and group b.

First, we prove the decidability of the congruence ≡
min
bb making some assumptions: (1) we restrict the well-formedness

definition by assuming that a well-formed beta binder (ranged over by B, B1, B′, . . .) is a non-empty string of elementary
beta binders where subjects and types are all distinct; (2) we assume that the structural congruence over pi-processes is
decidable, and therefore we assume that there exists a function PIstd : P × P → {true, false} that accepts two pi-processes
as parameters and returns true if the pi-processes are structural congruent, and returns false otherwise; (3) we assume that
the types of the beta binders are defined over algebraic structures with decidable and efficiently solvable equality relation,
and therefore we assume that there exists a function Equal : Γ × ∆ → {true, false} that accepts two types as parameters
and returns true if the types are equal, and returns false otherwise. We then prove the decidability of the congruence ≡

std
bb

always under the previous assumptions. Finally, we will analyze in detail the decidability of the structural congruence over
pi-processes.

We consider two beta-processes B[P] and B′
[P′

]. We notice that the laws of group b related to the congruence ≡
min
bb only

refers to the structure of the beta binders lists B and B′. In fact, the two lists are considered congruent only if they are equal
(law b.1), or if B is a permutation of B′ that satisfies the laws b.5 and b.6.

For this reason the decidability of the congruence ≡
min
bb can be described through a function BBmin : B[P] × B[P] →

{true, false} defined by induction on the structure of beta-processes (Table 2).

160 A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169

Fig. 4. Structural laws for the π-calculus.

Table 2
Definition of function BBmin

BBmin(ε[P], ε[P′
]) = PIstd(P, P

′)

BBmin(ε[P],B′
[P′

]) = BBmin(B[P], ε[P′
]) = false

BBmin(β̂(x : Γ)B∗
[P],B′

[P′
]) =

BBmin(B∗

[P{z/x}],B∗
1B

∗
2[P′

{z/y}]) if (1)
BBmin(B∗

[P],B∗
1B

∗
2[P′

]) if (2)
false o.w.

(1) B′
= B∗

1β̂(y : ∆)B∗
2 with (Equal(Γ,∆) = true) and (x 6= y)

and z 6∈ (f n(P) ∪ f n(P′) ∪ sub(B∗) ∪ sub(B∗
1B

∗
2))

(2) B′
= B∗

1β̂(x : ∆)B∗
2 with Equal(Γ,∆) = true

If the lists B and B′ are not empty, then there are three different cases: (1) if a type correspondence between the first
beta binders β̂(x : Γ) of B and one beta binder β̂(y : ∆) of B′ such that (x 6= y) exists, then the function BBmin is recursively
invoked on the beta-processes B1[P{z/x}] and B2[P′

{z/y}], where z 6∈ f n(P) ∪ f n(P′) ∪ sub(B1) ∪ sub(B2), B1 is obtained from B
deleting the beta binder β̂(x : Γ) and B2 is obtained from B′ deleting the beta binder β̂(y : ∆); (2) if the first beta binder of
the list B is equal to one beta binder of the list B′, then the function BBmin is recursively invoked on the beta-processes B1[P]
and B2[P′

], where B1 and B2 are respectively obtained from B and B′ deleting the equal beta binders; (3) if no correspondence
between the first beta binder of B and one beta binder of B′ exists, then the function returns false.

If only one of the beta binders lists B and B′ is empty, then the function returns false.
If both B and B′ are empty, then the function PIstd is invoked on the pi-processes P and P′. In this case the function BBmin

returns the result of PIstd(P, P′).
We notice that the decidability of the structural congruence over pi-processes is not only necessary condition but also

sufficient condition for the decidability of the congruence ≡
min
bb .

Nowwe analyze the congruence ≡
std
bb . The law b.2 regards parallelization with the inactive beta-process Nil and the laws

b.3 and b.4 are associativity and commutativity rules. The decidability of the congruence ≡
std
bb can be described through

a function BBstd : B × B → {true, false} defined by induction on the structure of beta-processes in Table 3, where if
B′

= B1|| · · · ||Bn and n = 1 then B′ is a box or the inactive beta-process Nil. The function Remove : B[P] × B → B is defined in
Table 4.

If B and B′ are composed of a different number of boxes, then they are not congruent and the function BBstd returns false.
If there exists a bijection between the boxes Bi[Pi] of B and the boxes B′

j[P
′

j] of B′ such that for each correspondence it is
Bi[Pi] ≡

min
bb B′

j[P
′

j], then the two beta-processes are congruent and the function returns true. Otherwise the function returns
false.

Lemma 2. The decidability of the structural congruence over pi-processes is a necessary and sufficient condition for the
decidability of the structural congruence over beta-processes.

A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169 161

Table 3
Definition of function BBstd

BBstd(Nil, B
′) =

{
false if (1)
true o.w.

BBstd(B1[P1], B′) =

{
BBstd(Nil, Remove(B′′

[P′′
], B′)) if (2)

false o.w.

BBstd(B1[P1] || B, B′) =

{
BBstd(B, Remove(B′′

[P′′
], B′)) if (2)

false o.w.

BBstd(Nil || B, B
′) = BBstd(B, B

′)

(1) ∃ j, n ∈ N+ with (B′
= B1|| · · · ||Bn) and (j ≤ n) and (Bj = B′′

[P′′
])

(2) ∃ j, n ∈ N+ with (B′
= B1|| · · · ||Bn) and (j ≤ n) and (Bj = B′′

[P′′
])

and (BBmin(B1[P1],B′′
[P′′

]) = true)

Table 4
Definition of function Remove

Remove(B[P],Nil) = Nil

Remove(B[P],B′
[P′

]) =

{
Nil if B′

[P′
] = B[P]

B′
[P′

] o.w.

Remove(B[P], B1||B′) =

{
B′ if (1)
B1 || Remove(B[P], B′) o.w.

(1) (B1 = B′′
[P′′

]) and (B′′
[P′′

] = B[P])

Fig. 5. Structural laws for the small π-calculus with guarded replication.

4. Structural congruence over pi-processes

The results on which we base part of our work are those obtained from Engelfriet and Gelsema in [15] and reported in
Section 2.3. In fact, the decidability of the structural congruence over beta-processes strongly depends on the structural
congruence over pi-processes. Moreover, the pi-processes are small pi-Calculus processes with an extended set of actions,
and the structural laws for the structural congruence over pi-processes are the same ones for the structural congruence over
small pi-Calculus processes. Thereafter, the results presented in [15] for the standard congruence ≡

std and the replication
free congruence ≡

!fr can also be used in this context because they do not depend on the specific types of actions contained
in the processes.

Lemma 3. The congruences≡
std
bb and≡

min
bb are decidable for the subclass of beta-processeswith replication restricted pi-processes.

We notice that this result is valid for the qualitative version of Beta-binders. Now consider the stochastic extension of Beta-
binders. The classical replication is replaced with the guarded replication and hence the syntax and the structural laws for
pi-processes are modified substituting respectively !P with !π.P and !P ≡ P | !P with !π.P ≡ π.(P | !π.P).2 The Fig. 5 shows the
congruences over guarded replication pi-processes that we will consider in the remainder of the paper.

A process that only uses guarded replication is, by definition, replication restricted. Therefore, the standard structural
congruence over guarded replication pi-processes is decidable. More precisely, this result is valid if we consider the
replication structural law !P ≡ P | !P, whereas it must be proved if we consider the replication structural law !π.P ≡

π.(P | !π.P).

2 For simplicity in the remainder of the paper we omit the rate r in the prefixes because not important for our purpose.

162 A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169

Table 5
Definition of function Impl

Impl(nil) = nil Impl(P0|P1) = Impl(P0) | Impl(P1)

Impl(!π.P′) =!Impl(π.P′) Impl(π.P′) =

{
!π.Q if (1)
π.Impl(P′) o.w.

Impl((νx)P′) = (νx)Impl(P′)

(1) ∃ j, n ∈ N+ s.t. Impl(P′) = P1 | · · · | Pn and 1 ≤ j ≤ n and Pj =!π′.R

and Q = RemovePI(Pj, Impl(P′)) and π.Q ≡
!fr π′.R

Table 6
Definition of function RemovePI

RemovePI(P, P′) =

P1 if (P′

= P0 | P1) ∧ (P0 = P)
P0 | RemovePI(P, P1) if (P′

= P0 | P1) ∧ (P0 6= P)
nil if (1)
P′ o.w.

(1) ((P′
= nil) or (P′

= π.R) or (P′
=!π.R) or (P′

= (νx)R)) and (P = P′)

Fig. 6. Example of application of the function Impl: (a) Syntax tree of a pi-process P = x(a).(z(d).nil|!x(a).(!y(b).nil|z(c).nil)|y(b).!y(e).nil); (b) Syntax tree of
the pi-process Impl(P).

In this paper we want to face the problem of decidability of structural congruence for guarded replication pi-processes
from another point of view. In particular, we will consider the structure of pi-processes that only use guarded replication. In
[15], themain difficulty in showing the decidability of≡std for replication restricted processes is the treatment of replication,
which allows a process to grow indefinitely and without particular structure in its number of subterms. A process that uses
guarded replication, instead, allows a process to grow indefinitely in its number of subterms maintaining structure.
Given a generic pi-process P, this characteristic allows us to define a function that recognizes and eliminates all the expanded
replication in P.

This function, that we call Impl, is defined by induction in Table 5, where if Impl(P′) = P1 | · · · | Pn and n = 1 then Impl(P′)
is in the form nil, π.R, !π.R, or (νx)R. The function RemovePI : P × P → P is defined in Table 6. Since the processes have
finite length the function Impl ends.

Let P be a pi-process. Impl(P) propagates Impl recursively to all the subterms of P. For each subterm of the form π.P′, the
function controls if the recursive invocation Impl(P′) results in a pi-process of the form P1 | · · · | Pn such that there exists
j ∈ {1, . . . , n} where Pj =!π′.R, Q = RemovePI(Pj, Impl(P′)) and π.Q ≡

!fr π′.R. If it is the case, this means that the subterm
π.P′ corresponds to a replication expansion and hence π.P′ can be substituted with the imploded pi-process π.Q . Obviously,
the complexity of the control depends on the number of parallel components of Impl(P’) and on the complexity of ≡

!fr
e . In

particular, note that if the congruence ≡
!fr
e is efficiently solvable, then also the function Impl is efficiently solvable, i.e., the

complexity is polynomial in the size of the passed pi-process.
An example of how the function Impl works is presented in Fig. 6. In particular, given the process (Fig. 6a)

P = x(a).(z(d).nil|!x(a).(!y(b).nil|z(c).nil)|y(b).!y(e).nil),

the function recognizes that the subprocess y(b).!y(e).nil is a one level expansion of the pi-process !y(e).nil and compresses
it. Then, the function recognizes that the whole pi-process is a one level expansion of the pi-process !x(a).(!y(b).nil|z(c).nil)
and returns this final pi-process (Fig. 6b), that does not contain expanded guarded replication.

Lemma 4. Let P be a pi-process that only uses guarded replication. Then Impl(P) ≡
std P.

A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169 163

Fig. 7. Binary parallel composition transformation.

Fig. 8. Restriction sequences transformation.

Fig. 9. Output node transformation.

Now consider the subclass of guarded replication pi-processes that does not contain expanded replications. We call this
subclass Prp.

Lemma 5. Let P and Q be pi-processes belonging to Prp. Then P ≡
std Q iff P ≡

!fr Q .

Lemma 6. Let P and Q be guarded replication pi-processes. Then P ≡
std Q iff Impl(P) ≡

!fr Impl(Q).

We notice that the function Impl is intrinsically based on the congruence relation ≡
!fr. So, we can assert that there exists

a procedure that allows to verify the standard congruence over guarded replication pi-processes using only the laws of
the replication free congruence. Therefore, this procedure is effectively decidable only if the replication free congruence is
decidable. In [15] (Theorem 3.10) Engelfriet proves that

P ≡
!fr Q ⇐⇒ swf(P) ≡α swf(Q)

where, due to some initial conventions, with ≡α he means ≡
min. To show in a more intuitive way that ≡

!fr is decidable, we
prove that the problem P ≡

min Q is equivalent to an isomorphism problem over labelled directed acyclic graphs (lDAGs),
that we know to be a decidable problem.

Let P be a pi-process. We define a procedure that permits to construct the lDAG, denoted with GS(P), that we will use in
the next proof.

Definition 7. Let P be a pi-process. The graph GS(P) is built from the syntax tree of P applying the following transformations:

(1) the multiple composition of binary parallels are replaced with a unique n-ary parallel (Fig. 7);
(2) the restriction sequences are transformed as shown in Fig. 8;
(3) the output nodes, that have label x〈n〉, are replaced with a sequence of two nodes where the first has label x and the

second has label 〈n〉 (Fig. 9);
(4) An edge is added from each node that contains a binding occurrence for a name to all the nodes that contain names

bound to this occurrence (Fig. 10);
(5) Every name that binds something is replaced with 0 and every bound name is replaced with 1.

Without loss of generality we assume that 0 and 1 do not belong to the set of names N .
The GS graph can be built in polynomial time and is essential for the treatment of theα-conversion and the commutativity

of restrictions. Let P = (νx)(νy)(a(x).nil | y(z).b〈z〉.x〈m〉.nil). Fig. 11 shows the building procedure of the graph GS(P). With ∼=

with denote the classical isomorphism relation between lDAGs,where the isomorphism is a bijection of nodes thatmaintains
labels and adjacency properties.

164 A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169

Fig. 10. Edge addition. Notice that there is no edge between the restriction (νx) and the node x(m).

Fig. 11. Transformation of the syntax tree of the pi-process P = (νx)(νy)(a(x).nil | y(z).b〈z〉.x〈m〉.nil) in GS(P). In (a) it is shown the syntax tree of P. In (b) it
is shown the application of the transformations 1, 2, 3 and 4. In (c) the transformation is completed.

Lemma 8. Let P and Q be pi-processes. Then P ≡
min Q iff GS(P) ∼= GS(Q).

Proof. Let R be a pi-process. Then the nodes of the graph GS(R) = (VR, ER) are enumerated with a pre-order starting from
the root of the cover tree of the graph, without considering the added edges (Fig. 12). (⇒) We assume by hypothesis that
P ≡

min Q . This means that P is obtainable from Q (and vice versa) by applying, in Q , a sequence r1, . . . , rn of structural laws.
We denote with Qi the pi-processes obtained from Q = Q0 by applying the rules r1, . . . , ri. Moreover, we assume that ri
supplies the information about where to apply the law in Qi−1. The construction of an isomorphism φi between GS(Qi−1) and
GS(Qi) depends on the structural law ri applied. We have three cases: (1) Suppose that Qi is obtained from Qi−1 by applying
the law (2.1) on a subterm (νx)(νy)Q ′ of Qi−1. Therefore, the only difference between Qi−1 and Qi is that in Qi the subterm
(νx)(νy)Q ′ appears in the form (νy)(νx)Q ′. Let n1 and n2 be the nodes in GS(Qi−1) that represent the restrictions (νx) and
(νy), respectively, of the subterm (νx)(νy)Q ′. In the graph Qi the representation is inverted. In fact, n1 represents (νy) while
n2 represents (νx). Let φi be the mapping between the nodes of GS(Qi−1) and GS(Qi) such that for each node n ∈ VQi−1 with
n 6∈ {n1, n2} is φi(n) = n and such that φi(n1) = n2 and φi(n2) = n1. φi is an isomorphism because, for the GS construction,
the nodes n ∈ VQi−1 and φi(n) ∈ VQi have the same labels and for each edge (n, n′) ∈ EQi−1 it is (φi(n),φi(n′)) ∈ EQi .
(2) Suppose that Qi is obtained from Qi−1 by applying the law (1.2) on a subterm Q ′

|Q ′′ of Qi−1. Thereafter, the only difference
between Qi−1 and Qi is that in Qi the subterm Q ′

|Q ′′ appears in the form Q ′′
|Q ′. Let n0 and n1 be the nodes in GS(Qi−1)

that represent the root node of the subgraph GS(Q ′) and the root node of the subgraph GS(Q ′′), respectively. In GS(Qi) the
representation is inverted. In fact, n1 represents the root node of the subgraph GS(Q ′′) while n2 represents the root node of
the subgraph GS(Q ′). Let φi be the mapping between the nodes of GS(Qi−1) and GS(Qi) such that for each node n ∈ VQi−1 , with
n 6∈ {GS(Q ′),GS(Q ′′)}, it is φi(n) = n and such that for each node n1 + k, with k ≥ 0 and n1 + k ∈ GS(Q ′), and for each node
n2 + j, with j ≥ 0 and n2 + j ∈ GS(Q ′′), it is φi(n1 + k) = n2 + k and φi(n2 + j) = n1 + j. Also in this case φi is an isomorphism
because, for the GS construction, the nodes n ∈ VQi−1 and φi(n) ∈ VQi have the same labels and for each edge (n, n′) ∈ EQi−1 it
is (φi(n),φi(n′)) ∈ EQi .
(3) If Qi is obtained from Qi−1 by applying α-conversion or the law (1.3) then the isomorphism φi is the identity id because,
for the GS construction, the graphs GS(Qi−1) and GS(Qi) are equal.

The composition φ1 ◦ · · · ◦ φn is an isomorphism because the isomorphism relation is closed under composition and
precisely it is the isomorphism between GS(Q) and GS(P) we wanted.
(⇐) Let P and Q pi-processes such that GS(P) ∼= GS(Q). We prove the implication by contradiction assuming that P 6≡

min Q .
The proof is by induction on the structure of the processes P and Q .

A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169 165

Fig. 12. Example of graph node enumeration. The double lined arrows show the cover tree of the graph. The dotted arrows represent the added edges that
we do not consider.

(Induction base) Let P = nil. Since P 6≡
min Q then Q 6= nil and obviously GS(P) 6∼= GS(Q). (Case P = x(y).R) if Q 6= x(y).S then

GS(P) 6∼= GS(Q) because in Q , by the graph GS construction, does not exists a node with the label and adjacency properties
of the node that represent x(y) in P. Otherwise, if Q = x(y).S we have that R 6≡

min S. By inductive hypothesis we obtain
that GS(R) 6∼= GS(S) and since for each isomorphism the node that represent x(y) in P should be mapped into the node
that represent x(y) in Q , it turns out that a total mapping does not exists and hence GS(P) 6∼= GS(Q). (Case P = x〈y〉.R and
P =!π.R) Similar to the previous case. (Case P = R1 | · · · | Rn) Let P = R1 | · · · | Rn (we intend all the processes in a form like
(· · · ((R1 | R2) | R3) | · · · | Rn)) such that Ri is not a parallel composition. IfQ 6= S1 | · · · | Sn (with Si be not a parallel composition)
then, by the graph GS construction, GS(P) 6∼= GS(Q). Otherwise, we have that ∃Ri such that ∀Sj it is Ri 6≡

min Sj and therefore,
by inductive hypothesis, ∀Sj it is GS(Ri) 6∼= GS(Sj). Since all the subgraphs Ri in P and Sj in Q are disjunct we obtain that
GS(P) 6∼= GS(Q). (Case P = (νx1) · · · (νxn)R) Let P = (νx1) · · · (νxn)R (with R not in the form (νx)R′). if Q 6= (νy1) · · · (νyn)S (with
S not in the form (νy)S′) then, by the graph GS construction, GS(P) 6∼= GS(Q). Otherwise, we have that for each permutation
of restrictions (νy1) · · · (νyn) and α-conversion it is Q = (νx1) · · · (νxn)T with T 6≡

min R and thus, by inductive hypothesis,
GS(R) 6∼= GS(T). Since, by the graph GS construction, the nodes that represents (νx1) · · · (νxn) should bemapped into the nodes
that represents (νy1) · · · (νyn) we have that GS(P) 6∼= GS(Q).

This contradict the assumption that GS(P) ∼= GS(Q) and therefore the implication is valid. �

The lDAG isomorphism problem [21,22] is placed in the complexity class GI, which contains all the problems equivalent to
the general graph isomorphism problem. The class GI is a particular complexity class. In fact, no polynomially resolution
algorithm for the problems in GI has been still found and it is not known if they are or not NP-complete. However, the
congruence ≡

min is decidable.

Theorem 9. Let P and Q be guarded replication pi-processes. Then the evaluation of P ≡
std Q is decidable.

Proof. Using the Lemma 6, the Theorem 3.10 in [15] and the Lemma 8 we have that

P ≡
std Q

⇐⇒

Impl(P) ≡
!fr Impl(Q)

⇐⇒

swf(Impl(P)) ≡
min swf(Impl(Q))

⇐⇒

GS(swf(Impl(P))) ∼= GS(swf(Impl(Q)))

and therefore, for transitivity, we can conclude that

P ≡
std Q ⇐⇒ GS(swf(Impl(P))) ∼= GS(swf(Impl(Q)))

where GS(swf(Impl(P))) ∼= GS(swf(Impl(Q))) is a decidable problem. �

Corollary 10. Let B[P] and B′
[P′

] be boxes where P and P′ are guarded replication pi-processes. Then the evaluation of B[P] ≡
min
bb

B′
[P] is decidable.

Corollary 11. Let B and B′ be beta-processes composed by boxes with guarded replication pi-processes. Then the evaluation of
B ≡

std
bb B′ is decidable.

5. Generalization

Although we think that the restricted beta binder well-formedness definition, presented in Section 3, gives enough
expressive power, in this section we briefly show that the congruence ≡

min
bb for the stochastic semantics of Beta-binders

is decidable also considering the classical well-formedness definition, given in Section 2.

166 A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169

Fig. 13. lDAG GS for the box β(x : Γ)βh(y : ∆)[(νz)(x(a).z(a).nil | y(b).b〈m〉.nil)].

Let B[P] and B′
[P′

] be boxes where P and P′ are guarded replication pi-processes. Moreover, let L be the set of the
possible labels generated by the GS construction.We assume the existence of an injective, decidable and polynomial function
J K : β̂ × T → S where S is a set of strings such that 0 6∈ S and S ∩ L = ∅. For deciding B[P] ≡

min
bb B′

[P′
] we construct the

lDAGs GS(Q) and GS(Q ′), where Q = swf(Impl(P)) and Q ′
= swf(Impl(P′)), we interpret the beta binders lists B and B′ as a set

of top level restrictions and we put them on the top of the constructed lDAGs, modifying the bound nodes as described in
Definition 7. The only difference is that a node that represents an elementary beta binder β̂(x : Γ) is labelled with the result
of the function Jβ̂,Γ K instead of 0. We call the obtained graphs GS(B[Q]) and GS(B′

[Q ′
]). In Fig. 13 an example is given.

The GS graphs can be built in polynomial time and since the graphs GS(B[Q]) and GS(B′
[Q ′

]) differ from GS(Q) and GS(Q ′)
only in the number and labels of nodes that represent restrictions, the Lemma 8 continues to hold and thus we have that:

Corollary 12. Let B[P] and B′
[P′

] be boxes where P and P′ are guarded replication pi-processes. Then B[P] ≡
min
bb B′

[P′
] iff

GS(B[Q]) ∼= GS(B′
[Q ′

]), where Q = swf(Impl(P)) and Q ′
= swf(Impl(P′)).

The function BBstd and the Corollaries 10 and 11 can be simply redefined considering the graph GS construction.

6. An efficient subset of the calculus

In this section we introduce a subset of Beta-binders, that we call BBe, for which the structural congruence is not
only decidable, but also efficiently solvable. In general, this subset is obtained by removing the restriction operator and
considering the well-formedness definition for beta binder lists introduced in Section 3.

The syntax of BBe is given by the following context-free grammar:

P ::= nil | π.P | P|P | !π.P
π ::= x〈y〉 | x(y) | τ | expose(x,Γ) | hide(x) | unhide(x)
B ::= β(x : ∆) | βh(x : ∆) | β(x : ∆)B | βh(x : ∆)B
B ::= Nil | B||B | B[P].

We denote with P e the subset of pi-processes generated by this grammar. Obviously P e
⊂ P .

Definition 13. The structural congruence over pi-processes in P e, denoted by ≡, is the smallest relation which satisfies the
laws in Fig. 1 (group a) and the structural congruence over beta-processes in BBe, denoted by ≡, is the smallest relation
which satisfies the laws in Fig. 1 (group b).

We denote with ≡
std
bbe the congruence relation generated by all the structural laws reported in Fig. 14 and with ≡

min
bbe the

one generated by the laws of the group a and the laws (b.1), (b.5) and (b.6). Moreover, we denote with ≡
std
e the congruence

relation generated by the structural laws of the group a, with ≡
!fr
e the one generated by the structural laws (a.1), (a.2), (a.3)

and (a.4), and with ≡
min
e the one generated by the laws (a.2) and (a.3).

Since BBe
⊂ BB, we can use all the functions and results presented in Section 3 and Section 4. To avoid confusion,

when we consider a function previously defined, we modify it by substituting all the used congruence relations with the
current corresponding one (i.e. ≡!fr is substituted with ≡

!fr
e). Thus, by using the results obtained in Section 3 and Section 4

we have that:

Lemma 14. The decidability of the structural congruence over pi-processes in P e is a necessary and sufficient condition for the
decidability of the structural congruence over beta-processes in BBe.

Lemma 15. Let P and Q be pi-processes in P e. Then P ≡
std
e Q if and only if Impl(P) ≡

!fr
e Impl(Q).

A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169 167

Fig. 14. Structural laws for BBe .

Table 7
Definition of function nl

nl(nil, n) = nil nl(x(z).P, n) = x(n).nl(P{n/z}, n + 1)
nl(!x〈z〉.P, n) =!x〈z〉.nl(P, n) nl(P0 | P1, n) = nl(P0, n) | nl(P1, n)
nl(x〈z〉.P, n) = x〈z〉.nl(P, n) nl(!x(z).P, n) =!x(n).nl(P{n/z}, n + 1)
nl(nil | P, n) = nl(P, n) nl(hide(x).P, n) = hide(x).nl(P, n)
nl(τ.P, n) = τ.nl(P, n) nl(expose(x).P, n) = expose(n).nl(P{n/x}, n + 1)
nl(P | nil, n) = nl(P, n) nl(unhide(x).P, n) = unhide(x).nl(P, n)

For showing that ≡
std
e for beta-processes in BBe is efficiently solvable, we have only to show that ≡

std
e for pi-processes in

P e is efficiently solvable. For doing this, we prove that the problem P ≡
std
e Q could be reduced to an isomorphism problem

over labeled trees, that we know to be a decidable and efficiently solvable problem [21].
Let P be a pi-process in P e. We first define a function nl : P × N → P , based on the De Bruijs indices approach [23],

that receives as parameters a pi-process P and a natural number n and returns a pi-process where all the bound names are
substituted with an in-deep indexing starting from n, and where all the parallelizations with nil pi-processes are eliminated.
The function is defined by induction on the structure of pi-processes in Table 7.

In Fig. 15 an example is given. The function nl has linear complexity in the length of the passed pi-process and it is easy
to see that nl(P, n) ≡

!fr
e P and that P ≡α Q implies nl(P, n) = nl(Q, n) and nl(P, n) ≡α nl(Q,m), where n,m ∈ N and n 6= m.

Lemma 16. Let P and Q be pi-processes in P e. Then P ≡
!fr
e Q if and only if nl(P, n) ≡

min
e nl(Q, n).

Proof. (⇒) Since nl(P, n) ≡
!fr
e P ≡

!fr
e Q ≡

!fr
e nl(Q, n) we obtain that nl(P, n) ≡

!fr nl(Q, n). To show this implication we
prove that in nl(P, n) ≡

!fr nl(Q, n) the laws (a.1) and (a.2) are never used. Assume that nl(P, n) is obtainable from nl(Q, n)
by applying, for some subterm of nl(Q, n), one of the following laws: (a.2) This means that one of the two processes has
a subterm in the form R | nil. But this is a contradiction, because by definition of the function nl this subterm in nl(P, n) or
nl(Q, n) does not exists; (a.1) This means that nl(P, n) 6= nl(Q, n) and, precisely, that they differ in a subset of their bound
names. Since P ≡α nl(P, n) and Q ≡α nl(Q, n), we have by transitivity that P ≡α Q . But this implies nl(P, n) = nl(Q, n), and
thus we have a contradiction.

For these reasons, the laws (a.1) and (a.2) are never used and the implication is true.
(⇐) Since the structural laws of congruence ≡

min
e are a subset of the structural laws of congruence ≡

!fr
e , by transitivity

P ≡
!fr
e nl(P, n) ≡

min
e nl(Q, n) ≡

!fr
e Q implies P ≡

!fr
e Q . �

We now define a polynomial procedure that to construct a class of trees that we will use in the next proof.

Definition 17. Let P be a pi-process. The tree TS(P) is built from the syntax tree of P by replacing the multiple composition
of binary parallels with a unique n-ary parallel (Fig. 7).

With w we denote the classical isomorphism relation between labeled trees, where the isomorphism is a bijection of
nodes that maintains label and adjacency properties.

Lemma 18. Let P and Q be pi-processes in P e. Then P ≡
min
e Q if and only if TS(P) w TS(Q).

Proof. Let R be a pi-process in P e. The nodes of the tree TS(R) are enumerated with a pre-order.
(⇒) We assume by hypothesis that P ≡

min
e Q . This means that P is obtainable from Q (and vice versa) by applying, in Q , a

sequence r1, . . . , rn of structural laws. Like in Section 4,we denotewithQi the pi-processes obtained fromQ = Q0 by applying
the rules r1, . . . , ri and we assume that ri supplies the information about where to apply the law in Qi−1. The construction of
an isomorphism φi between GS(Qi−1) and GS(Qi) depends on the structural law ri applied.

Here we have two cases: (1) Suppose that Qi is obtained from Qi−1 by applying the law (a.2) on a subterm Q ′
|Q ′′ of Qi−1.

The proof of this case is equal to the proof of the case 2 in Lemma 8. (2) If Qi is obtained from Qi−1 by applying α-conversion
or the law (a.3) then the isomorphism φi is the identity id because, for the TS construction, the trees TS(Qi−1) and TS(Qi) are
equal.

168 A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169

Fig. 15. Example of application of the function nl: (a) Syntax tree of a pi-process P = x(a).(z(d).nil|!x(a).(!y(b).nil|z(c).nil)|y(b).!y(e).nil); (b) Syntax tree of
the pi-process nl(P, 0).

Also in this case the composition φ1 ◦ · · · ◦ φn is the isomorphism between TS(Q) and TS(P) we wanted.
(⇐) Let P and Q pi-processes such that TS(P) w TS(Q). We prove the implication by contradiction assuming that P 6≡

min
e Q .

The proof is by induction on the structure of the processes P and Q and is equal to the one reported in Lemma 8. �

Since the tree isomorphism problem is efficiently solvable [21], by combining Lemmas 16 and 18 we obtain that the
congruence ≡

!fr
e is efficiently solvable, and hence that for the considered subset of Beta-binders the function Impl works

in polynomial time (see Section 4).
Now, combining all the obtained results, we can show that the standard congruence for BBe is efficiently solvable.

Theorem 19. Let P and Q be pi-processes in P e. Then the evaluation of P ≡
std
e Q is efficiently solvable.

Proof. Using the Lemmas 15, 16 and 18 we have that

P ≡
std
e Q

⇐⇒

Impl(P) ≡
!fr
e Impl(Q)

⇐⇒

nl(Impl(P), n) ≡
min
e nl(Impl(Q), n)

⇐⇒

TS(nl(Impl(P), n)) w TS(nl(Impl(Q), n))

with n ∈ N. Therefore, by transitivity, we can conclude that

P ≡
std
e Q ⇐⇒ TS(nl(Impl(P), n)) ∼= TS(nl(Impl(Q), n))

where TS(nl(Impl(P), n)) w TS(nl(Impl(Q), n)) is an efficiently solvable problem. �

Corollary 20. Let B[P] and B′
[P′

] be boxes in BBe. Then the evaluation of B[P] ≡
min
bbe B′

[P] is decidable and efficiently solvable.

Proof. Immediate from the definition of the function BBmin and the Theorem 19. �

Corollary 21. Let B and B′ be beta-processes in BBe. Then the evaluation of B ≡
std
bbe B′ is decidable and efficiently solvable.

Proof. Immediate from the definition of the function BBstd and the Corollary 20. �

7. Conclusions

We proved the decidability of the structural congruence used in [14] to define the stochastic semantics of Beta-binders.
Moreover, we introduced a subset of Beta-binders, called BBe, for which the structural congruence is not only decidable,
but also efficiently solvable. The proofs are constructive so that we have suggestions for possible implementations.

The subset BBe has been used as a basis for the definition and implementation of the Beta Workbench,3 a framework
for modelling and simulating biological processes [24]. In particular, the results here obtained for the structural congruence
of BBe allowed us to consider species instead of single instances of biological entities and consequently to implement a
modified version of the Gillespie’s stochastic selection algorithm [10] similar to the Next Reaction Method [25].

3 Available at the url http://www.cosbi.eu/Rpty_Soft_BetaWB.php.

http://www.cosbi.eu/Rpty_Soft_BetaWB.php
http://www.cosbi.eu/Rpty_Soft_BetaWB.php
http://www.cosbi.eu/Rpty_Soft_BetaWB.php
http://www.cosbi.eu/Rpty_Soft_BetaWB.php
http://www.cosbi.eu/Rpty_Soft_BetaWB.php
http://www.cosbi.eu/Rpty_Soft_BetaWB.php
http://www.cosbi.eu/Rpty_Soft_BetaWB.php
http://www.cosbi.eu/Rpty_Soft_BetaWB.php

A. Romanel, C. Priami / Theoretical Computer Science 404 (2008) 156–169 169

Although BBe imposes restrictions on the definition of beta-processes interaction sites, the effectiveness of the subset
is demonstrated by its ability of being used for modelling complex biological processes like the NF-κB pathway [26,27], the
MAPK cascade [28,29] and the cell cycle control mechanism [30].

Moreover, the implementation shows a consistent improvement in the stochastic simulation time efficiency. We can
save up to an order of magnitude compared to standard implementations.

References

[1] C. Priami, A. Romanel, The decidability of the structural congruence for beta-binders, Electron. Notes Theor. Comput. Sci. 171 (2) (2007) 155–170.
[2] A. Regev, E. Shapiro, Cells as computation, Nature 419 (6905). http://dx.doi.org/10.1038/419343a.
[3] R. Milner, Communication and Concurrency, Prentice-Hall, Inc., 1989.
[4] C. Hoare, Communicating sequential processes, Commun. ACM 21 (8) (1978) 666–677.
[5] C. Priami, A. Regev, E. Shapiro, W. Silvermann, Application of a stochastic name-passing calculus to representation and simulation of molecular

processes, Inform. Process. Lett. 80 (1) (2001) 25–31.
[6] A. Regev, E. Panina,W. Silverman, L. Cardelli, E. Shapiro, Bioambients: An abstraction for biological compartments, Theoret. Comput. Sci. 325 (1) (2004)

141–167.
[7] L. Cardelli, Brane calculi, in: Computational Methods in Systems Biology, in: LNCS, vol. 3082, 2005, pp. 257–278.
[8] C. Priami, P. Quaglia, Beta binders for biological interactions, in: Proc. of Computational Methods in Systems Biology, in: LNCS, vol. 3082, 2005,

pp. 20–33.
[9] D. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81 (25) (1977) 2340–2361.

[10] D. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Phys. Chem. 22 (1976)
403–434.

[11] A. Phillips, L. Cardelli, A correct abstract machine for the stochastic pi-calculus, in: Concurrent Models in Molecular Biology, 2004.
[12] A. Romanel, A stochastic abstract machine for beta-binders, Master’s thesis, 2006.
[13] C. Priami, P. Quaglia, Operational patterns in Beta-binders, T. Comp. Sys. Biology 1 (2005) 50–65.
[14] P. Degano, D. Prandi, C. Priami, P. Quaglia, Beta-binders for biological quantitative experiments, Electron. Notes Theor. Comput. Sci. 164 (3) (2006)

101–117.
[15] J. Engelfriet, T. Gelsema, The decidability of structural congruence for replication restricted pi-calculus processes, Tech. Rep. 04-07, Leiden Institute

of Advanced Computer Science, Leiden University, The Nederlands, 2004.
[16] J. Engelfriet, A multiset semantics for the pi-calculus with replication, Theoret. Comput. Sci. 153 (1–2) (1996) 65–94.
[17] J. Engelfriet, T. Gelsema, Multisets and structural congruence of the pi-calculus with replication, Theoret. Comput. Sci. 211 (1–2) (1999) 311–337.
[18] J. Engelfriet, T. Gelsema, Structural congruence in the pi-calculus with potential replication, Tech. Rep. 00-02, Leiden Institute of Advanced Computer

Science, Leiden University, The Nederlands, 2000.
[19] J. Engelfriet, T. Gelsema, A new natural structural congruence in the pi-calculus with replication, Acta Inform. 40 (6-7) (2004) 385–430.
[20] R. Milner, The polyadic pi-calculus: A tutorial, Tech. Rep. ECSLFCS-91-180, Computer Science Department, University of Edinburgh, UK, 1991.
[21] J. Köbler, U. Schöning, J. Torán, The Graph Isomorphism Problem: Its Structural Complexity, Birkhäuser, 1993.
[22] K. Booth, C. Colbourn, Problems polynomially equivalent to graph isomorphism, Tech. Rep. CS-77-04, Department of Computer Science, University of

Waterloo, Ontario, Canada, 1977.
[23] N. de Bruijn, Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, Indag. Math. 34 (1972) 381–392.
[24] L. Dematté, C. Priami, A. Romanel, BetaWB: Modelling and simulating biological processes, in: 2007 Summer Simulation Multiconference, 2007,

pp. 777–784.
[25] M. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem. 104 (2000)

1876–1889.
[26] T. Gilmore, The Rel/NF-κB signal transduction pathway: Introduction, Oncogene 19 (49) (1999) 6842–6844.
[27] A. Ihekwaba, R. Larcher, R. Mardare, C. Priami, Poster abstract: BetaWB - a language for modular representation of biological SYSTEMS, in: ICSB 2007:

The Eighth International Conference on Systems Biology, 2007, pp. 61–62. http://www.icsb-2007.org/proceedings/index.html.
[28] C. Huang, J. Ferrell, Ultrasensitivity in the mitogen-activated protein kinase cascade, Proc. Natl. Acad. Sci. USA 93 (19) (1996) 10078–10083.
[29] L. Dematté, C. Priami, A. Romanel, O. Soyer, A formal and integrated framework to simulate evolution of biological pathways, in: CMSB, 2007, pp.

106–120.
[30] B. Novak, A. Csikasz-Nagy, B. Gyorffy, K. Nasmyth, J. Tyson, Model scenarios for evolution of the eukaryotic cell cycle, Philos. Trans. Biol. Sci. 353 (1378)

(1998) 2063–2076.

http://dx.doi.org/10.1038/419343a
http://www.icsb-2007.org/proceedings/index.html

	On the decidability and complexity of the structural congruence for beta-binders
	Introduction
	Preliminaries
	Beta-binders
	Normal forms
	The decidability of the structural congruence for the pi-calculus

	Structural congruence over beta-processes
	Structural congruence over pi-processes
	Generalization
	An efficient subset of the calculus
	Conclusions
	References

