
Tomu» 7. Fasciculus 1.

ACTA
CYBERNETICA

FORUM CENTRALE PUBLICATIONUM
CYBERNETICARUM HUNGARICUM

F U N D A V I T : L. KALMÁR

R E D I G I T : F. G É C S E G

COMMISSIO REDACTORUM

A. Á D Á M
M. ARATÓ
S. CSIBI
B. D Ö M Ö L K I
B. K R E K Ó
Á. MAKAY
D. M U S Z K A
ZS. N Á R A Y

F. O B Á L
F. P A P P
A. P R É K O P A
J. S Z E L E Z S Á N
J. S Z E N T Á G O T H A I
S. SZÉKELY
J. S Z É P
L. V A R G A
T. VÁMOS

SBCXETAUUS COMMISSIONS

J. CSIRIK

Szeged, 1985

Curat: Universitär Szegediensis de Attila József nominata

7. kötet 1. füzet

ACTA
CYBERNETICA

A HAZAI KIBERNETIKAI KUTATÁSOK
KÖZPONTI PUBLIKÁCIÓS FÓRUMA

A L A P Í T O T T A : KALMÁR LÁSZLÓ

F Ő S Z E R K E S Z T Ő : G É C S E G F E R E N C

A SZERKESZTŐ BIZOTTSÁG TAGJAI

Á D Á M A N D R Á S
ARATÓ MÁTYÁS
CSIBI S Á N D O R
D Ö M Ö L K I B Á L I N T
K R E K Ó BÉLA
MAKAY ÁRPÁD
M U S Z K A D Á N I E L
N Á R A Y ZSOLT

O B Á L F E R E N C
P A P P F E R E N C
P R É K O P A A N D R Á S
S Z E L E Z S Á N J Á N O S
S Z E N T Á G O T H A I J Á N O S
SZÉKELY S Á N D O R
S Z É P J E N Ő
V A R G A LÁSZLÓ
VÁMOS T I B O R

A SZERKESZTŐ BIZOTTSÁG TITKÁRA

C S I R I K JÁNOS

Szeged, 1985. január
A Szegedi József Attila Tudományegyetem gondozásában

Frontiers of one-letter languages

STEPHEN L . BLOOM

Introduction

In a talk titled "Infinite words" given in the spring of '83, Dana Scott introduced
the notion of a convergent sequence of "word" (i.e. elements of a finitely generated
free monoid). A sequence is convergent if, for every regular set R of words, all but
finitely many of the terms of the sequence belong to R or all but finitely many belong
to the complement of R. Scott stated a number of properties of the collection of (equi-
valence classes of) convergent sequences, some of which showed that this structure
had been known earlier in the guise of a free "profinite" monoid. This monoid has
a natural topology and contains a copy of the original free monoid (as a certain dis-
crete subspace). In the case that the words are elements of the one-generated free
monoid (i.e. the additive monoid N of the nonnegative integers) an explicit descrip-
tion of all convergent sequences was stated (and is derived here). Further, he posed
several problems connected with this structure and the current paper addresses one
of these.

Scott asked whether an investigation of the "frontiers" of languages would lead
to a useful classification ol languages. In an effort to answer this question, we looked
at the simplest case: frontiers of subsets of N. An explicit description of these fron-
tiers has been obtained. It is seen that the cardinality of the frontier of a subset of N
cannot distinguish regular from nonregular sets, and a necessary and sufficient con-
dition is given that a subset of N have an uncountable frontier.

In order to obtain these facts we derived a number of the facts mentioned by
Scott in his talk. We have tried to give very elementary proofs and keep the paper self-
contained.

Preliminaries

N will denote both the set of nonnegative (or "natural") numbers as well as the
additive monoid (AT, + , 0). An infinite sequence will be denoted by diagonal bra-
ckets :

<x> = <*i, x2, ...);

the terms of (x) are the elements xn, n > 0 .

1 Acta Cybernetics Vn /1

2 S. L. Bloom

The value of a function f on an argument x will be written as xf or f(x).
For positive integers k and /, the 1-generated finite monoid which is the quotient

of N by the least monoid congruence identifying k+l and k is denoted NkJ. When
k=l—n\, this monoid will be denoted M„. One may assume that the elements of
NkJ are the integers

0, 1, ..., k, k+l, ..., k+l-l.

The closure of a subset A of a topological space is denoted A~, and the frontier
of A is A~ — A.

In this paper, we will use the word "uncountable" to mean the cardinality of the
powerset of the natural numbers.

1. Convergent sequences

Let (x) and (y) be infinite sequences of nonnegative integers. For a subset S of N,
the nonnegative integers, define (x) to be "5-equivalent" to <y) if, all but finitely many
of the terms of (x) belong to S iff all but finitely many of the terms of (y) do.

1.1. Definition, (x) is equivalent to (y), written (x) ~ if for every regular
set R, (x) is /^-equivalent to (j) .

It is easy to verify that ~ is indeed an equivalence relation on the infinite se-
quences of natural numbes. The '—equivalence class of (x) will be written (x)~.

1.2. Definition. An infinite sequence is convergent if, for each regular set R,
either all but finitely many terms of (x) belong to R (we will say (x) is "eventually
in R") or (x) is eventually in N\R, the complement of R.

We let Conv denote the set of all convergent sequences. Note that if (x) is con-
vergent and (y) is equivalent to (x), then (j) is also convergent.

The set of equivalence classes of convergent sequences is denoted N~. This set
has both a monoid structure and a topological structure, as will be shown below, and
is one of the more fascinating objects in the mathematical universe. Our goal in this
first section is to give an explicit representation of the members of N~.

We will say that the sequence (y) is a subsequence of the sequence (x) if there is a
strictly increasing function / : N-»N such that for each n£N,

yn = *„/•

1.3. Proposition. If (y) is a subsequence of the convergent sequence (x), then (>*)
is equivalent to (x) and is therefore convergent.

A sequence of integers is eventually increasing if for each number b,xn>b for all
but finitely many n\ similarly a sequence (x) is eventually constant with value b if
x„ — b for all but finitely many n.

1.4. Proposition. If <x) is convergent, either (x) is eventually constant or even-
tually increasing.

Proof. Let Rb denote the regular set of integers greater than b. Then either (x)
is eventually in Rb for every b, in which case (x) is eventually increasing, or not. If

Frontiers of one-letter languages 3

not, since (x) is convergent, (x) is eventually in the finite union of the singleton sets
{0}U {1}U... U {&}, for some b. We now apply the following lemma.

1.5. Lemma. If (x) is convergent and (x) is eventually in a finite union of regular
sets Al U . . . UAn, then for some /, (x) is eventually in Ai.

By the Lemma 1.5, (x) is eventually constant, proving 1.4. The easy proof of 1.5
is omitted.

1.6. Proposition. Let (x) be a convergent sequence. Then either there is a cons-
tant sequence (y) or a strictly increasing sequence (j) with (x) equivalent to (y).

Proof. By 1.4, (x) is either eventually constant, in which case (x) has a constant
subsequence, or (x) is eventually increasing, in which case (x) has a strictly increasing
subsequence. By 1.3, the proof is complete.

We will characterize those strictly increasing sequences which are convergent.
But first we give an alternate formulation of the notion of convergent sequence.

1.7. Proposition. The sequence of integers (x) is convergent iff
(1.7a) for each homomorphism h from the additive monoid (N, + , 0) to a
finite monoid M, the sequence

(xh) = (xxh, x2h, ...)
is eventually constant.

Proof. Suppose first that (x) is convergent and that h: N—M is a monoid
homorphism. If M consists of the elements ml, ..., mk, then the sets

Ri = h^imi)

are disjoint regular sets and (x) is eventually in the union U . . . U R k = N . By
lemma 1.5, (x) is eventually in one Ri; i.e. (xh) is eventually constant.

Now suppose that (1.7a) holds. Let R be any regular set and recall the following
fundamental fact:

any regular subset R of N may be written as
R = h~1(X)

for some monoid homomorphism h: M finite, and some XczM.

Thus, (x) is eventually in R if (xh) is eventually in X\ otherwise, (x) is eventually
in the complement of R.

The preceding proposition may be rephrased: a convergent sequence is one
whose terms eventually cannot be distinguished by a finite automaton.

The next fact is proved in exactly the same way.

1.8. Proposition. If (x) and (y) are convergent sequences, then (x) is equivalent
to (y) iff for every monoid homomorphism h: N—M, M finite, (xh) and (yh) are
eventually equal.

1.9. Corollary. If (x) and (y) are convergent, so is where the "sum"
is obtained by pointwise addition; further, if (x)~(x') and (y)~(y'\ then
<*>+(y>~<*'>+</>.

* Both facts follow from 1.7 and 1.8.

4 S. L. Bloom

1.10. Corollary. N~ is a monoid, where the operation is that in 1.9 and the iden-
tity element is the equivalence class of the constant zero sequence.

The next proposition is quite useful.

1.11. Proposition. Suppose that (x) is a strictly increasing sequence. Then (x)
is convergent iff, for each « > 0 ,

xm = xp (mod n !) (1.11a)

for all but finitely many m and p. If {x) and (y) are strictly increasing convergent
sequences, {x)~(y) iff, for each n > 0 ,

xm = y m (mod n !) (1.11b)
for all but finitely many m.

Proof. If (x) is convergent, then (1.11a) holds, by 1.7 applied to the canonical
homomorphism N—Z/nl, where Z/n] denotes the ring of integers modulo n\.
Conversely assume that (x) satisfies the property (1.11a). We show that (x) is con-
vergent by using Lemma 1.7 and the following facts.

1.12. Fact. Any monoid homomorphism h: N-~M, M finite, factors as a com-
posite

(1.13)

where e is a surjective homomorphism, i is injective and Nktl was defined in the Preli-
minary section.

1.14. Fact. Any homomorphism h: N— Nkt, factors as

K

(1.15)

where n is any number greater than both k and I. Note that the map h (and h #)
satisfies:

xh = x if x < k;

= k+Rem(x-k,l) if ^ ^ it. (1.16)

Frontiers of one-letter languages 5

We now show that the property of (1.1 la) implies that (x> is convergent. Suppose
that h: N—M is a monoid homomorphism, M finite. Then by 1.12 and 1.14 we may
as well assume that Mis | and h is defined by (1.16) when k and /are n!thus we
assume

zh = z if z ^ nl;

= n! + R e m (z - n ! , n!) if z £ h !

= n! + Rem (z, nl).

It follows that (xh> is eventually constant, since (x) is strictly increasing, xm>n\
for m>~nl and xm=xm. (mod nl), for sufficiently large m and m'. Thus, by (1.7),
(x) is convergent. The proof is complete.

We now want to show that the monoid N ~ is isomorphic to the (inverse) limit
L of the diagram

(1.17)

where Mn=N„Unl and where the homomorphism gn: Mn—M„_1 is defined, as
one might expect by now, as

xgn = x if x < (n - l) ! ;

= (n - l) ! + Rem(;c , (n - l) !) , if x g r (n - l) ! .

_ It i_s well known [G] that L may be described as the submonoid of nM„ consisting of
all "compatible" sequences, i.e. all sequences (z), with z„€Mn, for each « > 0 , and with
z„g„=z„_1, for « > 1 . In order to prove N~ is isomorphic to L, we make two obser-
vations about the sequences in L.

1.18. Lemma. If (z) is a compatible sequence and for some n, z„-=.nl, then
•jm=z„, for all m>n.

1.19. Corollary. If (z) is a compatible sequence in L and (z) is not eventually
constant, then for all « > 0 ,

nl S z„(< 2n!).

Now let kn: N—M„ be the canonical homomorphism (i.e. l/c„=1 in Mn)
and let h„: N~ —M„ be the monoid homomorphism taking the equivalence class of
the sequence (x) to the eventual value of the sequence (xk„) in M„.

1.20. Lemma. For each « > 0 the diagram below commutes.

^n+i
N~

ifn+1 (1.21)

6 S. L. Bloom

Proof. Since the diagram (122) commutes,

if a is the eventual value of (xk n + 1) then agn+1 is also the eventual value of (xk„).
Now since the monoid L, equipped with the projection maps

Pn • (z) - z„

is the limit of the diagram (1.17), there is a unique hornomorphism

q: N~ — L

such that for each n, q, pn=h„. We want to show that q is an isomorphism.

1.24. Lemma, q is surjective.

Proof. Let (x) be a sequence in L. If (z) is eventually constant with value a then
<ia)~q=(z), where (a)~ is the equivalence.class of the constant sequence (a, a, ...).
Otherwise (z) is strictly increasing. Let (x) be the sequence of integers with xn=zn
for all n (i.e. (x) is (z) considered as a sequence in N). Then we claim that for each n,

<x)~hn = zn
so that (x)~q = (z).

Indeed, for tm>/3, x m ^ n l and

Xm = z„ (mod n!)

by the definition of the gm's. So the eventual value of (xk„) is z„. Thus q is surjective.

1.25. Lemma, q is injective.

Proof. Suppose that (x)~ q=(y)~ q=(z), where (x) and (j) are convergent
sequences. We will show that {x) is equivalent to (y). Since this is clear in the case
that (x) is eventually constant, assume that (x) is strictly increasing. Then the eventual
value of the sequences <xk„) and (ykn) is z„, so that, for all but finitely many values
of m,

xm = ym (mod n!).

and hence (x) is equivalent to (y).
We have proved the following

1.26. Theorem. The monoid N~ is isomorphic to L.

It will sometimes be convenient to use L instead of N~ in order to get concrete
representations. For example, notice how sequences in L are added. The w-th com-
ponent of (z)+(z ') is z„*nz'n, where *„ is the monoid operation in M„. Thus, if both

Frontiers of one-letter languages 7

(z) and (z'} are increasing, i.e. n!=z„, z'„, then

z„*nz'„ = »! + Rem (z n +z ' n , n!).

Hence, aside from the notation"«! + " , the monoid operation on increasing se-
quences in L is the same as that on n(Z/nl: 1), where Z/nl is the ring of integers
mod n\. Denoting the increasing sequences in L by F, we have seen that F forms a
subring of the product of the rings (Z/nl: «>1) . (In fact, F is the inverse limit of
the diagram

... -Z/(n +1)! — Z/nl - ...

where the maps are the canonical ring homomorphisms.) We turn now to the ques-
tion of getting an explicit description of the sequences in L (and thus N~). The
description depends heavily on the following

1.27. "Factorial" lemma. For each 1 and each number x, 0 S x < n ! ,
there is a unique sequence a1, ..., an_i of integers with

Osa^i, 1 ^ i < n
such that

x - 2aii- = a-L + a^lli-... -fa^^n-l)!.

(When « = 1 , the sequences is the empty sequence, whose sum is 0.)
This fact may be proved in a straightforward manner. Now, if (z) is an increasing

sequence in L, for each n, n\^z„<2«!. Thus, we may write

z„ = nl + 2
i

1.28. Proposition. If (z) is an increasing sequence in L, and for some n,

n-i
zn = nl + 2<*til, and

i
zH+1 = (n + l)!+ 2 biil,

i
then for bi=ai .

Proof. Since zn+1gn+1=zn, Rem (zn+1,nl)=2ciiil But Rem (z„+1, nl)=
= By the uniqueness part of the factorial lemma, the proposition is proved.

Hence, if (z) is an increasing sequence in L, there is a unique infinite subdiagonal
sequence (a) (i.e. 0^a„^n, all ri) such that

zn = nl + "2 ciii\ (1.28a)
i

for all n.
Let SD denote the set of all infinite subdiagonal sequences, and let SD* denote

the set of all finite subdiagonal sequences of integers. If (a) is any sequence in SD,
let z{a) denote the sequence defined by (1.28a) above. Then we have already proved
part of the next theorem.

8 S. L. Bloom

1.29. First representation theorem. For each sequence (a) in SD, z(a) is an
increasing sequence in L, and the map SD—F defined by

(a) — z(a)
is a bijection.

Proof. We already know the map is surjective. The fact that z(a) is in fact in L
n n — 1

(and hence in F) is immediate, since ((n+1)! + ^ a i / !) ^ n + 1 =n! + £ «¡i!. If (a)
i i

and (a') are distinct sequences in SD, then z(a) and z(a') are distinct by the factorial
lemma. The theorem is proved.

It is easy to see that if (z) is an eventually constant sequence in L, then there is a
unique finite subdiagonal sequence

such that for k < n
k-1

zk = kl + 2 <M!>
1

and for
n-l

= 2 a i i l

1

2. Topology

The standard topology on L (and thus on N~) is inherited from the product
topology on

nMn,

where each finite monoid M„ has the discrete topology. Thus the subbasis for the
topology on L consists of all sets of the form

a r w
where pn: L-*M„ is the H-th projection map and Xi s some subset of M„. Clearly L
is Hausdorff in this topology, and is compact by the Tychonoff theorem since L is
closed in the product. (Indeed, if then for some n, z„g„^zn.1. Then

PnHzJ^Pn-liZn-l)
is an open set disjoint from L containing (z).) The subbasis sets are closed (as well as
open) since

L-Pn\X) = p-\Mn-X).

Thus £ is a "Stone space". We will show that the Boolean algebra of the clopen
(i.e. closed and open) subsets of L is isomorphic to the Boolean algebra of regular
subsets of N.

Let /: N—L be the (unique) monoid homomorphism satisfying

i-Vn = K (2.0a)

for all n > 1. The image of i consists of the eventually constant sequences. For n>m,

Frontiers of one-letter languages 9

let gn,m- M„—Mm be the composite of

M M , .. 9m+'> M irAn n — 1 • lvJ-m
We will need the following fact.

2.1. Lemma. Suppose that XaMn and YczMm, where Then

i) k ~ \ X) n k - \ Y) = k - ^ X D Z) , and

ii) P-\Xn)C\p-\Y) = p~\X^Z),

-where Z=gn,m-\Y).

The easy proof is omitted.

2.2. Proposition. The subsets of L of the form

p~\X), XcMn,
are in fact a basis, being closed under finite union and finite intersection and comple-
mentation as well.

Proof. We have already noted the closure under complementation and closure
under intersection follows from the preceding lemma, part ii). Closure under finite
union follows from these two facts.

It follows from general topological principles that the clopen subsets of L are
precisely the subsets of the form p~1(X), « > 1 , XcM„.

If S is a subset of N, let S ~ denote the closure of i(S) in L.

2.3. Lemma. Let S=k~1(X), where X<zMn. Then S~=p~1(X). Thus the
closure of a regular set is a clopen set in L.

Proof. Let B—p^iX). Then S~ is contained in B since B is closed and i(S)a
czB, by (2.0a). Let b be any point in B not in i(S). We will show that b is a limit
point of i(S). Let C—p^iY) be any basis set containing b. We may assume that
n>m. Applying 2.1,

Bf\C = p~i{Z), and o

SC\k~\Y) = k~1(Z),

where Z=g~l,(Y). Let R be the set iSTlA:~1(7). Then R is nonempty: otherwise,
Z is empty, since k„ is surjective, and this would imply that J?DC would be empty,
contradicting the fact that b is contained in this intersection. Now if a£R, i(a) is in
BC\C, by (2.0a) again, showing that b is a limit point of S. The proof of 2.3 is com-
plete. i

2.4. Lemma. Let R and S any subsets of N. Then RcS iff R~czS~.

Proof. Only one direction is nontrivial. Suppose that R~ is contained in S~.
Let x£R. Then the singleton set {*} is a regular subset of N so the closure of ./.({jc}),
say A, is a clopen subset of L, by 2.3 above. Since A is open and since R~aS~,
A must contain a point of S. But since L is Hausdorff, A is a singleton set. Thus S,
proving the lemma. " '

10 S. L. Bloom

2.5. Theorem. The map is a Boolean isomorphism from the Boolean
algebra of regular subsets of N to the Boolean algebra of clopen subsets of L.

Proof. By Lemma 2.3, each regular subset of N is mapped to a clopen basis set
and every clopen set in L is the closure of the image of a regular set. By Lemma 2.4,
the map is an order (and hence Boolean) isomorphism.

The next fact follows from the standard proof of the Stone representation
theorem.

2.6. Corollary. N~ is in bijective correspondence with the collection of ultrafil-
ters on the Boolean algebra of regular subsets of N.

3. Some algebra

Recall that we have shown that the strictly increasing sequences F in L form a
ring, isomorphic to the inverse limit of the diagram

... — Z/n! — Z/(w — 1)! - ...

Although it is probably well known, we will indicate why F is also isomorphic as a
ring to the product ring

n (Zp: p prime),

where Zp is the ring of p-adic integers.
One definition of Zp (see [Kurosh, p. 154]) is the following:

3.1. Definition. Z p consists of all sequences (k) of nonnegative integers satis-
fying

0 == kn < p", (3.1a)
and

/cnEEfcn+1(modp") (3.1b)

for each n > 1. The sequences are added and multiplied pointwise, where the n-th
component is reduced modulo p". Thus Zp is the inverse limit of the diagram

Zfp" — Z/p" _ 1 — ... (3.2)

Kurosh gives an easy proof that

3.3. Z p has no zero divisors.

We will show that each sequence (z) in F determines a sequence (z)ap in Zp.

3.4. Definition of a p : F—Zp .

Given (z), for each n let m=pnl. Then for all t>m,

z, = zm (mod m),
so that

z, = zm (mod p").

Then for each n, we define kn as Rem (zm ,p"), and we let (z) a p = (k) .

Frontiers of one-letter languages 11

Taking the target tupling of the maps ap, p prime, we get a map

a: F — II(ZP: p prime).

Since the ring operations on both F and Zp are defined componentwise and since
reduction mod m preserves addition and multiplication, we have

3.5. Lemma. Each map a.p is a ring homomorphism and thus so is a.

3.6. Lemma, a is an isomorphism.

Proof. First we show that a is injective. Let (z) and (z') be distinct sequences in F.
Then for some n, zn^z'n. Factoring n\ as a product of powers of primes, there is
some prime p and some m such that

z. & z'„ (mod pm).
But for all />« ! ,

z, = z„ (mod pm)
and

z,' = z'u (mod pm).

Thus, (z)ap7i(z')ap, so that a is injective.
Now we prove a is in fact surjective. Suppose that we are given an element of

n(Zp: p prime), say
<y> = <JP(1), y"(2), ...>

for each prime p. We will construct a sequence (z) in F such that (z) ocp=(yp) for
each p. In order to do this, we construct an increasing sequence (x) in Corn with
j:1=_ypl(l) (where p\,p2, ..., are the primes in increasing order) and for each « > 1 ,

(3.7)
xn = yp l(n) (mod (pl)n)

x„ = j"2(n)(mod(p2)")

xn — ypn(n) (mod (pn)").
Suppose that (x) satisfies the above conditions. Then (x) is obviously increasing

and is, although not so obviously, convergent. Indeed, to prove (x) is convergent we
will show that for each n, all but finitely many of the terms of (xj are congruent mo-
dulo «!. Recall that if q and q' are relatively prime, then

u = v (mod qq')
iff

u = v (mod q) and u = v (mod q').

Now factor a fixed nl into a product of primes, say
n\ = plkl... pr*,

whre 0 S hi, i— 1, ..., r. Let m be any number greater than both r and max (/cl, ...,

12 S. L. Bloom

.. . kr). Then for each i<m,

xm = ypi(m) (mod pim),

so that

= ypi(m) (mod piki)

since m^ki. But since (ypi) is in Zpi,

ypi(m) = yp'(ki) (mod piki).

It follows that for f > m ,

x, = ypi(ki) (mod piki), all i < r.

But then, for r>m, x, = xm (mod «!),

proving that (x) is convergent. Let (z) be the sequence in L determined by (x). Then
<z>ap=(y"), for all p.

It remains to show how to obtain the sequence (x). But assuming we have found
xlt ..., x„-x, we obtain x„ satisfying (3.7) by applying the Chinese Remainder Theo-
rem.

The proof of the Theorem is complete.

4. Some closures

In section 2 we showed that if R is a regular subset of N, then the closure of i(R)
in L has the form

Pn\X)
for some XczM„.

4.1. Proposition. If R is an infinite regular subset of N, then R~ and thus its
frontier are uncountable.

Proof. Suppose R is k ' 1 ^) , where XczMn. If R is infinite, there is some ele-
ment b in X with

n! fc(<2n!).
n—1

Write b as nl + 2! aJ- Then, for all infinite subdiagonal sequences a which
extend (at, ..., a„_i), the element z(a) is in the closure of R. Since there are uncoun-
tably many such sequences a, the proposition is proved.

Now we prove that if S is the nonregular (context sensitive) set of squares, i.e.

S= {n2: n£N}

then the frontier of S is also uncountable.
We will use two facts from the preceding section.
(4.2) Z p has no zero divisors.
(4.3) F is isomorphic as a ring to

n(Zp: p prime).

Frontiers of one-letter languages 13

Let (x) be any sequence in F and let (y)—(x)(x)=(x)2 (so that for each n,

4.4. Lemma, (y> is a limit point of S.

Proof. Let J? be a basis set containing (y). Then B=p~1(X„), for some n and
some subset Xn of M„. Thus yn£X„. If a is the natural number

a - n\+x„

then kn(a2)—yn, so that i(a2)£B, proving that (y) is a limit point of S.
Now we will show that there are uncountably many points in L of the form

(x)(x), which will complete the proof that S~ is uncountable. Indeed, in any ring
with no zero divisors, if u2=v2, then u=v or u= — v, since

U2 — vi = (u + v)(u — v).

Now we choose in each ring Zp two elements, say xp and yp, such that xp is
disctint from yp and from —yp.

Then, for each function / : Primes —{0, 1}, let z (f) be the element of IJ(ZP:
p prime) defined by:

z { f) p = xp if f(p) = 0;

= J P IF / (P) = L-

Then, by 4.4, regarding each element z (f) as an element of F, z (f) 2 is a limit
point of S. But if f ^ f , then z (j] V z (/ ') 2 ; indeed, if xp=f(p)^f(p), then
z (/)p=x i

p 9 i yl — z (/ ')p. We have proved:

4.5. Proposition. S has an uncountable frontier.
Thus the cardinality of the frontier of a language cannot distinguish regular

from nonregular sets. In the next section we will characterize all sets whose frontier
is uncountable.

5. Explicit topology

In this section we will use the first representation theorem to get a second, more
geometric description of L and the topology on L. This description makes use of a
locally finite rooted tree T (see [EBT]). The vertices of T are certain finite sequences in
SD*(JSD*X{±}.

A vertex of T in the form of a pair ((s), ±) is written as a finite sequence (s, j_)
ending in the symbol j_. The root of T is (_L); the root has three immediate succes-
sors: 0 (the empty sequence), (1) and <0, _]_); if

v = (a1} ..., an, ±>

is a vertex in T, then ..., a„) is in SD*, and v has the following 2 « + 3 imme-
diate successors:

(ax, ..., a„, 1), ... <al5 ..., a„, n + l> and

<«!,..., a„, 0, ±) , ..., <als ..., a„, n +1, ±).

All vertices in T n o t ending in _L are leaves; all vertices ending in JL are not.

14 S. L. Bloom

A (root) path in T is a sequence »„= 1 , ^ ... of vertices, perhaps infinite,
such that for each n, i>„+1 is an immediate successor of va. We let P denote the
collection of all root paths which are either infinite or are finite and end in a leaf.

We want to prove that N~ is in bijective correspondence with P. In order to see
this, we define two maps

val: Ver — N

path: N-P

where Ver is the set of vertices of T, as follows:
n-1

val (ax, ..., a„_i) = aiil'>
i

n-l
val (au ..., ±) = nl+2 ati!. i

Note that val 0 = 0 , where 0 is the empty sequence.
Path is defined as follows: for each x in N, path (x) is the root path in P to the

leaf vertex v, where val v=x. Note that if x > 0 , then a„_ 1>0, and n is least num-
ber such that x < « ! . (Of course, path(0) = ().) Lastly, if v=(a x flB-u -L),
let l(v)=nl

We note one important fact.

Fact. If there is a path from v to v' in T, then

val (v) = val (t/) (mod /(»)).

We now define a function from L to P.
Definition of p: L-+ P.
If (z) is an eventually constant sequence with value x in N, then (z)/?=path (x);

if (z) is a strictly increasing sequence in L, then {z)p is the infinite root path

-L, Vi>—>»!•> •••
where

v„ = (au ...,an.1, ±>

if z„ = nl+Zatil, for n > 1.
Now we equip the set P of maximal root paths in the tree T with a topology as

follows. For each vertex v of T, let B(v) denote the set of all paths in P which contain v.

5.1. Definition. The topology on P is determined by taking the collection of
sets B(d), u€Ver, as a basis.

Note that if v and v' are incomparable vertices, then B(v)P\B(v') is empty, and
if i)<c', the intersection is B(v').

Recall the bijection p: L—P above. The topology on L can be easily "seen"
in P.

5.2. Theorem, p is a homeomorphism.

Proof. Let B—B(v) be a basis set in P. If i; is a leaf, B(v) is a singleton and
p~*(B) consists of the eventually constant sequence with eventual value val (y).

Frontiers of one-letter languages 15

Otherwise,
o = <alf . . . ,«„_!, ±> so that

p~\B) = {(z)eL: z„ = nl+Zatil} =p" 1 (val v).

;1) •••> an-l>

In either case, p~x{B) is a basis set in L. Thus, p is continuous. The argument
that p~x is also continuous is equally easy and is omitted.

The frontier of a subset A of a topological space is A~ —A. Using the above geo-
metric picture of the topology on P, we may describe the frontiers of subsets A of N
as follows. Each element x of A determines a finite path path (x) in P (ending in a
leaf v with val (u)=x.) The collection of all the vertices in path (x) for x£A, deter-
mines a subtree of T, say T(A). The important fact about the tree representation is
this: if we identify the elements of N with their images under path, we obtain

The second representation theorem. The infinite paths in T(A) are precisely the
elements in the frontier of A.

For example, if we want to find a set A whose frontier is only countably infinite,
we might want T(A) to "look like" the tree in figure 5.2a. To do this, one may define
A as the set of all numbers of the form val <1, 2, ..., n, 0 , . . . , 0, 1) (for n, tw>o>
where there are m 0's).

Since we want to characterize those subsets of N whose frontier in L (or P or
N~) is uncountable, we will prove a theorem concerning those locally finite trees that
have an uncountable number of infinite paths.

5.3. Definition. B2 is the complete binary tree — i.e. each vertex in B2 has exactly
two immediate successors.

<1,2, ...,«, ±>

\ V
\

/

/

Fig. 5.2a

16 S. L. Bloom

5.4. Definition. Let T¡=(V¡,E¡), i—1,2 be rooted trees, with V¡ the set of
vertices and E¡, the set of (ordered) edges. An order embedding T1—T2 is function
/ : — K2 such that for each pair (v, v') of vertices in 7 \ , there is a path in Tx f rom
v to v' iff there is a path from vf to v'f in T2.

5.5. Theorem. Let T be a rooted locally finite tree. Then T has an uncountable
number of infinite paths iff there is an order embedding of ¡B2—T.

Proof. Since clearly B2 has uncountably many paths, it is easy to see that if
there is an order embedding of B2 in T, T has uncountably many paths as well. Now
to prove the converse, we use the following fact

5.6. Lemma. Let T be a locally finite tree with uncountably many paths. Then
there are two incomparable vertices v1 and v2 in T (i.e. it is not the case that vt<v2
or v2<v1) such that for i—1,2, T(v¡) has uncountably many paths, where T(v¡)
is the subtree of T consisting of v¡ and all of its successors.

Proof of the Lemma. Since T is locally finite, for each n there are only finitely
many vertices in T of depth n. For some n there must be two distinct vertices at depth
n, say t>! and v2, such that the subtrees T(v¡) and T(v2) of all descendents of Uj and
v2 respectively both have uncountably many paths. Otherwise, T has only countably
many paths, a contradiction.

Using this lemma, we can define an order embedding of B2 in T, by induction
on the depths of the vertices in B2. The root of B2 maps to the root of T. The two
successors of the root of B2 map to the first pair of incomparable vertices v± and v2
in Tsuch that T(v¡), i= 1,2 has uncountably many paths. Having defined the em-
bedding/ on all vertices of B2 of depth n such that for a vertex v in B2, the tree T(vf)
has uncountably many paths, we use the lemma again to extend the definition of /
one level further. The proof of the theorem is complete.

We may easily translate this result into an arithmetic form. For integers u and v,
define

u Q v if u ^ v and u = v (mod /(«));
i.e. if

u= n\ + 2a¡i]-
and

v = ml + Zbjji,

then u<^v iff n^m and a¡ = bi for Say that a subset W of Wis "i?2-like" if
for all x in W there are y, z in W such that xQy and xQz and y and z are Q-
incomparable.

The translation of 5.5 is:

5.7. Proposition. A subset X of N has an uncountable frontier iff X contains a
nonempty ¿?2-like subset.

We obtain the following number theoretic fact as a result.

5.8. Corollary. The set of squares contains a i?2-like subset.

Frontiers of one-letter languages 17

6. Final Remarks
It appears that the cardinality of the frontier of a one letter language is not a

useful tool for making distinctions among languages. One might then ask whelher the
consideration of the sequence of frontiers of a language XczN will be more useful,
where the sequence X=X0,X1, ... is defined by

-^n+i = X. X„;
i.e. the n+1-st set is the frontier of the n-th. However, it is easy to show that for every
subset X of N, X2, and hence X„ for n>2, is empty.

In Scott's talk, several of the results given here were stated: the theorem in Sec-
tion 3 that F is isomorphic to the product of the />-adic integers; the fact that N~
formed a compact, zero-dimensional Hausdorff space and our Corollary 2.6; most
importantly he stated a version of the first representation theorem for the sequences
in F.

The paper [B] has some results of a category-theoretic nature related to the
theorem in Section 3. We have not made any use of the fact that N~ forms a free
profinite monoid. The reader interested in other properties ot N~ (and other free
profinite monoids) may consult [B2] and [R].

Some of the results in Section 1 and 2 can be generalized to the case of the struc-
ture of convergent sequences of words in an arbitrary alphabet. The interesting pro-
blem of finding a concrete representation of the equivalence classes of these sequences
is, as far as I know, still open. However, in the case that M is a finitely generated free
commutative monoid, the monoid M~ is a finite powei of N~, as Z. Esik observed.

Addendum
In a recent conversation, Scott suggested modifying the definition of the fron-

tier of a subset S of N as follows. Instead of defining the frontier of S as the closure
of S~ minus S, S~ -S, let:

fron (S) = S~-int (S~) ,
where "int" denotes the interior operator. This definition has the property that
exactly the regular sets have an empty frontier, since fron (£) = 0 iff the closure of
S is clopen.

Does the cardinality of this "new frontier" give more information about the
structure of the set? Not much. For example, when S is the set of squares, we have
already shown that the closure of S is uncountable. The interior of the closure is
empty, by the following observation.

Proposition.. Let S be an infinite subset of N. If C is the closure of S, cl(S),
0=int(C)\F is empty iff S contains no infinite regular subset. (Recall that F is
the set of infinite elements of cl(N), the closure of N.)

Proof. First suppose that S contains no infinite regular subset. If 0 , there
is a regular subset R of S such that x£cl(R), by the definition of the topology.
Since R is finite, cl(R.)=R, and x itself is a finite number. Now suppose that i n t (C) \ F
is empty but that R is an infinite regular subset of S. Then cl(R) is a clopen subset
of int(C) and contains uncountably many elements of F.

Applying this proposition to the set Sq of squares, we see that int (cl(Sq))
contains only the elements of Sq itself, since, by the pumping lemma, Sq contains
no infinite regular subset. Thus, the cardinality of fron (Sq) is uncountable.

2 Acta Cybernetica VII/1

18 S. L. Bloom: Frontiers of one-letter languages

We now show how to construct, for any subset A of integers, a set S=S(A)
such that fron(5') is also uncountable, and such that A is Turing equivalent to S.
(Thus, if A is nonrecursive, so is S.) In this construction, we make use of the rep-
resentation of the elements of cl(N) as paths in the tree T defined in section 5, as
well as proposition 5.7. We define the vertices in a subtree A(T) of T by induction:
First assume that the vertex <0, 0, 0, _!_} belongs to A(T);
Now assume that for 4 the set of vertices V„-l of length < « which belong to
A(T) have been defined. For each vertex which is not a leaf, write v as

v = <ÚFJ, . . . , A „ _ A , _L>.

Then define:
v\ (=(f l i , ...,an-1, l))£V„ iff n£A; furthermore, define, for j=0 and j= 1
vj ±_ (=(f l i ,«„-j,/, ±))£V„ iff n£A; if n is not in A, then for j—2 and 3,

Otherwise, vj and vj ±_ do not belong to V„.
This completes the definition of the set of vertices of the tree A(T).

Note that the tree B2 may be order embedded in T(A), so that by proposition
5.7 the set S determined by the leaves of T(A) has an uncountable closure. More-
over, T(A) does not contain all infinite paths containing a particular vertex, and
hence S does not contain any infinite regular subset. Lastly, it is clear that A and
S are Turing equivalent.

Acknowledgements
It is a pleasure to thank Dana Scott for introducing me to his convergent sequences and send-

ing me some references, including the slides of this talk. Jess Wright, Ralph Tindell and Doug Troeger
made several useful suggestions.

Abstract
In a talk titled "Infinite words" given in the spring of'83, Dana Scott introduced the notion of a

convergent sequence of "words" (i.e. elements of a finitely generated free monoid). Scott stated a
number of properties of the collection of (equivalence classes of) convergent sequences, some of
which showed that this structure forms a free "profinite" monoid. The monoid of convergent se-
quences has a natural Stone space topology in which subsets of the free monoid have closures. Scott
asked whether an investigation of the "frontiers" of languages would lead to a useful classification of
languages. In this paper, an explicit description of the frontiers of all subsets of N, the one-generated
free monoid, is obtained. It is shown that the cardinality of the frontier of a subset of N cannot
distinguish regular from nonregular sets. A necessary and sufficient condition that a subset of N have
an uncountable frontier is given.

D E P A R T M E N T O F P U R E A N D APPLIED M A T H E M A T I C S
STEVENS INSTITUTE O F T E C H N O L O G Y
H O B O K E N , NJ 07030

C O N S U L T A N T TO T H E M A T H E M A T I C A L SCIENCES D E P A R T M E N T
IBM WATSON R E S E A R C H CENTER
YORK.TOWN HEIGHTS. N Y 10598

References
[B] BANASCHEWSKI, B . , On profinite universal álgebras. General topology and its relations to modern

analysis and algebra II (Proceedings 3rd Prague Topology Symposium 1971). Academia
Prague 1972, 51—62.

[B2] BANASCHEWSKI. B., The Birkhoff Theorem for Varieties of Finite Algebras, manuscript 1980.
[EBT] ELGOT, C . , BLOOM, S . L . , TINDELL, R . , The algebraic structure of rooted trees, J. of Computer

and System Science, vol. 16, No. 3 (1978) 362—399.
[G] GRATZER, G . , Universal Algebra (Van Nostrand, Princeton, Toronto, London; 1968).
[K] KUROSH, The theory of groups, translated by K . Hirsch, (Chesea, New York; 1960)
[R] REITERMAN, J. , The Birkhoff theorem for finite algebras; Algebra Universalis 1 4 (1982) 1—10.
[S] SCOTT, D., Infinite words, slides of a lecture given during the spring of 1983.

(Received Febr. 22, 1984)

A multi-visit characterization of absolutely
noncircular attribute grammars

By E. GOMBÁS a n d M . BARTHA

1. Introduction

Simple multi-visit attribute grammars were introduced in [1]. An attribute
grammar is simple multi-visit if each nonterminal has a fixed visit-number associated
with it such that, during attribute evaluation, the attributes of a node which have
visit-number j are computed in the7-th visit to the node. Putting in one class the attri-
butes having the same visit-number we get an ordered partition of the attributes of
the nonterminal. Thus, a visit to a node is a sequence of actions consisting of-(a)

- - computing all the inherited attributes contained in the class corresponding to the visit,
(b) making some visits to the sons of the node and (c) computing all the synthesized
attributes of the class. This evaluation strategy can be implemented in a natural way
translating visits to recursive procedures, where inherited and synthesized attributes
correspond to input and output parameters, respectively. It was proved in [1] that the
problem whether an attribute grammar is simple multi-visit is NP (time) — complete.

In [2] Kastens introduced a subclass of simple multi-visit attributed grammars
and called them ordered. The problem whether an attribute grammar is ordered can
already be decided in polynomial time, but the choise of this subclass seems rather
heuristic. A somewhat larger subclass, which is still decidable in polynomial time was
investigated in [3]. However, because of the NP-completeness mentioned above there
is no reason to work out further improvements.

In this paper we investigate a class of attribute grammars that can be evaluated
by a multi-visit type strategy associating a fixed set of visits with each nonterminal,
but the order of these visits need not be predetermined. We call these grammars
generalized simple multi-visit. It turns out that this class of attribute grammars
coincides with the class of absolutely noncircular attribute grammars, for which a
more complicated tree-walking evaluator was given in [4].

It is known that the problem whether an attribute grammar is absolutely non-
circular is decidable in polynomial time. However we shall show that the problem
whether an attribute grammar is generalized simple m-visit for a fixed m (even for
m=2) is still NP-complete. This means that, instead of trying to minimize the number
of visits, it is more useful to execute them in parallel if possible. In section 5 we des-
cribe two such parallel evaluation strategies.

2»

20 E. Gombâs and M. Bart ha

It was shown in [1] that an attribute grammar is simple multi-visit iff it is /-order-
ed, i.e. for each nonterminal a linear order of its attributes exists such that the attri-
butes of a node can always be evaluated in that order. Let us call an attribute grammar
top-down controlled /-ordered if there exists a finite state deterministic top-down tree
automaton such that the state in which the automaton reaches a node of a derivation
tree determines the evaluation order of the attributes of the node. As it is to be
expected, the class of absolutely noncircular attribute grammars coincides with the
class of top-down controlled /-ordered attribute grammars, too.

2. Preliminaries

Since we are dealing with almost the same notions as those defined in [1] (e.g.
computation sequences, visit sequences, etc.), we adopt the main terminology intro-
duced in that paper.

An attribute grammar G consists of:
(i) A reduced context free grammar G0—(T,N,P,Z), where T and N

denote the set of terminal and nonterminal symbols, respectively, P is the set of
productions (syntactic rules) and Z £ N is the start symbol. We shall denote nonter-
minal symbols always by capital letters, while terminal strings by small ones.

(ii) A set A of attributes, which is the union of two disjoint finite sets As and At.
The elements of As and At are called synthesized and inherited attributes, respectively
(shortly s- and /-attributes). A function v assigns each nonterminal F a set 1(F) of
inherited and a set S(F) of synthesized attributes, i.e. v(F)—l(F)US(F). An
attribute a(iv(F) will be referenced as a(F). The start symbol Z has only one ¿-att-
ribute, and it does not occur on the right-hand side of any production.

(iii) A set V(a) of possible values for each attribute a.
(iv) A set rp of semantic rules associated with each production p. If p is of the

form p: F0—w0F1... F„ w„ , then a semantic rule of rp is an equation: a0(Fil) =
where 0 a n d / : V(a1)X...XV(an)-V(a0) is a

(recursive) function. This equation is interpreted by saying that attribute a0(Flo)
depends on attributes a^F^), ..., am(Fin) in p. We assume that G is in Bochmann
normal from, i.e. the rules of rp assign all and only the attributes in S(F0) and I(Fj)
(y'Sl) using as argument only attributes in 1(F0) and S(Fj).

The production graph of p: FQ—wQF1...Fnw„p (denoted by pg(p)) has as
nodes the disjoint union of v (F;), 0^iSnp. and there is an edge from ax(Fi
to a2(Fk) iff a2(Fh) depends on at(FiJ in p. For a derivation tree t of G0 we get the
derivation tree graph of t (denoted by dtg(t)) by pasting together the pg's of all the
productions t consist of. G is noncircular if none of the derivation trees of G0 has an
oriented cycle in its dtg. In the sequel, if no confusion arises we identify a nonterminal
node of a derivation tree with its label.

3. The generalized simple multi-visit property

To describe an attribute evaluation strategy we define computation sequences
similar to those introduced in [1]. A computation sequence is a sequence of so called
basic actions, where each basic action is either the evaluation of some /-attributes of
a node, called entering the node, or the evaluation of some s-attributes of a node,

A multi-visit characterization of absolutely noncircular attribute grammars 21

called exiting the node. Thus, a basic action can be represented by a basic action sym-
bol (ba-symbol) /(«, A) or s(n, A), where n denotes a nonterminal node in a deriva-
tion tree and A is a subset of I(n) or S(n), respectively. Our computation sequences,
however, allow redundant computations, too.

Let G = (G0=(T, N, P, Z), A, v, {V(a)\a£A}, {rp\p£P}) be an attribute gram-
mar, fixed in the rest of this section, and t a derivation tree of G0. We always assume
that a derivation tree is complete, i.e. its root is Z and its leaves are in T.

Definition 3.1. A computation sequence for / is a string h of ba-symbols, which
satisfies the following four conditions.

(1) Start-end condition: the first and the last ba-symbols are i(Z, 0) and s(Z, 0).
(2) Sequentiality condition: for any two contiguous ba-symbols x ^ n ^ A ^

x2(n2, A2) in h one of the following conditions holds.

(i) n2 is a son of rtx and x1=x2—i',
(ii) n2 is the father of nx and Xx— x2— si

(iii) n2 ^ a brother of nx and xx=s and x2=/;
(iv) n2 — nx and x 19ix2.

(3) Feasibility condition: For any production p consider an arbitrary occurrence
of p in t, and let n1 and n2 be any such nonterminal nodes of this occurrence that ^ (» i)
depends on a2(n2) in p for some attributes ax and a2. Then the first ba-symbol in h
which contains a2(n2) cannot precede the first such ba-symbol that contains ¿^(«J.

(4) Completeness condition: For each node n of t, if i(n, Bt), s(n, A,), ...,
..., /(«, Bk), s(n, Ak) is the sequence of the ba-symbols of n occurring in h, then
U 1]) is a partition of v(n); furthermore AkUBk=Q. The set
J7(«)=U(K-U5,.}|/€[fc]) will be called the visit set o f « and each A ^ B i (/€ [-fc])
a visit element. Since U ({Ail)B)\i€.[k — 1]) is a partition, each visit element, except
one is a nonvoid subset of v(m). v£II(ri) will be referenced as v(n) or v(F), if F i s the
nonterminal label of n.

The (simple multi-visit) completeness condition in [1] required U ^ |/G [A:]}
to be an ordered partition of v(n). The main point of our modification is that we allow
making the same visit to a node several times.

Let n0 be a node of t having sons nx, ..., nm, v=AUB€II(n0) and h a compu-
tation sequence for t. A visit trace of v(n0) in h, denoted by tr(v(n0)) is a substring of
h beginning with i(n0,B) and ending with s(nQ, A) such that there is no further
ba-symbol of n0 between these two ones. By the definition of a computation sequence
tr(v{n0))—tr(v1(nii))...tr(vi(ni)), where v1,...,vl are certain visit elements of
nh, respectively. The sequence vi(jii^...vl(ni^ will be called a visit sequence
of v(n0). (Note that I might be 0, and a visit element might have several visit traces
and visit sequences so far.)

Let II: N-2P(SP(A)) be a function such that for every F£N II(F)=nU{Q},
where n is a partition of v(F). Furthermore, let q be a set of functions {qp\p£P}
such that if p: F0-*w0F1 . . . F„ w„p, then qp assigns each v£lI(F0) a sequence
vl(Fh)...vl(Fh) (1*0), where ^ 6 7 7 (F , J («€[/], /m€[«P]) and all the rra-s are dif-
ferent. II will be called a collection of visit sets for G and Q a visit description function
for n .

22 E. Gombâs and M. Bart ha

Definition 3.2. Given a collection 77 of visit sets for G, a visit description func-
tion g for 77 and a derivation tree t, a computation sequence h for t respects g if the
following condition holds. For each nonterminal node n of t, if n is the left-hand
side occurrence of a production p : F0 — w0 ... F„pwnp, then n(n) — Il(F0) and
each t>£77(n) has a unique visit sequence in h which is equal to Qp(v).

Note that there exists at most one computation sequence for t respecting g.
g is called a generalized simple multi-visit description function for II if each derivation
tree of G has a computation sequence for it respecting g.

Definition 3.3. G is a generalized simple multi-visit (gsmv) attribute grammar
if there exist a collection 77 of visit sets and a gsmv visit description function g for 77.
G is generalized simple m-visit (w£N) if ||77(F)|| + 1 for each FÇ.N.

From this definition it is clear that the only essential difference between smv and
gsmv evaluation strategies is that in the latter one each visit to a node must be made
only if this has not been done before.

Example 3.4. Let Z , A, B and C be the nonterminals of the underlying grammar
with the following attributes. S(Z) = S(B) = {s1}, I(Z)=I(B)=Ç>, S(A) = {sx, i2},
1(A) = 1^, /2}. The productions and the corresponding production graphs are listed
below.

A • •
h ix si s2 ;2 i\

1:Z-+ AA

a)

Si Si l2 'l

st

2:A aB

b)

Si

3\A bB
c)

4 :2? — X

d)

A multi-visit characterization of absolutely noncircular attribute grammars 23

If n(Z)=II(B)—{{s1}, 0} and n(A) = {{i1,s1), {i2,s2},0j, then let (e1({j1}=
= {/2, {/ls J j ^ i) {/'i, {i2, ¿s}(A), Qi(0)=0Ui)0(^2), e2({'is ¿1}) =
=e 1 ({*2 , i . })={ i i }W, e2(0)=0(JB), 03({ ' i , i i })=e3({4 , i 2 })=K}(5) , e3(0)=0CB),
e4(K»=e4(0)=A-

It is clear that q is a gsmv description function for /7. However, G is not smv,
because the visit elements of A cannot be evaluated in a fixed order. That is why we
had to put the single visit element of B into both g2(3)({'i> ¿i}) and e2(3)({4> ¿2})-

The following example shows that the void visit element is necessary.

Example 3.5. Let Z, A and B be the nonterminals of the underlying grammar
with the following attributes 5 (Z) = {j}, S(A)=S(B) = s2}, / (Z) = 0 , 1{A) =
— {*i> h}> 1(B) —{h h , 4}- The productions and the corresponding production graphs
are listed below.

J
Z .

• • »
•Sj_ s2 I2

1:Z — aA
a)

• •
h sx

• •
S2 '2

2:Z — bA
b)

h si S2 fg
A • • • •

-D • • , •
h si i sz /2

3:A-B
C)

G is clearly gsmv, but in the production A -+B the useless attribute i(B) can be
evaluated only in the void visit of A.

To define the absolutely noncircular (anc) property we use the concept of induced
production graph (ipg) introduced in [5]. These graphs can be obtained by adding
some further edges to the production graphs. More exactly, considering a graph as
a relation we get the ipg graphs by taking the least fixpoint of the following system of
equations.

ipg(p)=Pg(p)V{(a(Fi),b(Fi))\p: F0-w0F1...F„w , /€[«,] and there is a q£P
with left-hand side F{ such that (a(F^b(F^ipg(q)Jr).

h -si f s2 i2

W
• •

4:2? — X

d)

24 E. Gombâs and M. Bart ha

G is anc if for each p£P ipg(p) is acychc.
Let II be a collection of visit sets for G. 17 defines for every F£N a set B(F)

of nonvoid basic action symbols as follows. If 11(F)— {v1, ..., v„), then B (F) —
= {j(F,^,) | /6[«], u . - z t . U ^ , B^IiF), {¿(F, Bj)\j€[n], Vj=AjUBj, AjQ
QS(F),

The production graph over the nonvoid ba-symbols of p:F0-*w0F1...F„wnp
(denoted by pgbn(p)) is the following graph. The set of its nodes is the disjoint union
of B(F,),0^iSn„, and there is an edge from x^F^, A J to x2(FLV A2) iff G2(F,2)
depends on fli(FFL) in p for some a1£A1, a2£A2. From these graphs we construct the
induced production graphs {ipgb„(p)lp€P} as above, i.e. by taking the least fixpoint
of the following system of equations.

ipgbn(p)^pgbn(p)^{(i(Fi,B),s(Fi,A))\0^np, and A\JB€
€/7(F,)}U {</(F„ Blt s(Ft , A2)), <J(F ; , AX), i(F„ BJ)\ none of A, and Bt (/ = 1, 2)
is 0, {AiUBi\i=\, 2}G/7(F,) and there is a g£P with left-hand side F, such that
</(F„ BJ, s(FF , Aj)Zipgbn(g)*}-

Remark 3.6. If for each F£N I7(F)={{a}|a6v(F)}U {0}, then ipgbK(p)'~ipg(p)
for every p£ P.

The following alogrithm can be used to compute the ipgbn relations.

Algorithm 3.7.

Step 1. For each p£P set ipgb0(p)=pgba(p)U {(i(F, B), s(F, A))\F occurs
in p,A^d, 5 ^ 0 and ,AI)B£I1(F)}

Step 2. If j^O, then for each p£P let ipgbj+1(p)=ipgbj(p)U {(i(F, Bx),
s(F,A2)),(s(F,A1), i(F,B^))\ none of At,B,(i= 1,2) is 0, {¿,115,11 = 1 ,2}Q
Qil(F), F occurs on the right-hand side of p and on the left-hand side of such a
q£P for which (i(F,Bj), s(F, A2))€ipgbj(q)+}

Repeat step 2 until such a j is found for which ipgbj(p)=ipgbj+1(p) for all p£P.
Then ipgb„(p)=ipgbj(p).

It is easy to see that the time complexity of this algorithm is polynomial in the
parameters of G.

Lemma 3.8. Given a collection 77 of visit sets for G, there exists a gsmv descrip-
tion function Q for II iff ipgbn(p) is acyclic for every p£P.

Proof, (a) (e exists =*ipgbK is acyclic)
It is enough to prove that if (x±(F, AJ, x2(F, A2))^ipgb^(p)\pgb7l(p), then

for every derivation tree t and F-labelled node n0 of t the following statement holds.
If h is the computation sequence for t respecting Q, then the first occurrence of
xx(nprecedes that of x2(n0, AJ in h. We shall prove this statement by an
induction following algorithm 3.7. First we make the following observation.

If AxQvl(n0) and A 2 ^vl (n 0) for some t)J, r ^ i7 (« 0) , then consider the se-
quence ti„,...,nm (m^O) of nodes and the sequences vl(n0), ..., v}„(nm) and
uo("o)> •••>vm(nm) of visit elements with the following properties.

1) For each n i + 1 is the father of /7; and tf/+1(wi+1) (j = l , 2) are those
visit elements for which the ba-symbols of u,(h,) can be found in the visit trace cor-
responding to u/+ i (« I + 1) as first occurrences in h.

A multi-visit characterization of absolutely noncircular attribute grammars 25

2) a) vl,(nm) = v2
m(nj = vm but v}(n,) ^ «¡(»¡) if i < m, or

b) nm=Z and vl(Z) * vl(Z).

It is important to note that the correct choice of in 1) can also be done
by stepping upwards in t, following the nodes

Now it is clear that the first occurrence of Xi(«0, A^ precedes that of x2(n0, A^
in h iff one of the following three conditions holds.

(i) i n = 0 ;

(ii) m^l, vl=vl and v1
m_1 precedes v2

m_1 in ¡ ? 0 J ;

(iii) nm=Z, 4 = 0 -

This means that the order of the first occurrence of x^n^, Aj) and x2(n0, A2) in h
does not depend on the subtree of t below »„.

As a basis of our induction let (xi(F, x2(F, A2))£ipgba(p). The only pos-
sible case x2=s and A ^ J A ^ n i F) is trivial.

Now let (x^F, Ax), x2(F, A2))£ipgbJ+1(p)\ipgbj(p) O'=0), and suppose that
the statement holds for every appropriate <*i(F', AQ, x2(F', AQ)€ipgbj(p'). Again,
we can restrict ourselves to the

s and A1UA2^n(F). Then F is a
right-hand side nonterminal of p. If n0 is an occurrence ol a right-hand side nontermi-
nal of some r£P, then by construction (i(F, Ax), s(F, A2))£ipgbJ+1(r), too. Let
q£P such that the left-hand side of q is F and (i(F, A J, s(F, A2))£ipgbj(q)+. Then
there exists a sequence of nonvoid ba-symbols x0(F0,2?0)...:*-,(F(, Bt) such that

- x0(-F0-, B0)=i(F, A,), x,(F„ B,)=s(F, A2) and -6,-1), x,(F„
£ipgbj(q) for each /€[/]. Change the subtree below ti0 to an arbitrary subtree with
top production q. If t' is the resulting subtree and ti is the computation sequence for
t' respecting Q, then we have again that the order of the first occurrence of i(F, A J
and s(F, A2) is the same in h' as in h. On the olher hand, the inductive hypothesis and
the feasibility condition imply that for each /£[/] the first occurrence of x ^ ^ F ^ - i ,
2?j_i) precedes that of ^¡(F;, Bt) in h', so we are through. (b) (ipgbn is acyclic=>0 exists)

For p: F0-~w0F1...FnwHp£P, v0=A(JB£IJ(F0) (AQS(F 0) , B ^ / (F 0)) we
construct Q(V0) as follows. Let s(Fh, AJ,..., s(Flk, Ak), i(Fh, BJ, ...,i(FJm,Bm)
be all the nonvoid ba-symbols that can be reached on a reversed path from s(F0, A)
in ipgb„(p) (provided it is a nonvoid ba-symbol). Then define e(i)0(F0))=u1(Fn i). . .
- M F n i) so that

(i) Ui(Fni),..., vt(Fn) are all the visit elements of the right-hand side nontermi-
nals such that F„=Fir and vi(Fn)C\Ar(Fir)?iW for some or F„t=Fj and
vi(.F„)r\B s(F j s)7iQ for some s£[m\-,

(ii) if *i(F„ (, AJ and x2(Fnj, A2) are nonvoid ba-symbols of u,(Fn.)
and VJ(Fnj), respectively, then (x2(Fnj, A))$ipgb„(p)+.

Those nonvoid visit elements of the right-hand side nonterminals that are not
listed in (i) for any v£lI(F0) are put into (?(0(FO)) in an arbitrary order satisfying (ii).
Finally, the tail of e(0(Fo)) is 0(F1)...0(F„p). It is easy to check that such a Q is indeed
a gsmv description function for II.

The proof of the following lemma is left to the reader.

26 E. Gombâs and M. Bart ha

Lemma 3.9. If Л is a collection of visit sets for G such that ipgbK(p) is acyclic for
every />£ P, then G is anc.

Our main theorem is now an immediate consequence of lemmas 3.8, 3.9 and
remark 3.6.

Theorem 3.10. G is gsmv iff it is anc.

4. The top-down controlled /-ordered property

A deterministic finite state derivation tree automaton (dfsdt) for a context free
grammar G0—(N, T, P, Z) is a triple Q = (Q , q, {up\p£P}), where Q is a finite set
(the set of states), q£Q is the initial state, and if p: F0-*w0F1... Fnw„£P, then up
is a set of so called transition rules of the form qo(F^-*q1(F^)...qnp(Fn^ iq£Q) ,
where each a£_ O occurs at most once on the left-hand side of these rules. Q functions
in the following well-known way on an input derivation tree / of G0. It starts by assign-
ing state q to the root of t, then, if a nonterminal node n0 of t has already been assign-
ed a state q0, it assigns states (if possible) to the nonterminal sons of n0 as follows. If
n0 is an occurrence of the left-hand side of p: F0—w0F1... F„pw„p, nx, ...,n„p are the
corresponding occurences of Fl3 ..., F„p, respectively and q0(F0)—qi(Fl)...qnp(Fnp)(i
dup, then for each Q assigns qi to nt. t is accepted by Q iff it is able to assign
a state to each nonterminal node of it in the above way.

Given an attribute grammar G and a dfsdt Q for G0, a Q-defined /-ordering of G
is a partial function O which assigns for some pairs (q, F) (q€Q, F(iN) a linear
order of v(F).

Definition 4.1. An attribute grammar G is top-down controlled /-ordered
(tcl-ordered) iff there is a dfsdt Q for G0 and a Q-defined /-ordering O of G such that
for every derivation tree t of G0 there exists a linear order O, of the nodes of dtg (?)
with the following properties.

(i) if a depends on b in a production occurring in t, then for the corresponding
occurrences of a and b in dtg (t) we have a<b in O, (feasibility);

(ii) Q accepts all the derivation trees of G0 (completeness);
(iii) if n is an F-labelled node in t and Q assigns state q to «,< then 0(q, F) is

defined, and a<b in 0(q, F) iff a<b in O, (O is respected).

Theorem 4.2. G is gsmv iff it is tcl-ordered.

Proof. We show the equivalence of anc and tcl-ordered properties.
(a) (tcl-ordered => anc)
It is enough to prove that for every derivation tree t, if n is an F-labelled node in

t and Q assigns state q to n, then the following statement holds. If <a(F), b(F))£
dipg (p) for some p£P with a£I(F) and b£S(F), then a<b in 0(q, F). We omit
the proof of this statement since it is analogous to that of lemma 3.8/(a).

(b) (anc=>tcl-ordered)
Let U (0 (F) F£N), where 0(F) is the set of/-orderings of v(F). We

construct {rp\p£P} and HQQXN by the following procedure.

Step 1. Put (q, Z) into H, where q is the unique /-ordering of v(Z).

A multi-visit characterization of absolutely noncircular attribute grammars 27

Step 2. If (q0, F0)£H Jjj0 is an /-ordering of v(F0)), p: F0-+w1F1... Fnpw„p,
then construct the graph ipg(p)=>pg(p)U {(a(F0), b(F0))\a<b in For each

choose an arbitrary /-ordering qt of v(F;) that extends the partial order
ipg(j>) + \v(Fi). Then add {(qu Fi)|/e[«p]} to / / a n d q^FJ-q^FJ ...q„p(Fnp) to rp.

Repeat step 2 until no more new elements can be added to H.
It is easy to see that if G is anc, then the graph ipg(p) constructed in step 2 is

always acyclic, so the automaton Q=(£>, q, {rp\p£P}) and the Q-defined /-ordering
0 = {({q, F), q)\(q, F)£H} satisfy the requirements of definition 4.1.

5. Implementations of the gsmv strategy

1) Implementation using recursive procedures.
Let G=(G0=(T, N, P, Z),A, v, {rp\p£P}) a gsmv attribute grammar, 77 a

collection of visit sets of G and q a gsmv visit description function for 77. We assume
that before starting attribute evaluation we are given a structure tree, the nodes of
which are represented by suitable data structures (e.g. records) with components for
the attributes, references to the sons, a rule indicator that indicates the production
applied to the node and a boolean flag for each visit element of the node which is true
iff the visit has already been executed. The initial value of these flags is false. Then for
each p: F0—w0F1... F„p w„p £P and u0€77(F0) we have a

procedure VISIT-/;-t>0(/î0); node (n0)\
comment eP(v0)=v1(Fmi)...vl(Fmi);
begin

compute all the /-attributes of u0 at n0
for k=\ to I

comment let n l5 ..., n„p be the sons of n0 having
labels Flt ..., F„p, respectively;

begin
if 1 flag-Ufc • nmk then

begin
flag-vk-nmk=true;
case rule indicator • nmy of

comment let qlt ..., q} be all the productions with left-hand side Fmk;
qy. VISIT-qx-v^n^y,

qj: VlSYT-qrvk(nmky,
esac

end;
end;

compute all the ¿-attributes of v0 at n0
end

2) Implementation using a system of tasks with parameters.
Here we assume that each node n of the structure tree has the following binary

semaphores beyond the components (exept the flags) defined so far

28 E. Gombâs and M. Bart ha

(i) binary semaphores /'(«, v) and s(n, v) for each v£ll(ri) such that /'(«, v)
J((«> v)) is true iff the evaluation of all the /-attributes (¿-attributes, respectively) has
already terminated. We do not need i(n, v) (s(n, u)) if there are no /'-attributes (s-
attributes, respectively) in v(«).

(ii) a binary semaphore x(n, v), which is true iff the evaluation of v has already
begun.

The initial value of these semaphores is clearly false. We treat semaphores i(n, v)
and s(n, v) by the following primitives:

wait (iv): L: if w=0 then goto L
send (vv) : w : = 1

Semaphores x(n, v) will be treated by the indivisible Boolean procedure TS(x)
(cf. [6]) of the form :

Boolean procedure TS(x)
Boolean x;

begin
TS. — x',
x: = true;

end

Now for each p: F0—w0F1...F„pwnp and v^TI(F0) we have a task:

TPiV(n0); node n0;
wait (i(m0, vl)); ... ; wait (i(m0, 4));

comment: m0 is the father of h0, it is a left-hand side occurrence of q£P and
{i(m0, are all the semaphores such that some a£v depends on
some b€î ó in

wait ' (s(mh, t>y); ...; wait (s(mit, vl
it));

comment: m1, ..., m„q are all the sons of m0(n0=mj for some j£[nq]), /S€[«J
for each s£[l] and {i(m,s, u,s)|j€[/]} are all the semaphores such that some
aÇv depends on some b£vs¡s in q\

compute all the /-attributes of v;
send (i(n, v));
for 7 = 1 to i

begin
comment: Q{v) = vx(Fr^...vt(Fr), ..., n„p are the sons of n0 such that ns

is a left-hand side occurrence of qs£P;

if TS(x(nrj, vj)) then activate Tqr^.(nr.y,
end;

wait (s(nri, yj); ...; wait (s(nr., v¡))-
compute all the s-attributes of v,
send s(n0, v)

We omitted the two case statements that should be applied to find the rules q
and [/€[/]}•

3) Implementation using a task system so that overlaps are allowed among the
visit sets.

A multi-visit characterization of absolutely noncircular attribute grammars 29

For any nonterminal F choose a production pF such that F occurs on the right-
hand side of pF. For each ¿-attribute a£v(F) let va— {a, b1, ..., bm}, where {¿¡|/€
€[m]} are all the /-attributes of F such that a depends on in ipg(pF). Clearly, va
does not depend on the choice of pF• Let I1(F) = {va\a£S(F)}. Now we assume that
each attribute a€v(n) has own semaphores x(n,a) and y(n, a) at node n of the
structure tree. y(n, a) is true iff the evaluation of a has terminated at node n. If a£At,
then x(n, a) is true iff the evaluation of a has already begun at n, and if a€As, then
x(n, a) is true iff the evaluation of va has already begun. It p: F0 ->- vv0 jF\ ... F„pw„pd P
and va£lI(F0), then we have the following task:

Tp,Va(n0)-, node (n0);
for 7 = 1 to m

comment: va={a,bi, bm);
if 1 TS(x(n0, bj)) then

begin wait (y(m0,bJ)); ...; wait (y(m0,bJ
k));

wait (y(mfp; a{)); wait (y(mf/>, a/));
comment: m0 is the father of n0, it is a left-hand side occurrence of q£P,

m t , . . . , m„q are the sons of m0 and {¿>/|/£[/c]}U {ai|i€[/]} are all the attri-
butes bj depends on in q;

compute bj;
send (y(n0,bj));

end;
comment: au aie all the ¿-attributes a depends on in p, ..., n„p are

the sons of «o such that ns is the left-hand side of qs£P, aj£v(Frj) for each
- - /€[/] ;

if 1 TS(x(nrj, aj)) then activate Tqr<a.\
wait (y (nri, flj); ...; wait (y (n,t, at));
compute a;
send (>>(«o, a))

6. NP-compIeteness

We have seen that the problem whether an attribute grammar is gsmv can be
decided in polynomial time. However, we shall prove that it is NP-complete to decide
whether an attribute grammar is generalized simple m-visit for a fixed m S 2 .

Theorem 6.1. The problem whether an attribute grammar is generalized simple
2 visit is NP-complete.

Proof: This problem is in NP, since we can guess an appropriate collection of
visit sets II by a nondeterministic algorithm in polynomial time and check whether
ipgbn is acyclic using algorithm 3.7.

To prove NP-completeness we construct for every Boolean formula F0 in con-
junctive normal form an attribute grammar G(F0) such that F0 is satisfiable iff
G(F0) is gs-2-visit.

Let F0 be a Boolean formula which is a product of sums of literals. A literal is
either P or not P for some Boolean variable P. If F 0 = F , * •••* Fn and Fl=L[+ ,.,+L^,
/£[«], then in G(F0) we have a nonterminal P f o r each variable P, nonterminals Ft, ...,

30 E. Gombâs and M. Bart ha

..., F„ for each factor, nonterminals L\, ..., L[t, i£[n] for each literal and nontermina,
F0, which is the start symbol. If P is a variable nonterminal, then l(P) = {i\, /2}1

{i, Sx, s2}, F0 has sx and all the other nonterminals have ix and The pro-
ductions and the corresponding production graphs are the following.

' • Si h Ji
A « • y f\ / K

•/ •• ! 's s* • • • • • 'i h Ji s ¡\ ¡t j, s

LJ-~P L'j - not P

¡1 it s2 Si s

P-X
e)

Let G'(F0) be the attribute grammar which differs from G(F0) only in that v(P) —
= {i\, /2, st, i2} for each Boolean variable Pof F0. The pg's of G'(F0) are the restric-
tions of the pg's of G(F0) to this set of attributes. It was shown in [1] (Theorem 4.1)
that G'(F0) is simple multi visit iff F0 is satisfiable. On the other hand G(F0) is gS-2
visit iff G'(F0) is simple multi visit. Indeed, if G'(F0) is smv, then we can fix U (P) =
={{/'i, su i}, {/2, i2}} or n(P)={{i1, ¿ J , {t2, j2 , s}} for each variable P. If G'(F0)
is not smv, then there are at least two occurrences of a variable P in the derivation
tree of G'(F0) such that the visits {/j, and {/2, i2} of P must be evaluated in dif-
ferent order at these occurrences. Hence s cannot be put into any of these two visit
sets, it must be evaluated in a third visit.

A multi-visit characterization of absolutely noncircular attribute grammars 31

To show NP-completeness for m > 2 we only have to define m—2 preliminary
visits to the variable nonterminals so that e.g. for m = 3 the last three pg-graphs of
the previons figure should be

Ly
c)

h

sr

Abstract

The concept of smv attribute grammar is generalized by using redundant computation sequences
in the specification of visit sets and visit sequences. It is proved that these gsmv attribute grammars
are the same as the absolutely noncircular ones.

An attribute grammar is top-down controlled /-ordered if there is a deterministic finite state
top-down tree automaton such that for every node of every derivation tree, the order in which the
attributes of the node must be evaluated is determined by the state in which the automaton passes
through the node. It is proved that an attribute grammar is generalized smv iff it is top-down con-
trolled /-ordered.

Finally it Is shown that the problem, whether an attribute grammar is gs m-visit for a fixed
/a s 2 is NP-complete.

R E S E A R C H G R O U P O N T H E O R Y O F A U T O M A T A
H U N G A R I A N A C A D E M Y O F SCIENCES
SOMOGYI U. 7.
SZEGED, H U N G A R Y
H-6720

DEPT. O F C O M P U T E R SCIENCE
A. JÓZSEF UNIVERSITY
A R A D I V É R T A N Ü K T E R E 1.
SZEGED, H U N G A R Y
H-6720

References

[1] ENGELFRIET, J. and FILE, G . , Simple multi-visit attribute grammars, Journal of Computer and
System Sciences, v. 24, 1982, pp. 283—314.

[2] KASTENS, U., Ordered attribute grammars, Acta Informática, v. 13, 1980, pp. 229—256.
[3] GYIMÓTHY, T . , SIMON, E . and MAKAY, A., An implementation of the H L P , Acta Cybernetica,

v. 6 , 1983 .
[4] KENNEDY, K. and WARREN, S. K., Automatic generation of efficient evaluators for attribute

grammars, Conf. Record of the Third ACM Symp. on Principles of Programming Languages,
1 9 7 6 , p p . 3 2 — 4 9 .

[5] KNUTH, D. E., Semantics of context-free languages, Math. Systems Theory, v. 2,1968, pp. 127—
145.

[6] SHAW, A. C., The logical design of operating systems, Prentice-Hall, Inc., 1974.

(Received Nov. 17, 1983)

Indexed LL (k) Grammars

R . PARCHMANN, J. DUSKE, J . SPECHT

1. Introduction

In the literature a number of extensions of context-free languages have been
proposed. The motivation for this is to describe certain constructs of piogramming
languages which are not context-free. An impoitant class of such an extension are
the indexed languages introduced by Aho [1].

In the area of context-free languages, the LL(/c) languages are of special interest.
In [10] and [11] proposals have been made to generalize this notion to the indexed case.

Indexed languages coincide with the IO-macro languages introduced in [2]. In
[6], Mehlhorrt defined the notion of a strong LL(/c) macro grammar and investigated
this class of grammars. Furthermore he defined the notion of a general LL(&) macro
grammar and stated the following problems for these classes of grammars:

(a) Is the class of languages defined by the strong LL(fc) condition equal to the
class of languages defined by the general LL(/c) condition?

(b) Is the general LL (k) condition decidable for a given kl
In [10], Sebesta and Jones gave a positive answer to question (b) for indexed

grammars without ^-productions in the case k=\.
In this paper we will answer completely these two questions for indexed LL(&)

grammars.
In Section 2, basic notions and definitions will be given and compared with those

introduced in [10] and [11].
In Section 3 it will be proved that the strong indexed LL(/c) property is decidable

for a given k.
In Section 4 we will show that the strong indexed LL(/c) languages are determi-

nistic indexed languages which were introduced in [7]. In Section 5 deterministic
context-free languages will be characterized as right linear strong indexed LL(1)
languages.

In Section 7 the main result of this paper, namely the decidability of the general
indexed LL(/c) property will be proved. This will be shown by using a general transfor-
mation on indexed grammars given in Section 6. This transformation converts an
arbitrary indexed grammar into an equivalent grammar which is a strong indexed
LL(/c) grammar iff the original one is a general indexed LL(/c) grammar. This answers

3 Acta Cybernetica VU/1

34 R. Parchmann, J. Duske, J. Specht

the question (a) posed above. The decidability of the strong indexed LL(fc) property
then implies the decidability of the general indexed LL(A) property, which answers
question (b).

2. Definitions of indexed LL(/c) grammars

In this section we will consider subclasses of indexed grammars. Aho [1] intro-
duced indexed grammars and languages. We will state these notions in the following
form:

Definition 2.1. An indexed grammar is a 5-tuple G=(N, T, / , P, S), where
(1) N, T, I are finite pairwise disjoint sets; the sets of variables, terminals, and

indices, respectively.
(2) P is a finite set of pairs (Af a), A£N, /€/U{<?}, a £ (N I * U T)*, the set of

productions. (Af, a) is denoted by Af—a.
(3) S£N, the start variable.'

Let a = u1Bipiu2B;ip2...Bkpkuk+1 with u£T* for /'€[1: &+1], and Bj£N,
Pj£l* for ye[1: k] with kSO be an element of (NI*UT)* and let y£l*. Then we
set

<x:y = UxB^yu^B^y ... Bkfikyuk+1.

For u, v£(NI*[JT)* we set u=>v iff u — cp^^Afycp2, v = (p1(a:y)(p2 with q>i,<p2£
£(NI*[JT)* and Af—aL^P. => is the «-fold product and is the reflexive, transitive
closure of =>•.

The language L(G) generated by an indexed grammar G=(N, T, I, P, S) is
the set L(G) = {w\w£T* and A language L is called an indexed language
iff L=L(G) for an indexed grammar G.

The subclasses of indexed grammars considered in this paper are the indexed
LL(/c) — and strong indexed LL(fc) grammars, whose definitions are generalizations
of the corresponding context-free notions. Furthermore we will compare these defini-
tions with the corresponding definitions introduced in [10] and [11]. First we will
introduce some basic notions.

Let I be an alphabet and let fcsl be an integer. denotes the set of all
words w over I with \w\sk, where |w| denotes the length of w. The function
(*);£*—<*)£* is the identity on (k)L* and assigns to each w£I* with the
prefix of w of length k.

Now let G—(N, T, I, P, S) be an indexed grammar. Let x: Af-*p be a pro-
duction, let 1, and let y£I*. Then we set

Firstfc (;0 = { « h | S *=> wAa wu},

First* (n, y) = {<-*>u\Ay *=> e *=> w},

where vv, w(| T*, and where *=> and "=>• are leftmost derivations. Furthermore we
set for 9£(NI*UT)*

Firstfc (6) = *=> «} with u£T*.

From now on, all derivations are assumed to be leftmost derivations.

Indexed LL(k) Grammars 35

Now we define the notion of an indexed LL(&) grammar (ILL(A:) grammar).
This notion corresponds to the context-free LL(/c) grammars.

Definition 2.2. Let G=(N, T, I, P, S) be an indexed grammar and let
be an integer. G is called an ILL(k) grammar if the following holds:
Let

S *=> wAya. "=> w01 *=> wx and

S *=> wAya *'=> w02 *=>'wy
be two leftmost derivations with A£N,y£I*, a£(NI*{JT)*, and w, x, T*.
Then (k>x=(k)y imphes n — n'.

{Note: 1=9 yields the context-free LL(/c) grammars.)

Remark. Let G be an ILL(/c) grammar. Then for each word w£Z,(G) there is
exactly one leftmost derivation according to G.

Example 2.1. Consider the indexed grammar G=(N, T, I, P, S) with N=
= {£, A, B, C}, T= {a, b, c} and / = {/, g}. The productions in P are nt: S-*aAf,
Jt2: S—bAg, 7r3: A—B, 7r4: A—C, TZ&: Bf—a, n6: Cf—b, n1: Cg-*a, and ne:
Bg—c. Only the following derivations are possible:

S =>• aAf => aBf =>• aa,

S => aAf =>• aCf => ab,

- - S => bAg => bBg => be,

S ^-bAg^-bCg^ba.

Obviously G is an ILL(/) grammar.
As for the context-free case it is possible to define the notion of a strong ILL(&)

grammar.

Definition 2.3. Let G=(N, T,I,P, S) be an indexed grammar and let k^ 1
be an integer. G is called a strong ILL(k) grammar if First* (7t)n First* (7r')=0 holds
for all productions n ^ n ' which possess the same lefthand side or are of the form
it: A—a, %': Af—a' with / 6 / .

(Note: / = 0 yields the context-free strong LL(/c) grammars.)

Remark. It is easy to see that strong YLL(k) grammars are ILL(/c) grammars.
The ILL(l) grammar G of Example 2.1 is not a strong ILL(l) grammar because
First1(;is) = {a, c} and F i r s t { a , b}. This shows that an ILL(A:) grammar is
not necessarily a strong ILL(/c) grammar even for k—\. This differs from the con-
text free case.

We can state:

Theorem 2.1. 1) A strong lLL(/c) grammar is an ILL (k) grammar. 2) An ILL(l)
grammar is not necessarily a strong ILL(l) grammar.

We will call a language a (strong) ILL(k) language if there exists a (strong)
ILL(fc) grammar generating this language.

3»

36 R. Parchmann, J. Duske, J. Specht

We will now compare our definition of ILL(fc) — and strong ILL(fc) grammars
with the definitions of indexed LL2(&) — and indexed LLl(/c) grammars introduced
in [10].

Obviously, an ILL(&) grammar is an indexed LL2(&) grammar. On the other
hand consider the indexed grammar given by the productions 7^: S—Af n2: A—a,
and 7t3: Af—a. The two possible leftmost derivations

S "i=> Af «•=» a,

S "i=> Af "3=> a

of the same word a according to this grammar show that it is not an ILL(l) grammar,
but the LL2(1) condition is still satisfied.

The notion of a strong ILL(&) grammar and that of an LL1(A:) grammar are in-
comparable.

The indexed grammar G1 given by the productions nx\ S-*aAf S-»bAg,
7r3: Af—ab, and 7t4: Ag—ac is obviously a strong ILL(l) grammar.

Gx is not an indexed LL1(1) grammar, since BASE(Gi) (see [10]) is not a context-
free strong LL(1) grammar. This stems from the fact that in leftmost derivations
according to Glt applicability of n3 excludes applicability of 7r4 and vice versa. On the
other hand consider the indexed grammar G2 given by the productions : S-*Af,
7t2: S—Ag, and n3: A—a in P. <j2 is not a strong ILL(l) grammar, since
First1(^i)nFirst1(7r2)= {a}. G2 obviously is an indexed LL1(1) grammar.

Furthermore, G2 is not an indexed LL2(1) grammar, which shows that Theorem
4 in [10] is false.

In [11], three types of indexed LL (k) grammars, the a, /?, y-ILL(&) grammars
were introduced. It is easy to see that the definitions of a-ILL(/c)- and ILL(fc) gram-
mars and those of JS-ILL(k)- and strong ILL(A:) grammars coincide. These notions
are defined but are not investigated further in [11], where only y-ILL(£) grammars
are investigated. These grammars do not even include all context-free L L (k) gram-
mars.

3. Properties of strong ILL(£) grammars and languages

In this section we will first show that, given an indexed grammar G and a pro-
duction 7i the language First* (n) can be given effectively. This result implies
that it is decidable whether a given indexed grammar is a strong ILL(fc) grammar for
a given k. Furthermore, we will call an indexed grammar "reduced", if each produc-
tion occurs in at least one derivation of a terminal word. With the aid of First* (n),
we can construct, given an indexed grammar G, an equivalent reduced indexed
grammar.

Theorem 3.1. Let an indexed grammar G=(N, T, / , P, S), a production
7i£P, and an integer k ^ l be given. Then an indexed grammar G" with L(G") =
= First* (7t) can be constructed effectively.

Proof Construct the indexed grammar G'=(N, T', / , P\ S) with T' =
= r U { # } , and Pr—PU{ft7} where n'\ Af-~#a. if n\ Af-a. It is easy to con-
struct a finite transducer M with M (L (C))=First* (7r). Here we use the notion
"finite transducer" as given in [1].

Indexed LL(/t) Grammars 37

From Theorem 3.1 and Lemma 3.2 in [1] it follows that we can construct effecti-
vely an indexed grammar G" with L (G ") = M (L (G'))=First* (rc).

Now we can state

Corollary 3.1. Let G=(N, T, I, P, S) be an indexed grammar, n a production
of G, A:§=1 an integer, y£I*, and 0£(NI*{JT)*. Given a vewT* it is decidable
whether

(1) u6Firstt(7i), (2) u€Firstfc (0), (3) u^First^ (tt, y) holds.

Proof. (1) Construct an indexed grammar G" with L(G") = Firstk(Tr). In [5]
it is shown that the membership problem for indexed languages is decidable.

(2) With the aid of G construct the indexed grammar G'=(N U {S"}, T, I, P', S')
where S' is a new start variable and P'—PU {it'} where n'\ S'—d is a new produc-
tion. Then we have First t(0)=Firsts(ji ').

(3) Let Afbz the lefthand side of the production n. If n cannot be applied to Ay,
then we have Firstfc(7t, y)—&. If Ay "=>0, then Firsts (re, }>)=Firsts (0) holds.

Corollary 3.2. Let G=(N, T, I, P, S) b e a n indexed grammar and k^l be
an integer. It is decidable whether G is a strong ILL (k) grammar.

Since the language Firstfc(7i) can be given effectively for an indexed grammar G,
it is possible to single out all productions of G which never appear in derivations
of terminal words. We will call an indexed grammar without such productions
"reduced".

Definition 3.1. An indexed grammar G=(N, T, I, P, S) with L(G)^0 is
called reduced if for each n£P there exists a derivation of a terminal word in which
n is applied.

Theorem 3.2. Let G=(N,T,I,P, S) be an indexed grammar with
Then it is possible to construct a reduced indexed grammar G'=(N, T, I, P', S)
which is equivalent to G.

Proof. Determine for each production n the language First^Tt). If First1(7r)=0
then remove the production. The grammar G' obtained in this way is reduced and
obviously L(G)—L(G') holds.

4. Strong ILL(/c) languages are deterministic indexed languages

In [7] an indexed pushdown automaton (IPDA) has been defined, and it has been
i shown that these automata accept exactly the indexed languages.

Furthermore, a deterministic IPDA (d-IPDA) has been introduced in [7]. The
class of languages accepted by these automata is called the class of deterministic
indexed languages (DIL's). This class has properties similar to those of the class of
deterministic context-free languages [7, 8]. In this section we will show that the strong
ILL(/c) languages form a subclass of the DIL's.

Theorem 4.1. If G=(N, T, I, P, S) is a strong ILL(&) grammar then L(G)
is a deterministic indexed language.

38 R. Parchmann, J. Duske, J. Specht

Proof. We will construct a d-IPDA K which accepts the language L(G)$k

where $ is an endmarker not in T. Since the deterministic indexed languages are closed
under right quotient with regular sets [8], the language L(G) is a DIL.

The states of K are the contents of a buffer of length k. This buffer contains a
lookahead of k input symbols. Furthermore, the automaton simulates leftmost deri-
vations according to G.

Set K=(Z, X, J \ , r 2 , <5, z0, A0, g0, F) with Z=WX*(J{zf}, * = r U { $ } ,
r 1 = / V U r U { / 4 0 } , where A0 is a new element, rs=I, z0=g0=e, F={zf}, and ô
will be defined as follows:

(1) For all u€X* with \u\^k-2 and a£X set

(ua, (A0, e))£S(u, a, (A0, e)).

For aU iieX^-», a£X set

(ua, (S, e)(A0, e))£ô(u, a, (A0, e)).

(2) Let TI: Af-B1y1...Bryr be a production of G, r ^O, B£NUT, and
y,€/* for / e [l : r] . Then set {v,(B1,y1)...(Br,yr))^ô(v,e,(.A,f)) if \v\ = k and

First*(7t), where v is the maximal prefix of v with vd T*.
(3) For all b£X, a£T, and u^X*-1 set (ub, é)£ô(au, b, (a, e)).
(4) (z„eKô($k,e,(A0, e)).
Obviously, we have L{K)—L(G)%k. Since G is a strong ILL(A:) grammar, we

have |<5(z, for all z£Z,x€XU{e}, B£rlt and g£/U{e}. (For
example: S(v, e, (A, e)) with A£N can only be defined in (2). If |(5(u, e, (A, e)) | > l
we have a contradiction to the strong ILL(/c) condition.)

It is easy to see that in each configuration (z, w, 6) of K at most one move is
possible. (For example: 8(v, e, (A, and S(v, e, in (2) for A^N
and / € / leads to a contradiction to the strong ILL(fc) condition.)

Therefore A! is a deterministic IPDA.

5. Strong ILL(A:) languages and deterministic context-free languages

Theorem 4.1. shows that the class of strong ILL(/c) languages is contained in the
class of DIL's. The DIL's include all deterministic context-free languages, which we
will now characterize as a special class of strong ILL(l) languages.

Theorem 5.1. For each deterministic context-free language L there exists a
strong ILL(l) grammar G with L=L(G).

Proof Choose a deterministic pda K=(Z, T, r, ô, z0, A0, F) with L=L(K).
We may assume that in a final state, K may make no e-move (see [4], p. 239). Now
construct the following indexed grammar G=(N, T, I, P, S) with N=ZU {S}
and I—T. The productions of G will be defined as follows:

1) S—z0A0 is in P
2) If <5(z, a„A)=(z',B1...Br), then the production zA-az'B1...Br is in P.
3) For each z£F the production z—e is in P.

Indexed LL(/t) Grammars 39

Obviously, G is a strong ILL(l) grammar generating L.
The productions of the indexed grammar G in the foregoing proof are of a spe-

cial "right linear" form. Let us define:

Definition 5.1. An indexed grammar G=(N, T, I, P, S) is called a right linear
indexed grammar, if each production in P has one of the forms Af—aBy or Af—a
with A,B£N, faUM, a£TU{<?}, and y£I*.

Recall that an indexed grammar G=(N, T, I, P, S) is called an RIR grammar
(right linear indexed right linear) if all productions in P are of one of the forms
Af-aB, Af—a, or A-aBf where A, B£N, a£T(J {<?}, and /<E/U{e}.

RIR grammars generate exactly the context-free languages, (see [1]).
Obviously, each R I R grammar is a right linear indexed grammar. On the other

hand, it is easy to show that for each right linear indexed grammar there is an equiv-
alent RIR grammar.

Therefore we can state:

Theorem 5.2. Right linear indexed grammars generate exactly the context-free
languages.

Now we can state:

Corollary 5.1. Each deterministic context-free language is generated by a right
linear strong ILL(l) grammar.

To prove the converse of this statement, we first need the following lemma.

Lemma 5.1. For each right linear indexed grammar G=(N, T, I, P, S) there
exists an equivalent right linear indexed grammar G' with the following properties:

1) There is exactly one start production.
2) All the other productions are of the form Af—a with f ^ e .
3) If CP is a strong ILL(k) grammar, then G' is a strong ILL \ k) grammar.

Proof Set G' — (N', T, /', P', S') with N'=N\J{S'}, 7 ' = / U { # } and
P' = {S'-S#}\JP", where P" is defined as follows:

a) If Af-(x£P, f ^ e , then Af-a£P".
b) If A-a£P, then Ag-oc: g£P" for all g£I'.
Obviously, G' is a right linear indexed grammar which satisfies 1) and 2), and

is equivalent to G. Furthermore, it is easy to see that if G is a strong ILL(/c) grammar,
then G' is a strong lLL(/c) grammar too.

Now we can prove:
Theorem 5.3. Each right linear indexed grammar G=(N, T, I, P, S) which

is a strong ILL(l) grammar, generates a deterministic context-free language.
Proof If L(G) = 9 then L(G) is a deterministic context-free language. If L(G)^
construct G' = (N', T,I\ P', S') according to the proof of Lemma 5.1. Further-

> more we can assume w.l.o.g. that G' is reduced. We will define a pda K which accepts
the language L(G')$, where $ is a new symbol. .K buffers a lookahead of length one
in its states and simulates leftmost derivations according to G'. The strong ILL(l)
property of G' then implies that K is a deterministic pda.

Set K—(Z, X, r,5,z0, # , F) with Z=N'X(TU {e, $})U {zf}, X=T U{$},
r=I', z0—(S', e), F = { z / } , and define 5 as follows:

40 R. Parchmann, J. Duske, J. Specht

(1) For all c i X let ((5, c), #) € « (($ ' , e), c, #) .
(2) Let 7i: Af-*aBy be a production in P with A t ± S ' .

(a) If a^e then ((B, c), y)çS((A, a), c , f) for all c£X.
(b) If a=e then ((B, b),y)Çô((A, b), <?,/) for all ¿Ç^ 'F i r s t ^^S .

(3) Let 7i : Af— a be a production in P.
(a) If a^e then (zf,e)eô((A, a), $,/).
(b) If a=e then (z f , e)Çâ((A, $), e j) .

First we make the following observations concerning K:

Claim 1. If ô((A, a), for a, c£X then there is a production n: Af—aa
and {a}=First1(7r)=(1)First1(7r)$.

Claim 2. If S((A, a), e , f) f o r aÇ.X then there is a production n: Af—a
with a=e or the first symbol of a is in N and furthermore aÇ(1)First1(7r)$.

Claim 1 and Claim 2 correspond to the subcases (a) and (b) respectively in the
above definition of <5.

Claim 3. For all z£Z, c£XU{e}, and fer we have \S(z, c , /) | s l .
If z=(S',e) then |<5(z, c,f)\^\ obviously holds. Now assume z=(A, a)

with a€X and |<5(z, c , /") |>l . Then there are productions n and n' with n^n' and
aÇm(First ^rc)$)D (1)(First^n')?). This is a contradiction to the strong ILL(l) pro-
perty of G.

Now consider z=(A,a) with aÇX and fÇT. If S(z, e,f)^0 and S(z, c,f)^0
for a cÇX then Claim 1 and Claim 2 state the existence of two productions n and n'
with n^Tt' and furthermore a ^ w (F i r s t ^ S) D (1) (F i r s t ¿ n ^ S) . But this is a con-
tradictibn to the strong ILL(l) property of G.

If z=(S',e) then 0(z,e,f)=0 holds. Together with Claim 3 this shows that K
is a deterministic pda.

To prove L(K)=L(G')$ we need

Claim 4. If «S # "=>• wAy # *=>wv, w,v£T*, AÇ.N, according to G' then
(z0, wv$, #) f-^ii- ((A, c), v', y #) according to K, and cv'=v$ with c^e.

The claim will be proved by induction on n.
If n = 0 then w=y=e and A—s. According to K we have

((S", e), v$, #) l - ((S, c), v', #) with cv = v$ and c ^ e.

Assume the claim holds for all k ^ n .
Let S#"=>wAy #n=>waBy'#*=>wav be given where a£TU{e}. From the

induction hypothesis (z0, wav$, #) ((A, c'), v", with c'v"=av$ and
c'^e follows. If now a£T then c'=a and v"=v$ holds. According to K the move
((A, a), v$, y#)h((B, c), t> ' ,y '#) with cv' = v$ and c^e is possible. If a=e
then c'v"—and c'çW(First1(7i)$) holds. According to K the move
((A, c \ v", y #) l - ((B, c'), v", y' #) is possible. This completes the induction.

Now, by induction on n we will show

Claim 5. If (z„, wv$, #) |-2±L ((A, c), v ' , y #) with w,v£T*, cv' = v$ and
cj±e holds according to K then S wAy # holds according to G.

Indexed LL(/t) Grammars 41

If n=0 then we have ((S", e), #) h - ((5, c), v', y #) with cv'=v$ accord-
ing to K. This implies and S # °=> wSy # holds according to G. Assume
the claim holds for all k^n and let (z0, wv$, #) h ^ i ((A', c'), v", y' #)|-
h- ((A, c), v', y #) with cv'=v$ and c^e be given.

If v"=v' then c=c' and c'v"=v$ holds. From the induction hypothesis
S#n=*-wA'y' # follows. Since ((A', c), v', y' #)|- ((A, c), v', y #) holds, there is a
production 7i with wA'y'#*=> wAy#.

If t V » ' then v"=cv' and w=w'c'. From the induction hypothesis S#"=>
n=>w'AY* follows. Since ((A', c'), v", y' #)|- ((A, c), v', y #) holds there is a
production n with w' A' y' # w'c'Ay # = wAy # . This completes the induction.

Now let w£L(K), i.e. (z0, w, #) ((A, c), d, y #)\-(zf, e, y'). Here we have
either d=% or d=e and c=$. If d=$ then w=w'c$. Obviously, w'c£T*
holds. Therefore the derivation S#*=>w'Ay # exists according to Claim 5. Since
((A, c), $,)h(zf, e, /) holds, there is a production n: Af—c with w'Ay#"^>-
"=>w'c. Therefore w'c£L(G) and w=w'c$É.L(G')$. If d=e and c = $ then
vv=w'$ with w'£T*, and the derivation S#*=>w Ay # exists according to Claim
5. Since ((A, $), e, y #)h- (zy , e, y') holds there is a production n:Af—e with
w'Ay#*=>w'. Therefore w'iL(G') and w=w'$£L(G')$, and hence L(K)QL(G)$.

Conversely, let w£L(G'), i.e. S # *=>w'Ay # => w=w'c ' , c'£TU{e}. Then
(z0, w'c'$, #) h*- ((A, c), d,y#) with cd=c'$ and c^e holds according to Claim 4.
If c'=e then c = $ and d=e hold. Hence the move ((A, $), e,y#)h(zf, e, y')
exists. If c ' ç r then c=c',d=$, and the move ((A, c), $, y #)h(zj-, e, y') exists.
Therefore w$£L(K) and hence L(G)$QL(K).

Together with the inclusion L(K)QL(G)$ this shows L(K)=L(G)$.
Since K is a deterministic pda, L(G)$ is a deterministic context-free language

which implies that L(G') is a deterministic context-free language as well (see [3],
Theorem 11.2.2).

Combining Corollary 5.1 and Theorem 5.3 we can state

Theorem 5.4. The class of deterministic context-free languages is exactly the
class of right linear indexed strong ILL(l) languages.

The indexed grammar for the language {a"bnc"\n^\} given in [1] is a strong
ILL(l) grammar. This proves

Theorem 5.5. The class of strong ILL(l) languages properly contains the class
of the deterministic context-free languages.

6. A general transformation of indexed grammars

In Section 3 it was shown that the strong indexed LL (k) property is decidable.
This will be used in Section 7 to prove the main result of this paper, namely the de-
cidability of the (general) indexed LL(fc) property.

To this end we first investigate in this section properties of two functions which
are defined with respect to a given indexed grammar. Let G=(N, T, I, P, S) be an
indexed grammar and let A: I*—L and fi: (NI*{JT)*-+M be two functions in
two finite nonempty sets L and M. A and /x can be interpreted as assigning information

42 R. Parchmann, J. Duske, J. Specht

•A(y) and ¡i(9) from finite domains L and M to words y€7* and 9£(NI*UT)*, res-
pectively. If A and n satisfy certain compatibility conditions Cx and then it is pos-
sible to construct a grammar GXll equivalent to G which simulates the derivations of G
and attaches in left sentential forms wAyB of G the information A(y) and n(9) to the
variable A. This means that the values of the functions A and fi can be "computed"
during leftmost derivations.

Let us now state the compatibility conditions Cx and C„.

(Q) If A(yt) = A(y2) then A(/y i) = A(/y2) for all ylty,a*, and / € / .

(C„) If A(yx) = A(y2) and ^(0.) = n(02) then ^ (f l r y ^ J =/ i (0 :y 2 0 2) for

all O^d^NFUTT, 0£NI*UT, and y l 5 y 2 €/* .

Note: If Cx is satisfied then it is easy to see that A(y1)=A(y2) implies A (ay^ =
=A(ay2) for all a£1*. Funhermore it easy to prove that if C„ holds then A(y^ =
=A(y2) and imply ^(0:y101)=/x(0:y202) for all d£(NI*UT)*.

We will now give examples for functions A and ¡i satisfying the conditions C ;
and C„.

Example 6.1. Let G=(N, T,I,P, S) be an indexed grammar. Set L=0>(N),
the power set of N, and set A(y) = {A\Ay*=>e}. We will show that A satisfies condi-
tion Cx. For this purpose let y i ,y 2 €/* with A(y1)=A(y2),/€/ and A^X(fy^) be
given. Since A£A(fyi), there exists a derivation Afy*=>e. If Af*=>e, then
AdA(fy2) obviously holds. Otherwise there exists a derivation Af*=>B1...B„ with
B£N, /€[1: n] and Bflx*^e 'for /£[1: n] holds. Therefore BifJ.(yl)=l(y2) and
hence Biy2*=>e for /£[1: n] holds too. Consequently we have Afy2*=>B1y2...
...Bny2*=>e and A£X(fy2) follows. This shows A(/yj)QA(/y2). The converse
inclusion follows by symmetry.

Example 6.2. Let GC=(N, T, P, S) be a context-free grammar which can be
interpreted as an indexed grammar G=(N, T, I, P, S) with 7=0 . Let L be a finite
nonempty set and let A: /*—L be defined by /,(e)=q for a q£L. Obviously A
satisfies condition Cx• For a k^l set M=<k)T* and define y.{9) = {u\9*=>v, v£T*,
M=<*)u}=Firstfc(0) for all Oe(NUT)*. We will show that n satisfies condition C„.
Let O^O^NUT)* with ii(BJ=n(6>2) be given. Let 6£(NUT)* and let
Hence there exists a derivation 69j*=>w with v=ww. This derivation can be writ-
ten as 661*=>u161*=>u1u2=w. If then v=(k)u1£n(992) holds. Now assume
| Hi | < A:. We can state the existence of a derivation 62*=>u2 with (fc)M2=(fc)M2 since
fi(9j)=fi(6^). Hence 892 =>-u192 =ru1u2 and <-k)u1u2—v^fi(992) holds. Therefore we
have The converse inclusion simply holds by symmetry.*

This completes the examples and we return to the general discussion.
Let L=L\J{q} where q is a new element. With the aid of A the function

1\ I*XL-*L, is defined for all y£7* and qtL by

Hy,g) = Hyy') if q = W) for a / £ / *

= q otherwise.

If A satisfies the condition Cx then 1 is well defined.

Indexed LL(/t) Grammars 43

Now set M=M U {m} where m is a new element and define the function
p.: (NI*UT)*XMXL-M for all 0£(NI*\JT)*, m£M, and qdL by

m, q) = n(0:y0d if q = Kv) for a y£I* .

and m = n(6 j) for a O&NFUT)*

= in otherwise.

If p satisfies the condition C„ then p. is well defined. Now we can state

Lemma 6.1.

(1) If A is effectively computable and satisfies the condition Cx then A(/*) and 1
are effectively computable, too.

(2) If A and ¡1 are effectively computable and satisfy the conditions Cx and C„
then p((NI*UT)*) and ¡1 are effectively computable, too.

Proof. (1) We will first show that the value of X for an index word with, length
greater than or equal to \L\ can be obtained by applying A to a word of length less
than \L\.

Let X be effectively computable, i.e. there is an algorithm Ax which determines for
each given y£I* the value A (7). With the aid of Ax determine the •set A((| L | - 1) /*).
(Recall that (| i | ~ 1) / * denotes the set of all words over / with length less than or equal
t o | L | - l .)

Let y=fr...f1ei* with r^\L\ be given and let qk = X(fk...fL) for k£[0: r}.
There exist i,j£[0: r] with 7<7 and qi = qj because \L\ = r. Since A satisfies the
condition Cx we have X(y) = X(fr...fj+1fi...f1). Hence A(/*) = A ^ l - 1 * / *) and this
implies that A(/*) is effectively computable.

To show that I is effectively computable let y£I* and q^L be given. If
?fA(/*) then l{y, q)=q holds. Otherwise, if q£MI*), determine a
with X(y')=q and compute the value X(yy) with the aid of Ax. This completes the
proof of (1).

(2) We will first show that for each 0£(NI*U Tf there exists a 0'£(NI*U T)*
with n(8)=fi(6'), and with the length of the index words in 6' restricted by \L[.
In the next step we show that it suffices to compute the values of p for words over
(.NI*UT)* with length less than \M\.

Let A be effectively computable and let A and ft satisfy the conditions Cx and C„.
First we will show by induction on the length that for each Q€(N/*UT)* there
exists a 0'e(iV((lLl-1>/*)Ur)* with p(Q)=p(6'). In case 6=e the assertion is
trivial. Let B = 0102 with 91eNJ*UT and 02£(Ni*UT)*. The induction hypothesis
guarantees the existence of a 9'2e (N(lW-»I*)\JT)* with ii(O2)=fi(0'J.

If 0 x = a € r then n(S)=ti(ad2)=p(ad'2)=p(9') with
since n satisfies condition

Now let Q^AydNI* . Part (1) of this lemma guarantees the existence of a
y'g(li-l-i)/* w i th X(y)=X(y'). Since p satisfies the condition C„, we have p(6) =
=p(A:ye^=ii(A:y'9'2)=ii(0') with fl'e^^l-^OUTO*.

Now let p be effectively computable, i.e. there is an algorithm Ap which determi-
nes for each Q£(NI*UT)* the value p(6). With the aid of Ap determine the set
^ ((I m i - d ^ U l i - u ^ u j) *) . We will show that this set equals p((NI*UT)*).

44 R. Parchmann, J. Duske, J. Specht

Let a 9£(NI*UT)* be given. We have proved above the existence of a
0'£(W((|i.|-i>/*)U:r)* with /i(0)=/i(0'). Let 0' = gr...e1 with Ot£NI*\JT for

r] and r s | M | . If we set mk=fi(9k...9J for r] then there exist
'>/€[0: r] with /'</' and rni = rrij. Since fi satisfies the condition C„, we have
K6')=MOr...eJ+le,...ed.

This impUes ^ ((W*UT) +)=^((| A i | - 1 W(<l i - l - 1) /*)Ur)*) and therefore
n((NI*UT)*) is effectively computable.

J t remains J o be shown that p is effectively computable. Let 0(i(NI*{JT)*,
m£M, and q£L be given. If m£n((NI*\JT)*) and qO^I*) then determine a 0X
with fi(61)=m and a y with k(y)—q and compute the value p(9:y91)—p(9,m,q)
with the aid of Afi. Otherwise, if m=m or q=q, we have ¡1(0, m, q)—m. This
completes the proof of the lemma.

Starting with an indexed grammar G=(N, T, I, P, S) and functions X and fx
satisfying Cx and C„, we will construct an indexed grammar GXfl=(N', T, /', P', S').
This grammar is structurally equivalent to G, i.e. generates the same set of terminal
strings and the same set of derivation trees (ignoring the labels of the intermediate
nodes). _

Define N'=NXMXL, l'=lxL and S'=(S, m0, q0) with m0=n(e) and
q0 = He).

For the definition of P' we need two functions <p and i¡1. The function
(p: / * X L — (/ X L) * = / ' * attaches a second component to each index f , in an index
word / i . . . / „ . For a given q£L the second component of f will be value l(fi+1...
...f„,q), i.e. <p is defined by

(p (e, q) = e, and

<PUv, ?) = (/> Uv,q))<P(y,q) for all y£I*, / € / , and qtL.
The function ^ : (N1* U T)*XMXL-* ((NXMXL)(/XL)* U T)*=(NT* U T)*

attaches two components to the variables A{ in a word A1y1_A2y2...A„y„ of (N/*U
U T)* with A^NUT, y£I* for /€[1: «]. For a given m£M and qtL the values
of these components will be p(Ai+1yi+1...Any„, m, q) and !(>>;, q) respectively.
Furthermore the yj will be replaced by q>(yj, q) for [1: n], i.e. 4> is defined by

\//(e, m, q) = e,

\l/(aO,m,q) =a\l/(9,m,q) and

il/(Ay9, m, q) = (A, p(9, m, q), I(y, q))(p(y, q)^(9, m, q),

for all A£N, y£l*, 9£(NI*UT)*, m£M, q£L, and a£T.
Now we are able to define the productions of GXlt • Let n: Af—fi be a production

of P. Then for all m€n((NI*(JT)*) and q£X(I*) the production

nm,q: 4/(Af, m, q) - 1¡/(P> m, q) is in P'.

• Note that ij/(Af, m, q)= (A, m, l (f q))<p(f, X (/ ' U {«}), since <p(f q)=e
if /=<?, or (p(f,q)=(f,4) if

Gx„ is called the Xfi-grammar of G. If the functions A and fi are effectively compu-
table, then the function ij/ is also effectively computable and the grammar GXll can be
constructed effectively.

Indexed LL(/t) Grammars 45

The homomorphism 3: (N' (J I' U T)*_—(N U_I U T)* defined by S(A, m, q)=A,
S(f q)=f, and S(a)=a for all A£N,m£M, q£L,f£I, a£T, deletes the components
attached to variables A£N and indices / € / . Obviously, if 6[nr°'"=>8'2 according
to G ^ , where 0i, 9'^(N'I'*UT)*, then ¿ (0 ^ (5 (0 0 holds according to G.

Furthermore for all 9£(NI*UT)*, m£M, q£L, we have 5(il/(9,m,q))=0.

If S' = (S,m0,q0) 1 =>6[... n =>6'n is a leftmost derivation according to
GXft, then

S*i =>5(9[) =>•...*» =>5(0'„)

is called the corresponding leftmost derivation according to G.
In the following two lemmas we will make precise the structural equivalence of

the grammars G and GXfl. To prove these lemmas we need a number of facts concern-
ing the functions 1, Ji, <p, and

Claim 1. For all 0, 6lt 9^(NI*UT)*, and y,yxU* we have

(i) l(e,X(y)) = X{y),

(ii) Hy> <7o) = where q0 = X(e),

(iii) J.(yx,I(y, q)) = l(yxy, q) for all q£L,

av) ¡i[e,m,m) = m ,

(v) /Z(0, m0, q0) = /i(0) where m0 = p(e) and q0 = X(e),

(vi) p.(919,m,q) = p.(91,fi(9,m,q),q) for all m £ M and q£L,

(vii) fi(9:y, m, q) = fi(9, m;X(y, qj) for all m£M and q£L.

These identities are easily obtained from the definitions of the functions 1 and j.I.
The following three claims state properties of the functions (p and All claims

are proved by induction on the length of words over I and NI*UT respectively.

Claim 2. For all y, y%€I* and qdL we have

<p(M> q) = <P(Y> HJI, q))(p(Yi, q)-

Proof The assertion holds for y=e. If y=fy' with / € / then

Hfy'yi, q) = (/ UY ?i> q))<p(y'7i> q)

= (/ HY, Uvi, q)))(p{y\ Hyi, q))(p(yi, q)

(see Claim 1 (iii) and induction hypothesis)

= <p{fY, Uyi, q))<p(yi, q)

(see definition of (p).

Claim 3. For all 0, 9lZ(NI*\JT)*, m£M, q£L, we have

^(0!0, m, q) = I¡/(dt, ¡1(9, m, q), q)ip(9, m, q).

46 R. Parchmann, J. Duske, J. Specht

Proof. The assertion holds for 91—e. Assume that 91=a9'1 with a£T and that
the assertion holds for 6[0. Then, by the definition of ip we can conclude

t W A m, q) = a\j/(0[0, m, q)

= a\l/(9[, ¡1(9, m, q), q)\j/(9, m, q)

= \lf(aBi, /1(0, m, q), q)\j/(9, m, q)

Now assume 91=Ay9'1 with Ayd.NI* and 9'1£(NI*UT)*, and assume the
assertion holds for 9[9. Then, by the definition of i¡f and Claim 1 (vi) we can conclude

iP(Ay9[9, m, q) = (A, ¡x(9[9, m, q), l(y, q))<p(y, q)^)(9'19, m, q)

= (A, ¡i(9'16, m, q), l(y, q))<p(y, q)ip(9[, /1(0, m, q), q)ip(9, m, q)

= (A, ¡1(91, ¡1(9, m, q), q), l(y, q))q>(y, q)4>(9[, ¡i(9,m, q), q)^(0, m, q) 1

= il/(Ay9i, ¡1(0, m, q), q)ip(0, m, q).

Claim 4. For all 9^(NI*\JTf, ydI*, m£M, and qdL we have

i¡/(9: y, m, q) = \p(9, m, X(y, q)):cp(y, q).

Proof. The assertion holds for 9=e. Assume Q — adi with a£ T and the asser-
tion holds for 9t. From the definition of ij/ it follows.

<K(a0i):V. q) = ^ (a f t : V), m, q) = ai/^: y, m, q)

= a(\p(9i, m, l(y, q)): cp(y, q)) =

= (a\j/(91, m, J.(y, q))): <p(y, q) =

= ij/(a91,m,l(y, q)): <p(y, q)

Now assume 9=Ay191 with Ay^NI*, 9^(NI*{JT)* and assume that the
assertion holds for 0!. Then, by the definition of ip, Claim 1 (iii), Claim 1 (vii), and
Claim 2 we have

t((Ayi9i)'-y> m> q) = ¡¡>{Ayiy(9i- i), m, q)

= (A, /7(0X: y, m, q), I fay, q))(p(y tf, q)^(0i. y, m, q)

= (A, /2(0l5 m, l(y, q)), I(yxy, qj)<p(yi, X(y, q))<p(y, q)^{91, m,l(y, q))\ cp(y, q)

= ((A, /2(0!, m, X(y, q)), l(yx, l(y, q)))i¡ff(yls l(y, q))^(91, m, l(y, q))): q>(y, q)

= " H ^ y A , m> <f>(y>

For the remainder of this section we will use the following general assumptions:
(*) Let G=(N, T, I, P, S) be an indexed grammar and let A: / * — L and

fi: (NI*(JT)*-"M be two functions in two finite sets L and Msatisfying the con-
ditions Cx and CM. Let L=LU{q} and M=M(J{m} where q and in are new ele-
ments and let GXll=(N', T, 1', P', S0 be the ¿/¿-grammar of G.

The next lemma establishes a correspondence between a leftmost derivation step
in G and an analogous leftmost derivation step in GA(1.

Indexed LL(/t) Grammars 47

Lemma 6.2. Under the assumptions (*) for all w£T*, y£I*, 0£(NI*VT)*
the following holds:

If n: Af—P^P and wAfy6"=>wfl:yO according to G, then for all mx£n((NI*U
U T) *) and qx£X(I*) we have \p(wAfyB, mx, q^m'q=>\l/(wp-.yB, mx, qi), where
m=/7(0, mx, qj and q=l(y, qj.

Proof. Since mx£n((NI*UT)*) and qx£X(I*), the same holds for m and q,
hence nm-q£P'. Consider nm-q: (A, m, I (f q))<p(f, m, q)£P'. By the
definitions of (p and i¡/ and Claim 1 (iii) we have

\j/(wAfyO, m,, qx) = w(A, m, l (f y , qx))<p(fy, qJ<1/(0, mx, qx) =

= w(A, m, l (f q))q>(f, q)(p(y, qi)*P(B, mx, q^)

This shows that nm'9 is applicable to \}/(wAfy9, mx, qx), i.e. the following left-
most derivation step is possible:

w(A, m, X(f qj)(p(f, q)(p(y, qd^(0, mx, qx)

W\I/(P, m, q): <p(y, qx) ̂ /(9, mx, qx).

Using the Claims 3 and 4 we have

w\l/(P, m, q):q>(y, qd^(9, mx, qx) = w\l/(P:y, m, qx)\j/(9, mx, q^

= i¡/(w9x9, qx).

This completes the proof.
- The following lemma is in some sense the converse of Lemma 6.2 and describes

the simulation of a leftmost derivation step according to GXfl in the grammar G.

Lemma 6.3. Under the asumptions (*) the following holds for all
w£T*, ?€/*, and 0€(iV/*Ur)*: If nm•«: ^ (A f m , q) ^ (P , m , q) e P ' and
^(wAfy9,mx, qj*"""^, where mx£ii((NI*l>T)*) and qx<EA(/*), then m =

mx, qi), q=X(y, ft), and B=il/(wP:y9,mx, qx).

Proof. Since ^(wAfyB, mx, qx) =

w(A, Ji(9, mx, qx), X(fy, qj)(p(fy, qx)tp(9, mx, qx) =

w(A, ¡1(9, mx, qx), l (f , X(y, qx)))<p(f, l(y, qx))(p(y, q^(9, mx, qx)

(see Claim 1 (iii)) we have m=fi(9, mx, qx) and q=X(y, qx).
Furthermore, with the aid of Claims 3 and 4 we have:

B = w\l/(P, m, q): cp(y, qx)i/j(9, mx, qj = w\p(p-.y, m, qx)i//(9, mx, qx)

- \f/(w9x9, mx, qx)

This completes the proof.
The repeated application of Lemma 6.2 yields

Corollary 6.1. Under the assumptions (*) we have: If S*=>wAy9 acccording
to G with w£T*, A£N, y€/*, and 9£(NI*UT)* then S'=(S, m0, q0)**>
*^[j/(wAy9,m0,q0) according to Gifl.

48 R. Parchmann, J. Duske, J. Specht

Remark. Since

4>(wAy9, m0, q0) = w(A, ¡¡(9, m0, q0), l(y, q0))<p(y, q0)4>(9, m0, q0) =

= w(A, ii(B), X.(y))<p(y, qQ)^(6, m0, q0)

holds, we conclude: GXft simulates the .leftmost derivations of left sentential forms
wAy9 of G and attaches the information X(y) and p(9) to the variable A.

Repeated application of Lemma 6.3 yields

Corollary 6.2. Let S'=(S, m0, q0)*=>6' be a leftmost derivation according to
GXp and let S*=>9 be the corresponding leftmost derivation according to G. Then
B'—\Jj(8, m0, q0) holds.

Furthermore, with Lemma 6.2 we obtain

Corollary 6.3. Under the assumptions (*) we have: If 9£(NI*UT)*,m£p((NI*U
LIT)*), q£Hl*), and v£T* then i¡j(0,m, q)**-v according to GX/l iff 9*=>v
according to G. In particular L(G)=L(GXp) holds.

Remark. The underlying principle of this construction is applied for example in
[1,9]. In [1] the function A of Example 6.1 is used for constructing a normal form of
an indexed grammar. In [9] the function p of Example 6.2 is used in investigations of
context-free L L (k) grammars.

A construction similar to the construction of GXfl can be applied to indexed push-
down automata and pushdown automata. The principles of this construction are used
in [7, 8] in the indexed case and, for example, to prove closure properties of determi-
nistic languages in the context-free case (cf. [3], Section 11.2).

7. Decidability of indexed LL(k)

In this section we will prove our main theorem concerning the connection between
ILL(fc) and strong ILL(/c) grammars. For this purpose we will introduce two special
functions X and n in the following manner.

Let G=(N,T,I, P, S) be an indexed grammar with P={n1,nz,...,np}.
Set L= (SP^T*))", the set of all /^-vectors, whose components are subsets of (k) r * ,
and M=0>(MT*) with tel.

Define X: I*-»L by X(y)=(qlt ..., qp) where qt=First*(n^ y) holds for
/£[1: p]. Furthermore define p: (N1*UT)*-M by p(9)=First*(9). F rom Corol-
lary 3.1 we know that X and p are effectively computable.

First we want to show that X satisfies condition Cx. For this purpose let yt, y2£I*
with A(y1)=A(y2) be given, i.e. First*(7tf, yj) = First*(ji,, y2) holds for all /€[1: bl-
u n d e r this assumption we will show by induction on n that for each y£I* and each
production 7ij the following holds:

If
Ayy1"j=> Ox"^ u with u£T* then

Ayy2«j=> 02*=> v with v£T* and « h = <*>».

(Recall, "=> denotes a leftmost derivation in n steps.)

Indexed LL(/t) Grammars 49

Obviously this assertion holds for « = 0 . Now let Ayy1 0X "+1=>u with
u£T* be given.

If y=e, the assertion follows from X(yj)=X(y2).
If y no index of can be consumed in the first step of the derivation. There-

fore we have

0i = - M i • • • B,pr with B£NU T, r > 0, and

Pi = yiyi with yl€I* if B ^ N

= e otherwise.

In addition B{Pi "¡=>uL with rii=n + l holds for /£[1 : r] where u=u1...ur. Since y^e it is possible to apply to Ayy2 which yields

Ayy2BJ[... BrP'r = e2 with

P\ = Ya2 with y\a* if B ^ N

= e otherwise.

The induction hypothesis quarantees the existence of the derivations

BiPi *=*• vi with v£T* and = <">«; for ¿€[1: rj.

~ Consequently we have

Ayy2 "J=> 02*=>V! ... vr = v with =

This completes the induction, and hence

First* (Nj, YYJ i First* (TIJ, yy2).

The converse inclusion holds by symmetry. The special case y £ / shows that A
satisfies condition Cx.

We now prove that ¡i satisfies condition C^.
Let yuyaa* with A(y1)=A(y>) and 02£(N1*UT)* with /x(01)=^(02)

be given, i.e. for all productions 7T; we have First* (r^, y t)=First* (rc,, y2), and further-
more First* (0])=First* (02) holds.

Now for each 0eN/*UT the equality First*(9:yj0x) = First*(0:y202) has to
be shown.

If 0Ç.T this assertion holds obviously.
If 9=Ay£NI* then observe that Firstk(Ayy])= (J First* (rc,-, yyx) holds where

iiJ
J is the set of all numbers of productions with lefthand side Af, fÇ.1 U{e}. Since
A(y1)=A(y2) and A satisfies condition Cx, we have A(yy1) = A(yy2). Hence we have

First* (AyyJ = U First* (ni, yy2) = First* (AyyJ.
¡éJ

4 Acta Cybernetica VII/1

50 R. Parchmann, J. Duske, J. Specht

This equality enables us to conclude

First, (AyyM = «(Firs t , (Ayyt) First, (0,))

= «(Firs t , (Ayy2) First, (92))

= First, (Ayy292).

Consequently n satisfies the condition
According to Lemma 6.1 we observe that 1(1*), 1, fi((NI*L)T)*), and ¡1 are

effectively computable.
The ¿/(-grammar of G defined by these special functions A and /t will be called

the Sk-grammar of G and denoted by Sk(G).
Now we can state our main theorem.
Theorem 7.1. Let G=(N, T, / , P, S) be an indexed grammar and let k^l.

Sk(G), the 5",-grammar of G, is a strong ILL(fc) grammar iff G is an ILL(/c) grammar.

Proof, (a) Let G be an lLL(/c) grammar. If Sk(G) does not satisfy the strong
YLL(k) condition, then the following two cases are possible.

(1) There are two productions nV"q\ \p(Af, m, q)-~\j/((]1, m, q) and nf-q\
\j/(Af, m, q) — ip(f}2, m, q) in P' with the same lefthand side, where
and First,(7rP'")nFirst,(7rJ , '?)7i0, i.e. there are two leftmost derivations

S" *=• wip(Af m, q)y'0' w6i0' *=> wu9' *=> wuv (7.1)
and

S' vvt/* (Af m, q)Y0"z^"'=> wWj' wuQ' => wuv (7.2)

according to Sk(G) with w, w, u, u, v, v£T*, y', y'dl'*, and

&', 9[, B', Bi£(N'I'* U T)*, where

6[u, 9' v,

B[*=> U, 0' *=> v,
and Wuv = (k)iiv holds.

Consider the derivation (7.1). We have the corresponding leftmost derivation

S *=> wAfy9 *<=> wOl 9 *=> wuO *=>• wuv,

where y = S(y% ^ = 3(90, and 9 = 5(9').
Then from Corollary 6.2 we conclude w\l/(Af,m,q)y'9' = \p(wAfy9,m0,q0).

Since \j/(wAfy9,m0, q^}n'!"q=>w9[9' we have from Lemma 6.3 m = ji(9, mQ, qQ) =
=H(9), a n d q=X(y,q0)=Hy).

Analogously, considering the derivation (7.2), we have a corresponding leftmost
derivation

S *=> wAfyB *J=> w9i 9 *=> wuB*=> wuv,

where y=5(f), 0l=S(9[), and B.=8(B'). Furthermore we have m=n(B) and q=m-
Since A(y)=A(y) we have in particular F i r s t , ^ - , / y) = F i r s t , ^ - , /y) and since

fi(9)=fi (0) we have First, (9)=First , (B).

Indexed LL(fc) Grammars 51

If then € First* (nj,fy) and therefore wiï€First*(7ty,/y), i.e.
Afy *J=> Pz : y*=>û according to G with (,I)w=(fl)i7.

Then the following derivation according to G is possible:

S *=> wAfyd "J=> wP2 : yO *=> wûv

with (k)ûv=(k)û=ik)uv. But this is a contradiction to the ILL(£) property of G.
If then u € First* (n f y) and therefore u€First*(^j-,/y), i.e. Afy "j=>

P2: y *=>u according to G. Since First*(0) =First*(9) there exists 8*=>û
according to G with №D=(lt)i5. Then the following derivation according to G is
possible :

S *=> wAfyd "J=> wp2 : yO *=> wUO *=> wuv

with (k)îiv = (-k)îiv = <-k^uv. This is a contradiction to the ILL(/c) property of G.
(2) There are productions nf-q\ t ¡ j (A f , m , q) — ij/(P1,m,q), fdl, and nj'q' :

i¡/(A, m, q') —\I/(P2, m, q') in P' with q'=l(f q) and

S' *=> w\j/(Af m, q)y'd' wQ^d' *=> wu9' *=> wuv (7.3)
and

=>wtp(A, m, q'WÏÏw9[9'=> wuW*=> wuv (7.4)

according to Sk(G) with w,w,u,U,v,v£T*,y',y'(H'*,

0i ,0 ' , 0 i , 0 ' 6 (# ' / ' * UT)* where

0i*=*w, 0' *=>• v,
&Î *=> U, B' *=> v

and w u v = wUv holds. -
Consider the derivation (7.3). We have the corresponding leftmost derivation

S *=> wAfyO w0x0 *=> wud *=> wuv,

where y=à(y'), and 8=ô(8'). As above we conclude m=/i(6) and

Considering the derivation (7.4), we have the corresponding leftmost derivation

S wAyd "J=> w0j0 *=> wud' *=> wuv,

where y=<5(f)> B1=ô(B'l), and B=Ô(B'). Furthermore m=fi(B) and q'=X(y).
Since X(fy)=l(fq)=q'=X(y) we have in particular First* (tzj, y) = First* (nj,fy)

and since /i(9)=fi(B) we have First*(0)=First*(0).
If then (k)û€First*(itj , y) and therefore (i)w€First*(7i ;,/y), i.e. Afy"j=>

fy*=>û with (k)û=(k)û.
Hence the derivation

S *=> wAfyd "J=> wp2 :fyd *=> wû8 *=> wûv

according to G is possible with wûv=(k)û=(k)u=(k)uv. This is a contradiction to the
ILL(/c) property of G.

4*

52 R. Parchmann, J. Duske, J. Specht

If |M|<A: then F i r s t l y , y) and therefore i76First*(7tj,/y), i.e. Afyui=>
"J=>P2: fy*=>U holds according to G. Since First*(0)=First,(0) we have 0 *=>£)
with <V0=(k)v. Hence

S *=• wAfyO "i=> w/?2:/y0 *=> wuO *=> wuv

is possible according to G with (k)uv = ik)uv={k)uv which contradicts the ILL(/c) po-
perty of G.

(b) Let Sk(G) be a strong ILL(£) grammar. Assume that G is not an ILL(/c)
grammar, i.e. there are two leftmost derivations

S *=> wAyd "'=> w0! *=>• wx and

S *=> wAyO "J=> w02 *=• wy

with A£N, ye /* , 01,02€OVrUr)*, w,x,y£T*, (k)x = <k)y and
Let us consider the case that the lefthand side of the two productions are dif-

ferent, i.e. 7tf: A—fil and izj-. Af—fS2 with / £ / . Hence y = / y ' holds. Set m=
= m = m m 0 , q 0) , q ' = W) = K Y , q o) and q =).(y) = X(y, q0) = l (f , q ') .

In P' there are the productions

nT-q: ip(A, m, q)
and

n?-*': M4f,m,q')-\lt(P»m,q').

With Corollary 6.1, Lemma 6.2 and Corollary 6.3 the existence of the leftmost
derivations

S' *=> ip (wAyO, TO„, q0) '=> ip (w0j, m0, q0) *=> wx and

S'*=> ip (wAyO, m0, qd""'q^\p(we2, m0, q0)*=>wy

according to SK(G) follows.
Since we have First* (rtf •*) f! First* (7t™' *') 0 which is a contradiction

to the strong ILL(A;) property of Sk(G).
In a similar manner the case that jt, and n j posess the same lefthand side yield

a contradiction.
This completes the proof of the theorem.
Now we can easily derive the following decidability result.

Theorem 7.2. Given an indexed grammar G and an integer fcsl. It is then
decidable whether G is an ILL(/c) grammar.

Proof. Sk -grammar of G is effectively constructable since the functions A and n
defining this grammar are effectively computable. Furthermore it is decidable whether
Sk(G) is a strong ILL(fc) grammar (cf. Corollary 3.2).

Clearly, given an indexed grammar G, it is not decidable whether there exists a k
such that G is an indexed LL(/c) grammar, for otherwise this question would be decid-
able in the contextfree case.

Furthermore, the construction used in the proof of Theorem 7.1 shows

Theorem 7.3. The classes of ILL(k) and strong ILL(k) languages coincide.

Indexed LL(/t) Grammars 53

Abstract

The classes of indexed LL(k) grammars and strong indexed LL(k) grammars are defined. First
the class of strong indexed LL(Ar) grammars is investigated. In particular it is shown that the strong
indexed LL(k) property is decidable and that the class of strong indexed LL(&) languages is contained
in the class of deterministic indexed languages. Furthermore it is proved that the deterministic
contect-free languages coincide with the right linear strong indexed LL(1) languages and are a proper
subclass of the strong indexed LL(1) languages. The remainder of the paper is devoted to proving the
decidability of the (general) indexed LL (k) property. To prove this result, a general transformation of
indexed grammars is introduced. This transformation unifies proof techniques used in the context-
free and indexed areas.

PROF. DR. R A I N E R P A R C H M A N N
INSTITUT F Ü R I N F O R M A T I K , UNIVERSITÄT H A N N O V E R
W E L F E N G A R T E N I
D-3000 H A N N O V E R I, WEST G E R M A N Y

References

[1] _AHO, A. V., "Indexed grammars", J. Assoc. Comput. Mach. 15 (1968), 647—671.
[2] FISCHER, M. J., "Grammars with macro-like productions", in IEEE Conference Record of the

Ninth Annual Symposium on Switching and Automata Theory, (1969), 131—142.
[3] HARRISON, M. A., Introduction to Formal Language Theory, Addison Wesley, Reading, Mass.,

1978.
[4] HOPCROFT, J. E. and ULLMAN, J. D . , Introduction to Automata Theory, Languages and Compu-

tation, Addison Wesley, Reading, Mass., 1979.
[5] MAIBAUM, T. S. E . , "Pumping lemmas for term languages", J. Comput. System Sci. 17 (1 9 7 8) ,

3 1 9 — 3 3 0 .
- - [6] MEHLHORN, K . , "Parsing-macro grammars top down",-Inf.-Contr. 4 0 (1 9 7 9) , 1 2 3 — 1 4 3 .

[7] PARCHMANN, R . , DUSKE, J . and SPECHT, J . , "On deterministic indexed languages", Inform.
C o n t r . 4 5 (1 9 8 0) , 4 8 — 6 7 .

[8] PARCHMANN, R . , DUSKE, J . and SPECHT, J . , "Closure properties of deterministic indexed lan-
guages", Inform. Contr. 46 (1980), 200—218.

[9] ROSENKRANTZ, D . J. and STEARNS, R . E., "Properties of deterministic top-down grammars",
Inform. Contr. 17 (1 9 7 0) , 226—256.

[1 0] SEBESTA, R . W . and JONES, N . D . , "Parsers for indexed grammars", Internat. J . Comput. and
I n f o r m . S c i . 7 (1 9 7 8) , 3 4 5 — 3 5 9 .

[11] WEISS, K., "Deterministische indizierte Grammatiken", Doctoral Dissertation, University of
Karlsruhe, 1976.

(Received July 11,1983)

On vrproducts of commutative automata

By F . GECSEG

The aim of this paper is to show the existence of commutative automata such
that each of them forms a homomorphically complete system with respect to the vx-
product in the class of all commutative automata.

By an automaton we mean a system A—(X, A'S), where Z i s a nonvoid finite
set of input signals, A is a nonvoid finite set of states, and 5: AXX-+A is the transi-
tion function. The automaton A is commutative if d(a, xy) = S(a, yx) holds for arbi-
trary a£A and x,y£X. (The transition S(a,p) (a£A,p£X*) is defined by S(a,e) =
=a and 5(a, qx)=S(5(a, q), x) (a£A, q£X*, x£X), where X* is the set of all finite
words over X and e denotes the empty word.)

Since automata can be considered unary algebras (cf. for instance [5]) the con-
cept of a subautomaton of an automaton, and those of isomorphism and homo-
morphism of automata can be defined in a natural way.

Let Ai = (Xi, Ah ¿¡) (/ = 1, ..., k) be a system of automata, X a nonvoid finite
set and <p: A1X...XAkXX->-X1X...XXk a function. Take the automaton A =
= (X,A,6) given by A — A1X-..XAk and ¿((a l5 ..., ak), x)= (< 5 ^ , x j , ...

k(ak,xk)) ((«!, ..., ak)eA, x£X), where (xlt ..., xk) = cp(a1, ..., ak, x) =
= (<p1(a1, ..., ak, x), ...,(pk(a1, ...,ak,x)). Then A is called the product of A l s ...,Ak
with respect to X and (p, and we denote it by

II At[X, q>].
¡=i

Consider the above product A, and take a non-negative integer i. We say that A
is an otj-product if for every t (l^t^k), <p, is independent of its jth component
(1 whenever t^j+i. Moreover, if for all t (=1 , ...,k), (a1, ...,ak)£A and
x£X, <pt{ai, ...,ak,x) may depend on x only then A is a quasi-direct product.

Again take the product A above. Moreover, let v: Nk-~ty(Nk) be a mapping,
where Nk is the set of the first k positive integers and ^ is the powerset-operator. If i
is a non-negative integer such that for every t£Nk, |v(i) |^/ ' and <p, is independent
of its y'th component (1 ̂ j ^ k) whenever y'(£v(/) then A is called a v¡-product (see
[1]). If A 1 = . . . = A t = B then A is a vrpower of B. Moreover, in (p, we shall indicate
only those variables>on which it may depend. Finally, for the v ;-product A we shall
use the notation

A = ¿ A , v] ,
t=I

56 F. Gecseg

Let JT be a class of automata. Then
H (J f) : homomorphic images of automata from 3C.
S (J f) : subautomata of automata from Jif.
Q (J f) : quasi-direct products of automata from J f .
PV((JT): v rproducts of automata from J f .
For every prime number p consider the automata AP=(XP, Ap, 5P), where

Xp={x0,x1, ..^Xp.x}, Ap={0,\, ...,p-\) and 5p(i, Xj)=i(&pj, where 0
and ©p denotes the modulo p addition. Obviously, each Ap is a commutative auto-
maton.

We are now ready to state and prove the following

Theorem. For an arbitrary commutative automaton A and for every prime
number p the inclusion A£HSPVl({Ap}) holds.

Proof. For every prime number p and every positive integer n take the automa-
ton B (p < n) =(X, B(P:n), d(Pin)) with X={x,y}, 5 (p>n) = {0, 1, . . . , / r - l } ,
<5(P,„)('", x)=idBp, 1 and S(Pyn)(i, y)=i (/=0 ,1 , ...,p"-l). Moreover, for every
natural number n let E„=({x, y}, {0, 1, ...,«}, <5„) be the n+1 state elevator, that is the
automaton with <5„ (/, y)=i (/=0, ..., n) an d

i ' i + 1 if
if i - n.

Denote by J f the class of all B(Pjn) and E„. In [3] it is shown that H S Q (J f) is the class
of all commutative automata. Since every quasi-direct product of vf-products of
automata is isomorphic to a Vj -product of the same automata in order to prove our
theorem it is enough to show that for arbitrary prime numbers p, q and positive integer
n the inclusions B(,jn)£HSPVl({Ap}) and E„£HSPVl({Ap}) hold. We start with the
proof of B(?i„)£HSPVl({Ap}). Let us fix/>, q and n. We distinguish the following two
cases.

Case 1. p^q. Then q" divides pm — 1 for some wj>0. (We may also assume
that m > 1.) Therefore, it is sufficient to show the existence of a vx-power B =
=(X, B, 8) of Ap such that B contains a subautomaton which is a cycle of length

pm — 1 under x, and y induces the identity mapping of this subautomaton.
Let B ^ Z , B, ¿)=(ApX...XA.p)[X, cp, v] be the vx-product, where for every

/£{1, ...,pm-\)
p m —1 times

f l - l 1 if i > 1,
p m - l if 1 = 1,

I
and for arbitrary /£{1, ...,pm-1} and /£{0, . . . , />-1}

(Xj if z =
Z) = U if z =

if Z = X,

y-

Take a b=(b1, b2, •••, bp™L^) from B. Then, by the definition of B, we obviously
h a v e S(b,x)=(b1®pbpm_1, b2®p bx, ..., ¿y-i©p bpm_2).

On v, -products of commutative automata 57

In the rest of the paper all multiplications of integers, and all the binomial coef-

ficients H(k' /) i) a r e t a ' c e n m °dulo p. Moreover, © and 0 will stand for

the modulo p addition and modulo p substraction, respectivelly. Finally, we denote
pm-1 by t.

One can easily show, by induction on k, that

if 1 S .k<t , and

5№.*,) = (((o)©(i)) ^ © (i (2) ^ - 1 ® - ® (i - l) b*>

((o)©(!)) b«©(i) ^©(i)6»©^) b ' - i®-®(r- i) b*>...

' "' ((o) ® (/)) ^ ' © (l) ^ '-1® •••©[?—l) •

We would like to find a b such that 5(b, ^)=?£> holds, i.e.,

((o) + (!)) 6'®(l) ^ - i®^) *.-.©•••©(,-1) 61 = b,
holds. Let us consider (*) a system of equations over the prime field {0,1, ...,/> —1}
with modulo p addition and modulo p multiplication, where b1,

b2, ..., bt are un-
knowns. Add (modulo p) (— t o both sides of the Z"1 equation in (*) for every i
(=1 , ..., t). Then we get the linear homogeneous system of equations

58 F. Gecseg

Using the congruence (mod/?) (1 S / ^ /) , one can easily show that

for every / (= 0 , 1, . . . , / — 1), (/] = ! (mod/?) if lis even, and (mod/?) if /

is odd. (Therefore, the determinant of (**) is 0, consequently (**) has a nontrivial
solution.) It can be seen immediately that f>i=l , b2 = l, b3=0, ..., b,=0 is a solu-
tion of (**). Moreover, by the construction of B, the states b, <5(6, x), ..., 5(b, x J _ 1)
are pairwise distinct, that is they form a cycle of length t {=pm — 1) under x.

Case 2. p—q. We now show the existence of a v^power B — (X , B , 8) of Ap
such that B contains a subautomaton which is a cycle of length p" under x, and y
induces the identity mapping on this subautomaton.

Let B=(.Jf, B, ¿)=(ApX...XAp)[JY, <p, v] be the -product given in the follow-
p" times

ing way. For every /'6{I, . . . ,p")
•1 if / > 1 ,

10 if i = 1,

and for arbitrary /€{2, ...,/>"} and /€{0, . . . ,p — 1}

if Z = X ,

(pi 5 i O ' ' 2 M * 0 if z = , ,
moreover, <pi(x) = <p1(y) = xii.

Take the state b=(1, 0, ..., 0) of B. One can prove easily, by induction on k,
that for every k (= 1, ...,/>" —1)

Therefore
W . * * > = ((S) . (i) 0 , o , . . . , o) .

«̂ -((SMfl (/•))•
As it has been noted, for every k (=1, . . . , /»" — 1), ^ j = 0 (modp) . Thus 6{b, x?')=b
showing that the states b, 5(b, x), ..., 5(b, x p" _ 1) form a desired cycle.

To prove that for arbitrary natural number n and prime number p the inclusion
E„6HSPVl({Ap}) holds take the automaton

B = (X, B, 5) = (A pX.. . XAg) [X, <p, v]
^ p" times

defined in the same way as in Case 2 with the following exceptions: v(l)=/>" and
<Pi(J> x)=xpQj (j=0, ...,p-1). Again take ¿ = (1 , 0, ..., 0). Then, like in Case 2,
for every Jfc(=l, ...,pn — 1)

= (f) (i),o....,o).
Therefore

S(b,xn = (0 , 0 , . . . , 0)

On v, -products of commutative automata 59

showing that the states b,5(b,x), ..., 8(b, xpn) form a pn + \ state elevator. Since
p">n this ends the proof of the Theorem.

Remark. It follows from Theorem 3 in [4] that there exists no finite system
of automata which is homomorphically complete with respect to the o^-product in
the class of all commutative automata. Thus, by the Theorem above, in this respect
the vx-product is more powerful than the a1 -product. (By the Theorem in [2], the vx-
product is not stronger than any of the af-products if />1 .)

Acknowledgements

The author wants to thank Dr. B. Imreh for detecting a gap in the first version of the proof of
the Theorem.

DEPT. O F C O M P U T E R SCIENCE
A. JÓZSEF UNIVERSITY
ARADI V É R T A N Ú K T E R E 1.
SZEGED, H U N G A R Y
H-6720

References

[1] DÖMÖSI, P., IMREH, B., On vf-products of automata, Acta Cybernet., v. VI. 2,1983, pp. 149—162.
[2] ÉSIK, Z . , HORVÁTH, G Y . , The A2-product is homomorphically general, Papers on Automata The-

ory, v. V. 1983, pp. 49—62.
[3] GÉCSEG, F., On subdirect representations of finite commutative unoids, Acta Sci. Math. (Szeged),

v. 36, 1974, pp. 33—38.
[4] GÉCSEG, F . , On products of abstract automata, Acta Sci. Math. (Szeged), v. 3 8 , 1 9 7 6 , pp. 2 1 — 4 3 .
[5] GÉCSEG, F . , STEINBY, M . , Tree automata, Akadémiai Kiadó, Budapest, 1984 .

(Received Febr. 1, 1984)

On finite definite automata

By B. IMREH

In this paper we consider the isomorphic realizations of finite definite automata.
First we present a characterization of finite subdirectly irreducible definite automata.
Secondly we give necessary and sufficient conditions for a system of automata to be
isomorphically complete for the class of all finite definite automata with respect to
the otj-products. It will turn out that every finite definite automaton can be embedded
isomorphically into an a0-product of reset automata with two states. '

By automaton we always mean a finite automaton without output. Since an
automaton can be considered a unoid the notions such as subautomaton, isomor-
phism, embedding, homomorphism, congruence relation can be introduced in a na-
tural way. Further on we shall use the following notations: X* denotes the free mo-
noid generated by X, \p\ denotes the length of the word p(LX*, if there is no danger of
confusion then we use the convenient notation ax and ap for 5 (a, x) and 5{a,p)
respectively.

An automaton A = (X , A, S) is called definite if there exists a natural number n
such that \p\^n implies \Ap\ = 1 for any pkx* where Ap = {ap: ad A}. Specially,
if n = 1 then A is called a reset automaton, furthermore if there exists a state
a0£A such that \p\^n implies Ap = {a0} for any pdX* then A is nilpotent.

In the paper [3] we gave a characterization of finite subdirectly irreducible nil-
potent automata. Now we generalize this result for definite automata. Namely, it
holds the following

Theorem 1. A definite automaton A = (X , A, S) (\A\>2) is subdirectly
irreducible if and only if A has two different states a0, b0 such that

(i) a0x=b0x holds for any x£X,
(ii) for any a,b£A if a^b and {a, b}^{a0, b0} then there exists an input

s ignxiA' with ax7±bx.

Proof. In order to prove the necessity assume that A is subdirectly irreducible.
Consider the set B of all subsets of A with two elements and define the relation g o n B
in the following way: for any {a, b}, {c, d}£B {a, b}s{c, d} if and only if there
exists a word p£X* such that {a, b}p = {c, d). Since A is definite the defined relation
is antisymmetric and thus, it is a partial ordering on B. Now we shall show that there
is a greatest element in B. Because of finiteness it is enough to show that there exists

62 B. Imreh

only one maximal element in B. Assume to the contrary that {a, b} and {c, d)
{a, b}?± {c, d), {a, b}, {c,d}£B are maximal in B. Then ax=bx and cx=dx hold
for any x£X. Consider the following relations on A: for any u,v£A

UQV if a n d o n l y if {u,V}Q{a,B} o r u=v,

uav if and only if {u,v}Q{c,d} or u—v.

It is obvious that Q and A are nontrivial congruence relations of A and QC\O = AA
where AA denotes the equality relation on A. This yields that A is subdirectly redu-
cible which contradicts our assumption on A. Therefore, B has a greatest element.
Let {a0, b0} denote this one. Then it is obvious that conditions (i) and (ii) are satisfied.

To prove the sufficiency assume that (i) and (ii) are satisfied by a definite automa-
ton A = (Z , A, <5). Consider again the set B with its ordering defined above. From
conditions (i) and (ii) it follows that {a0, b0} is the greatest element of B. Take the
following relation on A: for any u, v£A

uQv if and only if {w {a^, b0} or_u = v.
By (i) we obtain that 9 is congruence relation. Next we shall show that 6 is the smallest
nontrivial congruence of A. Indeed, let Q denote an arbitrary nontrivial congruence
relation of A. Then there ex i s ta , b £ A such that a^b and agb, furthermore, there
is a word p€X* such that {a, b}p = {a0, b0} since {a0, b0} is the greatest element
in B. But then a0 gb0 also holds which implies O^g. On the other hand, it is known
that the existence of the smallest nontrivial congruence implies the subdirect irre-
ducibility which completes the proof of Theorem 1.

Remark 1. Using Theorem 1 we obtain a simple algorithm to decide whether a
definite automaton is subdirectly irreducible. Namely, if the automaton is given by a
transition table of which rows correspond to each input sign and columns correspond
to each state then we have the following criterion.

A definite automaton is subdirectly irreducible if and only if there exist two equal
columns in its table and leaving one of them, the columns of the remained table are
pairwise different.

Remark 2. In [5] M. Katsura introduced the following family of strongly con-
nected definite automata. Let X= {x, and denote by 1 ••• the sequence
of all prime numbers. Then any natural number « > 1 can be written uniquely as
Pi1 • • Pf-'i Prr where <?r_!^l and. « ,=0. Let A „ = (X , An, <5„) where An={a0}U
U{a y : l s / ^ r ; OSy'S^} and

, (aij+i i f l s i s r - 1 and
Sn(aij,x) = \ l«o otherwise,

8„(aij,y) =

ai+i,o if 7 — 0 and 1 ^ i S r - ' l ,
a r0 if j = 0: and i = r,
a10 otherwise,

*) = a<>> JO = aio-
From the definition of A„ it follows that if n=p\l...pe

r- and e ^ l , e ^ X hold for
some 1 = i ^ j — r • then {a0, aie., aJej}x=a0 and {aQ, aiei, aJej}y=al0 and thus,

On finite definite automata 63

by Theorem 1, we obtain that A„ is subdirectly reducible. On the other hand, if
n=p\-- P°i-iPei lPu1(e isi\) is a prime-power then [a0, ale.}x=a0, {a0, aie)y = aw
and, by a simple computation, it can be seen that |{w, v}x\=2 or \{u,v}y\=2 holds
for any elements u,v£A such that u^Av and {«, {a0, aic }. Therefore, by
Theorem 1, we get that A„ is subdirectly irreducible. Summarizing, we have the follow-
ing statement.

For any natural number n > 1 the automaton A„ is subdirectly irreducible if and
only if n is prime-power.

Remark 3. A well-known special type of definite automata is the shift register.
It was investigated in papers [4] and [6]. Now we consider the subdirect irreducibility
of these automata. For this reason let n^ 1 be an arbitrary natural number and X
a non-empty finite set with at least two elements. Then the automaton A(X, n) =
(X, X", <5„) is called a shift register where 8n(x1...x„, x) = for any xx...x„(z
£Xn and x£X. Observe that 8n(ux2...xn, x) = 8„(vx2...xn, x) holds for any words
ux2...x„, vx2...xn£X" and x£X. From this it follows that conditions of Theorem 1
are not satisfied. Thus we have the following assertion.

Every shift register with at least three elements is subdirectly reducible.

Next we shall study the af-products (see [1] or [2]) from the point of view of iso-
morphic completeness for the class of all definite automata. For this reason let i be
a nonnegative integer, furthermore, let I be an arbitrary system of automata. I
is called isomorphically complete for the class of all definite automata with respect to
the a f-product .if any definite automaton can be embedded isomorphically into an
a,--product of automata from I . We are going to use the following obvious statement.

Lemma. If an automaton A can be embedded isomorphically into an a„-
product of automata A, (i = l , ...,k) and for some 1 =j=k the automaton A j
can be embedded into an oc0-product of automata Bm {m = \, ...,s) then the auto-
maton A can be embedded isomorphically into an a0-product of automata A l 5 ...,
..., Aj - i , B1; ..., Bs, Ay+1, ...,1 A*.

Concerning the isomorphic realization of definite automata with respect to the
a0-product we have the following result.

Theorem 2. A system I of automata is isomorphically complete for the class
of all definite automata with respect to the a„-product if and only if I contains an
automaton which has two different states a, b and two input signs x, y such that
ax=bx=b and ay = by=a hold.

Proof. In order to prove the necessity take the definite automaton U=({x, y},
{a,b},8) where <5 (a, x)=8 (b, x)=b and 8{a,y)=8(b,y)=a. Because of the iso-

k
morphic completeness of I there exists an a0-product JJAj(X,(p) |of automata

j=1
from I such that U can be embedded isomorphically into this product. Let (a1,...,
..., ak), (a[, ..., a'k) denote the images of the elements a, b under a suitable isomor-
phism. Then among the sets {a,, a',} (i=1 , ..., k) there should be at least one which
has more then one element. Let r be the least index for which ar^a'r. It is obvious
that the automaton Ar£l satisfies the condition.

64 B. Imreh

To prove the sufficiency assume that the automaton B£X has the suitable states
and input signs. To verify the completeness it is enough to show that any definite
automaton can be embedded isomorphically into an a0-product of reset automata
with two states since any reset automaton with two states can be embedded isomorphi-
cally into an a„-product of B with a single factor, and thus, by our Lemma, we ob-
tain the completeness of I .

We prove by induction on the number of states of the automaton. In the case
our statement is trivial. Now let n>2 and suppose that the statement is valid

for any m<n. Let A=(X, A, SA) be an arbitrary definite automaton with n states.
If A is subdirectly reducible then A can be embedded isomorphically into a direct
product of definite automata with fewer states than n. Therefore, by our induction
hypothesis and Lemma, the statement is valid. Now assume that A is subdirectly
irreducible. Let A^fa, ...,an}. Then from Theorem 1 it follows that there exist
rt,-, aj€A (ii^j) such that ajx=ajx holds for any x£X. Without loss of generality we
may assume that i=n — 1 and j=n. Define the relation g on A as follows: for any
a„ as£A

argas if and only if {ar, a j Q {a„_x, an} or ar=as.

Obviously Q is a congruence relation of A. Then the quotient automaton A¡Q is defi- •
niteand A/Q = {{aj, . . . , {a„_2}, {a„-i> <?„}}• Now let c be an arbitrary symbol (c$A)
and take the automaton C = (A / Q X X , {C, an}, 8) where

8(u, ({fl|),x)) = (c otherwis£)

5(M, (K _ 1 , a „ } , x)) = | c o t h e r w . s e)

for any ud {c, a„}, ({a;}, x)€ {{aj , ..., {an_2}}XX, (K _ x , a„}, x)£ {{¿z„_i, an}}
XX. Now consider the a0-product A/QXC(X, (p) where q>l(x)=x for any x£X
and (p2({ai},x)=({ai},x), <p 2 (H- i , a„}, x) = ({a„_1, a„j, x) for any x£X and

2. Then it is not difficult to see that the correspondence

. f({«,}, C) if l S i i n - 2 ,
V(a,) !({«„_!, a,},ad if ¿ £ { n - l , n - 2 } ,

is an isomorphism of A into the a0-product A/gXC(X, cp). On the other hand,
observe that C is a reset automaton and it is a well-known fact that any reset automa-
ton can be embedded isomorphically into a direct product of reset automata with two
states. Therefore, by our induction hypothesis and Lemma, we have a required decom-
position of A. This completes the proof of Theorem 2.

Regarding ar-products with i ^ l we have the following statement.

Theorem 3. A system I of automata is isomorphically complete for the class
of all definite automata with respect to the a,-product (/ S i) if and only if I con-
tains an automaton which has two different states a, b and four input signs v, x, y, z
(need not be different) such that av=bx=b and by=az=a hold.

On finite definite automata 65

Proof. The necessity of the condition is obvious. To prove the sufficiency, by
Theorem 2, it is enough to show that an a0-product of aj-products with single factors
is an ax-product which follows from the definition of the a;-products.

DEPT. O F COMPUTER SCIENCE
A. JÓZSEF UNIVERSITY
ARADI VÉRTANÚK TERE I.
SZEGED, H U N G A R Y
H—6720

References

[1] GÉCSEG, F., Composition of automata, Proceedings of the 2nd Colloquium on Automata, Lan-
guages and Programming, Saarbrücken, Springer Lecture Notes in Computer Science v. 14,
1974, pp. 351—363.

[2] IMREH, B., On a,-products of automata. Acta Cybernet., v. 3, 1978, pp. 301—307.
[3] IMREH, B., On finite nilpotent automata, Acta Cybernet., v. 5, 1981, pp. 281—293.
[4] ITO, M. and DUSKE, j., On cofinal and definite automata, Acta Cybernet., v. 6,1983, pp. 181—189.
[5] KATSURA, M., A characterization of partially ordered sets of automata, Papers on Automata

Theory IV, K. Marx Univ. of Economics, Dept. of Math., Budapest, 1982, No. DM 82-1, pp.
45—57.

[6] STOKLOSA, J., On operation preserving functions of shift registers, Found. Control. Engrg., v. 2,
1977, pp. 211—214.

(Received Dec. 21,1983)

6

5 Acta Cybernetica VII/1

On involutorial automata and involutorial events

By M . ITO a n d J . DUSKE

1. Basic notions and facts

By an automaton we mean a triple si = (A, X, S), where A and X are finite
nonempty sets, the set of states and the set of inputs of si, and <5: AXX—A is a
function, the transition function of si.

Let A'* be the free monoid generated by X with identity element e. Then <5 is
assumed to be extended to A XX* in the usual way. A finite nonempty set is called an
alphabet. Each subset EQX* is called an event or a language over the alphabet X.
Let us now define the notion of an involutorial automaton.

1.1. Definition. An automaton si=(A, X, 5) is called involutorial iff 5 {a, xx) =
= a holds for all a£A, x£X.

The following lemma is a trivial but useful one.

1.2. Lemma. Let si = (A, X, <5) be cyclic and involutorial. Then si is strongly
connected.

(For the automata-theoretic notions not defined in this paper see [6] and [3].)
Let si=(A, X, S) be an arbitrary automaton and define the congruence Q

on X* by:
V w i , W 2 £ X * : (W1,W2)£Q i f f S (a , w x) = § (a , w 2) f o r a l l a £ A .

The quotient S(si)=X*/Q is called the characteristic semigroup of si. Let us use
the notation [w]e for the set {vv'|(vv', Concerning characteristic semigroups of
involutorial automata, we can state:

1.3. Theorem. Let si—(A, X, 5) be an involutorial automaton. Then S(si)
is an involutorial generated group.

Proof Let xdX. Then (xx, <?)£<?, therefore We[x]c = [e]e, hence [x]c is an
involutorial element of S(si). Now let [w]Q^S{si) with w—x1...xn. Denote x„...
... Xx by Then [w]e [w R] e = [[w] e = [e]e.

With the aid of the following well known lemma, automata, which are involu-
torial and commutative, can be characterized.

1.4. Lemma. A group, in which each element is involutorial, is an abelian group.

68 M. Ito and J. Duske

1.5. Theorem. An automaton si=(A, X, 5) is involutorial and commutative iff
S(a, ww)=a holds for all a£A and wCA'*.

1.6. Example. An important example of an involutorial automaton is the T-
Flip-Flop (trigger) ^ = ({ 0 , 1}, {0, 1}, 8) with <5(z,0)=z and <5(z, l) = z for all
z£{0, 1}. Here 0 = 1 and 1=0. is involutorial and commutative.

If we generalize the notion of a trigger, we arrive at the following: Let X be an
alphabet and let y£X. Set &~y

x=({0, 1}, X, <5*) with

Sy(z,x) — z for all z£{0,1} and x£X with x ^ y and

5f(z,y) = z for all z£{0, 1}.

We will call these automata generalized triggers.
If we now specialize the proof of Theorem 1 in [5] to the involutorial and com-

mutative case, we obtain:

1.7. Theorem [Gecseg]. Every commutative involutorial automaton is the
homomorphic image of a subdirect product of finitely many generalized triggers.

We can characterize commutative involutorial automata from another point of
view. It is easy to see that every commutative involutorial automaton is a finite direct
sum of cyclic commutative involutorial automata. From the basis theorem for abelian
groups (see e.g. [12], p. 121) and Fleck's result ([4], Theorem 6), we obtain the follow-
ing results, which were suggested by B. Imreh.

1.8. Theorem. Every cyclic commutative ivolutorial automaton is a one-state
automaton or a direct product of finitely many two-state cyclic involutorial automata.

1.9. Corollary. Every cyclic commutative involutorial automaton has 2" states,
where n is a nonnegative integer.

2. The minimal involutorial congruence on X*

Let X be an alphabet. A finite subset T of X * X X * is called a Thue-system over
X * . T defines a relation Q T Q X * X X * in the following way:

Vv,w£X*:(v,w)£eT iff v = f!v2v3, w — i ^ u ^ and (v2, w^dT
o r (W 2 , V 2) E T .

The congruence generated by the Thue-system T is the reflexive and transitive
closure of QT.

Let us now consider the Thue-system T— {(aa, e)\adX} over X*. The relation
Qt will be denoted by »—- and the congruence generated by Twill be denoted by —
and called minimal involutorial congruence on X*. Obviously, X*/ is an involu-
torial generated group. In order to investigate the congruence — , we will first esta-
blish some properties of the context-free language L(G() generated by the context-free
grammar G ;=({S}, X, P, S) with the set of productions P={S^e, S - S S J U

5*

On involutorial automata and involutorial events 69

(For the notions of formal language theory not defined in this paper see [1],
[7], and [8].)

2.1. Lemma. Let G, be given as above. Then we have for all w l5 u^, w, ux, u2£X*:
(1) If wlt H>2<EL(G;), then wxw2dL(Gd,
(2) If wdL(Gi), then awadL(G^ for all a£X,
(3.a) If wZL(Gi), w^e, then w=awxaw2 with wJ,w2dL{G^ and a£X,
(3.b) If wdL(Gi), w^e, then w = wxaw2a with wx, w2£L(G{) and a£X,
(4) If uxaau2£L(Gt) with a£X, then ulu2dL(Gi) (involutorial cancellation),
(5) If M1M2€X(Gi) then u1aau2dL(Gi) for all a£X (involutorial extension).

Proof. (1) and (2) are trivial. To prove (3.a), consider a leftmost derivation
S^>Sk=>aSaSk~1^> ...^>awxaw2=w of iv, and to prove (3.b), consider a right-
most derivation S^-S^S^aSaU... =>wxaw2a=w of w. Now let us consider
(4). Let S=^vx=i-v2=> ...=>vn = uxaau2 be a derivation of uxaau2. We will prove the
assertion by induction on n. The assertion holds for n = 1. Let S=>vx=>v2=>...
...=>vn+x=uxaau2 be a derivation of uxaau2 of length n+1. We have to consider the
following cases:

(a) Let S=>vx=SS. Then there exist derivations S=>rx and S=>r2 of
length nx and n2 with nx, « 2 = w and r1r2=u1 aau2. If aa occurs in r1 or r2, then the
assertion follows from the induction hypothesis. It remains to consider the case
rx=uxa and r2=au2. Here the application of (3.a), (3.b) and (1), (2) yields the asser-
tion.

(b) Let S=>vx=bSb with b(LX. Then there exists a . derivation of
length nx^n and uxaau2=bwb holds. The case w = e is trivial, therefore let us
assume w^e. If aa occurs in w, then the assertion follows from the induction hypo-
thesis and (2). If aa are the first two letters of uxaau2 (a=b, ux=e), then a is the left-
most letter of w. According to (3.a) we have w=awxaw2 with w>1; w2£L(G^, and
therefore u1u2 = wxaw2a(iL(Gi). The case that aa are the last two letters of uxaau2
(a=b, u2 = e) is proved similarly.

Now let us prove (5) by induction on the length of uxu2. The case \uxu2\ = 0 is
trivial, therefore let us assume \uxu2\>0.

According to (3.a) we have uxu2=bwxbw2 with b(iX and Wj, w2dL(Gi). If
\ux\^\bwxb\, then ul=bw1br and w2=ru2. From the induction hypothesis we con-
clude raati2£L(Gi), and therefore uxaau2=bwxbraau26 £ (G;) for all a^X.

If \ux\<\bwxb\, then bwxb = uxr2b. Thecase |wi|=0 is trivial. Therefore assume
ux=brx. Then wx=rxr2> and with the aid of the induction hypothesis we conclude
rxaar2£L(Gt), and hence we have uxaau2=brxaar2bw2£L(G¡) for all a£X. This
completes the proof of the lemma.

Now we can prove the following theorem.

2.2. Theorem. Let Gf be the context-free grammar given above and let w =
=xxx2...xkiX* with Xj£X for ./£[1: k], x j - ^ X j for j£[2: A;], and teO. If

(I) ... holds, where n S 0 , then we have
w' = a0xx<xxx2oi2...cik_xxk<xk with a,£L(G f) for /€[0:

Proof. The assertion holds for n=0 and n=\. Now let [0: n] be maximal
with the following property:

70 M. Ito and J. Duske

(II) There are words a{, a{, ..., a{£L(Gi) such that

Wj — a{x2a{ ... a{-iXka{ holds.

We will show j=n. Assume j<n. Let us consider the following two cases:
(1) w j + 1 can be derived from Wj by insertion of aa, a£X (involutorial exten-

sion). Then, according to (5) of 2.1. Lemma, (II) holds f o r) ' + l .
(2) wJ+1 can be derived from Wj by deletion of aa, a£X (involutorial cancella-

tion). If this aa can be chosen in an a/ , /€[0: k], then, according to (4) of 2.1. Lem-
ma, (II) holds fo ry '+ l . It remains to consider aa=xtx,, /£[1: k], and

aj_1xlaj = aJ,_1xlxla{ or (2.1)

a/'-i*/«/ = a/_ i x, jcj a/, (2.2)

and wJ+1 can be derived from w, by cancellation of the occurrences of x,x, in the
right sides of (2.1) or (2.2).

(2.1) According to (3.b) of 2.1. Lemma, divide in a{_1=w1xlw2xi with
w1,w2£L(Gi). Then we have aj_1ai = wlxlwia{, and therefore (II) holds for y '+ l .

(2.2) According to (3.a) of 2.1. Lemma, divide a{ in a{=x,w1x,w2 with W2€
£L(G,). Then we have aJ

l_ia{ = aj_1w1x,w2, and therefore (II) holds for 7 + 1 . We must have j=n, which proves the theorem.

2.3. Corollary. Under the assumptions of 2.2. Theorem either |w ' |> |w| oi
w=w' holds.

2.4. Corollary. The context-free language L(GD is the congruence class of c
w.r.t. .

Now let us consider the local regular language X*\X* VX* with V= {xx |x£X) .
We have:

2.5. Corollary.
(1) If w is a word of minimal length in a congruence class of — , then w £ X * \

\X*VX*.
(2) If w£A'*'vV* VX*, then w is a word of minimal length in a congruence

class of .
(3) Two different words of X*\X*VX* are in different congruence classes

o f ™ - . "
2.6. Corollary. Each congruence class of - contains exactly one word of mi-

nimal' length.

2.7. Corollary. If X— {x} is a one element alphabet, then — c o n t a i n s exactly
two classes, namely {e, x2, x4, ...} and {x, x3, x5, ...}. If \X\^2, then the index of
, - i — i s infinite. ,

We will denote the unique word of minimal length in the congruence class of w
w.r:t. by -wlmin. If KQX*, then we denote the set {»v lmin |vv^} by Lmm(K).

The function q: X*^X* with o(tv) = wImin for w£X* is a Dyck-Simplifica-
tion in the-sense of [10], which implies the following theorem.

2.8. Theorem! (Sakarovitch [10]). If RQX* is regular, then Lmin(R) is regular.

On involutorial automata and involutorial events 71

3. Involutorial events and involutorial closure

In this section we will introduce and investigate involutorial events and involu-
torial closure. Let us first define these notions.

3.1. Definition. Let X be an alphabet and let EQ X* be an event (subset of X*).
The set {u'\u'€X*, 3u£E with u—u'} is called the involutorial closure of E.
An event EQX* is called involutorial i f f E=E'. E is called i-regular iff E is involu-
torial and regular.

Obviously, for EQX* we have £ '=Lm i n(£) ' ' , and for E,KQX* we have
E* = K* iff Lmln(E)=Lmin(K).

Let si=(A, X, S, a0, F) be a recognizer. Here (A, X, S) is an automaton,
a0€A is the initial state and FQA is the set of final states of si. T(si) = {w\8(a0,w)d
£ F} is the event recognized by si. si is called involutorial iff (A, X, S) is an involu-
torial automaton.

Now let EQ X* be an arbitrary event, and let = be the iVerode right congruence
associated with E, i.e. right congruence defined by:

\/v,w£X*: v = w iff \/udX*: (vudE iff wudE). .

E is regular iff = is of finite index (see e.g. [9])
We can now prove the following theorem.

3.2. Theorem. Let X be an alphabet and EQX* be an event. Then E is /'-regu-
lar iff E is recognized by an involutorial recognizer si.

Proof. If E= T(si) for an involutorial recognizer si, then obviously E is invo-
lutorial. Conversely, let E be /-regular. Since E is regular, the Nerode right congruence
= of £ is of finite index. Construct the recognizer si=(A, X, 5, a0, F) with A~
= {[w]H|w€X*}, 5([w]a ,*)=[tMc]e , cf„=W 3 , and F={[w] s |w€£}. We have
E=T(si). Since E is involutorial, the congruence '•— is contained in = . Since
wxx+-t— w for all w£X* and x£X, we have <5([w]=, xx) — [wxx] = = [w] =, i.e., si is
involutorial.

The recognizer constructed in this proof is the complete minimal (accessible and
reduced) recognizer (see [3]) which accepts the /'-regular set E. Therefore we can state:

3.3. Corollary. If E is an /'-regular set, then the complete minimal recognizer for
E is involutorial.

3.4. Example. Let si = (A, {x}, 5, aa, {a2}) be a recognizer with

A = {«0, flj, a2}, S(a0,x) = a2, 5(a2, x) = alt and S(a1,x) = a2.

Then T(si)= (x, x3, ...,x2n+1, ...} is involutorial, but si is not involutorial. The
complete minimal recognizer for T(si) is

AP = ({a0, a t}, {x}, 5r, a0, { a j) with 5r(a0, x) = and dr(a1,x) = a0.

which is obviously involutorial.
The following two theorems state some closure and nonclosure properties of

/'-regular sets.

72 M. Ito and J. Duske

3.5. Theorem. Let X be an alphabet.
(1) The family of /-regular sets of X* is a Boolean algebra of sets,
(2) If E is an /'-regular set, then the transpose ER of E is also an /-regular set.
(Recall that the transpose of a word w=aia2...a„ is the word

wR = a„ ... a2alt and ER = {wR|w€£'}.)
Proof. (1): Let E. E1, and E2 be /-regular sets.
Then (E1UE2)i^E[[JEi

2=E1[JE2. Let_ si=(A, X,8, a0, F) be an involutorial
recognizer with E=T(sf). Then E-T(si), where s/=(A, X, 8, a0, A\F) is an
involutorial recognizer. The proof of (2) is trivial.

3.6. Theorem. The product of two /'-regular sets and the iteration (star opera-
tion) of an /-regular set are not necessarily /-regular.

Proof. Consider X— {x} and E={x, x3, ...,x2n+1, ...}. Then E is /'-regular.
But E2 = {x2, x\ ..., x2n, ...} is not /'-regular, since (E2y = {e, x2, x\ ..., x2n, ...}.
This shows nonclosure under product. Now let si=(A, X, 5, a0, F) be the recognizer
given by

A = {a0, Oi, a2}, X = {x, y}, F = {a2}, and <5(a0, y) = 8(a1, x) = a0,

S(a0, x) = 5(a2, y) - ax, and ¿ (c l 5 y) = S(a2, x) = a2.
si is an involutorial recognizer, therefore T(si) is an /-regular set. If T(si),

then and x*$T(sf). This implies x2$T(si)*. But e<ET(st)* implies
x2£(T(sf)*y, therefore T{si)*^ (Tisi)*)'.

We will now consider the formation of the involutorial closure E' of an event E.
Let us first investigate those events E for which E' is regular.

Remember that in contrast to the above mentioned (complete deterministic)
recognizer, the transition function <5 of an incomplete (deterministic) recognizer si —
=(A, X, 8, a0, F) is a partial function from AXXto A. We assume that S is extended
to A XX* in the usual manner. We will call an incomplete (deterministic) recognizer
si a trim recognizer, if each state of si is accessible and coaccessible [3]. If E ^ 0
is regular, then there is a trim recognizer si with E= T(si). Now we can prove:

3.7. Theorem. For each alphabet X there is a nonregular event X* such
that E' is regular.

Proof Let X={x) be a one-element alphabet. Then E= {x2n,\n^l} is not
regular, but E'={x2"\n^0) is regular. Now consider the case Lmin(X*)
is regular. Let si—(A, X, 5, a0, F) be a trim recognizer such that T(si)=Lmm(X*).
According to the structure of the words of Lmin(X*) and the fact that si is trim, a'=
—8(a,x) for a, a'€A, x£X, implies 8(a',xj=0. In particular we have a?$d(a,x)
fo r a i l a£A, x£X. Now choose x,y£X with x^y. Since x£Lmin{X*), there is a
final state a'=8 (a0, x).

Define an incomplete recognizer 38={B, X, /?, a0, F), whose state set is infinite,
in the following way: Set B—A(J {a, | /^l}U {¿>,|/Sl} (disjoint union) and

P(a,z) = 8(a,z) for all a£A, a ^ a\ z£X,
P(a',z) = 8(a',z) for all z£X, z * x, and

P(a', x) = au P(alt x) - a'.

On involutorial automata and involutorial events 73

Furthermore set

P(o;, y) = bi, P(b„ x) = a i + 1 , and

P(bh y) = at, P(ai+1, x) = bi for all i 8s 1.

Then it is easy to see that Lmin(X*) = T(jtf)QT(@). Set E=T(3S), then E'=
=X*, i.e., E' is regular. We will now show that Eis not regular. Assume the contrary.
Then there exists a recognizer such that E= T(r4). Let n be the number of states of
<g.lf v\vdT(fi), v, w£X*, then there exists some OdX*, \B\^n, such that v9e
£T(<$)=E.

Consider a word x(xy)p with p>n. Then p(a0, x(xy)p(yx)p)=a'£F, hence
x(xy)p(yx)p£E. But obviously, for all with we have x(xy)p^T(SS)=E,
which yields a contradiction. Hence E is not regular.

Events £ V 0 over an alphabet Xwith \X\^2, for which E' is regular, possess
an interesting property w.r.t. Lmin(X*).

Let us first give the following definition.

3.8. Definition. Let E, FQ X* be events with EQ F. E is said to be dense in F
iff there exists a nonnegative integer k such that the following holds:

\/veF3w£X* with \w\^k such that vw£E. (Note that k=0 implies E=F.)
Now we can prove:

3.9. Theorem. Let X be an alphabet with \X\^2 and let EQ X* with
such that E' is regular. Then Lmin(E) is dense in £min(A'*).

Proof. Let sd=(A, X, S, a0, F) with \A\=n be an involutorial recognizer such
that T(s/)=E'. Since i s V 0 we have FV 0, and furthermore, according to 1.2.
Lemma, we can assume that (A, X, d) is strongly connected. We have to show that
there exists a nonnegative integer k such that, for all v£Lmin(X*) there exists w£X*,
M ^ f c , with vw£Lmin(E). First assume v=v'x£Lmm(X*), where x£X. Choose
y£X with x^y and set u=(yx)". Since \A\=n, F^Q, and (A, X, 5) is strongly
connected, there exists u'£X* with \u'\^n such that S(aQ, vuu') = 8(a0, v'x{yx)"u')£
£F. Set a = v ' x (y x) " u ' , then almin = v'xw with \w\^3n = k. Since stf is an involu-
torial recognizer, we have 5(a0, vw)=5(a0, vuu')£F, i.e. vw£E'. Furthermore
vw£ E' fl Lmin (X*)=Lmin(E). The case v=e is trivial.

3.10. Corollary. Let X be an alphabet with \X\^2 and let EQX* be a non-
empty event. If LmXn(E) is finite, then E' is not regular. In particular, if E is finite,
El is not regular.

The converse of 3.9. Theorem does not hold. Namely, we have:

3.11. Theorem. The involutorial closure E' of an event E such that Lmin(E)
is dense in Lmin(X*) need not be regular.

Proof. Let X be an alphabet with \X\^2. Set £=Lmin(X*)\{A;}, where
x£X. Obviously, Lmin(E) is dense in Lmin(X*) and { x f ^ X ^ E 1 . Assume that the
theorem does not hold. Then, El becomes regular. Since X* and E' are regular, so is
{*}'. This contradicts 3.10. Corollary. Hence, the theorem has to hold.

3.10. Corollary shows the existence of involutorial events, which are not regular.
This situation is impossible for events which are involutorial and commutative.

74 M. Ito and J. Duske

An event EQ X* is called commutative, if £ is a union of congruence classes of
a congruence x, which is defined by:

Vu, w£X*: {v, w)£x iff v = y1...yn, w = yil...yim,

where i\, ...,im is a permutation of 1, ...,m and y^X for /€[1: m] with m^O.
It can easily be shown that the congruence x+ (the sum of the congruences

x and --i—) is of finite index. Therefore we have:

3.12. Theorem. If EQ X* is involutorial and commutative, then E is regular.
Let us now consider those events E for which E' is context-free. We will prove a

theorem characterizing these events, part of which can be viewed as a special case of
a theorem due to Sakarovitch [11].

3.13. Theorem. Let EQX* be an event. Then E' is context-free iff Lmi„(E)
is context-free.

Proof. Let Lmm(E) be a context-free language and G=(V,X, S, P) be a con-
text-free grammar in Greibach normal form with L(G)=Lm„(E). Each production
of G is of the form A — aa with a£X, a£V*. If e£Lmin(E), then there is a produc-
tion e, and S does not occur on the right-hand side of any production.

Construct a context-free grammar G 1 =(K 1 , A', S, with Vx= V\J{Sa\ad
€A'}U{S'i} (disjoint union) and furthermore (1) if e^L{G) then

P1 = {A -Saa\A -~aa£P}\J{Sa - - V . S J f l G A ' J U P with -

p = - e, S J - S j S J U {Sj - aSjalatX},
(2) if e£L(G) then extend Px of (1) with the production S-^S^

Since Lmin(E)QLmin(X*), L (G 1) = i m i n (£) i = £ , i can easily be shown with the
aid of 2.2. Theorem. Hence £ ' is a context-free language.

Conversely, let E' be a context-free language. Since the intersection of a context-
free language with a regular set is context-free, Lmm(E)=ET\Lmin(X*) is context-
free.

In analogy to regular involutorial closures, we can state:

3.14. Theorem. For each alphabet X there is a non context-free event EQ X*
such that El is context-free.

Proof. Let x£X. It is easy to see that E— 1} is not context-free. Since
Lmin(E) — {e, x} is regular, E' is context-free.

On the other hand, we have:

3.15. Theorem. The involutorial closure of a context-free event need not be
context-free.

Proof. We have to show the existence of a context-free event E such that Lmin(E)
is not context-free. Consider the context-free event E1 = {(ca)ncb(ac)2n\n ^ 1} over
the alphabet X={a,b, c}, and set E=Ef.

Then E is context-free and each word w£E is of the form
w — (ca)'icb(ac)2'>(ca)'>cb(ac)2'i ... (ca)'*cb(ac)2ik

with i j ^ l for 7£[1: A:] and fcsl.

On involutorial automata and involutorial events 75

Assume that Lmin(E) is context-free. Then E2=Lmi„(E)f](ca)(cb)+(ac) + has to
be context-free. Each word vdE2 is of the form v = (ca)(cb)k(ac)2k with A: S i . "Con-
sider the homomorphism h: X*—a* given by h{a) = a and h{b) = h(c)=e.

Then h (E2) = {a2fc+11A; s 1} has to be a context-free language, which is a contra-
diction. Therefore, Lmin(E) is not context-free.

4. The structure of some special recognizers

We will start this section with the investigation of the structure of any trim recog-
nizer accepting Lmi„(E), where EQX* (\X\^2) is a nonempty involutorial regular
event.

Let us first introduce the following notation. If si = (A, X, 8, a0, F) is a recog-
nizer and a£A, then we set

/„ = [x\xdX and 8(a',x) = a for an a'£A} and

0a = {xlxeX with d(a,x)?6 0}.

Now we can state:

4.1. Theorem. Let X= {xu ..., x„} b e a n alphabet with wS 2, let EQX*
be a nonempty involutorial regular set, and let si = (A, X, 8, a0, F) be a trim recog-
nizer with T(si) = Lmin(E). Then we have

(1) S(ao,x)?i0 for all x£X. Furthermore, if x,yd.X with x^y, then
8(a0, x)^8(a0, y) holds,. . '

(2) The set /„u is empty. In particular <5 (a0, x) ^ a0 holds for all x£X.
(3) Let a£A with Then |/a| = l, i.e. a can be reached by exactly one

x£X, and 7onOa = 0, 7aU0a = A', i.e. a can be leaved by exactly those y£X with
y^x. Furthermore we have 5(a, x)^8(a, y) for all x,y£0a with x^y.

Proof. (1) Each letter x is an element of Lm,„(X*), therefore,' according to 3.9.
Theorem, there exists wdX* such that xw£Lmin(E), which implies 8(a0,
Now let x, ydX with XT^y, and assume 8(a0, x) = 8(a0, y). Since xyd.Lmin(X*),
then, with the same argument, there exists a word w£X* such that xyw£Lmin(E),
i.e. d(a0, xyw)£F. Since 8(a0, xy) = 5(a0, yy), we conclude S(a0, yyw)£F, i.e.
yyw£Lmin(E), which is a contradiction. (2) Assume that there exist x£X, ad A
such that 5(a,x)=a„ holds. Since a is accessible, there exists udX* with 8(a0,u) = a.
Hence 5(a0, ux) = a0. ;With the aid of. (1) we conclude 5(a0, uxx) = 8(a0, x) ^ 0 .
Since S(a0, x) is coaccessible, there,exists v£X* such that 5(d(a0, x), v)dF, i.e.
S(a0i uxxv)dF. This means that uxxvdLmin(E), which yields a contradiction.
(3) Assume that there exist x,ydla with x^y. Then there are a, a" ¿A. with
8(a', x) = 8(a", y) = a. Sinee si is trim, there are v',v"dX* with 5(a0, v') = a'
and 8(a0, v") = a", which implies 8(a0, v'x) = 8(a0, v"y)-a. Since v"ydLmin(X*) and
x^y, we have v"xydLmin(X*). There exists yv£X* with v"yxwdLmin(E), i.e.
d(a0, v"yxw) = 3(a0, v'xxw)d F. Therefore v'xxw£Lmin(E), which is a contradiction.
Notice that, since si is trim, there exist x£X, a'£A with <5 (a, x) = a. This, together
with the foregoing, shows |/„| = 1. (

7anOa = 0 follows from the fact that si is trim and T(si)=Lmin(E). Now let
/„={*} and S(a',x)=a. There exists v£X* with S(a0, v)=a\ and we have

76 M. Ito and J. Duske

vx£Lmin(X*). Let y£X with x^y. Then vxy£Lmin(X*) holds, too. There exists
w£X* such that vxyw£Lmin(E), i.e. 8(a0, vxyw)£F, and therefore we have
8 (a, y) 0. The rest of the assertion can be proved in a way similar to the correspond-
ing part of (1).

4.2. Example. For each alphabet X we will introduce an automaton, named JS?X,
which accepts exactly Lm{n(X*). To this end, set

2>x = (Lx,X,Xx,l0,Lx) with Lx = {10}U {lx\xeX},
¿x(l0 ,x) = h for all x£X, and j) = / , for all x, y£X

with X y.
It is easy to see that S£x is trim and T(H?x)=Lmin(X*) holds.

Recall that an incomplete recognizer is called minimal, if it is trim and reduced
(see [3]). In the following we will construct for a given nonempty involutorial regular
event EQ X* (¡A j =2) a minimal recognizer which accepts Lmin(E). To this end, we
first need two lemmas.

4.3. Lemma. Let si=(A, X, 8, a0, F) with \X}^2 and F^0 be a cyclic
involutorial recognizer. Then for all x, y£X with x^y and all a£A there exist
u, v£X* such that uxyv£Lmm(T{s4)) and 8(a0, ux)=a holds.

Proof. Since si is cyclic and involutorial, si is strongly connected (see 1.2. Lem-
ma). Let ad A, choose m>\A\ and set c=6(a, (xy)m). Since si is involutorial, we
have a=8(c,(yx)m). Since si is strongly connected, there exists u'£X* with \u'\^m
and 5(a0,u') = c. Therefore we have 8(a0,u'(yx)m)=a. Set u=u'(yx)m. Then,
from \u'\^m, weconclude i/lm!n = «x. Since si is involutorial, we have 8 (a0,ux)=a.
In a similar way we can show that there exists v with t> /min=ju and 8 (a, yv)£ F.
Then 8(a0, uxyv)€F, and since x^y, we have uxyv£Lmin(T(si)).

The following lemma states a propierty of accessibility and «»accessibility in
siX3?x, where si is a complete minimal involutorial recognizer which satisfies the
conditions of the foregoing lemma, and Z£x is the trim recognizer of 4.2. Example.

4.4. Lemma. Let si=(A, X, 8, a0, F) be a complete minimal involutorial
recognizer with \X\^2 and /-V0. Then, in the product automaton siXS?x, the
following holds:

(1) (a, /(,) is not accessible for all a£A with a^a0,
(2) All the other states of siX2?x are accessible and coaccessible.

Proof. (1) is trivial according to the fact that S£x is a trim recognizer accepting
Lm^n(X*) and (2) of 4.1. Theorem. To prove (2), we have to consider the set of states
{(a0, /0)}U {(a, lx)\a£A, x£X}. It is easy to see that (a0, /0) is accessible and coacces-
sible. Consider a state (a, lx), a£A, x£X. By the foregoing lemma, for all y€X
with x^y there exist u, v£X* with uxyv£Lmi„(T(si)) and <5(a0, ux)=a. This
implies («5X/!•>•)((a0, /0), ux)=(8(a0, ux), lx(l0, ux))=(a, lx), i.e. (a, lx) is accessible,
and (8xtx)((a, lx),yv)£FXLx, i.e. (a, lx) is coaccessible.

4.5. Theorem. Let EQX*, \X\^2, be a nonempty involutorial regular event
and si—(A, X, 8, a0, F) be a complete minimal recognizer with T(si)=E. Then
(sfX&xy is a minimal recognizer with T((siX£?x)')=LmJE). (Here (siXSex)'
denotes the trim recognizer associated with s#XS£x (see [3]).)

On involutorial automata and involutorial events 77

Proof. According to 3.3. Corollary, si is an involutorial recognizer, and since
we have f V 0 . Furthermore, T((siX&x),)=T(jtfX2'x) = T(si)C\T(£ex) =

=E0Lmin(X*)=Lmin(E). From the foregoing lemma we know that {(a0, /„)}U
U {(a, lx)\a£A, x£X} is the set of states of {siX£Cx)'. If we show that {siX&x)' is
reduced, then the theorem is proved.

Let us show that (a0, /„) is not equivalent to any state (a, ly), a£A, a^a0, and
y£X. With the aid of 4.3. Lemma, we can find v£X* such that 8(a0, vy)£F and
yveLm]n(X*). Therefore (8xXx)((a0,10), yv)£FxLx, but (¿XA*)((fl, /,), yv) is
not defined. Now choose x, y£X with x^y and consider two states (a, lx) and
(a\ ly) with a, a'£A. Again, with the aid of 4.3. Lemma, we can find a word vdX*
with d(a,yv)£F and yv£Lmin(X*): Therefore, (<5xAx)((a, lx), yv)£FXLx, but
(8x^x)((a\ ly), yv) is not defined. It remains to show that (a, lx) and (a', lx) are not
equivalent for all x£X and a,a'£A with a^a'. To this end choose y£X with
y^x and m>\A\2. Set b=8(a,(yx)m) and b'=8(a', (yx)m). Since an involutorial
recognizer is obviously a permutation recognizer, we have b^b'. Since si is reduced,
there exists u£X* such that 8(b,u)£F and 8(b',u)$F (or vice versa). Here we can
assume that |t/ |g|,4|2 holds. Hence we have 8(a, (yx)mu)£F and 8{a', (yx)mu)$F
(or vice versa). Set w—(yx)mu. Since \u\<m, we have w,min=yv for a suitable
v£X*. Consequently, we have 8(a,yv)(iF and 8(a', yv)$ F (or vice versa). Since
y^x, we have (8xAx)((a,/x), yv)£FXLx and (8X^x)((a', Q, yv)$FXLx (or
vice versa). This ends the proof of the theorem.

The proof of the following corollary now is trivial.

4.6. Corollary. Let si=(A, X, 8, a0, F) be a complete minimal involutorial
recognizer with- \X\^2 and Let si'=(A', X, 8', a'0, F') be a minimal recog-
nizer such that T{sf)=LmXB(T(st)) holds. Then we have \A'\ = \A\\X\ + 1.

5. Decidability results

In this section we will first investigate the decidability of the question
= T({%)',\ where si and S& are two given recognizers.

To treat this problem we first need, for a given alphabet X and a language
LQX*, the operator XL mapping subsets of X* to subsets of X* (see e.g. [1]). XL
is defined as follows: Let w, w'£X*. Then w'£AL(vv) iff w=w0x1w1x2...w,_1x1.w,
with w.-CL for /£[0:r], xs£X for _/6[l :r], r ^O, and w'-xxx^.-.x,..

It is known that, if RQX* is a regular event, then ?.L(R) is regular for arbitrary
languages LQX*. Taking into consideration of this fact given in [1], p. 60, it can
be seen that, if L is a given context-free language and R is a given regular language,
one can effectively construct a recognizer accepting AL(R). If we choose L={e}',
then, according to 2.2. Theorem and 2.5. Corollary, we have w/min€At(tv) for all
we**.

Now we can prove:

5.1. Theorem. Let two recognizers si and 38 be given. Then T(siy = T{3Sf
is decidable.

Proof. T(si)i=T(3$)i is equivalent to Lmin (T(si))=Lmin (T(@)). From
4ni„ (T(sf))=>.L(T(si)) n Lmin (X*) with L={e}< and similarly Lmin(T(®))=

78 M. Ito and J. Duske

= X L () f l £min *) and the fact that we can construct recognizers for XL(T(s/)),
XL(T(3S)), and Lmin(X*) the theorem follows.

We already mentioned that the involutorial closure of a regular set is a determi-
nistic context-free language. If we specialize the proof of Theorem 3.3 in [2], then we
can construct for a given regular set E, a deterministic pushdown acceptor for E'.
Since it is decidable whether the language accepted by a deterministic pushdown
automaton is regular (see e.g. [8], p. 246), we conclude:

5.2. Theorem [Book], Let a recognizer X, d, a0, F) be given. Then it is
decidable whether T(sfy is regular or not.

Using our structure results in section 4, we are able to give an algorithm for this
problem, which does not use deterministic pushdown automata, but finite automata
only.

5.3. Algorithm.
Input: A recognizer si=(A, X, 5, a0, F).
Output: "YES", if is regular, " N O " otherwise.
Method :

(1) If f) = 0 or |JT| = 1, go to (5)
(2) Now we have \X\s2 and FV0.
Construct a minimal recognizer X, 8', a'0, F') with T(s4') =

=Lmin(T(sf))=XL(T(s/))flLmin(X*), where L={e}'. . . .
(3) Construct the set is a complete minimal involutorial recognizer

with ^ j r 1 states}.

(4) For all decide whether T{s4)1 = holds. If this is the case for a
go to (5), otherwise go to (6).

(5) Output "YES".
(6) Output "NO".
5.4. Theorem. The output of 5.3. Algorithm is "YES" iff T (^ y is regular.
Proof. The case T{sl)=0 or 1*1 = 1 are trivial. Therefore we can assume that

which implies f V 0 , and \X\^2 holds. If the output is "YES" then
there exists a with T (s t y = T (V y = T(V), i.e. T(s ty is regular.

Conversely, assume that T(jtf)' is regular. Consider the complete minimal invo-
lutorial recognizer ¿¿=(A, X, 5, a0, F) with T(si) = T(si)i. According to 4.6.

|A'\ — l -
Corollary we have —pbn—> i-e. and therefore the output is "YES" . .

Abstract

In this paper we will study a special class of automata and events or languages, called involu-
torial. An automaton with input alphabet X is involutorial iff the double input of one input sign

X induces the identity mapping of the state set, an event over an alphabet X is involutorial iff
it is saturated w.r.t. to a special (the minimal) involutorial congruence on X*. This congruence is
investigated in section 2. In section 3 we will treat involutorial events and the involutorial closure of
arbitrary events. In particular we will study those events, whose involutorial closure is regular or
context-free. In section 4 the structure of some special recognizers is determined, and in section 5
we shall give with the aid of these results an algorithm based on finite automata, to decide for a
given regular event, whether the involutorial closure is regular or not.

On involutorial automata and involutorial events 79

Acknowledgement

The authors would like to thank Prof. Dr. R. Parchmann for valuable discussions and
suggestions. '

[1] BERSTEL, J., Transductions and Context-Free Languages, Teubner, Stuttgart, 1979.
[2] BOOK, R . V . , Confluent and other types of Thue systems, J. ACM, v. 2 9 , 1982 , pp. 1 7 1 — 1 8 2 .
[3] EILENBERG, S., Automata, Languages and Machines, v. A,i Academic Press, 1974.
[4] FLECK, A. C., Isomorphism groups of automata, J. ACM, v. 12, 1965, pp. 566—569.
[5] GÉCSEG, F., On subdirect representations of finite commutative unoids, Acta Sci. Math., v. 36,

1974, pp. 33—38.
[6] GÉCSEG, F. and PEAK, I . , Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972 .
[7] HARRISON, M. A., Introduction to Formal Language Theory, Addison-Wesley, Reading, Mass.

[8] HOPCROFT, J. E. and ULLMANN, J. D . , Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley, Reading, Mass., 1979.

[9] RABIN, M. O. and SCOTT, D., Finite automata and their decision problems, IBM J. Res. Deve-
lop., v. 3, 1959, pp. 114—125.

[10] SAKAROVITCH, J . , Un théorème de transversale rationelle pour les automates à piles déterminis-
tes, Proc. of the 4th Gl conference on Theoretical Computer Sei., K. Weihrauch, ed., (Lect.
Notes in Computer Sci., 67), Springer, 1979, pp. 276—285.

[11] SAKAROVITCH, J . , Description des monoides de type fini, Elektronische Informationsverarbei-
tung und Kybernetik, v. 17, 1981, pp. 417—434.

[12] ZASSENHAUS, H . J . , The Theory of Groups, Chelsea, New York, 1958 .

FACULTY O F SCIENCE
KYOTO S A N G Y O UNIVERSITY
603 K Y O T O

INSTITUT F Ü R I N F O R M A T I K
UNIVERSITÄT H A N N O V E R
W E L F E N G A R T E N 1
D-3000 H A N N O V E R 1

References

1978.

A solution of the early bird problem in an «-dimensional
cellular space

By T . LEGENDI a n d E. KATONA

The early bird problem has been defined in [1] and has been solved in [1], [2], [3],
[5]. In this paper the problem is generalized for the «-dimensional cellular space,
and a real time solution is given using 0(mri) steps in an «-dimensional cellular field
of edge length m. The solution will be shown in detail in the two-dimensional case.
The basic idea of the solution is to reduce the «-dimensional early bird problem to the
(n — l)-dimensional one, using special signals and applying the one-dimensional early
bird algorithm from [3].

1. Introduction

Let us consider a cellular space in which any cell in quiescent state may be excit-
ed from the outside world. The excitations result in special "bird" states instead of
the quiescent states. The task is to give a transition function ensuring after a certain
time the first excitation(s) may be distinguished from the later ones. This is the early
bird problem defined originally by Rosenstiehl et al. [1] for an elementary cyclic graph
where to each of the m vertices an automaton (cell) is assigned. In [1] a 2m-step solu-
tion is given on condition that at each time-step maximum one excitation occurs.

Vollmar [2] defined and solved the problem for a one-dimensional cellular space
allowing more than one, excitation at each time-step. The solution is based on the
"age of waves" concept and requires a high number of cell-states.

In [3] a simplified solution has been given for the one-dimensional case using only
5 cell-states. Kleine Biining [4] proved that the early bird problem is unsolvable with
4 states in a one-dimensional cellular space, that is, the solution in [3] is optimal
considering the number of states.

In [5] the early bird problem is solved for a two-dimensional cellular space in
nonlinear time (for an m-m space 0 (m 2) steps are needed.

6 Acta Cybernetica VII/1

82 T. Legendi and E. Katona

2. Exact definition of the «-dimensional early bird problem

Let (/", S, N , f) be an «-dimensional cellular space, where
1 is the set of integers and to each point of 1" a cell is assigned;
S is the finite set of cell-states containing 3 special states, the passive state # ,

the quiescent state q and the "bird" state P;
N is the neighbourhood index, in this paper the von Neumann neighbourhood

index is assumed: N=((0, 0), (0, 1), (0, - 1) , (1, 0), (- 1 , 0));
f : Ss — S is the local transition function satisfying f(q, ..., q) = q and

/ (# , a, b, c, d) = # for any a, b, c, d£ S.
In the cellular space an «-dimensional cube K of edge length m is assigned:

J5T={(/i, . . . , /J lOs/yS/H — 1, y = l , ...,«}. In the initial configuration the cells in K
are in state q (active space), all other cells are in state # (passive space).*

The cellular space works, as usual, in discrete time-steps / = 0 , 1,2, ... using the
local transition funct ion/ , but between two steps (that is to say, at time ¿+1/2)
any quiescent cell (in state q) may change spontaneously into the bird state P (exci-
tation). The problem is to define a transition function / ensuring that after a certain
time the bird(s) arisen at first is (are) in a distinguished state, and all other cells in
other states.

To simplify the solution, the excitation of the border cells (which have a neigh-
bour in state #) will be prohibited.

For an easier explanation, first the solution will be presented in the two-dimen-
sional case (point 3, 4). The generalization for «-dimensions will be discussed in
point 5.

3. The sketch of the solution in the two-dimensional case

The basic idea of the algorithm is that any bird sends out a special signal in hori-
zontal direction, which arrives at the leftmost column z steps after its origin where z
is independent of the place of the bird (Fig. 1). That is, any excitation in the two-
dimensional field at time t, may generate a "secondary excitation" in the leftmost
column at time t + z. In this way the two-dimensional early bird problem can be
"projected" into a one-dimensional one.

A bird will be called a local early bird if there is no earlier bird in its row, and it
will be called a global early bird if there is no earlier bird in the cellular space. Using

a one-dimensional early bird algorithm in each row, the local
early birds can be marked. Using a one-dimensional early
bird algorithm in the leftmost column, we can decide
that which rows contain the global early birds. It is clear
that the vertical and the horizontal early bird algorithms
together may select the global early birds.

The main problem in the above solution is to ensure
a constant z delay for any signal sent by a bird. The solu-
tion of this problem is explained in a time-space diagram
(Fig. 2). Fig. 1

* This partition of the cellular space corresponds to the "retina" conception of [7].

A solution of the early bird problem in an /¡-dimensional cellular space 83

cell-row

The time-space diagram of a row of the cellular space

Let us consider a bird arisen at time t in the /c-th cell of a cell-row. This bird
sends a full-speed signal to the right (the signal steps right in each step) and in the /c-th
cell there remains a special sign, a so-called "bird mark". The full-speed signal is
reflected at the rightmost cell at time t+(m—k) and moves left until it reaches the
bird mark (at time t+2(m—k)). Here it cancels the bird mark (the bird itself survi-
ves), and the full-speed signal alters into a half-speed signal moving to the left. This
signal reaches the leftmost cell at time t+2(m—k)+2k=t+2m, thus the constant
delay of the signal is ensured.

Considering more than one bird, there arises the question whether each full-
speed signal will cancel its own bird mark. This question can be answered with "yes"
because the following property holds.

Proposition. Let b1 and b2 two bird marks in the /q-th and k2-th cells of the cell-
row, respectively. If k±<k2 then the full-speed signal s2 (of b2) goes before the full-
speed signal s1 (of fcj).

Proof. The definition of the early bird problem contains the restriction that only
quiescent cells may alter into the bird state. Considering the 5-state early bird algo-
rithm of [3] it is clear that the cells between the bird mark bx and its signal sx cannot be
in quiescent state, therefore the excitation in this range is prohibited. This fact implies
the above proposition. •

6*

84 T. Legendi and E. Katona

It results from the proposition that the first reflected signal has been sent by the
rightmost bird, the second reflected signal by the next rightmost bird, etc., thus the
cancellation of the bird marks always will be correct.

Summarizing, the sketch of the two-dimensional algorithm is as follows:
(i) Any new bird in the active cellular field sends out a signal which arrives at

the leftmost column with a constant delay. At the same time, a one-dimensional early
bird algorithm is executed in each row which cancels all "local late birds".

(ii) The signals arriving at the leftmost column appear as "secondary birds"
and a vertical one-dimensional early bird algorithm is applied among them. If a se-
condary bird proved to be later then it is killed and a "cancel" signal starts moving
to the right in that row which kills all the birds there.

After 6m steps (see the time estimation in point 5) only the global early birds
exist in the cellular space.

4. Detailed description of the solution in the two-dimensional case

The state set S' = S— { # } is composed of two components: S' — S1XS2.
Component Sx serves for the 5-state early bird algorithm of [3], that is, iSi =
= {Q, B, R, L, N} where the states are named "quiescent", "bird", "right wave",
"left wave", "neutral", respectively.

The component S2 ensures the movement of signals according to Fig. 2. It con-
sists of 5-bit words: 5 ' 2={(j 1 , ..., j ^ l ^ e {0, 1}, / = 1 , . . . , 5}, where

i ! = l means "bird mark",
j 2 = l means "full-speed signal moving to the right",
i 3 = l means "full-speed signal moving to the left",
s4 = l means "half-speed signal in phase 1",
i 5 = l means "half-speed signal in phase 2".

The quiescent state q and the bird state /? (see point 2) are defined as
<7 = (<2,00000), £ = (5,11000).

The active cellular space is divided into three areas (Fig. 3). The leftmost column
is called as area A1} the inner cells as area A2 and the rightmost column as area A3.

The transition function /involves three subfunctions f , f 2 , f3
according to AX,A2,A3. (The cells in different areas may
be distinguished by their left and right neighbours.) In the
sequel the areas Ax, A2, A3 will be discussed separately.

Area A2 (inner cells).

The transition function f2 is composed of two functi- '
ons. For the component S\ the 5-state early bird function
of [3] is used defined below without any explanation. (The
terms have "left-own-right—new state" structure. An ex-
pression (B, R) means "state B or state R", points mean Fig. 3

A solution of the early bird problem in an «-dimensional cellular space 85

arbitrary states. In the undefined cases the new state must be equal to the old
own state.)

(B,R) Q (Q, N) .-*• R

(Q,N) Q (B, L)-L

(B,R) Q (B, L)-N

R L — iV •

R L . — N

R (B, N) (not L) - R

R (B, N)-N
(not R) (B, N) L L

(B,N)L — N

R (B,N) L -*N

For the component iS2 the transition function can be defined by two terms (an
expression in parentheses is a 5-bit word, the points mean arbitrary bits):

Term 1. Shift of signals (a- supposed):
{.b...){a..e.){..c.d)-{abcde).

Term 2. Cancellation of the bird mark:
(. 6 . . .) 0 • •« .) (. . l . -MQMHe) .

Area A3 (rightmost column)

This area serves for reflecting the full-speed signals. The state of the component
is constantly N in each cell (according to [3]), and the transition of the component

S2 is defined by

Term 3: (.b.. .)(00.00)(#)-(00M)0).

Area A1 (leftmost column)
This area requires only 5 states according to the vertical one-dimensional early

bird algorithm. These 5 states are chosen from the state-set S' = SiXS2 as follows:

"quiescent"=(N,00000),
"bird" = (N, 10000),
"right wave" = («,00000),
"left wave" =(/?,10000),
"neutral" = («,00100).

This choice of states solves two problems:
(i) If in the vertical early bird algorithm a cell is in state "right wave", "left

wave" or "neutral", then in the row of this cell all the birds should be cancelled,
because they cannot be early birds. Using the above choice of states, a cell in state

86 T. Legendi and E. Katona

"right wave", "left wave" or "neutral" shows a state /?(€S'i) for the horizontal early
bird algorithm. As a consequence, R states will be generated in the cell-row moving
right and cancelling all the birds there.

(ii) It is easy to see that in all cases except (i), a cell in Ax shows an indifferent
state for its right neighbour, because the state Ni^Sx) ensures a correct horizontal
early bird algorithm, and the states 10000, 00100 (€52) do not disturb the movement
of signals in the cell-row.

Using the above choice of states, the cells in Ax work with a vertical one-dimen-
sional early bird function, but instead of the spontaneous excitation a "secondary
bird generation term" is introduced:

Term 4: (N,00000)
#(iV,00000)(., • • • • I)—(N,10000).

(N,00000)

The solution described above requires ||S'|| = 5 - 3 2 = 1 6 0 states. Note that the
state-set can be reduced to 5 - 1 4 = 7 0 states, but this reduction results in a more
complicated transition function therefore its discussion is omitted.

5. The n-dimensional case

Let us consider the «-dimensional cube K defined in point 2. The inner cells of
K form an «-dimensional cube K„ of edge length m—2:Kn= {(/j, ..., /„)|1 S/j-^ «2 —2,
/ = 1 , ..., «}. Using the signals of figure 2, any excitation in Kn can be projected into
an (« — l)-dimensional cube ^T„_i= {(/j, ..., /„_i, 0)|1 ̂ . i ^ m —2, . /=1, ..., « — 1},
in Kn_1 secondary excitations are induced. At the same time, in each cell-row of K„
a one-dimensional early bird algorithm is executed to select the local early birds.

For the secondary excitations in K n_ l a similar process is used reducing the task
to an (« — 2)-dimensional cube K„_2 — {(/l5 ..., /„_2, 0, 0)|1 ^ij^m — 2, j= 1, ...,
...,n — 2}; similar reduction can be made for K„-3, etc. In Kt— {(/*!, 0, ..., 0)|1 S

—2} only a one-dimensional early bird algorithm is needed.
For any / =] , . . . , « — 1, if a bird in Kt is cancelled then all birds in the corres-

ponding row of K l + 1 will be cancelled, similarly to the two-dimensional solution. It
is not difficult to prove that after a certain time only the global early birds exist in Kn.

Time estimation: Let t be the time-point when the global early birds arise. (Be-
fore t the cellular space is in quiescent state.) At time t+2m the signals of the early
birds arrive at at time t+4m the signals of the secondary birds arrive at K„-2,
etc. Thus the earliest excitations appear in Kx at time / + (« — 1)2«?. The one-dimen-
sional early bird algorithm of [3] requires 3m steps, therefore at time /+ (« — 1) 2m + 3m
all one-dimensional early bird algorithms in Kx, ...,K„ are terminated. The cancella-
tion process from to K„ needs maximum (n—1) m steps, thus at time t+(« — 1)2m +
+3m+(n — \)m = t+3mn all late birds are cancelled in K„. That is, the n-dimensional
early bird algorithm requires 3mn steps.

Remark: For the cube K a transition function / is used which is composed of
different subfunctions. The subfunctions of the cubes K2, ...,Kn are similar to the

A solution of the early bird problem in an «-dimensional cellular space 87

function / 3 in point 4, but at the boundary of K{ and A ^ j a coding problem arises
(see the choosing problem of states in the area AL). This problem can be solved by
increasing the number of states. As a consequence, the state-set S may grow if the
dimension degree n is increased.

RESEARCH G R O U P O N T H E O R Y O F A U T O M A T A
H U N G A R I A N A C A D E M Y O F SCIENCES
SOMOGYI U. 7.
SZEGED, H U N G A R Y
H-6720

References

[1] ROSENSTIEHL, P., J. R. FIKSEL and A. HOLLIGER, Intelligent graphs: Networks of finite automata
capable of solving graph problems, in : Read, R. C. (ed.), Graph Theory and Computing, Academic
Press, New York, 1972, pp. 219—265.

[2] VOLLMAR, R., On two modified problems of synchronization in cellular automata, Acta Cybernet.,
v. 3, 1978, pp. 293—300.

[3] LEGENDI, T . and E . KATONA, A 5-state solution of the early bird problem in a one-dimensional
cellular space, Acta Cybernet., v. 5, 1981, pp. 173—179.

[4] KLEINE BÜNING, H., The early bird problem is unsolvable in a one-dimensional cellular space with
4 states, Acta Cybernet., v. 6, 1983, pp. 23—31.

[5] PRIESE, L., Über das Early Bird Problem in planaren Zellularräumen, Informatik-Skripten der
Technischen Universität Braunschweig, Nr. 2, Braunschweig, 1982, pp. 105—110.

[6] LEGENDI, T . and E. KATONA, A solution of the early bird problem in an «-dimensional cellular
space (preliminary version), Informatik-Skripten der Technischen Universität Braunschweig,
Nr. 2, Braunschweig, 1982, pp. 60—64.

[7] VOLLMAR, R., Algorithmen in Zellularautomaten, B. G. Teubner, Stuttgart, 1979.

(Received Febr. 14. 1984)

Language extension in the HLP/SZ system

By E. SIMON

1. Introduction

It is the intent of this paper to describe a practicable modification of the HLP
lexical metalanguage for specification of the language extension. Programmers should
never be satisfied with languages which permit them to program everything. There-
fore, there is a need for languages which help the programmer to find the most
natural representation for the data structures he uses and the operations he wants to
perform on them. This is clearly illustrated by the current trends in the evaluation of
programming languages [4].

In order to achieve flexibility and power of expressions in programming lan-
guages, we must pay the price of greater complexity. In the 70's there was a tendency to
retrench towards simpler languages such as PASCAL, even at the price of restricted
flexibility and power of expressions. An alternative solution was the development of
extensible languages too. The classification of language extension can be made on the
basis of the stage of the translation process during which the definition of an exten-
sion is processed and the augment text is converted into a text in the base language.

In compiler-writing systems based on attribute grammars, two natural means
are given to introduce extensions. In the first case the augment text is processed
during the lexical analysis, and therefore the extension mechanism is a part of the
generated lexical analyzer. Information which controls the recognition of the augment
texts and which prescribes the generation of the definition texts can be obtained from
the lexical metalanguage description. In this case the extension mechanism is generally
similar to macrogenerators. Those lexical analyzers which have an extension mecha-
nism must contain special stack automata to store parameters computed during isola-
tion of a token. Extension mechanisms are generally implemented by recursive proce-
dures. Adapted from [6], the extension executed during the lexical analysis is called
the type-A extension. From the user's point of view, the type-A extension can be
useful for a large class of problems, but there are some other classes where delay of
the extension is needed until the translation process. For example, the recursive pro-
cedure call in BASIC language can not be introduced by a type-A extension, because
the stack manipulations must be implemented at the target code level. It should be
noted that the other type of language extension is based on attributed tree transfor-

90 E. Simon

mations. These are executed during syntax/semantic analysis of the token stream
generated by the lexical analyzer. The attributed tree transformations are controlled
by those attributes which are computed before transformations. In practice the appli-
cation of both techniques is suitable.

In the case of the type-A extension there are two different methods to give defi-
nitions of the augments. In our HLP/SZ system the recursive definitions are given by
generator expressions in lexical metalanguage, while the augments are contained by
source programs. Hence, in all cases a new lexical analyzer must be generated on the
basis of the new lexical description. If the generated lexical analyzer contains the total
extension mechanism, including the parser generator, definition texts are given in the
source programs. An extension executed by attributed tree transformations is now
under development.

In the next part of this paper the modified lexical metalanguage is presented
through examples. It is followed by a short description of our implementation based
on SIMULA 67 language. In the following, a knowledge of the original HLP system
cf. [1], [2]) is assumed.

2. Extension description in lexical metalanguage

A lexical description of a prgamming language defines the way the programs are
written in that language. The streams of characters are divided into syntactically
meaningful entities called tokens. Token classes are defined by regular expressions
which are built up from character sets, terminals and tokens. In our system, five
predefinite character sets are introduced with conventional meaning. These character
sets are: LETTER, DIGIT, ANY, ENDOFLINE and SPACE. These names can be
overdefined in the set declaration list. An essential difference between the original
and the HLP/SZ system is that the transformations are related to the character set
names and token class names only. The transformations are given after the token
class description in the following way:

TRANSFORMATIONS ARE
ident if iers ; or (1)
identifier 1 => terminal .symbol;
END OF TRANSFORMATIONS.

In the first case, character sets assigned to the "identifier" are deleted during
isolation of a token. In the second case, characters are changed by the terminal .sym-
bol. If "identifier. 1" is defined as the character set name, then the first character of
the terminal .symbol will be inserted after deletion of the last input character. Appli-
cations of transformations can be found in the examples of this section.

In order to extend a language it is enough to create one or more generator ex-
pressions without any knowledge of the original parts of the lexical description. For
introducing the generator expression, let us take the terminology of macrogenerators
into consideration.

An action block consists of a collection of screen clauses in the original lexical
metalanguage. Each screen clause denotes an identifier which is declared as a token
class name in the lexical description. Generator expressions are assigned to token

Language extension in the HLP/SZ system 91

class names in action blocks. Character strings belonging to the token classes are
treated as augment texts or macro calls. Macro definitions are given by generator
expressions. Let us assume that, in the definition of a token class assigned to a genera-
tor expression, token class names occur. Character strings isolated to these token
class names are called parameters. References to these parameters in the generator
expressions are given by the following syntax rules.

formal_parameter= ^ u n s i g n e d - i n t e g e r ; (2)
formal _parameter= ^generator .expression;

In the first case, parameters are positionated, that is the "unsigned _ integer"
designates the serial number of a parameter. Token class names occuring on the
left-hand side of token class definitions are regarded as Oth parameters. Numbering of
parameters on the right-hand side is defined from left to right. The serial number of
the leftmost token class name, as parameter, is equal to 1. In the second case, the
generator expression generates a token class name, which is called keyword parameter.
We suppose that the generated token class name can be found on the right-hand side
of the token definition assigned to the generator expression in which the original for-
mal parameter reference occurred. It should be noted that the token class definition
above does not contain the same token class names twice.

In lhe original lexical metalanguage, the control can be transferred to an other
block using GOTO. After a token is processed according to a screen clause, the GOTO
part appearing on its left-hand side indicates the block where the next token will be
recognized. The default rule states that the block is not changed. In the case of an
extension description, the GOTO part can appear after the token class name assigned
to a generator expression. The GOTO part occuring behind the generator expression
indicates the block where the generated definition text will be recognized.

Generator expressions are built up from terminal symbols, parameter references
and functions. The functions typed as string are the following: BLANK, SUC, PRED
and IT_IND. The first function has no argument, while SUC and PRED have one
string argument which must be converted into an integer. The function SUC is assum-
ed to be an incrementing function, and PRED to be a decrementing one. The
meaning of the function IT_IND can be found in the following part of this section.

In order to build up a generator expression from terminals parameters and func-
tions, string operations are needed. Similarly to regular expressions, the descriptive
power of generator expressions is based on the operations iteration (*), concatena-
tion (juxtaposition) and McCarthy expression. The operator * has the highest prece-
dence and the McCarthy expression the lowest. The use of subexpressions enclosed in
parentheses is permitted.

For example, we could have the description to be found in Figure 1. The name of
this description is FACTORIAL and no character set definitions are needed. The
strings belonging to the token class FACT begin with terminal FACT. The left pa-
renthesis is followed by 1—2 digits and the right parenthesis. After the right parenthe-
sis some blank characters can follows, which are deleted during recognition of the
token (augment text) called FACT. During evaluation, the generator expression
assigned to the token class name FACT, Jl contains the substring passed to INT_
PARAM as integer parameters of the factorial call. Parameter reference |0 assigns
the total augment text without last spaces. It can be seen that the extension is recursive.

92 E. Simon

LANGUAGE E X T E N S I O N AT LEXICAL LEVEL

THE AUGMENT TEXT IS: FACT(INT_PARAM)

LEXICAL DESCRIPTION FACTORIAL
TOKEN CLASSES
NUMBER = DIGIT + [4];
MULT = it * j t ;
FACT = ^ F A C T ^ I N T . P A R A M SPACE* ;
I N T . P A R A M = DIGIT + [2] ;
END OF TOKEN CLASSES
TRANSFORMATIONS ARE
SPACE => ;
END OF TRANSFORMATIONS

BLOCK: BEGIN
FACT [BLOCK] EQ 1 - - 1 /

}0EQ | 0 - - Jl ^ F A C I X ^ PRED(j l)

[BLOCK_l] ;
END OF BLOCK

B L O C K , 1:
BEGIN
NUMBER => NUMBER ;
MULT [BLOCK] =>MULT_OP ;
END OF BLOCK _1

END OF LEXICAL DESCRIPTION FACTORIAL.

FINIS
Figure I

A part of the generated text will be recognized by the automata assigned to the token
class FACT. During the processing of an augment text (macro call), a sequence of
tokens called NUMBER and MULT_OP are generated in action block B L O C K . 1.
After the processing, the next active block will be the BLOCK by GOTO transfer
assigned to token class name FACT.

In order to create macro calls which have other calls in their own parameter list,
the following agreement is reached. If none of the token classes currently under con-
sideration has a right-hand side from which a token class name TO can be derived,
the string generated by TO will be normally processed; otherwise, the generated
string will be strored in the stack.

As an example, let us consider the description of HANOI TOWERS in Figure 2.
In this case the string generated by PARAM must be stored in the stack as a para-
meter of the augment text HANOI. Naturally, theere is a posibility to continue the
example found in Figure 2 by creating an attribute grammar to synthesize the original
HANOI call on the basis of the token stream generated by the lexical analyzer
HANOI _ TOWERS.

Language extension in the HLP/SZ system 93

LEXICAL DESCRIPTION HANOI_TOWERS
CHARACTER SETS

ABC = t^ABCT^ ;
END OF CHARACTER SETS
TOKEN CLASSES

IDENTIFIER = LETTER (LETTER/DIGIT) * ;
INTEGER = D I G I T + [2] ;
SPACES = SPACE + (/ENDOFLINE) ;
DOT = . ;
NUMBER = DIGIT + ;
FROM = ABC ;
TO = ABC •
MOVE = ?îXMOVE?Î NUMBER ^ FROM ^ TO ;
SER_NUMB = DIGIT + ;
PARAM2 = ABC ;
PAR AMI = ABC ;
PARAM = ^ P A R A M O PARAM1 t î , ^ PARAM2 ^ ;
ARGUMENT = (ABC/PARAM) ;
HANOI = ^ H A N O I ^ S E R _ N U M B (^ , t î ARGUMENT)*

;
END OF TOKEN CLASSES
SCREEN_A:
BEGIN

IDENTIFIER
- INTEGER

SPACES
DOT
MOVE

KEYSTRINGS
INTEGER ;

= DOT ;
- ^MOVET^ T* T^THE^ jl tîTHT^ ^ ^ T^DISC^ # ^

^ F R O M ? i ^ ^ T H E ^ ^ ^ J2 ^ ^
7*PLACE^ * * t^TCM * ^ ^ T W . ^ * * \3
^ 7* PLACE ^ ;

HANOI - (U E Q ^ l ^ - - ^ X M O V E ^ U \2 t3

JO EQ ¿0 - -
H A N O I P R E D (j l) \2

P A R A M ^ \2 ^ |3
t^XMOVES^ U ¡2 p | 3
T Î H A N O I T Î PRED(j l)

^PARAMtî T^O \2 ?î,9± {3 |3
;

PARAM - 01 EQ ^ A ^ - -
(|2 EQ ^ B ^ - - 9 iC9 i 1 | 0 EQ JO—>- ^ B ^) /
Jl EQ ^ B ^ - -

0 2 EQ - - / |0 EQ }0 - - * A ^) /
10 EQ |0 - -

0 2 EQ ^ A ^ 9±B9± / | 0 E Q jO - - ^ A *)) ;
END OF SCREEN_A
END OF LEXICAL DESCRIPTION HANOI_TOWERS.

FINIS
Figure 2

94 E. Simon

HLP/SZEGED (0.2) * * SOURCE TEXT* *
_

2 E X T E N S I O N OF AN A L G O L W SUBSET
3 BY C A S E AND F O R STATEMENTS
4 5 OCTOBER 1983. S Z E G E D
5

LEXICAL DESCRIPTION EXTENDED.ALGOLW_SUBSET

9 CHARACTER SETS
1 0 * * PERCENT

UNDERSCORE =
S T M T . CHAR =
END OF CHARAC

11
12
13
14
15
16

;
;

ANY - / E N D O F L I N E ;
TER SETS

TOKEN CLASSES
IDENTIFIER

17
18
19
2 0 * *
21
22
23

24

NUMBER
COMMENT
SPECIALS
SPACES
LINE . S K I P
CASE

FOR

25
26

27
28
29
30* *
31
32
33
34
35
36
37
38
39
40* *
41 SCAN: BEGIN

INT . P A R
STATEMENT
C Y C L E . P A R
FIRST .VALUE
STEP .VALUE
LAST .VALUE
STATEMENT . 1
STATEMENT . 1

LETTER (LETTER/DIGIT/UNDERSCORE) *
[16];
DIGIT + [8] ;
PERCENT A N Y * ENDOFLINE ;
DEFAULT TOKENS ;
SPACE+ •
SPACE* ENDOFLINE ;
^XCASE^ ^ s ^ I N T . P A R ^ ^ O F ^ ^ ^
(STATEMENT (SPACE/ENDOFLINE) *
T ^ E N D S ^ ;

^ X F O R ^ * * C Y C L E . P A R ^ ^ * : = ^ * *
FIRST.VALUE ^ S T E P ^ ^ ^

STEP.VALUE ^ ^ U N T I L E jt *
LAST .VALUE ^ ^ ^ D O ^ ^ ^
STATEMENT . 1 ;
DIGIT + [2] ;
S T M T . C H A R * ;
LETTER (LETTER/DIGIT/UNDERSCORE)* [16];
DIGIT + [8]
DIGIT + [8]
DIGIT + [8]
S T M T . C H A R * ;

B E G I N S (ANY/ENDOFLINE)* ^ E N D ^
END OF TOKEN CLASSES

TRANSFORMATIONS ARE
UNDERSCORE ;
END OF TRANSFORMATIONS

Language extension in the HLP/SZ system 95

42 IDENTIFIER
43 NUMBER
44 COMMENT
45 SPECIALS
46 SPACES
47 LINE _ SKIP
48 CASE
49
5 0 * * FOR
51
52
53
54
55 END OF SCAN
56
57 END OF LEXICAL DESCRIPTION EXTENDED_ ALGOLW_SUBSET.
58
59

6 0 * * FINIS
Figure 3

In the following we define the format in which the number of iterations are given
to an elementary subexpression of a generator expression. The number of an itera-
tion. is equal to 1 if the iteration specification is omitted. If it occurs, then it must
be written in the following format:

iteration_number = 7 i * 7 i generator_expression ; or
iteration _ number = ^ * ^ ^[T^ unsigned .integer T6]^ ; (3),

assuming that the string generated by the "generator_expression" can be converted
into an integer. It should be noted on the basis of (3) that *[2] and are
(in the same way) syntactically correct items with different meanings. In the first case
the value of the "generator.expression" designates the number of iterations to be
executed. To illustrate the meaning of "iteration .number" defined secondly, let us
consider a token class which is defined by iterations. Let us number the occurren-
ces of iterations from left to right. In this case * [i] has the following meaning. The
index i denotes a * symbol on the right-hand side of the token class definition, assig-
ned to the generator expression in which *[i] occurs. In this way the item *[i]
means the number of the i-th iterations performed by the automata during isolation
of a token. In order to use the iteration number in the form *[i], practical additional
features are required. Firstly, during execution of an iteration the elementary string
expressions must be evaluated in each step. Secondary, we must introduce a new ele-
mentary string expression called IT_IND, which produces the value of the iteration
index.

We are now ready to give two extensions of an ALGOLW subset in HLP/SZ
lexical metalanguage. The original lexical description [3] is increased by some token
class definitions to introduce the CASE and FOR statements into the base language.
Additional token class definitions, such as STATEMENT, I N T . P A R etc., are

=> IDENTIFIER/KEYSTRINGS ;
=>• NUMBER ;
=> ;
=> KEYSTRINGS ;

- (^ I F ^ \l = ITIND tîTHENTÎ iSUC(ITIND)
^ E L S E T O * t l] ;

- ^BEGDSM Jl \2 ^LABEL:^
^ I F y i jl ^LE?* |4 ^ T H E N ^ tîBEGINTÎ

Jl :=5>Ml + |3 ^ ^
7ÎGOTO7Î ^LABEL; ^ t ^ E N D ^

t î E N D ^ [SCAN] ;

96 E. Simon

needed to describe the parameters of the augments. It seems to me that the definition
of a statement list by iteration, which can be seen in the description of the CASE
statement (cf. Figure 3), is very useful for giving the extension assigned to the CASE.
The generator expression is a very good example for application of the function
IT_IND too. The meaning of the elementary string expression jSUC(IT_IND) is
not trivial. During the first step of the interation cycle prescribed by *[1], the value
of the iteration index is equal to 1. On the other hand, the serial number of the first
STATEMENT parameter is equal to 2.

3. Implementation

Our implementation is based on SIMULA 67 language and it is now running on
the CDC 3300 computer [5]. The system can generate two types of lexical analyzer,
such as a lexical analyzer with an extension and without an extension facility. The type
of generated lexical analyzer is given at the job control level.

There is a further facility too. If the source text is given without augments, the
lexical analyzer containing procedures to execute extensions can be controlled so
that, during its running, additional information for extensions will not be created.
The hand-written analyzer of the HLP/SZ lexical metalanguage has no extension
facilities, because in this case the processing time was the primary point of view. The
generated lexical analyzer has automatic error-correction routines, which discontinue
"one distance" lexical errors if it is possible. Therefore, a restriction is needed for the
first characters of augments. The reader may imagine what happens if, for example, the
new tokens called IDENTIFIER and CASE are being recognized in the same action
block and the next four input characters are CAPE. In this case it can not be decided
whether an error correction must be made or not. In this manner, the first character
of an augment text must differ from the first characters of the other tokens assigned
to the same block. In exchange for this, the augment text can be more exactly recog-
nized. Information, needed to the error-correcting, parameter-generating and itera-
tion-calculating routines, can be computed during the generation of the final states.
Generator expressions are embedded into the generated lexical analyzer in a special
tree language, to promote the fast evaluation of these.

Abstract

The Hungarian version of the Helsinki Language Processor, HLP/SZ [1], consists of modules
for the lexical, syntactic and semantic processing of programming languages. The lexical metalan-
guage of our system has been modified so as to introduce the possibility of language extension. Aug-
ment texts, expressed in terms of constructs which are not part of the base language, are defined by
token classes. The generator expressions, which are assigned to the token class names in action blocks,
generate the definition texts. Definition texts can contain additional augments in a recursive way,
and it will be processed according to an optional action block. Generator expressions built up from
terminals, parameters and functions are controlled by "McCarthy expressions". The system imple-
mented in SIMULA 67 language is now running on the CDC 3300 computer.

RESEARCH GROUP ON THEORY O F AUTOMATA
HUNGARIAN ACADEMY OF SCIENCES
SOMOGYI U. 7.
SZEGED, H U N G A R Y
H-6720

Language extension in the HLP/SZ system 97

References

[1] GYIMÓTHY, T., E. SIMON and Á . MAKAY, An implementation of the HLP, Acta Cybernetica, Tom.
6, Fasc. 3, pp. 315—327.

[2] RAIHA, K . J . , M . SAARINEN, M . SARJAKOSKI, S . SIPPU, E . SOISALON-SOININEN a n d M . TEINARI,
Revised report on the compiler writing system HLP78, University of Helsinki, Report A—1983-1,
130 pp.

[3] SIPPU, S., Syntax error handling in compilers, University of Helsinki, Report A-1981-1, 100 pp.
[4] SIMON, E., Language design objectives and the CHANGE system, Computational Linguistics

and Computer Languages, v. 15, 1982, pp. 229—247.
[5] SIMON, E. and T. GYIMÓTHY, Using attribute grammars to generate compilers, Információ Elek-

tronika, v. 1984, 2, in Hungarian.
[6] SOLNTSEFF, N . and A . YEZERSKY, A survey of extensible programming languages, McMaster

University Hamilton, Technical Report No. 71—7, 143 pp.

(Received Jan. 26,1984)

Acta Cybernetica VII/1

Some results about keys of relational schemas

H o THUAN a n d LE VAN BAO

l . § .

In this section we recall some important notions and results in the theory of rela-
tional data base needed in subsequent sections.

In this paper, when we talk about a set of tuples the word relation is used while
talking about structural description of sets of tuples we use the word relational schema
[1]. With this approach a relation is an instance of a relational schema.

A relation on the set of attributes Q= {Alt A2, ..., A„} is a subset of the cartesion
product Dom (^ ^ X D o m (^4 2)X . . .XDom (A„) where Dom (A,) — the domain of
Ai — is the set of possible values for that attribute. The elements of the relation are
called tuples and will be denoted by (t).

A constraint involving the set of attributes {Ax, A2, ..., A„] is a predicate on the
collection of all relations on this set. A relation R(Alt A2, ..., A„) obeys the constraint
if the value of the predicate for R is "true".

We shall restrict ourselves to the case of functional dependencies.
A functional dependency (abbr. FD) is a sentence denoted a: X-— Y where a is

the name of the functional dependency and Z a n d Y are sets of attributes. A functional
dependency a: X— Y holds in R (Q) where X and Y are subsets of Q, if for every
tuple u and v^R, u[X] = v[X] implies u[Y] = v[Y] (u[X] denotes the projection of the
tuple u on I) .

Let F be a set of functional dependencies. A relation R defined over the attribu-
tes Q= {Ax, A2, ..., A„} is said to be an instance of the relational schema S = (Q, F)
iff each functional dependency o£F holds in R.

There are inference rules — Armstrong's axioms — which can be applied to
deriving further functional dependencies from F, and they are listed below. The
system of Armstrong's rules is complete in the sense of Ullman [3].

Armstrong's axioms.1

For every X,Y,Z<g Q,

1 In fact we used here a system of axioms which is equivalent to that of Armstrong.

100 Ho Thuan and Le Van Bao

Al. (Reflexivity): if YQX then X-+Y.
A2. (Augmentation): if X^Y then XUZ^YUZ.
A3. (Transitivity): if X-*Y and 7 - Z then X-Z.
From the Armstrong's axioms it is easy to prove the following inference rules:

Union rule: if X-Y and X-Z then X-YUZ.
Decomposition rule: if X-~ Y and ZczY then Z—Z.
Let F be a given set of FDs. The closure F+ of F is the set of FDs which can

be derived from F through Armstrong's inference rules.
It is shown in [3] that

(X ~Y)£F+ X +
where

Z + = {AAX ^ A^F+)

is the closure of X w.r.t. F.
There is a linear-time algorithm, proposed by Beeri and Bernstein [4], for comput-

ing the closure X+ of a given set X (w.r.t F) :
1) Establish the sequence Xm, Xm, ..., as follows:

X° = X.
Suppose X ^ is computed then

^(¡+D = ^ (o u Z (0
where

Z « = U Yj

(Xj^Yj)£F

2) In view of the construction, it is obvious that

^ Q Ar(2) Q ...

Since Q is a finite set, there exists a smallest non negative integer t such that

* (') = x < ' + 1 >

3) We have X+=X«>.
Keys of a relational schema.

Let iS—(i2, F) be a relational schema and let X be a subset of Q.
X is a key of S if it satisfies the following two conditions:

(i) (X * Q) £ F + ,

(ii) B A " c J : (.X' - Q)£F+.

The subset X which satisfies only (i) is called a super key of S.
In the following, instead of (X - » Y) £ F + , we shall write X^—Y.

r

Some results about keys of relational schémas 101

2.§.

Let S = (Q , F) be a relational schema, where

Q = {Alt A2, ..., A„},

F = {Lj - RJi = 1, 2, k; L f , g fl}.
Let us denote

k k
L = 1J U and R = U J?,.

¡=1 i=1

Without loss of generality, in this paper we assume that

X,,nJ?i = 0, i = l , 2, ..., k.

(Results without this assumption can be found in [5], [6].) We have the following
lemmas.

Lemma 1. Let S= (Q, F) be a relational schema.
If A e L and X ^ Y then

Proof. From the algorithm for computing the closure*"1" of * w.r.t. F (see 1. §.)
it is easy to prove by induction that if A£X then (* \ / 4) + is equal either to X+

or to (* + V t) .

_Qn the other hand, X^—Y implies YQX+.

Hence Y\A. g

(i) The case (* V 0 + = X + . From Y\A^X+\A, it is clear that
Y\A g* + = (X\A)+.

Hence
X\A Y\A.

(ii) The case (X\A)+=X+\A.
From Y \ v l g X + N v 4 , it is obvious that

Y\A g (* V i) + = X+\A.
Hence

*V1 Y\A.

Lemma 2. Let S=(Q,F)' be a relational schema, XQ Q. If A£X and
* V* -iv A then * is not a key of

Proof. By the hypothesis of the lemma,

A.

On the other hand, it is obvious that

* V I * V f .

102 Ho Thuan and Le Van Bao

Applying the union rule, we obtain

X.

Since A£X then showing that X is not a key.
We are now in a position to prove the following theorem.

Theorem 1. Let S—(Q,F) be a relational schema and X a key of S.
Then

Q\R g X g (Q\R) U (L n R).

Proof. We shall begin with showing that

Q\R g X.
First we observe that I + Q I U i ? . Since X is a key, obyiously X+ = Q.

Hence X U R - Q. This implies that

Q\R g X.
It remained to show that:

Z g (f l V O U a n / ?) . (1)
It is clear that

X g Q = (Q\R) U (L fl R) U (R\L). (2)

To obtain (1), it is therefore sufficient to prove that

X(~}(R\L) = 0.
Assume the contrary. Then, there would exist an attribute A£X, A£R and Al^L.
Since AT is a key, we have A"—- Q. Since A~^L, we refer to Lemma 1 to deduce

On the other hand, from A~£L and L g i 2 , we have LQQ\A. Hence Q\A—~L.
Applying the transitivity rule for the sequence X \ A Q \ A —+ L—~R—~A

(since A£R) we obtain
X V l - i - , 4 with A£X.

By virtue of Lemma 2, this contradicts the hypothesis that X is a key.
Thus we have proved that if Xis a key, then XC\(R\L)=0.
From (2) we deduce that

JTg (i2\/?)U(Lf]7?).
The proof is complete.

Remark 1. Theorem 1 can be deduced from Lemma 6 in Bekessy's and Demetro-
vics' paper [9]. Here another formal proof has been given. Theorem 1 is illustrated
by Fig. 1, where X is an arbitrary key of the relational schema S = (Q, F).
In view of Theorem 1, it is seen that the keys of S = (Q , F) are different only oh the
attributes of LC\R. In other words, if A\ and X2 are two different keys of S, then

Xj\X2 cL(~)R and X2\Xx czLDR.
Let F) denote the set of all keys of S=(Q, F), and Ef{Z) — the maxi-

mal cardinality Sperner system on a set Z [7].

Some results about keys of relational schémas 103

L R L R

I R\L

m
Q\RQX XQ(Q\R)U(LC)R)

Fig. 1

As an immediate consequence of Theorem 1 and results in [8], [9], we have the
following corollaries.

Corollary 1. Let S=(Q, F) be a relational schema. Then

J f (ß, F) s» # Sf (L Pi R) = C ^ 2 1

where h = #(LC\R).

Corollary 2. Let S=(Q, F) be a relational schema, and X a key of S.
Then

(Q\R) s # X ^ # (Q\R)+ # (LHR).

Corollary 3. Let S=(Q, F) be a relational schema.
If R\L^0 then there exists a key X such that X^Q (non trivial key).

Corollary 4. Let S = (Q, F) be a relational schema.

If Lf]R=9 then # j f (ß , F) = l and Q\R is the unique key of S.

Theorem 2. Let S = (Q , F) be a relational schema, where

LV\R = {Ah, Ah, ..., Ath} g {Ax, A2 A„} = Q.

Let us define ü:(1) = (ß \ i ?) U (Z , n «) ,

(+) " W (0 if K(i)\AuA* Al{

with i = 1, 2, ..., h.

Then K(h +1) is a key of S=(Q, F).

Proof. We shall begin with showing that

^ (¿ + 1) ^ ^ (0 .
Two cases can occur:
a) If K{i)\At.^Ah then from the definition of K(i+1) we have K(i+l) =

=K{i) and it is obvious that
K{i +1) K(i).

104 Ho Thuan and Le Van Bao

b) If K(i)\At{^*Atl, we have

*(< + !) = m\A„.
On the other hand, it is obvious that

K(i)\Au.
Applying the union rule, we get:

K(i)\A„-t* K(i).

Therefore

So we have:

From the above definition of K(i+1) it is clear that
K(h + l) g K(h) g . . . g K(l).

We are now in a position to prove the theorem. As an immediate consequence of
Theorem 1, ^ (l) = (i 2 \ R) U (/ ? f U) is a superkey of (Q, F>. On the other hand
/£(/2 + 1) 1) showing that K(h+]) is a superkey. To complete the proof, it
remains to show that + is a key. _ _

Were it false, there would exist a key X such that X<zK(h+l), and using the
result of Theorem 1 we find

Q\R g XaK(h + l) g (i 2 \ f l)U(Ln i?)
clearly, there exist _

with 1 S i = fi.

From the definition of X (/ + l) , we find K (i) \ A , t ^ A t l . Since K (h + \) Q K (i)
it follows that K(h+l)\Al{^Alt. On the other hand XQK(h+l)\A,r There-
fore X^-A which conflicts with the fact that X is a key of (Q, F).

The proof is complete.
It is natural to ask whether the results formulated in Theorem 1 can be improved.

The answer is in the affirmative as the following lemmas and theorems show.

Lemma 3. Let S=(Q, F) be a relational schema and X a key of S. Then

A r n J Rn(Z, \ /?) + = 0.

Proof. Suppose it were not so then there would exist on attribute A such that
AtXf]RC](L\R)+, thus A£X, A£R and L\R^A. Since A£R, it follows
that A£(L\R).
On the other hand, it is clear that

L\R g Q\R.
Taking Theorem 1 into account we get

L\R g Q\R g X.
Thus

L\R g X\A (since AiL\R).

Some results about keys of relational schémas 105

Evidently where A£X.
By Lemma 2, this contradicts the hypothesis that X is a key of S. The proof is com-
plete.
We define a(L, R)=(L\R)+ f l (£[")«) .
It is clear that a(L, R)Q(L\R)+O.R.
From this: XC\a{L, R)=®.
Combining with Theorem 1, the following theorem is obvious.

Theorem 3. Let S=(Q, F) be a relational schema, and X a key of S. Then:

(Q\R) E l i (Q\R)U((L(1 R)\a(L,R)).

Here is an example where a(L, R)^0.

Example 1. £2= {A, B, H, G, Q, M, N, V, W}

F = {A B, B H, G - £, V - W, W - V}
From this we have

L = ABGVW; R = BHQVW, L<T\R = BVW\

L\R = AG; (L\R) + = AGBHQ

a(L, R) = (L\R)+C](LC\R) = {5} * 0.

Remark 2. It is worth noticing that (Q\R)+=(Q\(LliR))U(L\R)+.
Therefore, if X is a key of S then obviously:

xr\Rf](Q\R)+ = xr\RC\(L\R)+ = 0
and

(£2\R) U {(L D R)\(Q\R) +} = (Q\R) U {(L fl R)\a (L, R)}.

Remark 3. Using Theorem 3, Corollaries 1, 2, 3 deduced from Theorem 1
above, can be improved, as well.

3. §.

Based on Theorems 1 and 2, we now propose some algorithms for the key find-
ing and key recognition problem.

It is worth recalling that:
(i) X is a superkey of S=(Q, F) iff X+ = Q,

(ii) X^Y iff YQX+.

Algorithm 1.
Algorithm for finding one key of the relational schema S=(Q, F) where

Q = {Ax, A2, ..., A„},

F = {Li - RJi = 1, 2, fc; Lh g i2},

L=\JLi, R= U Ri,
i=l ¡=1

LOR = {Ah,Ati, ...,A,J.

106 Ho Thuan and Le Van Bao

Some results about keys of relational schémas 107

Example 2. i " <

The following example illustrates the performance of the Algorithm 1.
Let S=(Q, F) be a relation scheme with

Q = {A, B, C, D, E, G}
and

F= {B - C, C-~B, A - GD}:

From this we have
L = BCA, R = BCGD,

j Q\R = EA, LOR = BC.

Since (Q\R)+=(EA)+=EAGD^Q, (Q\R) is not a key of S=(Q, F). From the
block (3), the algorithm begins with the superkey X—EABC. With Ah=B and
A,2=C, we have the sequence

X := X\{B} = EAC-, (EAC)+ = EACBGD = Q,

X := A-\jc} = EA; (EA) + = EAGD ^ Q,

X := Z U {C} = EAC;' X := EAC,

We obtained a key of S, being X=EAC.
Similarly, if we start with the same superkey

X = EABC

but with Ah = C and AH=B, then after the termination of Algorithm 1, we obtain
another key of the relational schema S—(Q, F), being EAB.

Algorithm 2.
Algorithm for finding one key of the relational schema S—(Q, F) included in

a given superkey X.
Suppose that X is a key included in X.
Then XQX.
On the other hand, from Theorem 1:

Q\R Q l i (Q\R)U(Lr\R).
Therefore _

X £ (i3\i?)U(Zn(Z ,ni?)).

Thus we can start with the superkey

(Q\R)U(xr\(LC]R))

for finding a key included in a given superkey X.

108 Ho Thuan and Le Van Bao

It is easily seen that Algorithm 2 is similar to Algorithm 1 but block @ is repla-
ced by the assignment

X (Q\R) U (ATI (L D R))
with XC\(Lr\R)~{Atl, Att, ..., A,t} and there are, in addition, some non signifi-
cant modifications.

Some results about keys of relational schémas 109

Algorithm 3.
Algorithm for recognition whether a given subset X (XQQ) is a key of 5 =

<0, f >•

110 Ho Thuan and Le Van Bao

Remark 4. The Algorithms 1, 2, and 3 can easily be improved using Theorem 3.

Lemma 4. Let S = (Q , F) be a relational schema.
Then

GHR = Q,

where G= H ^ is the intersection of all keys of S.
X (€3R<N,F>

Proof. It is sufficient to prove that for each A£R there exists a key X of 5" such
that ATX.

In fact, from A£R we deduce that A belongs to some Ri- Consider the functio-
nal dependency

Li-^Ri, (LiC\Ri = 0)
therefore

A~ J

It is easily seen that:
Q

and
A£Li U {&\(Lj U R^},

showing that Z, U U /?,)} is a superkey of S. This superkey includes a key X
such that A eX.

From this G(1R=0.

Theorem 4. Let S=(Q, F) be a relational schema. Then

G = Q\R.

Proof. As an immediate consequence of Lemma 4 we have

G g Q\R.

On the other hand it is easily seen by Theorem 1 that

Q\R g G.
Hence

G = Q\R.
The proof is complete.

In most cases it is easier to compute than to compute first all keys directly
and take their intersection.

Theorem 5. Let S = (Q , F) be a relational schema satisfying the following
condition

y^RiOL^ 9=>LiC\R = 0).

Then S has exactly one key and Q\R is this unique key.

Proof. Let C=Q\(LUR). Since L-*R, consequently

Z . U C - ! - X U C U ^ = Q.
Let /={ i ,H ,nz , ; *0} .

Some results about keys of relational schémas 111

Evidently
UL,nÄ = 0 (3) iil

and
LHR S U Rt- (4)

iei
It is obvious that

u I H A
On the other hand we have

U A - U-^i-
From (4), clearly

U Lt-Z- LOR.
iei

From (3) we have
U Lt g L\R.
izl

Hence
L\R-i- (J LClR.

From this we get
L\R (L\R) \J(LC\R).

That is L\R—-L.
Using LÖC—-Q, we have

Evidently (L\R)ÖC=Q\R is a superkey of S. By Theorem 1, S=(Q, F>
has (Q\R) as the unique key.

Theorem 6. Let S=(Q, F) be a relational schema, X a superkey of S.
If ATli?=0 then X is the unique key of S.

Proof. From XT) R=&, it is obvious that XQ Q\R. Since X is a superkey of S,
there exist a key X Q X . Using Theorem 1, clearly

(Q\R) c l g i g (Q\R)

showing that Q\R is the unique key of S.

Theorem 7. Let S=(Q, F) be a relational schema and X a superkey.
Then X is a unique key of S iff XHR=Q.

Proof. The sufficiency of this theorem is essentially Theorem 6. We have only
to prove the necessity. Let X be the unique key of S=(Q, F). Assume the contrary
that XC\R?i<d. Then we should have AdXilR. _

_Evidently AjiR and A£X. In view of Lemma 4, there exists a key X such that
AiX. Thus X, X are different keys of S, which contradicts the condition that X is
the unique key of S.

Theorem 8. Let S=(Q, F) be a relational schema and let A£ Q satisfies the

112 Ho Thuan and Le Van Bao

following conditions: for all L„

(i) A£L-T => L \ A A, a n d

(ii) A£Li => A£L? .
Then A is a non prime attribute, that is A^H, where

H= u Xf
X,tX(fl,F)

Proof. The proof is by contradiction. Assume the contrary that A£H. Then
there would exist a key X of S such that A£X, and an Lf such that Ltg X.

(i) If A£Li then by the hypothesis of the theorem, we have

L \ A A.
Consequently

L \ A A

which, by Lemma 2, contradicts the fact that X is a key of S.
(ii) If A~£Li then by the hypothesis of the theorem, we have .
Since A^Li, consequently

LT g X \ A .
Hence

A
which contradicts the fact that X is a key of S.

Thus AT If- The proof is complete.

Example 3.
Q = {A1} A2, A3, A4, AS, AE} and

F — { A T A 3 A S ; A3AI-*A1AE; A ^ A G — A2A4}.

It is easy to verify that A5 satisfies all conditions of Theorem 8. Therefore A^H.

Acknowledgment

The authors would like to take this opportunity to express their sincere thanks to Prof. Dr. J.
Demetrovics and Dr. A. Bekessy for their valuable comments and suggestions.

Abstract

In this paper we investigate some characteristic properties of a given relational schema S=
= (SI, F), in particular the necessary conditions under which a subset X of Q is a key.

Basing on these results, some effective algorithms are proposed for the key finding problem and
key recognition problem. Moreover, a simple explicit formula is given for computing the intersec-
tion of all keys of S, as well as sufficient conditions for which a relational schema has exactly one key,
and a criterion for which an attribute is a non prime one.

AUTHOR'S ADDRESS:
HO THUAN, LE VAN BAO,
• COMPUTER AND AUTOMATION INSTITUTE OF THE HUNGARIAN

ACADEMY OF SCIENCES, BUDAPEST VICTOR HUGO STR. 18—22.
• INSTITUTE OF COMPUTER SCIENCES AND CYBERNETICS,

BA DINH—LIEU GIAI—HANOI—VIET-NAM

Some results about keys of relational schémas 113

References

[1] DELOBEL, C . , Theoretical aspects of modeling in relational data base. Rapport de recherche
№ 177, July 1979, Université scientifique et médicale et Institut national polytechnique de Gre-
noble.

[2] ARMSTRONG, W. W., Dependency structures of database relationships, Information processing 74.
North Holland Publ. Co. Amsterdam 1974.

[3] ULLMAN, J., Principles of data base systems. Computer Science Press, 1980.
[4] BEERI, C. and BERNSTEIN, P . A., Computational problems related to the design of normal forms

for relational schémas, ACM Transactions on Data base systems, vol 4, № 1 March 1979.
[5] LE VAN BAO and Ho THUAN, On some properties of keys of relational schémas, Preprint series,

№ 9, 1983, Hanoi. Institute of Mathematics and Institute of Computer science and Cybernetics.
[6] LE VAN BAO and Ho THUAN, Sufficient conditions for which a relational schema has precisely

one key, Preprint series, № 7, 1983. Hanoi.
[7] SPERNER, E., Ein Satz über Untermengen einer endlichen Menge, Math. Z . 2 7 (1928) , 5 4 4 — 5 4 8 .
[8] DEMETROVICS, J., On the number of candidate keys, Information processing letters, vol.7, number

6, October 1978.
[91 BÉKÉSSY A . and J. DEMETROVICS, Contributions to the theory of data bases relations, Discrete

Math. , 27 (1979) 1—10.

(Received Dec. 12, 1983)

8 Acta Cybernetica VII/1

Зависимости в реляционных структурах данных

Б. Т а л ь х а й м

I. Введение

В работе рассматривается одна из перспективных моделей обработки ин-
формации для банков данных, предложенная Э. Ф. Кодцом (5). В этой модели
информация представляется в виде отношений, имеющих форму двумерных
таблиц, строки которых представляют собой конкретные записи, а стольбцы
определяют некоторые области или же аттрибуты.

Поскольку здесь рассматриваем только зависимости (12), т. е. формулы,
являющие независимыми от основного множества и верные в тривиальной
структуре, достаточно рассматривать однородные (неструктурированные)
отношения.

Пусть (/-основное Множество. Подмножества Я множество С называем
л-арным отношением. Реляционная структура данных — это структура (С, К).
В дальнейшем считаем п фиксированным. С любым отношением можно связы-
вать Множество и={А1, ..., Ап} названий столбцов или как принято говорить
в литературе множество аттрибутов.

С любым отношением связывается ограничения. Важными и интересными
ограничениями являются разные типы зависимостей между типами записей.
Не менее интересно нахождение тех аксиом, с помощью которых можно задать
эти зависимости в реляционных базах данных относительно этих вопросов
можно посмотреть (1)—(9), (12). В настоящей работе изучается два типа зависи-
мостей, функциональные и декомпозиционные. Изучены общие функциональ-
ные зависимости. Для них решена проблема аксиоматизации. Далее изучены
бинарные, тернарные и иерархические декомпозиционные зависимости и реше-
на проблема аксиоматизации.

2. Функциональные зависимости

В литературе сначала изучались Э. Ф. Коддом (5) и другими специальные
функциональные зависимости, которые в дальнейшем были обобщены Г.
Цедли, Я. ДеметровичеМ и Д. Дьепеши (6), (9). Можно еще обобщить эти зависи-
мости и этим упростить математический аппарат.

116 Б. Тальхайм

Для двух элементов г=(г х , ..., г„), г '=(г [, ..., г'п) отношения Я пишем

гО, если г,- ^ г\, ГО,
,(>-, о = {7>

а (г, г') = {ах{г, г%...,сл(г, г')).

и
если Г; = Г\

Определение I. Пусть «-местные Булевы функции. Тогда пара (/ , #)
называется функциональной зависимостью. Пусть Я -отношение и (/ ,
функциональная зависимость. Тогда 7? удовлетворяет функциональной зависи-
мости (Я |=(/ , #)), если для всех г, г' из Л имеет место / а (г, г ') — г ') = 1.

Пусть множество в и-арных отношений, Т множество функциональных
зависимостей, (/ , £) £ ! .

Тогда определим
* ((/ . 8)) = т к и &)},

ад = П « ((/ , ?)),

(Я) = { (Л 801* 1= (Л

этг(эг) = п ВД)-

М ы пишем ! !=(/ ' , если Я (Г) £ Я ((/ ' , #'))• Далее для подмножества
множества | всех функциональных зависимостей пишем

Сп г(1) = {(/ ' ,

Для классов Поста (14) К Г , К 2 пусть К 2) = К 1 Х К 2 . Очевидно все
известные функциональные зависимости ((1), (5), (6), (9)) являются специаль-
ными случаями функциональных зависимостей. Обозначим (14) Р± класс всех
«-местных конъюнкций, ^ класс всех «-местных дизьюнкции и Ах класс всех
«-местных монотонных функции. Тогда

Кодя-функциональные зависимости (5), (1): т(А> Р^),
дуальные зависимости (6), (9): К ^ , З^),
строгие зависимости (6), (9): Д) ,
слабые зависимости (6), (9): ^(Рг,
монотонные зависимости: ТС^, А2).

Пример. Расписание уроков (С/ = {лектор, лекция, группа, место, время}).
Ограничения:
1) Каждая группа посещает для любого момента времени не более одной

лекции.
2) Любой лектор читает в любом моменте времени не более одной лекции.
3) Любое место не может быть занято два раза.
4) Если лекция читается разными лекторами, тогда и слушатели разные.
Эти ограничения можно и легко формулировать нашим аппаратом. От-

ношение.

8*

лектор

Зависимости в релационных структурах данных

лекция группа место время

117

1 1 1 1 1
1 2 2 1 2
2 3 1 2 2
2 1 2 2 4
2 4 1 1 3

2 5 1 1 4
3 6 1 1 5
3 3 2 2 1
3 2 2 2 3
4 7 3 1 . 6

5 8 1 1 7
5 8 2 1 8
6 9 1 2 8
6 9 2 2 7

Эти специальные функциональные зависимости легко представить на языке
У\Х, Уд И}. Для Кодд-функциональных зависимостей легко доказывается

с помощью фольклорной теоремы Фреге полнота следующей системы (1)
правил вывода:

^-рефлексивность) Х и У — У

(с|-монотония)
хии'иг - уиг

(с|-транзитивность) У, У
х - г

(^-объединение)

(с|-декомпозиция)

X У, X
х - у и г

X -У u z
X - У

Аналогичные системы правил вывода для специальных функциональных
зависимостей быги представлены в (6).

Для и-местных Булевих функций / , # пишем F = g , если для всех А из Е"
из /(<?)= 1 следует, что g(&) = 1.

Теорема I. Для я-местных Булевых функций / , / х , . . . , / т , ...,
имеет место {(/¡, #,)|1 ¿г) тогда и только тогда, когда имеет место

т

¡=1
Доказательство. 1) Докажем утверждение теоремы сначала для т = 1.

118 Б. Тальхайм

1.1) Пусть т. е. существует набор 5 со свойством /(<?) =
=Мй)= :81(р) = 1 и g (д)=0 или f 1 (S)=g(д) = 0 и /(<?) = 1. Тогда существует
отношение К в Я((/ 1 ; g2)) такая, что g)).

1.2) Допустим, что в Я (/ и gl) \R((.f , g)) существует отношение К. Тогда
существуют в Я элементы г, г' такие, что /а(г , r')-*go(r, г ')=0 и г')—

2) Доказательство утверждения теоремы для т=2 аналогично.

Из этой теоремы и теорем представления монотонных функций (14) выте-
кает следующее утверждение, подчеркивающее важность класса слабых зави-
симостей.

Следствие I. Для любой зависимости (/ , из А^ существует экви-
валентная ей система I слабых зависимостей. Тем самым, поскольку аксиома-
тизация класса А^ намного сложнее аксиоматизации класса | (Р г , 8^),
вместо систем монотонных зависимостей удобнее рассматривать системы сла-
бых зависимостей.

Следствие 2. Пусть / , / ' , g, ^ «-местные функции.
1) N (/ , 1) , Н(0,*).
2) Если имеют места / ' ё / , то (/,£•) Н (/ ' , £')•
3) Если то 1= (/ ,£)•
4) (/ , г) Н # , Л
5) Пусть й/«-местная монотонная функция и £ = {(/), Тогда

имеет место
£ = еК /1 , / 2 , ••••/т). НЪи g2, ..., гт)).

Очевидно, что теорема I обусловливает простые аксиоматизации класса
К2). Приведем два из них. Подмножество I множества К2) называ-

ется замкнутым, если верно
1 = С"кк„к2)(£)-

Следствие 3 (9). Подмножество Г множества К«! , $2) является замкнутым
тогда и только тогда, когда для лубой зависимости (/ , g) из су-
ществует функция /г из Р5 такая, что верны следующие условия:

1) / У й = / ,
2) если для верно / ' У И = / , то /&/г = /г.
Следствие 4. Подмножество 1 множества](А1г А^ является замкнутым

множеством тогда и только тогда, когда для всех зависимостей (/ , g) из
существует функция /г в Ръ такая, что имеет место:

2) если (/ ' ,«0€2Г и / ' У Л = / ' , то
В множестве f можно ввести частичный порядок. Мы пишем (/ ! , ё

—(Л>^г)> если /1=Уг и gl—g2• Любое замкнутое множество Г имеет тогда
некоторое подмножество максимальных элементов.

т а х (/) = & g; т т (й = V / ;

Мах (I) = {(/, = т а х (/) , / = т т (я)}.

Зависимости в релационных структурах данных 119

Теорема 2. Пусть М замкнутое множество функциональных зависимостей.
Зависимость (/ , g) является элементом М тогда и только тогда, когда сущест-
вует в М а х (М) элемент (f ' , g ') такой, что имеет место соотношения / ' £ / ,
g'^g-

Доказательство. Допустим, что (/ , g) является элементом Множества М.
Пусть / ' = m i n (g) и g ' = m a x (min (g)). Поскольку (min (g), g)£M, / S m i n (g)
по следствию 2 имеют место / ' max (min (g)) s g и таким образом g ' = g .
Функция min является монотонной и поэтому верно min (max (min (g))) ^
Smin(g) . С другой стороны, (min (g), max (min (g)j\£M и min (g) ^
S min (max (min (g))), т . е . min (g)= min (max (min (g))) (/ ' , g') из Max (M).
Если (/ ' , g ')€Max (М) по следствию 2 имеем (f,g)£M.

Следствие 5. Для всех замкнутых Множеств I (Max (I) , U , П) является
дистрибутивной структурой, где

(A, gi)U(/ 2 , g2) = (min (gjVgg), giVg2) и

(Л, g i) n (/ 2 , g2) = (f M , max(/ ,&/2)) .
Армстронг изучал подобные структуры {(/, gX-Pj XP i lg=max (/) } (1),

(2). Из следствия 5 и теоремы 2 следует тогда очень важное свойство элементов
множества Мах (М).

Следствие 6. Любой элемент множества Мах (М) имеет единственное
несократимое представление в виде объединения неразложимых элементов.

Интересно также максимальное число неразложимых элементов структуры
Мах(М): 2".

Этими утверждениями легко выводить и решения алгоритмических проб-
лем и оценки сложности решения алгоритмических проблем для функциональ-
ных зависимостей.

3. Декомпозиционные зависимости

Для определения этих зависимостей введем две операции над отношениями.

Определение 2. 1) Пусть Х = {Ah, ..., A i k }^U. Тогда называется

ВД^.ч,...,^)^;?: r h = г?.}

проэкцией отношения R на (стольбцы из) X.
2) Пусть для X={Ah, ...,Aik), Y={AJ1, ..., Ал} XÖY=U две проекции

отношения R. Тогда сверткой отношений R[X] и называется множество

Я[ЯГ]*Л[У] = {0-1? ..., rn)|(rl4, ..., rik)íR[n (rh, ..., rj)tR[Y]}.

Определение 3. 1) Покрытие (Хг, ..., Хк) множества U называется &-арной
декомпозиционной зависимостью.

2) Отношение R удовлетворяет ¿-арной декомпозиционной зависимости
(Хх, ..., Хк) (R\=(Xlt ..., Хк)), если имеет место равенство i?=jR[Ar

1]*i?[Z2]* ...
...*R[Xk],

120 Б. Тальхайм

Пусть ^-множество всех £>арных декомпозиционных зависимостей и
9-множество всех декомпозиционных зависимостей.

Как и для функциональных зависимостей можно определить для D, D Я 9,
Г, множества ft(JF), Я(£>), m(R), Ш(Я), Cns(D), Cn6k(D) и соот-
ношение D t= X'.

Удобно и легко формулировать эти зависимости на языке £ открытой
логики предикатов с алфавитом {{(х!, . . . , x „) Ç F 1 x F 2 x . . - X ^ } , i , & , - , (,) ,
где Vj(~)Vj=0 для i j t j и Р л-местный символ.

Определение 4. Формула языка £ вида

Р(х1)&...&Р(хк) -Р(х)

называется предикативной зависимостью и называется декомпозиционной
зависимостью, если выполнены следующие условия для всех i,j, i ^ j , 1
i Sj^k:

1) |*«|П|Я|£ %\П\х\

2) (| ^ | \ | х |) П (| х , . | \ | х | = 0 ,

где \(yu ...,y„)\ Множество {yx, . . . ,yn).
Оба эти условия для декомпозиционных зависимостей существенные.

Множества всех предикативных и всех декомпозиционных зависимостей отли-
чаются существенным образом. Например, существуют в £ п бесконечные цепы
формул (a,), (/?,) такие, что имеют место и 5\ (/?,•) $5\(/?, + 1)
для всех натуральных чисел г. В Множестве всех декомпозиционных зависимос-
тей £д существуют только такие цепы конечной длины и точно один максималь-
ный элемент. Вместе с тем можно и доказать, что для любого подмножества
I множества £ д существует в £ п формула а, эквивалентная этому множеству
I (т. е. Я (1)=й(а)) .

Пусть далее £ д -множество всех ^-компонентных формул из £ д .
Следует отметить, что для предикативных зависимостей существует очень

простая аксиоматизация, известная как аксиоматизация Фреге—Лукасевича и
вновь открытая разными авторами.

Предложение. Формула а из £ следует из подмножества I множества £
тогда и только тогда, когда она выводима с помощью правил отделения и
подстановки из множества и множества аксиом

{а - Р а, (х&Р - а, а&Р - р, а - Р - а&Р},

(<х-р-у)-(«-р)-(<х- у).

Можно и в множестве 9 ввести порядок. Для Х=(ЛГ
1, ..., Хк) и Y=

=(У1г ..., Y/) из 9 пишем f s F , если для всех i, I^i^k, существует /', /з=
= / = / , такое, что Xi Q Y).

Следствие 7. Для X, Y из 9 следует из X^Y что X\=Y. Изучим сейчас
класс 92 всех бинарных декомпозиционных зависимостей.

Определение 5. 1) Система/), D Q 92, называется монотонна, если (U, t/)Ç
Çl> и из X^Y следует YÇD.

Зависимости в релационных структурах данных 121

2) Пусть ¿»-монотонная система. Если для всех (Х1г Х2) и (У15 У2) из В из
того, что

а) Х1ПХ2 = У1П У2 следует (Х1ПУ1, Х2и У2)£В, то В назьшается слабо
полной;

б) У1ПУ2 = Х2 следует (А^П У1; У2)£В, то В называется АД-полной (2);
в) Х1ПХ2<^ Ух и Х2<^ У2 следует (Л^ПУ^ У2)€Д то 2) называется пол-

ной;
г) Х2 £ У2 следует (У1П(А'1и У2), У2)£В, то В назьшается сильно транзи-

тивной;
д) ХгПХ2ЯУ2 и У2Я(Х1Г\Х2)^У1 следует (У ^ С ^ и У . ,) , У2)СД то В

называется транзитивной (3).
3) Монотонная система В, В^&2, называется сильно полной, если для

всех (Х1} Х2), (У1; У2), (ги г2) из В также и принадлежит В (У ^ К ^ и У^г^И
и гх п (У2иг2), х2 п № и у ^) и у2 п (у ^)) .

Следствие 8. Сильно полная система £), Х>£92, является полной. Полная
система В, является слабо полной и АД-полной системой.

Первое утверждение очевидно для (У15 У2) =(0, (7). Можно доказать, что
полная система В, В £ ,92, также сильно полна (Лемма 7) и что существует
слабо полная система В, ВЯ=$2, не являющаясь полной.

Определение 6. Система В, называется ¿-замкнутой, если В —
= Спвк(В).

Определение 7. Система В, В<=§2, удовлетворяет В2-аксиоме, если для
всех (2Х, Z 2) € 9 2 \ B существует множество БО^и такое, что

1) г ^ г ^ в , г ^ в ,
2) если (Х1; Х2)еО, ХуПХ^В, то ХхЯВ или Х2ЯВ.

Определение 8. Пусть Е—{Ег, ..., £^}-множество Множеств. Е называется
Л -системой, если для всех /,/', множество Е1Г\Е} не зависит от
выбора г и у.

Определение 9. Множество В, удовлетворяет В2 -аксиоме, если
существуют натуральное число к и система Е= {Еи^ \Е^\ ^
^п— 2}, что

1) если (X, У)$В, то существуют / , / что ХГ)У^Еи,
Х%ЕФ Г£Еи;

2) если (X, Т)£В и ХГ) У=Ец для некоторых г',/, то Х^ЕЦ или
3) для всех г,У, / (/ = / < / < / ^ / с) {¿'¡у, , } является Л-системой.

Теорема 3. Для системы Д ВЯ=Э2, следующие утверждения эквивалентны:
(а) В 2-замкнута;
(б) В сильно полна;
(в) В полна;
(Г) В АД-полна;
(д) В транзитивна;
(е) В сильно транзитивна;
(ё) В удовлетворяет В2-аксиоме;
(ж) удовлетворяет В2 -аксиоме.

122 Б. Тальхайм

Соотношение (а)=>(г) доказано в (2). Там же по определению считали экви-
валентными (а) и (г). Как и в (2) доказывается (а)=>(б). Если (а) и (в) эквивалент-
ны, то по следствию 8 (б) и (в) эквивалентны. По лемме 7 из (в) следует (б).
Аналогично можно доказать, что (д), (е) и (в) эквивалентны. Докажем аналоги-
чным способом как и в (9), что (а)=>(в) (лемма 1), (в)=>(ё) (лемма 2), (е)=>(ж)
(лемма 3) и (ж)=>(а) (лемма 4 ,5 ,6) .

Лемма I. Если D 2-замкнутое множество, то D полна.

Лемма 1 + . Если I = Cn2(Z) для некоторого подмножества 1 множества
£д , то имеет место для всех 3) и P(Y1)&P(Y2)-P(Y3) из I :

1) Если i Z . J i M и | Z i 2 i i | î 2 | , то P(Zl)&P(Z2)-P(Z;t)eZ.
2) Если A m i ^ l i l f j и (|? 1|\|F î|)n(|i '1 |\ |^1 |)=0, то для Z со свой-

ством Z i l î j i n i f i l , 1214(1^1 n | ? i |) n | 2 i l = 0 имеет место P(Z)&P(Y2)-~P(Y3).

Доказательство леммы 1 + . Утверждение 1) очевидно. Утверждение 2)
следует из истинности формулы ((а1&а2— а3)&(а3&а2-*- а4))—(а1&а2-»а4). Очевид-
но, P(Z)&P(Y2)-P(Y3) ИЗ £Д.

Лемма 2. Если множество D полное множество, то D удовлетворяет D2-
аксиоме.

Доказательство. Пусть D полное Множество. Допустим, что (XU V, V U Г) $
(¡D для разбиения {X, Y, V} множества U. Тогда существует Множество
Е, EQ U, что VQ Е и Е максимально относительно (X, У), т. е. (XI)Е, 7U£ ')$
$Z> идлявсех Е',Е'^Е: (XUE', YUE')ÇD. Существование такого множества
следует из свойства (U, X)£D.

Докажем, что множество Е удовлетворяет Z>2-аксиоме. Во-первых VQ Е.
Е с л о б ы л о б ы XQE, то (E,E\JY)$D, т .е . (EUY)$D, т .е . (U)$D. Поэтому
Х$Е и Y%E. Во-вторых, пусть для (V'UX',W Y')6D V'QE. Допустим,
что Х%Е и Y%E. Тогда для Х"=Х'\Е, Y"=Y'\E (EUX", EUY/r)£D.
Поэтому из D также (EDX\JX", EUYUX") и (£ U X U Y", EUYUY"). Из
(E\JX",EUY") (E\JX\JY", EiJYiJ Y'%D следует, что (EUX, EUYUY"),
(EUXUX", EUYUY'%D. ИЗ (EUY", EUX'% (EUXUX", EUYUX")£D
следует, что (EU(XÇ\Y"),EUYUX%D). Из (£U YUX", EU(XC\Y%
(EUYUY", EUX)£D следует, что (EUY,EUX)£D. ЭТО противоречит (EUX,
EUY)$D. Поэтому D удовлетворяет D2-аксиоме.

Лемма 3. Если D удовлетворяет D2-аксиоме, то D удовлетворяет D2-
аксоме.

Доказательство. Для всех (X, Y)$D напишем начиная с i=2 равенствен-
ные множества Е(Х, Y) = X(~)Y=Ei: Е2, Е3, ..., Ек. Пусть Е^ = Е} (I ^ j ^ k)
и E i j ^ E i O E j (/< i< /SA:) . Условия 1 и 2 уже выполнены множеством {Е2, ...'
. . . ,Е к) . Докажем условие 3.

Пусть 1=7. Тогда ElJ = EJ, EU=E,, EJl=EJ(~)El и [Elj, Eu, Е^} является
А -системой.

Пусть г > / . Тогда Eij=EiC\Ej, Ej^EjHE,, Ell = EiC]Ei. Поэтому
{EtJ, EjU Eu} /1-система.

Зависимости в релационных структурах данных 123

Лемма 4. Пусть К отношение и гг, г2, г3 разные элементы К. Тогда
{ Е (Г Х , Г2), Е (Г И Г2), Е (Г 2 , Г3)} ¿1-система, где

Е (Г , Г') = {А£ Щ Г (А) = Г'{А)}.

Доказательство очевидно.
Лемма 5. Пусть для всех /, /, / (/ = г < / ё {Е^, ЕИ, Е]1} является

¿1-системой и Е = к, 2}. Тогда существует отно-
шение Я такое, что

Е (К) = { Е (Г , Г')\Г, Г'ЕЯ Г ^ Г'} = Е .

Доказательство (по индукции). Пусть для т(-^к) уже получены г1ь ..., г т
со свойством: Е(ГЬ Г^ = ЕИ. ГТ+1 определим следующим обра-
зом:

г г , (А) , если А £ Е : Т + 1 I ^ I ^ т ,
гт+ЛА) = { т а х (г . (- ^ | 5 € / ^ т) + / иначе.

Докажем, что {гх, ..., г т + 1 } удовлетворяет условию леммы.
1) Если А Е Е Ы + 1 Г \ Е М + 1 , то Г1(Л) = Г] (А) и { Е И , Е Ш + 1 , Е М + 1 } ¿-система.
2) Если для/ , /^г^/эт , А $ Е Т + 1 , то Г 1 (А) ^ Г Т + 1 (А) . Действительно, если

д л я ; А£Е;-Т+1, то Г Т + 1 (А) = Г / А) и А $ Е И . Поскольку { Е Ц , Е } Т + 1 , Е 1 Т + 1)

¿-система и /'¡(А) У^Г^(А), ^ (А) ¿ ¿ Г Т + 1 (А) . Если А $ и то Г Т + 1 (А) *

^¿/•¿(А) для всех г, г ^те. 1--'-Гп

Поэтому существует К = { Г Х , ..., ГК} со свойством Е (К) = Е .
Лемма 6. Пусть Б подмножество множества 92.
1) Если Б удовлетворя /)2-аксиоме, то существует отношение К такое, что

№2(К)=Б.
2) Если Я отношение, то 9192(Е) удовлетворяет В2-аксиоме.
Доказательство. 1 Пусть Б с Е = {Е^\/^г < / ^ К) удовлетворяет £>2-аксио-

ме. Тогда по лемме 5 существует отношение Я такое, что Е{К)=Е и по аксио-
ме £> = 9ад2(Д).

2) Пусть К отношение, К = {г1; ..., ГК} и Е И = Е (Г И Г3). Множество
удовлетворяет аксиоме.

Лемма 7. Если В полная система, то Б сильно полна.
Доказательство. Пусть Х = (Х Г , Х 2) , У—(УУ, К2), 2 = ^ , Е 2) из Б . Тогда

выберем минимальное Я ' = (Х [, Х 2) со свойством Х ^ Х , Г ^ ^ ^ Х ^ , Z2QX' ¡,
(X X) (У У) Используя правило . у 2 ' ' ' Д . , которая следует из павила полноть

124 Б. Тальхайм

Аналогичным путем можно решать и проблему аксиоматизации для
класса 9к. Можно, например, доказать, что если система D 3-замкнута, то эта
система монотонна и для (Х1г Хг, Х3), (У ь У2, У3) из D также и (А^П У1; У2, У3)
из D, если одно из следующих свойств верна:

1) (Х ;ПХ,.)С(У (ПУ ;), (^ \ ^ 1) П (У ! \ У ,) = 0 для всех i,j,k

2) У ^ У г Е * ! , XinXiQY1f)Y2 для / (2=§г=ёЗ);
3) ПУх)U(Уг\У2)Я= Хх, X i n X 3 ^ Y 1 f) Y 2 для i (/ ё / ^ 2) .

Определение 10. Зависимость (Х1г ..., Хк) из 9 называется иерархической
(8), если {Х1; ..., Хк} А-система.

Пусть § множество всех иерархических зависимостей. Множество Н иерар-
хических зависимостей называется ^-замкнутой, если Н ~ (Н).

Ояределелние 11, Система Н, HQS), удовлетворяет Я-аксиоме, если для
всех %=(Хг, ..., Хк)£§\Н существует такое подмножество В, В QU, что

1) X i O X j Q B для некоторых i,j и дляа всех i к) Х^В;
2) если У=(У 1 ; Y,)£H и Y^YjQB для некоторых i,j, то YXQB или

Y2QB или ... или YkQB.
Совершенно аналогично теореме 3 доказывается следующее утверждение,

доказательство которого мы поэтому отпустим.

Теорема 4. Система Н, H Q & , является ^-замкнутой тогда и только тогда,
когда она удовлетворяет //-аксиоме.

Summary

General functional dependencies with a simple solution of completeness problem are discussed.
Also the completeness problem in the class of binary decomposition dependencies and in the class of
hierarchical decomposition dependencies is solved.

в . T H A L H E I M
TECHNISCHE UNIVERSITÄT D R E S D E N
SEKTION M A T H E M A T I K
G D R 8027 D R E S D E N
M O M M S E N S T R . 13

Литература

[1] ARMSTRONG, W. W., Dependency Structures of Data Base Relationships. Proc. IFIP 74, North
Holland, 1974, 580—583.

[2] ARMSTRONG, W. W., DELOBEL, C , Decompositions and Functional Dependencies in Relations.
A C M T O D S , 5 , 4 , 1 9 8 0 , 4 0 4 — 4 3 0 .

[3] BEERI, C , FAGIN, R . , HOWARD, J. H . , A complete axiomatization for functional and multivalued
dependencies in database relations. Proc. 1977 A C M S I G M O D , Toronto, 1977, 47—61.

[4] BEERI, C., VARDI M. Y., On the properties of join dependencies. Advances in Database Theory,
Vol. 1, Plenum Press, London, 1982.

[5] CODD, E. F., A Relational Model for Large Shared Data Bases. CACM, 13, 6, 1970, 377—387.
[6] CZEDLI, G . , On Dependencies in the Relational Model of Data. E I K , 17 , 1981 , 2 / 3 , 1 0 3 — 1 1 2 .
[7] DATE, C . J . , An Introduction to Database Systems. Addison-Wesley, Reading, Mass., 1 9 7 7 .
[8] DELOBEL, C , An overview of the relational data theory. Proc. IFIP 1 9 8 0 , North Holland, 1 9 8 1 ,

4 1 3 - 4 2 6 .

Зависимости в релационных структурах данных 125

[9] DEMETROVICS, J . , GYEPESI, G Y . : On the functional dependency and some generalizations of it.
Acta Cybernetica, Tom 5, Fasc. 3, 1 9 8 1 , 2 9 5 — 3 0 5 .

[10] ERDŐS P., R A D O R., Intersection theorems for systems of sets. Journal London Math. Soc. 35
(1960), 85—90; 44 (1969), 467—479.

[11] KAMBAYASHI, Y., Database — a bibliography, Vol. 1. Springer-Verlag, 1981.
[12] MAKOWSKY, J. A., Characterizing Data Base Dependencies, LNCS 115, 1981, 86—97.
[13] Ващенко В. П.: Теоретико-множественный подход к функциональной разделимости.

Дискретный анализ 10, 1967, 9—22.
[14] Я б л о н с к и й С. В., Гаврилов Г. П., Кудрявцев В. Б.: Функции алгебры логики и

классы Поста. Наука, Москва, 1966.

(Received Febr. 16,1984)

A queueing model for multiprogrammed computer
systems with different I/O times

By J . SZTRIK

1. Introduction. Multiprogrammed computer systems are important subject of
research in modern queueing theory. We can model such a system as the collection of
a Central Processor Unit (CPU) or CPU-s, terminals (e. g. rotating disk memory,
magnetic tape, card reader, etc.) and the jobs. Each job is associated with a terminal
at which it suffers no delay, queues of programs may occur only at the CPU (or
CPU-s).

- - - - To analyse this kind of systems we often use the finite-source queueing model
which is sometimes called the "machine interference model". For a FIFO multi-
programmed computer system a new mathematical model can be given in the follow-
ing way. Let the number of jobs in the system be n (n=r). Jobs (or programs)
emanate from the peripheral devices where various input-output (I/O) operations are
carried out. An arriving program is immediately served by one of r CPU-s if there is
an idle one, otherwise a waiting line is formed. The jobs are served in the order of
their arrival, that is the service discipline is FIFO (first-in, first-out). The service
times of the jobs are assumed to be exponentially and identically distributed random
variables with mean l/fi. After completing CPU operations the program i returns to
its peripheral device and stays there for a random time having an arbitrary distribu-
tion function Ff (x) with density /;(*). All random variables involved here are supposed
to be mutually independent of each other.

Since there is a huge literature for the problem in question we refer only to the
latest results. Bunday and Scraton [3] have recently proved that the probability dist-
ribution of the number of machines running in steady state is the same in the M/M/r
and GIMjr cases. In connection with the mathematical description of multiprogram-
med computer system for the interested reader the following papers can be recom-
mended: Avi-Itzhak and Heyman [2], Asztalos [1], Csige and Tomko [5] Gaver [6],
Kameda [8], Schatte[10], Sztrik [11]. In Kleinrock's book [9] further models and
good bibliography on this subject can be found.

The present paper deals with a possible generalization of the G/M/r case and
gives the main steady-state operational characteristics of the system, such as CPU
utilization, mean waiting and response times of the jobs.

128 J. Sztrik

2. The mathematical model. Let the random variable v(t) denote the number of
jobs processing I/O operations at time t and (a^ i) , ..., a v (0 (/)) indicate their indices
ordered lexicographically. Let us denote by (/), ..., /?„_v0)(/)) the indices of the
jobs waiting or served at the CPU-s in the order of their arrival. Clearly the sets
{«!(?), . . . , a v (o(0) and { ^ (0 , ...,/?„_V(I)(0} are disjoint.

Let us introduce the process

The stochastic process (Y(t), / ^ 0) is not a Markovian one unless the distribution
functions F i(x) are exponential, / = 1 , . . . ,«.

Let us introduce the supplementary variable £<x((i) denoting the random time
that the job a,(t) has been staying at a peripheral device in the time period (0, t),
1=1, ...,v(t). Define

(0).

the process has the Markov property.
Let V£ and C\ denote the set of all variations and combinations, respectively, of

order k of the integers 1,2, ..., n ordered lexicographically. Then the state space of
the process (X(t), consists of the points (i\, ..., ik; xt, ..., xk\jx, ...,jn-k),
where (/ l5 ..., ik)£Cn

k, (A, • ••,jn-k)£K_k, X;€R+, / = 1 , ..., k, k = l , ..., n.
The process is in state ..., 4 ; x1, ..., xk\ j\, ...,/„ if k jobs with indices

(4, ..., 4) have been processing I/O operations for times (x l 5 ..., xk), respectively,
while the rest of jobs need the CPU-s. The indices of these programs in the order of
their arrival are (j \ , ...,j„-k).

To derive the Kolmogorov equations we should consider the transitions that can
occur in an arbitrary time interval (t, t+h) . The transition probabilities are given in
the following way

7 (0 = (v (0 ; am(t): Pi(0, &-,.(,>(0).

P{x(t + h) = (4 , ..., ik; xx + h, ..., xk + h; jl5 ..., j„_k)/

2?(0 — (4> •••! ^xj •••> xk ; j i , . . . , j n - k)} —

(i-(n-k)nh)n
* 1 -Flt(xt + K)

ti{ 1 -Fh(xd
+ o(h),

P{x(t+h) = (4 , ..., 4 ; Xx + h, ..., xk + h; jx, ...,jn-k)l

x(t) — 0l5 * * * s Jn k i •••> i'k"> xXi •••> J ' •••> x'k\ jl> •••> Jn-t-l)} — 5 •

fJn-k(y)h A l-Ftl(x, + h)
1 1

for 0 ^ n—k r,

n + 0(h),

A queueing model for multiprogrammed computer system with different I/O times 129

where (/,', ...,j"n-k, ...,/*) denotes the lexicographical order of the indices (/l5 ..4
..., ik,Jn-k), while (X, ..., y','..., xk) indicates the corresponding times.

7>{x(i+7i) = ..., ik; Xl+h, ...,xk+h; A, ...,jn-k)l

CO = 0"i> •••> hi xlt •••> xk'> A, •••> A-*)} =

P.{x(t+h) = Q1,...,ik-,x1 + h,...,xk+h;j1,...i j^_k)l , • ..

•x(t) = (i[, ...,j'„-k,:.., i'k; xi, ..., y', ..., xk; jx,...., j„zk-1)} = . • ;

i - ^ G O «ix i - W w •

for r ^ n — k n.

To calculate the distribution of X(t) consider the following functions.

Qo; h ;„(') = P(v{t) = 0; AO) = A, ßk(t) = A).

Qii ¡kih j„-k(.xt, ..., xk; t) =
P(o(i) = k; a t (0 = i l 5 ..., oct(i) = ik; ..:, £ffc ^

s*»; ßi(t)=ji,...,ßn-M=jn-k) (2.1)

Let be defined by 1 /A— J xdF^x), then we have
o

Theorem 1. If l /A^oo, /=1 , n, then the process (X(t),t^0) possesses
the unique limiting (stationary) ergodic distribution independently of the initial con-
ditions, namely

Q ^ J u f . J . r]™Q*J l J M (2-2)

Qh ik-.h jn->(*i' •••> **) = i™Ö.,—ik-. jn-M> t).

Note that X{t) belongs to the class of piecewise-linear Markov processes subject to
discontinuous changes. The proof follows immediately from a theorem on page 211
of Gnedenko—Kovalenko's [7] monograph. Theorem 1 provides the existence and
uniqueness of the following limits " J

<7ii, Ji j„-i,(xl> •••> xk) =

lim P(v(t) = k; a t(i) = i l 5 ..., cck(t) = ik; x, < x, + dxt, I =

= 17k-, ßi(t) = A, ß„-k(t) = A-A) (2.3)

for . k = 1, ..., n„

where qh ifc.A j„.lc(x1, ..., xk) denotes a state probability density associat-
ed with state (/l5 ..., ik;. ..., xk, A, ...,j„-k) as t-+ k—\, ..:, n. ..Note that we

9 Acta Cybernetica VH/1

130 J. Sztrik

have assumed here that the ergodic distributions (2.2) of X(t) for fixed k have densi-
ties, k= 1, . . . ,« . This assumption is justified if we suppose for simplicity that F^x)
has density f,(x), i= 1, ..., n. (cf. Gnedenko—Kovalenko [7] pp. 224). We can make
this assumption as in many applications we use distributions having density.

In order to formulate the following theorem introduce a further notation, namely
71 " " k)

 ~ - { }

which is the so-called normed density function, k = l, ..., n. Then we have

Theorem 2. The normed density functions introduced above satisfy the follow-
ing system of integro-differential equations (2.5,), (2.7) with boundary conditions
(2.6), (2.8):

+ - + g'* l * ; h ' - - f c ^ 1 ' X k) =

= -(n-k)nq,* ik;h ,n_t(*i, ...,xk)+f
o

(xl,...,y'>...,x'k)/jjy)dy (2.5)

lk;ji j„-k(x 1» xl-l> *i + l> •••> xk)

/' 2 <7it «1-1,¡1 + 1 ik;ji ¡1 j„-k(xi, •••> xl-l> xl + li •••> x
k), (2.6)

V'' J1 Jn-fc
for I = 1, ..., k, O ^ n —

[•¿T+ - + ¿ 1 Xk) =

= ~rMu Kh Jn-M.—xJ + f rtu.-X-»...^,...,.-^
0

(*i, . . . , / , ...,xQfJn_k(y)dy, (2.7)

¡fc;ji •••' xi-i, Xj+i, ••., xk) =

A4 2 Qii ¡i-i,¡i + i , h ¡1 jn.k(xi> •••> xi-i> xi+i> x0> (2-8)
V1.1
Jl Jr-l

for I = 1, ..., k, r^n — k ^ n — l.

rf*Qo; 71 Jn = f it-.h jn^(y)fjn(y)dy.
o

Symbol []* will be explained in the proof, while V/̂ is defined as follows

vh, -J. = {(hJi» • • • ./*)> 0'i> h,j\, ••• J,), • • •, O'i , • • • ,js, ¡iKK\ i} •

A queueing model for multiprogrammed computer system with different I/O times 131

Proof. Since the process (X(t), t^O) is Markovian its densities must satisfy
the Chapman—Kolmogorov equations. A derivation is based on the examination of
the sample paths of the process during an infinitesimal interval of width h. The follow-
ing relations hold:

<lh iu.h j„-k(xi + h, ...,xk + h) = qh lk.h jn_k(xu •

x(,-|-l«iwtIiiiwLx (Z9)
X f a- ' (x' v' ^ - (y) h d y I 0

k 1 — F (x +h)
<kx ik;/1 jn_h(x1 + h,...,xl-1 + h,xl+1 + h,...,xk + h)h = [[—. 'V; ' X

s=l 1 fi,\Xs) '

(h),

Xfih £ qh i (_ l i l+1 ¡k.h j^ixj., ...,x,.ltxl+1, ...,xk) + o(h)

for O ^ n —fc<r , I = 1, ..., k.
ln-k

Similarly

¡k.h j„-k(xi + h> -,xk + h) = qh ik]j1....,Jn.k(x1, ..:,xk)X
k 1-F„(xt + h) , * l-Ftl(x, + h)

•X

X / y-. (2-1Q)

i + h> •••,xi-i + h,0,xl+1+h, ...,xk+h)h = t X

Xfih ^ qix i l_1 , ,- I + 1 ¡k; ..,,j„_k(xi, ..., xt+1, ..., xk) + o(h)

for r^n — k^n — 1, 1 = 1, ...,k.
J„--JR-L

Finally

<2O : A . ' ;„ = Q0;ju...,jn(i-rfih)+f q]n,h in_i{y)il^ML+o(h). (2.11)

Hence the derivation of eq. (2.5), (2.7) and boundary conditions (2.6), (2.8) is quite
simple. Indeed, dividing the lefthand side of eq. (2.9), (2.10), (2.11) by the factor

k
JJ (1 — Fi,(xt+h)), taking into account the definition of the normed densities (2.4)

and taking the limits as /i—0 we get the desired result.

9*

132 J. Sztrik

In the lefthand side of (2:5), (2.7), used for the notation of the limit in the right-
hand side, the usual notation for partial differential quotients has been applied.
Strictly speaking this is not allowed since the existence of the individual partial dif-
ferential quotients is not assured. This is why the operator is notated by []*. Actually
this is a (1, 1, ..., 1)6/?* directional derivative. (See Cohen [4] pp. 252).

In the following we solve eq. (2.5), (2.7) subject to boundary conditions (2.6),
(2.8) to determine the ergodic distribution

(Co ; h, —Jn> Qh i*;j'i j„-k)>

(4 , ..., ik)£C£, 0'i, •••,j„-k)€K"-k> k=l, ..., n.
If we set

2O;ji j„ = co>

<7IT ¡K; J'I, ...,jn~k(.xi-> •••> •**) = ck> k = •••> ni

then it can be shown by substitution that they satisfy the eq. (2.5), (2.7), and boundary
conditions (2.6), (2.8). Moreover the sequence {ck} can be obtained in succession and
expressed in a neat form by the help of c„. Using the relations (2.5), (2.6), (2.7), (2.8)
it is easy to see that

ck = (rl i-"-'-V-*)-1 -cn ior O^k^n-r,
and, similarly

ck = ((n-k)\ti"-k)~1 • c„ for n — r s l c ^ n.
Since these equations completly describe the system, this is the required solution.

Let Q H ¡K.JL Jn_fc denote the steady state probability that jobs with indices
(/*!, ..., 4) are at the peripheral devices and the order of the rest arrival to the CPU-s
is Oi» •••,j„-k)- Furthermore, denote by Q h t , . . j k the steady state probability that
programs with indices (i\, ..., 4) are processing I/O operations. It can be verified that

Qiu-,ik;h Jn-k = ¿ik)~lck> f o r k = l,...,n. (2.12)

Using the relations for ck we get

Qh ik = {n-k)\[r\r»-k-'lf-k.Xh...Xik}-^cn, (2.13)

(4 , . . . , 4) € C k " , k = 0,1, ..., n-r.
Similarly

Qh i k ^ W ' - K - h r 1 - ^ , (2.14)
(4 , . . . , 4)€C k" , k = n-r, ..., n.

Let QK and Pt denote the steady state probabilities that k jobs are staying at the
peripheral devices and I jobs need service at the CPU-s, respectively. Clearly

= Qi = & = ¿o, Qk = A-k,

It is easy to see that

and

for k=0, ...,ft.

C „ = Q N { X Y . . . X N) ,

Qk = . Z Qh I,
(¡1 y e c ;

A queueing model for multiprogrammed computer system with different I/O times 133

where Qn can be obtained with the aid of the norming condition

1 & = 1. o

In the homogenenous case relations (2.13), (2.14) yield

k i r ^ - A j) 'Qn'for Q=k=n~r>
&={nk)[i) for

Thus

P k = (f c) ' f ° r ° ~ k - r > a n d

Pk=(n-Q\rlr*-' (7) ^ r-/C""-

This is exactly the same result obtained by Bunday and Scraton [3]. The equivalence
of the EJM/l and M/M/l models and that of GIMjr and M/M/r models as noted by
Benson, Bunday and Scraton, respectively, is just a special case of our more general

-result obtained here. -
Before determining the operational characteristics of the system we need one

more theorem. In order to formulate it we introduce some notations. Let Q(i)(P(l))
denote the stationary probability that job i is processing I/O operation (need service
at the CPU-s) for i=\, ...,n. It is clear that the process (Y(t), / ^ 0) is semi-Marko-
vian with state space

u { 0 ' i , i k ; A> - Jn-k)}-
(•"1 y f C (A

{'1 Un(j', J„_k)=0 0,1 n.

Let Ht be the event that job / is processing I/O operation and ZH({t) its indicator
function i.e.

z f l if Y № H t ,
H" " otherwise.

Theorem 4.
T

l i m ± f ZHl(i)dt = = fl<* = l - 2 * > ,

where denotes the mean waiting time of program i.-

Proof. The statement is a special case of a theorem concerning the expected
sojourn time for semi-Markov processes, see Tomko [12] pp. 297.

134 J. Sztrik

3. The main characteristics of the system

(i) Utilizations. Utilizations can now be considered for individual servers or for
the system as a whole. The process X(t) is assumed to be in equilibrium. Considering
the system as a whole it will be empty only when there are no jobs at the CPU-s and
will be busy at other times. As usual, using renewal-theoretic arguments for the sys-
tem utilization we have U= 1 — Qn, and

Mrf
Qn = Mt]*+MÔ '

where >/*=min (jyl5 ..., t]„), the random variable r^ denotes the I/O times of program
z, / = 1 , ..., n, and Mb means the average busy period of the system, respectively.
Thus the expected busy period lenght is given by

* }- Qn Mb = Mt]
iin

Specially, if F,(x) = 1 - e x p (-XiX), i=l, ..., n we get Mb = (l-£)„) • 2 Af) \

It is easy to see that for CPU utilization the following relation holds:

1 (' " -) r
UCfV=-\2kPk+r 2 Pk r \k = 1 k = r + l) r

where r denotes the mean number of busy CPU-s.

(ii) Mean waiting times. By the virtue of Theorem 4 we have

Q(i) = (J / / 1) (i A + ^ + i , V) - 1 .

Consequently, the expected waiting time of job i is

1 1 -0(i) 1 = f o r i = 1 ,

It follows that the mean response time of program i, that is, the waiting and CPU
time together, can be obtained by

Ti = Wi + l /n = (l -QM)V H QM)- \ for i = l , . . . ,„ . (3.1)
Since

¡=i

where n denotes the mean number of jobs staying at the CPU-s, by reordering and
adding (3.1) we have

2 W)Q i !) = n (3-2)
i=i

which is Little's formula for the finite-source G/M/r queue. In_particular, if Ft(x) =
=F(x), i= 1, . . . ,«, (3.2) can be written as XTQ=n where Q denotes the average
number of programs processing I/O operations.

A queueing model for multiprogrammed computer system with different I/O times 135

Acknowledgement. I am very grateful to Dr. J. Tomkó for his helpful discussion.
My special thanks are also due to Prof. M. Arató for providing valuable comments
and very thorough readings of earlier version of the paper which have greatly improv-
ed the presentation.

Abstract

The aim of the present paper is to give a new queueing model for a multiprogrammed computer
system, where r CPU-s serve the jobs according to the FIFO discipline. The programs are stochasti-
cally different, job i is characterised by exponentially distributed CPU time with rate n and I/O
time with an arbitrary distribution function Fi(x) possessing density f,(x). In steady state we deal
with the main performance measures, such as CPU utilization, mean waiting and response times of
the jobs.

D E P A R T M E N T O F M A T H E M A T I C S
UNIVERSITY O F D E B R E C E N
PF. 12, DEBRECEN, H U N G A R Y
H—4010

References

[1] ASZTALOS, D., Finite source queueing systems and their applications to computer systems,
Atk. Mat. Lapok, 5 (1979), 89—101 (in Hungarian).

[2] AVI-ITZHAK, B. and D. P. HEYMAN, Approximate Queuing Models for Multiprogramming Com-
puter Systems, Opns. Res. 21 (1973), 1212—1230.

[3] BUNDAY, B . D. and R. E. SCRATON, The G/M/r machine interference model, Eur. J. Operation
Res., 4 (1980), 399—402.

[4] COHEN, J. W., The multiple phase service network with generalised processor sharing, Acta
Informática, 12 (1979), 245—284.

[5] CSIGE, L. and J. TOMKÓ, The machine interference for exponentially distributed operating and
repair times, Alk. Mat. Lapok, 8 (1982), 107—124 (in Hungarian).

[6] GAVER, D. P., Probability models for multiprogramming computer systems, J. ACM, 3 (1967),
423—438.

[7] GNEDENKO, B . V . and J. N . KOVALENKO, Introduction to Queueing Theory, Nauka, Moscow,
1966 (in Russian).

[8] KAMEDA, H . , A Finite-Source Queue with Different Customers, J. ACM, 2 9 (1 9 8 2) , 4 7 8 — 4 9 1 .
[9] KLEINROCK, L., Queueing Systems, Vol. 2: Computer Applications, Wiley-Interscience, New

York, 1976.
[10] SCHATTE, P., On the Finite Popoulation GI/M/1 Queue and its Application to Multiprogrammed

Computers, Journal of Information Processing and Cybernetics, 16 (1 9 8 0) , 4 3 3 — 4 4 1 .
[11] SZTRIK, J., Probability model for non-homogeneous multiprogramming computer system, Acta

Cybernetica, 6 (1983), 93—101.
[12] TOMKÓ, J. , On sojourn times for semi-Markov processes, 14-th European Meeting of Statis-

ticians, Wroclaw, Poland, 1981.

f Received Oct. 19, 1983)

Characterization of clones acting bicentrally and
containing a primitive group

LÁSZLÓ SZABÓ

1. Introduction

For a set F of operations on a set A the centralizer F* of F is the set of operations
on A commuting with every member of F. If F= F** then we say that F acts bi-
centrally. The sets of operations on A acting bicentrally form a complete lattice !£A
with respect to g .

The clones acting bicentrally were characterized in [7] and [12]. The lattice 3?A
was completely described for \A\=3 in [3] and [4]. Some further properties of \SCA
can be found in [5] and [13].

In this paper for finite sets the clones acting bicentrally and generated by permu-
tations and constant operations are characterized (Theorem 1) and the clones acting
bicentrally and containing primitive groups are described (Corollary 2 and Theorem
5). As a corollary a characterization for basic groups is obtained (Corollary 6).

2. Preliminaries

Let A be an at least two element finite set which will be fixed in the sequel. The
set of all M-ary operations on A will be denoted by (n ^ l) . Furthermore, we set

U 0^'*. A set F Q 0 a is said to be a clone if it contains all projections and is nfel _
closed with respect to superposition of operations. Denote by [F] the clone generated
by FQ0a. L e t / a n d g be operations on A of arities n and m, respectively. We say
t ha t / and g commute if for any elements an, ...,amn£A we have / (g (a n , ...,aml), ...,
...,g(aln, ..., amn))=g(f(an, ...,aln), ...,f(aml, ..., amn)). It can be easily seen t h a t /
and g commute if and only i f / i s a homomorphism from (A; g)n into (A; g) (or g is
a homomorphism from (A;f)m into (A;/)).

• By the centralizer of a set FQ0A we mean the set F*Q 0A consisting of all
operations that commute with every member of F. The set F* * is called the bicentra-
lizer of F. If F= F** then we say that F acts bicentrally.

The set of all projections, the set of all permutations on A, and the set of all unary
constant operations will be denoted by PA, SA and CA, respectively.

138 L. Szabó

An operation fdOA depends on its /-th variable (1 ^ / ^ n) if there are elements
au ...,an, ale A such that f(ax, ...,

We adapt the terminology of [6] except that polynomials will be called term
functions. Consequenltly, for an algebra <H=(A) F> the set of its term functions and
the set of its algebraic functions will be denoted by J(2l) and A (21), respectively.
The algebra 31 is called complete (functionally complete) if 7,(9t) = 0i4 (/t(3l) = 0 i4).
91 is trivial if 7X21) = J V

Let A be a vector space over a field K. Then the algebra (A; 7), where 7 is the
set of all idempotent term functions of the vector space A, is said to be an affine space
over K. By a linear operation over the vector space A we mean an operation of the

n
form 2 A^i + a where ad A and the A, are linear transformations of A. It is easy

¡=i
to check that 7* consists of all linear operations over A. If a clone FQ0A consists
of linear operations over a vector space with base set A, then we say that F is a linear
clone.

For a natural number n denote by n the set {1, ..., n}. Let B be a nonempty set
and let m S2 . An M-ary wreath operation w on the set Bm is associated to transforma-
tions pi of B (i=l, ...,m) and maps r: m-+n, s: m-*m as follows. For x , =
= (*<i, -,xim)dBm, i=l, . . . ,« , let

w(*x, •••, x„) = (Pl(xr(l)s(l)), Pm(Xr(m)s(m)))-

If EQ Ô 1* then WE<m denotes the set of all wreath operations on Bm with ptdE.
Now a set of operations FQ is said to be a wreath clone if there is a set B, a natural
number m ^ 2 and a transformation monoid E Q 0 (^ containing idB such that
(A; F) = (Bm\ WEtmy

For a permutation group G acting on A. a subset BQA is called a block of G if
for every gdG, either g(B)=B or g(B)DB = 0. The one-element sets {a}(adA)
and A are called trivial blocks. A transitive permutation group G is said to be primitive
if it has trivial blocks only.

Following Salomaa [10] a permutation group G on a finite set A is basic if the
(A; GU {/}) is complete for every surjective operation fdOA depending on at least
two variables.

Two algebras (on a common base set) are equivalent if they have the same set of
term functions.

We shall use the following result from [8].

Theorem A. A nontrivial finite algebra with primitive automorphism group is
functionally complete unless it is equivalent to one of the following algebras:

(i) 23m, where m a n d © is a functionally complete algebra with primitive
automorphism group of composite order,

(ii) an affine space over a finite field,
(iii) (A; x + 1) , where (A; +) is a cyclic group of prime order and 16^4\{0},

(iv) (A; x—y+z+1), where (A; +) is a cyclic group of prime order and
16^4\{0},

(v) (A; xy+xz+yz), where (A; + , •) is the two element field.

139 L. Szabó: Characterization of clones acting bicentrally and containing a primitive group

We also need the following characterization of basic groups given in [9] (see also
[1, 2]).

Theorem B. A permutation group G on A is basic if and only if G is primitive
and G is a subset of no linear clone and no wreath clone.

Results

Let G be a permutation group acting on A, and denote by Ga the stabilizer of the
element a£A (that is Ga= {g£G\g(a) = a}). For any a£A let a = {x€A\GaQGx}.

The next theorem describes the subclones of [5 (UC / 1] acting bicentrally.

Theorem 1. Let F g t S ^ U C J be a clone and put G = FDSA, C=Ff)CA.
Then F acts bicentrally if and only if C contains every unary constant operation
^ — {a} with a = {a}.

Proof. For any a£A let us denote by ca the unary constant operation with
value a.

Let FQ [S^UC^] be a clone. First suppose that F acts bicentrally. Let
/ € F * and choose an element a£A such that a={a}. If g€Ga then f(a, ...,a) =
= f(g(a), ...,g(a))=g(f(a, ..., a)) showing that f(a, ..., a)£a and f(a, ..., a) = a.
It follows that ca£F** = F.

Now suppose that ca£C whenever a={a}. We have to show that F—F**.
in [11] it is proved that [S ^ U C J acts bicentrally. Thus we have F ^ g f S ^ U C J ^

' = [S A U C J . Therefore it is enough .to show that F**fl (SAUCA)=GUC.
Let A = {a1, . . . ,a„} and define an ;?-ary operation / as follows:

i*i
/ (* ! , ..., x„) = \

if ..., xn) = (g(aj), ..., g(a„)) for some g£G,
x2 otherwise.

Now f£(GUC)*=F* and if g€SA\G then {/}*. It follows that F**DSA=G.
For any a£A with ca$C and for any u£a define a unary operation ha u as

follows:
fg(w) if x = g(a) for some g£G,
Ix otherwise.

K,u(x) =

Remark that h is well-defined. Indeed, if g 1 (a)=g 2 (a) for some g l 5 g2£G then
g f l o g 2 6 G a which implies g^og^G,, and g1(u)=g2(u).

We show that ha U<EF* = (GUC)*. Let t£G and x£A. If x=g(a) for someg€<?
then /(ha,„(x)) = / (h a ' j g (a))) = l(g(u))=ha_u(t(g(a))) = haJt(x)). If x(t{g(a)|g£
(G) then t(x)$ {g(a)|g€C?}, and therefore 1 (/if l>u(x)) = t(x)=ha<„(t(x)). Hence
ha_„ commutes with t. Now let cb£C. Then b^ {g(a)|g€G} since b—g(a) implies
c„=g~1ocb£Ff)CA = C. Therefore for any x£A we have c„(hau(x)) = b = hau(b) =
=hBtU(c„(x)). Hence haiU£F*.

Finally let ca£CA\C. By assumption there is an element u£a with u^a.
Now ha u£ F* and ca(hau(u))=a=tu = hluu(a) = ha u(ca(u)) showing that ha<u and
ca do not commute. Thus we have F * * f l C ^ = C a n d F * * n (S ' , 1 U C j = (F * * n S ' J U
U(F*f lC^)=G ? UC, which completes the proof. •

1 4 0 L . S z a b ó

Corollary 2. Let F ^ f S ^ U C x] be a clone such that G = F C \ S A is a primitive
permutation group. Then F acts bicentrally if and only if either F C \ C A = C A , or
FC\CA=9 and G is a regular group of prime order.

Proof. Since G is transitive and F is a clone, we have either F C \ C A = C A or

Suppose that FC\CA contains every unary constant operation c„ with a = {a}.
If F C \ C a = 0 then a^ia) for any a£A. Let a£A and x£a with x^a. Then
G A Q G X . Since the stabilizer subgroups of two distinct elements cannot coincide in
a primitive group of composite order (see [14; Prop. 8.6]), it follows that G has prime
order. Hence G is a regular group of prime order. In this case a=A for any ad A.
Finally apply Theorem 1. •

Next we prove two lemmas.

Lemma 3'. If 21 —(/4: F) is a functionally complete algebra then F*Q
i l ^ U C J and consequently F*=[End2l] .

Proof. Using the functional completeness of 21, it is not hard to show that
(*) if 8 is a congruence on 2t" (w^ l) then there exist ..., ik (ks0, 1
< ik ^ n) such that

9 = {((fllf ..., an\ (blt.... b„))e(Ar: a,, = bh,...., aik = bik).

Clearly, then 8 has \A\k classes.
Now let / 6 F* be an «-ary operation (n s l) . T h e n / i s a homomorphism from

21" to 21 and therefore k e r / i s a congruence on 21". If ker f=(A")2 t h e n / i s constant
and therefore / E t C J ^ S ^ U C J . If k e r f * (A " f then (since k e r / h a s at most \A\
classes), by (*) , there exists an i (1 ^ / ^ n) such that

k e r / = { ((a 1 ; ..., an), (blt ..., fcn))6(^")2: at=b,}.

From this it follows that /depends only on its /-th variable, and /6[SA] g U CA]. •

Lemma 4. Let 21=<^4; F) be a functionally complete algebra and let
Then the centralizer of F on AM coincides with WE<M where £ = E n d 21.

Proof. Let / b e an n-ary operation on Am that is / : (Am)"—A. Let fx, ...,/m
be the m-n- ary operations on A defined as follows: For any (aa, ..., aim)£Am, i= 1, ...,
. . . , / 7 , let / ((a u , ..., alm), ..., (anl, ..., anm))=(f1(an, ..., anm), ...,/m(flu, ..., anJ).
Observe t h a t / i s a wreath operation if and only if each depends on at most one
variable, y'= 1, ..., m.

Now / £ F* on Am if and onyl i f / i s a homomorphism from (2Im)" into 2Im which
is equivalent to t h a t . . . , / m are homomorphisms from (2Im)n into 21. The latter
means exactly t h a t . . . , / m € F * on A. Taking into consideration Lemma 3, this is
equivalent to that f , . . . , /m6[End 21]. This completes the proof, n

The following theorem completely describes those clones acting bicentrally and
containing a primitive permutation group which are not contained in [S^UC^].

Theorem 5. Let FQ be aclone acting bicentrally and containing a primitive
permutation group such that F<£ [S^ U CA]. Then we have for F one of the following
five possibilities:

141 L. Szabó: Characterization of clones acting bicentrally and containing a primitive group

(1) (A; F)9z(Bm; WE>m) where B is a finite set, and E=GUCB with
GQSB a primitive group of composite order,

(2) F is the set of all linear operations over a vector space with base set A,
(3) F= {x+l}* where (A; +) is a cyclic group of prime order and l£/4\{0},
(4) F=[{x— y+z+l}] where (A; +> is a cyclic group of prime order and

(5) F=0a.

Proof Let F satisfy the hypothesis of the theorem. If F*=PA then F=F** =
=P*=0A that is we have case (5). Let us suppose that F*^PA. Then (A; F*)
is a nontrivial algebra with primitive automorphism group. If (A ; F*) is functionally
complete then, according to Lemma 3, we have F= F**Q [SAU C^] contrary to our
assumption on F. Hence (A; F*) is not functionally complete. Therefore, taking into
consideration Theorem A, we get for the algebra (A; F*) one of the cases (i)—(v).

If (A; F*)=(Bm; H) where m^ 2 and 93 = (B; H) is a functionally complete
algebra with primitive automorphism group of composite order, then Lemma 4
shows that (A; F)={A; F**)^(Bm\ WE>m) where . £ = E n d S . In [8; Lemma 1]
it was proved that a finite algebra with primitive automorphism group of composite
order has idempotent term, functions only. Therefore all unary constant operations"
on B belong to End 93. Hence £ = E n d 93=Aut 93UCB and w'e have (1).

In case (ii) and (iii) F enjoys property (2) and (3), respectively. In case (iv) it is
easy to show that F=F**={x-y-\-z+\}* = [{x—y+z+\}], that is we have (4).

Finally for {A; F*) the case (v) cannot occur. Indeed, it can be shown easily
that if (A; + , •> is the two element field then {xy+xz+yzj* = [SA[JCA] and
F— F**= {X>' + XZ+>'Z}* = [5'aUCj4] contradicts our assumption on F. •

Combining Theorem 5 with Theorem B we get the following characterization for
basic groups.

Corollary 6. A permutation group G acting on A is basic if and only if
(GUf)**=0A for any operation

Proof. If G is primitive then our statement follows immediately from Theorem 5
and Theorem B. If G is imprimitive then, by Theorem B, G is not basic. Let B be a
nontrivial block of G and choose an element adB. Define a unary operation / and
a binary operation g as follows:

a if X(LB,

x otherwise,

g(x, y) = {
x if (x, j>) — (t(u), t(vj) for some t£G and u, v£B,
y otherwise.

Then it is easy to check that Furthermore, {g}*^0A since if u, v£B,
u^v, and htO^ is such that h{u)£B and h(v)£A\B then h${g}*. Therefore
(GU{/})* + g = { g } V O x , which completes the proof. •

142 L. Szabó: Characterization of clones acting bicentrally and containing a primitive group

References

[1] BAIRAMOV, R. A.,' Fundamentally criteria for permutation groups and transformation semi-
groups, Doki. Akad. Nauk SSSR, 9 (1969), 455—457 (Russian).

[2] BAIRAMOV, R. A., Derivation of basicity criteria for permutation groups and transformation
semigroups from a theorem of Rosenberg, Kibernetika (Kiev).

[3] DANIL'CENKO, A. F., On the parametrical expressibility of functions of three-valued logic, Al-
gebra i logika, 16/4 (1977), 379—497 (Russian).

[4] DANIL'CENKO, A. F., Parametrically closed classes of functions of three-valued logic, Izv. Akad.
Nauk Moldav. SSR, 1978, no. 2, 13—20 (Russian).

[5] DANIL'CENKO, A. F., On parametrical expressibility of the functions of ^-valued logic, in:
Finite Algebra and Multiple-valued Logic (Proc. Conf. Szeged, 1 9 7 9) , Colloq. Math. Soc. J .
Bolyai, vol. 2 8 , North-Holland (Amsterdam, 1 9 8 1) , 1 4 7 — 1 5 9 .

[6] GRATZER, G . , Universal algebra, 2nd ed., Birkhauser Verlag, 1 9 7 9 .
[7] KUZNECOV, A. V., On detecting non-deducibility and non-expressibility, in : Logical deduction,

Nauka, Moscow (1979) 5—33 (Russian).
Í8] PÁLFY, P . P . , L. SZABÓ and Á. SZENDREI, Automorphism groups and functional completeness,

Algebra Universalis, 15 (1982), 395—400.
[9] ROSENBERG, I. G., On closed classes, basic sets and groups, Preprint, CRMA Université de

Montréal.
[10] SALOMAA, A. A., On basic groups for the set of functions over a finite domain, Proc. Camb.

Phil. Soc., 62 (1966), 597—611.
[11] SZABÓ, L., Endomorphism monoids and clones, Acta Math. Acad. Sci. Hung., 26 (1975), 279—

280.
[12] SZABÓ, L., Concrete representation of related structures of universal algebras I., Acta Sci.

Math., 40 (1978), 175—184.
[13] SZABÓ, L., On the lattice of clones acting bicentrally, Acta Cybernetica, v. 6 (1984), 381—387.
[1 4] WIELANDT, H . , Finite permutation groups, Academic Press (New York and London, 1 9 6 4) .

(Received Aug 30, 1983)

New books

G. Enderle, K. Kansy, G. Pfaff: Computer Graphics Programming, XVI+ 542 pages, Springer
Verlag Berlin—Heidelberg (1984).

The subject of the book — the Graphical Kernel System (GKS) — is a consistent and complete
description of a graphics standard system, consisting of a concise terminology for Computer Graphics
(CG) and establishing the firm base of a methodology for CG too.

The book is divided into four main parts:
Part I gives an introduction to basic concepts of CG and to principles and concepts of

GKS. Main areas of CG, different types of CG users, the interfaces of GKS and the underlying des-
ign concepts for the GKS development are explained. This part gives an informal introduction to the
main concepts of GKS and their interrelation: output, attributes, coordinate systems, transforma-
tions, input, segments, metafile, state lists and error handling.

Part II describes the process of GKS design. Concepts and functionality, laid down in existing
graphics systems and in literature were examined carefully to select those which would be included in
the standard kernel system. This part gives very useful background information to understand why
some features are included in GKS, why other useful concepts and features have been omitted, and
why some features are included in a particular form.

Part III gives a detailed description of the functional capabilities of GKS. For every one of the
different areas of the system, a detailed explanation of the concept is given. For all functions, both
the language-independent definition from the GKS standard and the FORTRAN interface are given.
Examples are used to clarify the GKS functions, they are presented both in Pascal and FORTRAN.

Part IV is devoted to the elaboration of the various interfaces of GKS within the CG
environment.

The book is aimed, at one hand, at grapics users and experts who want to get an overview of the
new standard and a better understanding of its concepts.

On the other hand, it adresses the graphics programmers who want to use GKS for realizing
their graphical applications. It can serve as the base for teaching and studying functions, concepts
and methods of GKS. It is a very useful book for a lot of people.

J. Csirik (Szeged)

Martin D. Davis and Elaine J. Weyuker: Computability Complexity, and Languages: Fundamen-
tals of Theoretical Computer Science (Computer Science and Applied Mathematics), XIX+425
pages, Academic Press, 1983.

This well-written book provides an introduction to various, mostly classic topics of compu-
tation theory. Much of the material included goes well back in the history.

The book consists of five parts. Part 1 comprises an extensive study of various equivalent
models of computation. Simple programming language's, Turing machines, semi-Thue processes,
gramars, primitive recursive functions and minimalization are treated, and basic theorems of recur-
sion theory are developed. Part 2 exhibits some aspects of formal languages and automata theory.
Regular languages and finite automata, context-free languages and pushdown automata, context-
sensitive languages and linear bounded automata are dealt with. Normal forms, closure properties,
decidability results are presented in a way the reader can easily follow and attain. Prepositional

144 New books

calculus, quantification theory, and especially, the resolution principle form the subject of Part 3,
which culminates in Godel's Incompleteness Theorem and the unsolvability of the first order logic.
Three aspects of comjlexity theory give the material of Part 4. These are the infinite hierarchy of
recursive functions computable by nested loop programs, axiomatic complexity theory, and poly-
nomial time computability. The Blum axioms, Gap Theorem, Speedup Theorem, and Cook's
Theorem are included. The book ends with Part 5, an insight into the more advanced recursion theory.
The significance of oracle computations, various reducibility concepts and unsolvability degrees are
explained.

The author's aim was to give a selfcontained, rigorous and unified introduction to selected
topics of theoretical computer science. Certainly, they have done an excellent job. The material is
well-arranged, the proofs are clear. A dependency graph and a subject index help guide the reader,
who can be either a graduate or undergraduate student. Or even, one possessing with a basic know-
ledge of the material may find crucial points what the authors could show from a new point of view.

Z. Esik (Szeged)

Data Base File Organization Ed. by S. P. Ghosh, Y. Kombayashi and W. Lipski, X + 3 5 2 pages,
Academic Press, 1983.

This book contains articles presented at an international conference organized by the Polish
Academy of Sciences in Warsaw (1981). The topics are devoted to the so-called „consecutive retrieval
property" of records in definite and finite query-answer data base systems.

Let be given a finite set X of records and a family ®t of subsets of X. (Practically 3)1 may be viewed
as the collection of all possible answers for a definite query set Q.) We say that ЭЛ has the consecutive
retrieval property, if there is a linear ordering on X by which every MgSDt is an interval. It is clear
that this property is very useful with respect to the file organization in a time-independent data base
system.

S. P. Ghosh and W. Lipski, Jr. give very informative surveys on the problems and results of the
subject. Unfortunately most of the interesting algorithmic problems turned out to be NP-complete.
Most of the papers deal with the topic from a mathematical point of view. The basic property, its
generalizations and the similar notions can be formulated in different disciplines, i.e. in graph and set
theory. Authors have results concerning the decomposition of query sets, equivalences of different
formulations, combinatorial problems e.t.c. As to applications, we find articles on the connection of
the mathematical properties of a query set and the structure of physical devices as well as on existing
systems based on that theory.

W. Lipski, Jr. presents a large bibliography related to the subject..

A. Makai (Szeged)

Robert R. Korfhage, Discrete Computational Structures (Computer Science and Applied
Mathematics), X1II+360 pages, Academic Press, 1984.

This is. the second edition of the book.
"The organization of this second edition has grown out of experience in using the first edition

in classes. Some of the special topics in the first edition have been replaced by other more current
topics, but the content is largely the same. There is an increased emphasis on numerical work, espe-
cially in the separate chapter on arrays and matrices and in the placement of the combinatorics
chapter toward the front of the book. The close relationship between graph theory and combina-
torics is indicated by the positioning of the combinatorics chapter after an introduction to graph
theory and before more advanced graph topics are covered.

The other major change for this edition is the replacement of much of the algebraic work by a
chapter, focusing on finite automata as a basis for formal languages. In recent years these automata
have begun to play an increasing role in practical computing because of their direct applicability to
many string processing problems, their easy implementation in integrated circuit technology, and
their use in robotics."

The book is written in a nice style, it is easy to read. Each section contains some exercises.

F. Gecseg (Szeged).

New books 145

L. Uhr: Algorithm-Structured Computer Arrays and Networks, XXIII+413 pages, Academic
Press, 1984

This book is useful as a textbook on computer architecture, parallel computers and networks
as well as on designing and constracting parallel algorithms for a variety of different processor
arrays. Author has a perspective, that the construction of the algorithm, program, language, operat-
ing system, and of the physical structure of the processors should attempt to maximize correspon-
dence. He presents informative surveys and to a certain extent details too on:

built or designed arrays and networks of processors;
the problems of developing algorithms and programs using these architectures;
graph theoretical methods suggesting interconnection patterns for processor networks (trees,

augmented trees, pyramids, lattices, «-cubes, e.t.c.);
modeling techniques for evaluating architectures, programs and the way programs are mapped

onto hardware;
languages embedded in PASCAL for parallel processing;
future network architectures and technologies.
Discussion is more practical than theoretical, references are given to mathematical backgrounds.

The very large up-to-date bibliography may be used as a basis of researches on special subfields.

A. Makay (Szeged)

10 Acta Cybernetica Vll / i

A SZERKESZTŐ BIZOTTSÁG CÍME

6720 SZEGED
SOMOGYI U. 7.

EDITORIAL OFFICE:

6720 SZEGED
SOMOGYI U. 7.
HUNGARY

INDEX — TARTALOM

S. L. Bloom: Frontiers of one-letter languages 1
E. Gombás and M. Bartha: A multi-visit characterization of absolutely noncircular attribute

grammars 19
R. Parchmann, J. Duske, J. Specht: Indexed LL(k) Grammars 33
F. Gécseg: On Vj-products of commutative automata 55
B. Imreh: On finite definite automata 61
M. ¡to and J. Duske: On involutorial automata and involutorial events 67
T. Legendiand E. Katona: A solution of the early bird problem in an n-dimensional cellular space 81
E. Simon: Language extension in the HLP/SZ system 89
Ho Thuan and Le Van Bao: Some results about key of relational schemas 99
Б. Тальхайм: Зависимости в релационных структурах данных. 115
J. Sztrik: A queueing model for multiprogrammed computer system with different I/O times 127
L. Szabó: Characterization of clones acting bicentrally and containing a primitive group 137
New books 143

I ISSN 0324—721.X |

Felelős szerkesztő és kiadó: Gécseg Ferenc
A kézirat a nyomdába érkezett: 1984. április 26

Megjelenés: 1984. december
Terjedelem: 12,95 (A/5) iv.

Készült monószedéssel, Íves magasnyomással
az MSZ S601 és az MSZ S602—55 szabvány szerint

84-1980 — Szegedi Nyomda — F.v.: Dobó József igazgató

