88 715

Tomus 7.

FORUM CENTRALE PUBLICATIONUM
CYBERNETICARUM HUNGARICUM

FUNDAVIT: L. KALMAR
REDIGIT: F. GECSEG

COMMISSIO REDACTORUM

A. ADAM F. OBAL
M. ARATO F. PAPP
S. CSIBI A. PREKOPA
B. DOMOLKI J. SZELEZSAN
B. KREKO J. SZENTAGOTHAI
A. MAKAY S. SZEKELY
D. MUSZKA J. SZEP
ZS. NARAY L. VARGA
T. VAMOS
SECRETARIUS COMMISSIONIS
J. CSIRIK
Szeged, 1985

Curat: Universitas Szegediensis de Attila J6zsef nominata

7. kotet 1. fiizet

- ACTA
CYBERNETICA

A HAZAI KIBERNETIKAI KUTATASOK
KOZPONT! PUBLIKACIOS FORUMA

ALAPITOTTA: KALMAR LASZLO
FOSZERKESZTO: GECSEG FERENC

A SZERKESZTO BIZOTTSAG TAGJAI

ADAM ANDRAS OBAL FERENC

ARATO MATYAS PAPP FERENC

CSIBI SANDOR : PREKOPA ANDRAS
DOMOLKI BALINT SZELEZSAN JANOS
KREKO BELA SZENTAGOTHAI JANOS
MAKAY ARPAD SZEKELY SANDOR
MUSZKA DANIEL SZEP JENO

NARAY ZSOLT VARGA LASZLO

VAMOS TIBOR

A SZERKESZTG BIZOTTSAG TITKARA
CSIRIK JANOS

Szeged, 1985. januar
A Szegedi J6zsef Attila Tudomanyegyetem gondozédsédban

Frontiers of one-letter languages

STEPHEN L. BLoOM

Introduction

In a talk titled “Infinite words” given in the spring of ’83, Dana Scott introduced
the notion of a convergent sequence of “word” (i.e. elements of a finitely generated
free monoid). A sequence is convergent if, for every regular set R of words, all but
finitely many of the terms of the sequence belong to R or all but finitely many belong
to the complement of R. Scott stated a number of properties of the collection of (equi-
valence classes of) convergent sequences, some of which showed that this structure
had been known earlier in the guise of a free “profinite” monoid. This monoid has
a natural topology and contains a copy of the original free monoid (as a certain dis-
crete subspace). In the case that the words are elements of the one-generated free
monoid (i.e. the additive monoid N of the nonnegative integers) an explicit descrip-
tion of all convergent sequences was stated (and is derived here). Further, he posed
several problems connected with this structure and the current paper addresses one
of these.

Scott asked whether an investigation of the “frontiers” of languages would lead
to a useful classification of languages. In an effort to answer this question, we looked
at the simplest case: frontiers of subsets of N. An explicit description of these fron-
tiers has been obtained. It is seen that the cardinality of the frontier of a subset of N
cannot distinguish regular from nonregular sets, and a necessary and sufficient con-
dition is given that a subset of N have an uncountable frontier.

In order to obtain these facts we derived a number of the facts mentioned by
Scott in his talk. We have tried to give very elementary proofs and keep the paper self-
contained.

Preliminaries

N will denote both the set of nonnegative (or “natural”) numbers as well as the
additive monoid (N, +, 0). An infinite sequence will be denoted by diagonal bra-

ckets:
<x> = (X1, X, o)s

the terms of (x) are the elements x,,, n=>0.

1 Acta Cybernetica VII/1

2 S. L. Bloom

The value of a function f on an argument x will be written as xf or f(x).

For positive integers k and /, the 1-generated finite monoid which is the quotient
of N by the least monoid congruence identifying k+/ and k is denoted N, ;. When
k=I=n!, this monoid will be denoted M,. One may assume that the elements of
N, are the integers

0,1,.. .k k+1, .., k+1-1.

The closure of a subset 4 of a topologlcal space is denoted 4A~, and the frontier
of A is A=—A.

In this paper, we will use the word ““uncountable” to mean the cardinality of the
powerset of the natural numbers.

1. Convergent sequences

Let (x) and (y) be infinite sequences of nonnegative integers. For a subset S of N,
the nonnegative integers, define (x) to be ““S-equivalent” to (y) if, all but finitely many
of the terms of {x) belong to S iff all but finitely many of the terms of (y) do.

1.1. Definition. (x) is equivalent to {y), written (x)~(y), if for every regular
set R, {(x) is R-equivalent to {y).

It is easy to verify that ~ is indeed an equivalence relation on the infinite se-
quences of natural numbes. The ~ — equivalence class of (x) will be written (x)~.

1.2. Definition. An infinite sequence is convergent if, for each regular set R,
either all but finitely many terms of (x) belong to R (we will say {x) is “eventually
in R”) or {x) is eventually in N\ R, the complement of R.

We let Conv denote the set of all convergent sequences. Note that if (x) is con-
vergent and (y) is equivalent to {x), then () is also convergent.

The set of equivalence classes of convergent sequences is denoted N—. This set
has both a monoid structure and a topological structure, as will be shown below, and
is one of the more fascinating objects in the mathematical universe. Our goal in this
first section is to give an explicit representation of the members of N~

- We will say that the sequence (y) is a subsequence of the sequence <x> 1f thereis a
strictly increasing function f: N—N such that for each nEN,

Yn = nf -

1.3. Proposition. If y) is a subsequence of the convergent sequence {x), then (y)
is equivalent to (x) and is therefore convergent.

A sequence of Integers is eventually increasing if for each number b, x,,>b for all
but finitely many »; similarly a sequence (x) is eventually constant with value b if
x,=>b for all but finitely many ».

1.4. Proposition. If (x) is convergent, either (x) is eventually constant or even-
tually increasing.

Proof. Let R, denote the regular set of integers greater than b. Then either)
is eventually in R, for every b, in which case (x) is eventually increasing, or not. If

Frontiers of one-letter languages 3

not, since {x) is convergent, {x) is eventually in the finite union of the singleton sets
{oyu{11U...U{b}, for some b. We now apply the following lemma.

1.5. Lemma. If {x) is convergent and (x) is eventually in a finite union of regular
sets A1U...UAn, then for some 7, (x) is eventually in Ai.

By the Lemma 1.5, {x) is eventually constant, proving 1.4. The easy proof of 1.5
is omitted.

1.6. Proposition. Let {x) be a convergent sequence. Then either there is a cons-
tant sequence (y) or a strictly increasing sequence (y) with (x) equivalent to (y).

Proof. By 1.4, (x) is either eventually constant, in which case (x) has a constant
subsequence, or {x) is eventually increasing, in which case {x) has a strictly increasing
subsequence. By 1.3, the proof is complete.

We will characterize those strictly increasing sequences which are convergent.
But first we give an alternate formulation of the notion of convergent sequence.

1.7. Proposition. The sequence of integers (x) is convergent iff
(1.7a) for each homomorphism # from the additive monoid (N, +,0) to a
finite monoid M, the sequence

(xh) = (x; h, x5h, ...)
is eventually constant.

Proof. Suppose first that {x) is convergent and that h: N-M is a monmd
homorphism. If M consists of the elements ml, ..., mk, then the sets
Ri = h'l(mi)

are disjoint regular sets and (x) is eventually in the union R1U...URk=N. By
lemma 1.5, {x) is eventually in one Ri; i.e. {xh) is eventually constant.
Now suppose that (1.7a) holds. Let R be any regular set and recall the following

fundamental fact:

any regular subset R of N may be written as
R=h"1(X)
for some monoid homomorphism h: N—M, M finite, and some XC M.

Thus, (x) is eventually in R if (xh) is eventually in X’; otherwise, (x) is eventually
in the complement of R.

The preceding proposition may be rephrased: a convergent sequence is one
whose terms eventually cannot ‘be distinguished by a finite automaton.

The next fact is proved in exactly the same way.

1.8. Proposition. If (x) and (y) are convergent sequences, then (x) is equivalent
to {y) iff for every monoid homomorphism h: N—~M, M finite, (xh) and {yh) are
eventually equal.

1.9. Corollary. If {x) and (y) are convergent, so is “(x)+(y)”, where the “sum
is obtained by pointwise addition; further, if (x)~{x") and (y)~()’), then

XY+~ XD+
Both facts follow from 1.7 and 1.8.

1°

4 S. L. Bloom

1.10. Corollary. N ~ is a monoid, where the operation is that in 1.9 and the iden-
tity element is the equivalence class of the constant zero sequence.
The next proposition is quite useful. .

1.11. Proposition. Suppose that {x) is a strictly increasing sequence. Then (x)
is convergent iff, for each n=0,

Xm = X, (mod n!) (1.11a)

for all but finitely many m and p. If (x) and (y) are strictly increasing convergent
sequences, (x)~(y) iff, for each n=0,

Xp = ¥, (mod n!) , (1.11b)
for all but finitely many m. :

Proof. 1If {(x) is convergent, then (1.11a) holds, by 1.7 applied to the canonicai
homomorphism N-Z/n!, where Z/n! denotes the ring of integers modulo n!.
Conversely assume that (x) satisfies the property (1.11a). We show that (x) is con-
vergent by using Lemma 1.7 and the following facts.

1.12. Fact. Any monoid homomorphism h: N—M, M finite, factors as a com-
posite

N € > Nk,l
i (1.13)
h
M

where e is a surjective homomorphism, i is injective and N, , was defined in the Preli-
minary section.

1.14. Fact. Any homomorphism h: N— N, ; factors as

N kx o Ny
h# (1.15)
h
No

where n is any number greater than both k and /. Note that the map h (and h#)
satisfies: '
xh=x if x<k;

= k+Rem (x—k, 1) if x=k (1.16)

Frontiers of one-letter languages 5

We now show that the property of (1.11a) implies that {x) is convergent. Suppose
that h: N—M is a monoid homomorphism, M finite. Then by 1.12 and 1.14 we may
as well assume that M is N, ,, and h is defined by (1.16) when k and / are n!; thus we
assume

zh=1z if z<nl

=n!+Rem (z—nl,nl) if z=z=n!
= n!+Rem (z, n!).

It follows that (xh) is eventually constant, since (x) is strictly increasing, x,,>n!
for m=>n! and x,=x,. (mod n!), for sufficiently large m and m’. Thus, by (1.7),
(x) is convergent. The proof is complete.

We now want to show that the monoid N~ is isomorphic to the (inverse) limit
L of the diagram

PN VL. NGy V. L. Ny VA 1.17)

where M,=N,, ,, and where the homomorphism g,: M,—~M,_, is defined, as
one might expect by now, as

xg, =x if x%(n—l)!;
=m-1!4+Rem(x,(n—=1)!), if x=@n-1L

_ _It is well known [G] that L may be described as the submonoid of nM, consisting of
all “compatible” sequences, i.e. all sequences (z), with z,€ M,, for each n>0, and with
2,8, =2,_1, for n=>1. In order to prove N ~ is isomorphic to L, we make two obser-
vations about the sequences in L.

1.18. Lemma. If (z) is a compatible sequence and for some n, z,<n!, then
Iy =2,, for all m=n.

1.19. Corollary. If (z) is a compatible sequence in L and (z) is not eventually
constant, then for all n=0,
n! = z,(< 2n)).

Now let k,: N—~M, be the canonical homomorphism (i.e. 1k,=1 in M,)
and let h,: N~ —M, be the monoid homomorphism taking the equivalence class of
the sequence {x) to the eventual value of the sequence (xk,) in M,.

1.20. Lemma. For each n>0 the diagram below commutes.

hn+1
N- —> Mn+1

l &nt1 (121)

6 S. L. Bloom

Proof. Since the diagram (1.22) commutes,

k,
N H > Mnit
kn
M,

if a'is the eventual value of {(xk,.,) then ag,,, is also the eventual value of (xk,).
Now since the monoid L, equipped with the projection maps

pn: <Z> - Z,
is the limit of the diagram (1.17), there is a unique homomorphism
qg: N~ - L

such that for each n, g, p,=h,. We want to show that ¢ is an isomorphism.
1.24. Lemma. g is surjective.

Proof. Let (x) be a sequence in L. If (z) is eventually constant with value a then
(@)~ q={z), where {a)~ is the equivalence class of the constant sequence {a, a, ...).
Otherwise (z) is strictly increasing. Let {x) be the sequence of integers with x,=z,
for all n (i.e. (x) is (z) considered as a sequence in N). Then we claim that for each n,

: xX)~h, = z,
so that (x)~g=(z).
Indeed, for m=n, x,=zn! and

X, = z, (mod n!)
by the definition of the g,,’s. So the eventual value of (xk,) is z,. Thus g is surjective.
1.25. Lemma. q is injective.

Proof. Suppose that (x)~g={y)~g=(z), where {x) and (y) are convergent
sequences. We will show that (x) is equivalent to (y). Since this is clear in the case
that {x) is eventually constant, assume that (x) is strictly increasing. Then the eventual
value of the sequences (xk,)and (yk,) is z,, so that, for all but finitely many values

of m,
Xpm = ¥, (mod nl).

and hence (x) is equivalent to {y).
We have proved the following

" 1.26. Theorem. The monoid N ~ is isomorphic to L.

It will sometimes be convenient to use L instead of N~ in order to get concrete
representations. For example, notice how sequences in L are added. The n-th com-
ponent of {z)+{z") is z,*,z;, where %, is the monoid operation in M,. Thus, if both

Frontiers of one-letter languages 7

(z) and (z") are increasing, i.e. n!=z,, z,, then
z,%,2y = n!+Rem (z,+z,, n!).

Hence, aside from the notation “n! +*°, the monoid operation on increasing se-:
- quences in L is the same as that on I1(Z{n!: n>1), where Z/n!is the ring of integers
mod n!. Denoting the increasing sequences in L by F, we have seen that F forms a
subring of the product of the rings (Z/n!: n=1). (In fact, F is the inverse limit of
the diagram

> Zim+1)! > Zn! - ...

where the maps are the canonical ring homomorphisms.) We turn now to the ques-
tion of getting an explicit description of the sequences in L (and thus N~). The
description depends heavily on the following

1.27. “Factorial” lemma. For each n=1 and each number x, O0=x<n!,
there is a unique sequence a, ..., a,_, of integers with

O=saq;=i, 1=i<n
such that .
X = Zaii! = a1+a22_!+...+an_1(n—1)!.

(When n=1, the sequences is the empty sequence, whose sum is 0.)
This fact may be proved in a straightforward manner. Now, if {z) is an increasing
sequence in L, for each n, n!=z,<2n!. Thus, we may write

- - - R n=1 - - - -
z, = nl+ 3 ail.
1

1.28. Proposition. If (z) is an increasing sequence in L, and for some n,
n—1
z,=n!4+ 2 a;i!, and
1

Zarr = D1+ 3 biil,
. 1
then for i<n, bi=a;.

Proof. Since z,,18,41=2n, Rem(Z,.1,0)=2ay! But Rem(z,.,,nl)=
= Y'b;il. By the uniqueness part of the factorial lemma, the proposition is proved.

Hence, if (z) is an increasing sequencein L, there is a unique infinite subdiagonal
sequence {(a) (i.e. 0=a,=n, all n) such that

n—1 .
z, =nl4+ 23 a;i! (1.28a)
1 . .

for all n. :

Let SD denote the set of all infinite subdiagonal sequences, and let SD* denote
the set of all finite subdiagonal sequences of integers. If {(a) is any sequence in SD,
let z(a) denote the sequence defined by (1.28a) above. Then we have already proved
part of the next theorem. _ L

8 S. L. Bloom

1.29. First representation theorem. For each sequence {a) in SD, z(a) is an
increasing sequence in L, and the map SD—F defined by

o (@) = z(a)
is a bijection.

_ Proof. We already know the map is surjective. The fact that z(a) 1s in factin L
(and hence in ¥) is immediate, since ((n+1)'+2a z')q,,+1—n'+2 a;il. If {a)

and (a’) are distinct sequences in SD, then z(a) and z(a’) are distinct by the factorial
lemma. The theorem is proved.

It is easy to see that if {z) is an eventually constant sequence in L, then there is a
unique finite subdiagonal sequence

{ays ... ay_4)

such that for k <n
k—1
z=k!+ > a;il,
1

and for k=>n,

n—1

Zy = 2 dil'!.
1

2. Topology

The standard topology on L (and thus on N) is inherited from the product
topology on
1M,

where each finite monoid M, has the discrete topology. Thus the subbasis for the
topology on L consists of all sets of the form

2 0.9)
where p,: L—~M, is the n-th projection map and X is some subset of M,,. Clearly L

is Hausdorff in this topology, and is compact by the Tychonoff theorem since L is
closed in the product. (Indeed, if {(z)¢L, then for some n, z,g,#2,-,. Then

() N piti(z,-0)

is an open set disjoint from L containing (z).) The subbasis sets are closed (as well as
open) since
L_p;l(X) = DPn 1(1‘111—11,)

Thus L is a “Stone space”. We will show that the Boolean algebra of the clopen
(i.e. closed and open) subsets of L is isomorphic to the Boolean algebra of regular
subsets of N.

Let i: N—~L be the (unique)- monoid homomorphism satisfying

Py = k" (20&)

forall n>1. The image of i consists of the eventually constant sequences. For n>m,

Frontiers of one-letter languages 9

let g, n.: M,~M, be the composite of

M I lgn—l Im+1 M
n B=1"> . ——> M,
We will need the following fact. '

2.1. Lemma. Suppose that XcM, and YcM,, where n>m. Then
) kY NEY(Y) = kY (XNZ), and
i) Pr(X,)Npa'(Y) = pr'(XN2),

where Z=g, ..~ 1(Y).
The easy proof is omitted.

2.2. Proposition. The subsets of L of the form
(X)), XcM,

are in fact a basis, being closed under ﬁnlte union and finite intersection and comple-
mentatlon as well

Proof. We have already noted the closure under complementation and closure
under intersection follows from the preceding lemma, part ii). Closure under finite
union follows from these two facts.

It follows from general topological principles that the clopen subsets of L are
precisely the subsets of the form p;'(X), n=1, XcM,.

If S is a subset of N, let S~ denote the closure of /(S) in L.

2.3. Lemma. Let S=k;}(X), where XCM,. Then S~=p;*(X). Thus the
closure of a regular set is a clopen set in L.

Proof. Let B=p,(X). Then S~ is contained in B since B is closed and i(S)c
C B, by (2.0a). Let b be any point in B not in i(S). We will show that b is a limit
point of i(S). Let C=p,1(Y) be any basis set containing b. We may assume that
n>m. Applying 2.1,
BNC=p;1(Z), and o

SNkFY(Y) = k71(2),

where Z=g,1(Y). Let R be the set SMNk;1(Y). Then R is nonempty: otherwise,
Z is empty, since k, is surjective, and this would imply that BNC would be empty,
contradicting the fact that b is contained in this intersection. Now if a€R, z(a) Isin
BNC, by<(2.0a) again, showing that b is a limit pomt of S. The proof of 2.3 is com-
plete. .

2.4, Lemma. Let R and S any subsets of N. Then RCS iff.R™ CS -

Proof. Only one direction is nontrivial. Suppose that R~ is contained in S
Let x€R. Then the singleton set {x} is a regular subset of N so the closure of i({x})
say A, is a clopen subset of L, by 2.3 above. Since A4 is open and since R—C S,
A must contain a pomt of S. But smce Lis Hausdorﬁ‘ A 1sa smgleton set Thus x€S8,
proving the ‘lemma. ' : S i

10 S. L. Bloom

2.5. Theorem. The map R~~R~ is a Boolean isomorphism from the Boolean
algebra of regular subsets of N to the Boolean algebra of clopen subsets of L.

Proof. By Lemma 2.3, each regular subset of N is mapped to a clopen basis set
and every clopen set in L is the closure of the image of a regular set. By Lemma 2.4,
the map is an order (and hence Boolean) isomorphism.

The next fact follows from the standard proof of the Stone representation
theorem.

2.6. Corollary. N~ is in bijective correspondence with the collection of ultrafil-
ters on the Boolean algebra of regular subsets of N.

3. Some algebra

Recaii that we have shown that the strictly increasing sequences Fin L ferm a
ring, isomorphic to the inverse limit of the diagram

= Z[nt ~ Z[(n—1)! ~ ..

Although it 1s probably well known, we will indicate why F is also isomorphic as a
ring to the product ring
II(Z,: p prime),

where Z, is the ring of p-adic integers.
One definition of Z, (see [Kurosh, p. 154]) is the following:

3.1. Definition. Z, consists of all sequences (k) of nonnegative integers satis-
fying
0=k, <p", (3.12)
and
kn = kn+l(m0d p") (31b)

for each n>1. The sequences are added and multiplied pointwise, where the n-th
component is reduced modulo p”. Thus Z,, is the inverse limit of the diagram
1]

L Z[p - Z[p - (3.2)
Kurosh gives an easy proof that
3.3. Z, has no zero divisors.
We will show that each sequence (z) in F determines a sequence (z)«, in Z,.
3.4. Definition of a,: F~Z,.
Given (z), for each n let m=p"!.' Then for all t=>m,

z, = z,, (mod m),
so that
z, = z,, (mod p").

Then for each n, we define k, as Rem (zm> P"), and we let (2)a,=(k).

Frontiers of one-letter languages 11

Taking the target tupling of the maps a,, p prime, we get a map
a: F - (Z,: p prime).
Since the ring operations on both F and Z, are defined componentwise and since
reduction mod m preserves addition and multiplication, we have
3.5. Lemma. Each map a, is a ring homomorphism and thus so is a.
3.6. Lemma. « is an isomorphism.

Proof. First we show that a is injective. Let (z) and (z”) be distinct sequences in F.
Then for some n, z,7z,. Factoring n! as a product of powers of primes, there is
some prime p and some m such that

z, # z,(mod p").
But for all t=>n!,

z, = z,(mod p")
and-

z; = z,(mod p™)..

Thus, (z)a,#(z’)a,, so that « is injective.
Now we prove « is in fact surjective. Suppose that we are given an element of

(Z,: p prime), say
o7 =P, y2 (), ..

for each prime p. We will construct a sequence (z) in F such that (z)a,=(y?) for

each p- In order to do this, we construct an mcreasmg sequence {x) in Conv with
1=yP1(1) (where pl, p2, ..., are the primes in increasing order) and for each n>1,

Xp > Xpo1; 37D
x, = yP*(n) (mod (p1)")
x, = yP2(n) (mod (p2)")

x, = y*"(n) (mod (pn)").

Suppose that (x) satisfies the above conditions. Then (x) is obviously increasing
and is, although not so obviously, convergent. Indeed, to prove (x) is convergent we
will show that for each n, all but finitely many of the terms of {x) are congruent mo-
dulo n!. Recall that if g and ¢” are relatively prime, then

u = v(mod gq’)
iff .
u=v(modgq) and u=v(modgq).
Now factor a fixed n! into a product of ’primes, say
n!-= pl¥ . prk,

whre 0 = ki, i=1, ..., r. Let m be any number greater than both r and max (k1, ...,

12 . S. L. Bloom

. kr). Then for each i<m,
X = y*(m)(mod pi™),

so that] .
X, = yPi(m)(mod pi*’)

since m>ki. But since (y*") is in Z,,

yPi(m) = yP (ki) (mod pi*)).
. It follows that for t=>m,

x, = yPi (ki) (mod pi*), all i<r.

But then, for 1>m,
X, = x,, (mod n!),

proving that (x) is convergent. Let (z) be the sequence in L determined by (x). Then
(2)a,=(y?), for all p.

It remains to show how to obtain the sequence {x). But assuming we have found
X1, .-, Xp—1, W€ Obtain x, satisfying (3.7) by applying the Chinese Remainder Theo-
rem.

The proof of the Theorem is complete.

4. Some closures

In section 2 we showed that if R is a regular subset of N, then the closure of /(R)
in L has the form
Pt (X)
for some XcM,.

4.1. Proposition. If R is an infinite regular subset of N, then R~ and thus its
frontier are uncountable.

Proof. Suppose R is k;1(X), where XcM,. If R is infinite, there is some ele-
ment b in X with
n! = b(< 2n!).

n—-1 -

Write b as n!+ > a;i!. Then, for all infinite subdiagonal sequences a which
extend {a,, ..., a,_,), the element z(a) is in the closure of R. Since there are uncoun-
tably many such sequences a, the proposition is proved.

Now we prove that if S is the nonregular (context sensitive) set of squares, i.e.

S = {n%: nc N}

then the frontier of S is also uncountable.
We will use two facts from the preceding section.
(4.2) Z, has no zero divisors.
(4.3) F is isomorphic as a ring to

II(Z,: p prime).

Frontiers of one-letter languages 13

Let {x) be any sequence in F and let (y)=(x)(x)=(x)?* (so that for each n,
yp=n!+Rem (x2, n!)).

4.4. Lemma. {y) is a limit point of S.

Proof. Let B be a basis set containing (y). Then B=p;1(X,), for some n and
some subset X, of M,. Thus y,cX,. If a is the natural number

a=n!+tx,

then k,(a®)=y,, so that i(a®)€B, proving that (») is a limit point of S.

Now we will show that there are uncountably many points in L of the form
(x)(x), which will complete the proof that S~ is uncountable. Indeed, in any ring
with no zero divisors, if u?=v%, then u=v or u=—v, since

u—v® = (u+v)(u—v).

Now we choose in each ring Z, two elements, say x, and y,, such that x, is
disctint from y, and from —y,.
Then, for each function f: Primes—{0, 1}, let z(f) be the element of II(Z,:

p prime) defined by:
z(f)p=x, if f(p)=

=y, if fO)=1

Then, by 4.4, regarding each element z(f) as an element of F, z(f)? is a limit
point of S. But if f=f’, then z(f)?zz(f")?; indeed, if x,=f(p)#f (p), then
z(f)i=x3=y2=2z(f")s. We have proved:

4.5. Proposition. S has an uncountable frontier.

Thus the cardinality of the frontier of a language cannot distinguish regular
from nonregular sets. In the next section we will characterize all sets whose frontier
is uncountable.

5. Explicit topology

In this section we will use the first representation theorem to get a second, more
geometric description of L and the topology on L. This description makes use of a
locally finite rooted tree T (see [EBT]). The vertices of T are certain ﬁnité sequences in

SD*USD*X {1 }.

A vertex of T in the form of a pair ({s), L) iswritten as a ﬁmte sequence s, 1)
ending in the symbol L. Theroot of Tis { |); the root has three immediate succes-
sors: () (the empty sequence), (1) and €0, L); if

v="{ay, ..., Ay, L)

is a vertex in T, then (g, ..., a,y is in SD*, and v has the following 2n+3 imme-
diate successors:

(@1 ey Ans 1), ... {0y, ..., 4y, n+1) and
{ags s 4,50, 1), .., {ay, ..., a,, n+1, L)

All vertices in T not ending in | are leaves; all vertices ending in I are not.

14 S. L. Bloom

A (root) path in T is a sequence v,= 1, v, ... Of vertices, perhaps infinite,
such that for each n, v,,, is an immediate successor of v,. We let P denote the
collection of all root paths which are either infinite or are finite and end in a leaf.

We want to prove that N~ is in bijective correspondence with P. In order to see
this, we define two maps :
val: Ver - N

path: N - P

where Ver is the set of vertices of T, as follows:

n—1
val {a,, ..., a,_y) = %‘ a;il;

n—1

val {a;, ..., @y, L) =n!+> a;il.
1

Note that val ()=0, where () is the empty sequence.

Path is defined as follows: for each x in N, path (x) is the root path in P to the
leaf vertex v, where val v=x. Note that if x>0, then a,.,=>0, and n is least num-
ber such that x<n!. (Of course, path(0)=().) Lastly, if v={(a,, ..., a,—1, 1),
let I(v)=nl.

We note one important fact.

Fact. If there is a path from v to v’ in T, then
val (v) = val (v") (mod I(v)).

We now define a function from L to P.

Definition of p: L—~P.

If (z) is an eventually constant sequence with value x in N, then (z)p=path (x);
if (z) is a strictly increasing sequence in L, then (z)p is the infinite root path

1, 01,0050, ...
where
v,={ay, ..., ap_1, L)

if z,=n!4+Za;i!, for n=>1.

Now we equip the set P of maximal root paths in the tree T with a topology as
follows. For each vertex v of T, let B(v) denote the set of all paths in P which contain v.

5.1. Definition. The topology on P is determined by taking the collection of
sets B(v), véVer, as a basis.

Note that if v and v" are incomparable vertices, then B(v) N B(v") is empty, and
if v<v’, the intersection is B(v").

Recall the bijection p: L—~P above. The topology on L can be easily “seen”
in P.

5.2. Theorem. p is a homeomorphism.

Proof. Let B=B(v) be a basis set in P. If v is a leaf, B(v) is a singleton and
p~Y(B) consists of the eventually constant sequence with eventual value val (v).

Frontiers of one-letter languages 15

Otherwise, .
v={(a,...,a,y, L) so that

p~Y(B) = {{2)€L: z, = n!+Za;i!} =p;*(val v).

In either case, p~1(B) is a basis set in L. Thus, p is continuous. The argument
that p~1 is also continuous is equally easy and is omitted.

The frontzer of a subset 4 of a topological space is 4~ — 4. Using the above geo-
metric picture of the topology on P, we may describe the frontiers of subsets 4 of N
as follows. Each element x of 4 determines a finite path path (x) in P.(ending in a
leaf v with val (v)=x.) The collection of all the vertices in path (x) for x€4, deter-
mines a subtree of T, say T(4). The important fact about the tree representation is
this: if we identify the elements of N with their images under path, we obtain

The second representation theorem. The infinite paths in T(A) are precisely the
elements in the frontier of A.

For example, if we want to find a set 4 whose frontier is only countably infinite,
we might want T(4) to “‘look like” the tree in figure 5.2a. To do this, one may define
A as the set of all numbers of the form val(l,2,...,n,0,...,0,1) (for n,m=>g,
where there are m 0’s).

Since we want to characterize those subsets of N whose frontier in L (or P or
N ™) is uncountable, we will prove a theorem concerning those locally finite trees that
have an uncountable number of infinite paths.

5.3. Definition. B, is the complete binary tree — i.e. each vertex in B, has exactly
two immediate successors.

{1,0,1)

{1,0, 1) (12,0, 1)

{1,0,0, 1) {1,2,0,0,1)

Fig. 5.2a

16 'S. L. Bloom

5.4. Definition. Let T;=(V;, E;), i=1,2 be rooted trees, with V; the-set of
vertices and E;, the set of (ordered) edges. An order embedding T,—~T, is function
Jf: Vi~V such that for each pair (v, v") of vertices in T, there is a path in T, from
v to v’ iff there is a path from vfto v’fin T,.

5.5. Theorem. Let T be a rooted locally finite tree. Then T has an uncountable
number of infinite paths iff there is an order embedding of B,—T.

Proof. Since clearly B, has uncountably many paths, it is easy to see that if
there is an order embedding of B; in 7, T has uncountably many paths as well. Now
to prove the converse, we use the following fact

5.6. Lemma. Let T be a locally finite tree with uncountably many paths. Then
there are two incomparable vertices v, and v, in T (i.e. it is not the case that v,<v,
or v,<v;) such that for /=1,2, T(v;) has uncountably many paths, where T'(v;)
is the subtree of T consisting of v; and all of its successors.

Proof of the Lemma. Since T is locally finite, for each n there are only finitely
many vertices in 7 of depth n. For some n there must be two distinct vertices at depth
n, say v; and v,, such that the subtrees 7'(v,) and T(v,) of all descendents of v; and
v, respectively both have uncountably many paths. Otherwise, T has only countably
many paths, a contradiction.

Using this lemma, we can define an-order embedding of B, in T, by induction
on the depths of the vertices in B,. The root of B, maps to the root of T. The two
successors of the root of B, map to the first pair of incomparable vertices v, and v,
in T such that T(v), /=1, 2 has uncountably many paths. Having defined the em-
bedding f on all vertices of B; of depth » such that for a vertex v in B,, the tree T(vf)
has uncountably many paths, we use the lemma again to extend the definition of f
one level further. The proof of the theorem is complete.

We may easily translate this result into an arithmetic form. For integers u and v,
define

uSv if u=v and u=v(modl(u));
ie. if ,
u=nl+a;i!
and

then uCSv iff n=m and a;=b; for i<n. Say that a subset W of N is “B,-like” if .
for all x in W there are y,z in W such that xSy and xSz and y and z are -
incomparable.

The translation of 5.5 is:

5.7. Proposition. A subset X of N has an uncountable frontier iff X contains a
nonempty B,-like subset.
We obtain the following number theoretic fact as a result.

5.8. Corollary. The set of squares contains a B,-like subset.

Frontiers of one-letter languages 17

6. Final Remarks

It appears that the cardinality of the frontier of a one letter language is not a
useful tool for making distinctions among languages. One might then ask whether the
consideration of the sequence of frontiers of a language XC N will be more useful,
where the sequence X=JX,, Xy, ... is defined by

Xn+1 = Xn— —Xn;
i.e. the n+ 1-st set is the frontier of the n-th. However, it is easy to show that for every
subset X of N, X,, and hence X, for n>2, is empty.

In Scott’s talk, several of the results given here were stated: the theorem in Sec-
tion 3 that F is isomorphic to the product of the p-adic integers; the fact that N~
formed a compact, zero-dimensional Hausdorff space and our Corollary 2.6; most
- importantly he stated a version of the first representation theorem for the sequences
in F.

The paper [B] has some results of a category-theoretic nature related to the
theorem in Section 3. We have not made any use of the fact that N~ forms a free
profinite monoid. The reader interested in other properties of N~ (and other free
profinite monoids) may consult [B2] and [R].

Some of the results in Section 1 and 2 can be generalized to the case of the struc-
ture of convergent sequences of words in an arbitrary alphabet. The interesting pro-
blem of finding a concrete representation of the equivalence classes of these sequences
is, as far as I know, still open. However, in the case that M is a finitely generated free
commutative monoid, the monoid M ~ is a finite power of N, as Z. Esik observed.

Addendum

In a recent conversation, Scott suggested modifying the definition of the fron-
tier of a subset S of N as follows. Instead of defining the frontier of ' as the closure
of §~ minus S, S~ —S, let:

fron (§)=S~—int (§7),

where “int” denotes the interior operator. This definition has the property that
exactly the regular sets have an empty frontier, since fron(S)=§ iff the closure of
S is clopen.

~ Does the cardinality of this ‘“‘new frontier” give more information about the
structure of the set? Not much. For example, when S is the set of squares, we have
already shown that the closure of S is uncountable. The interior of the closure is
empty, by the following observation.

Proposition.. Let S be an infinite subset of N. If C is the closure of S, cI(S),
O=int(C)\F is empty iff S contains no infinite regular subset. (Recall that F is
the set of infinite elements of c/(N), the closure of N.)

Proof. First suppose that S contains no infinite regular subset. If x€0, there
is a regular subset R of S such that x€cl(R), by the definition of the topology.
Since Ris finite, c/(R)=R, and xitself is a finite number. Now suppose that int(C)\ F
is empty but that R is an infinite regular subset of S. Then cI(R) is a clopen subset
of int(C) and contains uncountably many elements of F.

Applying this proposition to the set Sg of squares, we see that int (cI(Sq))
contains only the elements of Sq itself, since, by the pumpmg lemma, Sq contains
no infinite regular subset. Thus, the cardinality of fron(Sgq) is uncountable.

2 Acta Cybernetica VII/1

18 S. L. Bloom: Frontiers of one-letter languages

We now show how to construct, for any subset A4 of integers, a set S=5(4)
such that fron(S) is also uncountable, and such that A is Turing equivalent to S.
(Thus, if 4 is nonrecursive, so is S.) In this construction, we make use of the rep-
resentation of the elements of c/(¥N) as paths in the tree T defined in section 5, as
well as proposition 5.7. We define the vertices in a subtree 4(T) of T by induction:
First assume that the vertex {0, 0,0, 1) belongs to A(T);

Now assume that for 4 <n, the set of vertices ¥V,_; of length <n which belong to
A(T) have been defined. For each vertex v€¥,., which is not a leaf, write v as

v={ay, ..., Gp-q, L)

Then define:
vl (={ay, ., G-y, 1))EV, iff n€ A; furthermore, define, for j=0 and j=1
v L (=(ay, .5 Qu-1,J, L)EV, iff n€A; if nis not in A4, then for j=2 and 3,
yLey,. :

Otherwise, vj and vj 1 do not belong to V,.
This completes the definition of the set of vertices of the tree A(T).

Note that the tree B, may be order embedded in T(A4), so that by proposition
5.7 the set S determined by the leaves of T'(4) has an uncountable closure. More-
over, T(A) does not contain all infinite paths containing a particular vertex, and
hence S does not contain any infinite regular subset. Lastly, it is clear that 4 and
S are Turing equivalent.

Acknowledgements

It is a pleasure to thank Dana Scott for introducing me to his convergent sequences and send-
ing me some references, including the slides of this talk. Jess Wright, Ralph Tindell and Doug Troeger
made several useful suggestions.

Abstract

In a talk titled “Infinite words™ given in the spring of 83, Dana Scott introduced the notion of a
convergent sequence of “words” (i.e. elements of a finitely generated free monoid). Scott stated a
number of properties of the collection of (equivalence classes of) convergent sequences, some of
which showed that this structure forms a free “profinite” monoid. The monoid of convergent se-
quences has a natural Stone space topology in which subsets of the free monoid have closures. Scott
asked whether an investigation of the “frontiers” of languages would lead to a useful classification of
languages. In this paper, an explicit description of the frontiers of all subsets of N, the one-generated
free monoid, is obtained. It is shown that the cardinality of the frontier of a subset of N cannot
distinguish regular from nonregular sets. A necessary and sufficient condition that a subset of N have
an uncountable frontier is given.

DEPARTMENT OF PURE AND APPLIED MATHEMATICS
STEVENS INSTITUTE OF TECHNOLOGY
HOBOKEN, NJ 07030

CONSULTANT TO THE MATHEMATICAL SCIENCES DEPARTMENT
IBM WATSON RESEARCH CENTER
YORKTOWN HEIGHTS. NY 10598

References

[B] BaNAScHEWSKI, B., On profinite universal algebras. General topology and its relations to modern
. analysis and algebra II (Preceedings 3rd Prague Topology Symposium 1971). Academia

. Prague 1972, 51—62.

[B2] BANASCHEWSKI, B., The Birkhoff Theorem for Varieties of Finite Algebras, manuscript 1980.

[EBT] ELcort, C., BLoom, S. L., TINDELL, R., The algebraic structure of rooted trees, J. of Computer

and System Science, vol. 16, No. 3 (1978) 362—399.

[(G] GRaTzER, G., Universal Algebra (Van Nostrand, Princeton, Toronto, London; 1968).

(K] KurosH, The theory of groups, translated by K. Hirsch, (Chesea, New York; 1960)

[R] REITERMAN, J., The Birkhoff theorem for finite algebras; Algebra Universalis 14 (1982) 1—10.

[s] ScortT, D., Infinite words, slides of a lecture given during the spring of 1983.

(Received Febr. 22, 1984)

A multi-visit characterization of absolutely
noncircular attribute grammars

By E. GomBAS and M. BARTHA

1. Introduction

Simple multi-visit attribute grammars were introduced in [1]. An attribute
grammar is simple multi-visit if each nonterminal has a fixed visit-number associated
with it such that, during attribute evaluation, the attributes of a node which have
visit-number j are computed in the j-th visit to the node. Putting in one class the attri-
butes having the same visit-number we get an ordered partition of the attributes of
the nonterminal. Thus, a visit to a node is a sequence of actions consisting of-(a)
computing-all the inherited attributes contained in the class corresponding to the visit,
(b) making some visits to the sons of the node and (c) computing all the synthesized
attributes of the class. This evaluation strategy can be implemented in a natural way
translating visits to recursive procedures, where inherited and synthesized attributes
correspond to input and output parameters, respectively. It was proved in [1] that the
problem whether an attribute grammar is simple multi-visit is NP (time) — complete.

In [2] Kastens introduced a subclass of simple multi-visit attributed grammars
and called them ordered. The problem whether an attribute grammar is ordered can
already be decided in polynomial time, but the choise of this subclass seems rather
heuristic. A somewhat larger subclass, whicH is still decidable in polynomial time was
investigated in [3]). However, because of the NP-completeness mentioned above there
is no reason to work out further improvements.

In this paper we investigate a class of attribute grammars that can be evaluated
by a multi-visit type strategy associating a fixed set of visits with each nonterminal,
but the order of these visits need not be predetermined. We call these grammars
generalized simple multi-visit. It turns out that this class of attribute grammars
coincides with the class of absolutely noncircular attribute grammars, for which a
more complicated tree-walking evaluator was given in {4].

It is known that the problem whether an attribute grammar is absolutely non-
circular is decidable in polynomial time. However we shall show that the problem
whether an attribute grammar is generalized simple m-visit for a fixed m (even for
m=2) is still NP-complete. This means that, instead of trying to minimize the number
of visits, it is more useful to execute them in parallel if possible. In section 5 we des-
cribe two such parallel evaluation strategies.

20

20 E. Gombdis and M. Bartha

It was shown in [1] that an attribute grammar is simple multi-visit iff it is /-order-
ed, i.e. for each nonterminal a linear order of its attributes exists such that the attri-
butes of a node can always be evaluated in that order. Let us call an attribute grammar
top-down controlled /-ordered if there exists a finite state deterministic top-down tree
automaton such that the state in which the automaton reaches a node of a derivation
tree determines the evaluation order of the attributes of the node. As it is to be
expected, the class of absolutely noncircular attribute grammars coincides with the
class of top-down controlled /-ordered attribute grammars, too.

2. Preliminaries

Since we are dealing with almost the same notions as those defined in [1] (e.g.
computation sequences, visit sequences, etc.), we adopt the main terminology intro-
duced in that paper.

An attribute grammar G consists of:

() A reduced context free grammar G,=(T, N, P,Z), where T and N
denote the set of terminal and nonterminal symbols, respectively, P is the set of
productions (syntactic rules) and Z€N is the start symbol. We shall denote nonter-
minal symbols always by capital letters, while terminal strings by small ones.

(ii) A set A of attributes, which is the union of two disjoint finite sets 4, and A;.
The elements of 4, and 4; are called synthesized and inherited attributes, respectively
(shortly s- and /-attributes). A function v assigns each nonterminal F a set I1(F) of
inherited and a set S(F) of synthesized attributes, i.e. v(F)=I(F)US(F). An
attribute a€v(F) will be referenced as a(F). The start symbol Z has only one s-att-
ribute, and it does not occur on the right-hand side of any production.

(iii) A set ¥(a) of possible values for each attribute a.

(iv) A set r, of semantic rules associated with each production p. If p is of the
form p: Fo—>w0F1 . Fy w, , then a semantic rule of r, is an equation: a,(F; o)—
=f(a,(F;), ..., a,(F;)) where 0=i=n, and f: V(a)X...XV(a)~V(a) is a
(recurs1ve) functlon This equation is 1nterpreted by saying that attribute a,(F;)
depends on attributes a,(F;), ..., ,,,(F) in p. We assume that G is in Bochmann
normal from, i.e. the rules of r, assign all and only the attributes in S(Fp) and I(F))
(j=1) using as argument only attributes in I(Fy) and S(F)).

The production graph of p: F0—>w0 Fy...F Wy (denoted by pg(p)) has as
nodes the disjoint union of v (F}), 0=i=n,. and there is an edge from a,(F;)
to ay(F;) iff ay(F;,) depends on a,(F;) in p. For a derivation tree 7 of G0 we get the
derlvatlon tree graph of t (denoted by dtg(t)) by pasting together the pg’s of all the
productions 7 consist of. G is noncircular if none of the derivation trees of G, has an
oriented cycle in its dtg. In the sequel, if no confusion arises we identify a nonterminal
node of a derivation tree with its label.

3. The generalized simple multi-visit property

To describe an attribute evaluation strategy we define computation sequences
similar to those introduced in [1]. A computation sequence is a sequence of so called
basic actions, where each basic action is either the evaluation of some 7-attributes of
a node, called entering the node, or the evaluation of some s-attributes of a node,

A multi-visit characterization of absolutely noncircular attribute grammars 21

called exiting the node. Thus, a basic action can be represented by a basic action sym-
bol (ba-symbol) i(n, A) or s(n, A), where n denotes a nonterminal node in a deriva-
tion tree and A is a subset of I(n) or S(n), respectively. Our computation sequences,
however, allow redundant computations, too.

Let G=(Gy=(T, N, P, Z), 4, v, {V(a)lac A}, {rp|pEP}) be an attribute gram-
mar, fixed in the rest of this section, and ¢ a derivation tree of G,. We always assume
that a derivation tree is complete, ie. its root is Z and its leaves are in T.

Definition 3.1. A computation sequence for ¢ is a string h of ba-symbols, which
satisfies the following four conditions.

(1) Start-end condition: the first and the last ba-symbols are i(Z, 0) and s(Z, 9).
(2) Sequentiality condition: for any two contiguous ba-symbols x;(n,, 4,)
xy(ns, A5) in h one of the following conditions holds.

(i) n, is a son of n, and x,=x,=I;

(i) n, is the father of #, and x;=x,=s;
(iii) n, is a brother of n, and x,=s and x,=I/;
(iv) ny=n, and x;#x,.

(3) Feasibility condition: For any production p consider an arbitrary occurrence
of pin t, and let n; and n, be any such nonterminal nodes of this occurrence that a, (n,)
depends on a,(n,) in p for some attributes @, and a,. Then the first ba-symbol in h
which contains a,(n,) cannot precede the first such ba-symbol that contains a, (n,).

- (4) Completeness condition: For- each-node n of ¢, if i(n, By), s(n, A, ...,

. i(n, By), s(n, Ay) is the sequence of the ba-symbols of n occurring in A, then
U ({4;UB}lic[k—1]) is a partition of v(n); furthermore A,UB,=@. The set
II(n)=U ({4;UB;}{ic[k]) will be called the visit set of n and each A;UB; (F¢[k])
a visit element. Since U ({4;UB;}|i€[k—1]) is a partition, each visit element, except
one is a nonvoid subset of v(n). v€II(n) will be referenced as v(n) or v(F), if Fis the
nonterminal label of n.

The (simple multi-visit) completeness condition in [1] required {4;UB;[i€[k]}
to be an ordered partition of v(n). The main point of our modification is that we allow
making the same visit to a node several times.

Let n, be a node of ¢ having sons n,, ..., n,, v=AUBEII(ng) and h a compu-
tation sequence for t. A visit trace of v(n,) in h denoted by tr(v (no)) is a substring of
h beginning with i(ny, B) and ending with s(n,, 4) such that there is no further
ba-symbol of n, between these two ones. By the definition of a computatlon sequence
tr(v(ng))=tr(vy(n))...tr(v,(n;)), where v, ...,v, are certain visit elements of
M, ..., 1y, respectively. The sequence v;(n;,).. v,(n,) will be called a visit sequence
of v(no) (Note that / might be 0, and a visit element might have several visit traces
and visit sequences so far.)

Let II: N —»9(9’(A)) be a function such that for every FEN II(F)=rU {0},
where n is a partition of v(F). Furthermore, let ¢ be a set of functions {o,|p€ P}
such that if p: Fob—»wyF;...F, Wn» then o, as31gns each v€IlI(Fy) a sequence
v (Fy)...0(F;) (1=0), where v EH(F) (me[l],i,€[n,)) and all-the v,-s are dif-
ferent n w111 be called a collection of visit sets for G and g a visit descrlptlon function
for II.

22 E. Gombas and M. Bartha

Definition 3.2. Given a collection II of visit sets for G, a visit description func-
tion g for IT and a derivation tree f, a computation sequence h for ¢ respects g if the
following condition holds. For each nonterminal node n of ¢, if n is the left-hand
side occurrence of a production p: Fo—~woFy...F, w, , then II(m)=II(F,) and
each v€ll(n) has a unique visit sequence in h which is equal to ,(v).

Note that there exists at most one computation sequence for t respecting g.
g is called a generalized simple multi-visit description function for II if each derivation
tree of G has a computation sequence for it respecting g.

Definition 3.3. G is a generalized simple multi-visit (gsmv) attribute grammar
if there exist a collection IT of visit sets and a gsmv visit description function g for II.
G is generalized simple m-visit (mEN) if [II(F)|=m+1 for each FEN.

From this definition it is clear that the only essential difference between smv and
gsmy evaluation strategies is that in the latter one each visit to a node must be made
only if this has not been done before.

Example 3.4. Let Z, 4, B and C be the nonterminals of the underlying grammar
with the following attributes. S(Z)=S(B)={s,}, I(Z)=1(B)=0, S(A4)={s,, 53},
I(4)={iy, i,}. The productions and the corresponding production graphs are listed
below.

5
VA .
A [] ./0\‘. A [} [] ® ®
5L S8 iz i]_ S S I 13
1:Z+ A4
a)

" Ans B , s
\.
1

3:4-~bB 4:B—~ 1

¢ d)

A multi-visit characterization of absolutely noncircular attribute grammars 23

If I(Z)=I1(B)= {{sl} Q} and II(4)= {{’1, 51}, {fz, 52}, 0}, then let (oi({s;}=
= {iy, So}(Ay) {1, s }(AD) {i1, 513 (A) {fa, $2}(42), 1(D)=0(4)0(4y), ({11, 5))=
=0,({#3, 8P = {51}(B), 0:(9)=0(B), 05({i1, s1})=@s({izs 5:))={5:}(B), ¢:(9)=0(B),
os({s1)=0,(0)=1.

It is clear that g is a gsmv description function for II. However, G is not smv,
because the visit elements of A cannot be evaluated in a fixed order. That is why we
had to put the single visit element of B into both gg@) ({1, 51}) and @y@({i2, 52))-

The following example shows that the void visit element is necessary.

Example 3.5. Let Z, 4 and B be the nonterminals of the underlying grammar
with the following attributes S(Z)={s}, S(4)=S(B)={s1, %2}, 1(Z)=9, 1(4)=
={iy, is}, I(B)={i, iy, i,}. The productions and the corresponding production graphs
are listed below.

A o s 9 . A o o s o
i 5 Sy I3 h S5 S I
1:Z + ad 2:Z ~ b4
a) b)
4 RIS,
Z\ \ R~/
B s ® o”\q .
L3 5N i S iz
34~ B 4:B—~ 4
XN - d)

-

o~ < . TV ~ : P - LR -
e 2 N - &

G is clearly gsmv, but in the production A—B the useless attribute /(B) can be
evaluated only in the void visit of A. .

To define the absolutely noncircular (anc) property we use the concept of induced
production graph (ipg) introduced in [5]. These graphs can be obtained by adding
some further edges to the production graphs. More exactly, considering a graph as
a relation we get the ipg graphs by taking the least fixpoint of the following system of
equations.

ipg(p)=pg(p)U {(a(F), b(F))lp: Fo~w,F,..

, ze[n,] and there is a qEP
with left-hand side F; such that (a(F), b(F,))Etpg @+ $ ~

24 E. Gombas and M. Bartha

G is anc if for each p€P ipg(p) is acyclic.

Let IT be a collection of visit sets for G. IT defines for every FEN a set B(F)
of nonvoid basic action symbols as follows. If II(F)={v,, ..., .}, then B(F)=
={s(F, A)licln], vi=A;UB;, B,SI(F), 4,=0}U {i(F, B))|j€ln], v;=A4;UB;, A4,S
S S(F), B;=0}.

The production graph over the nonvoid ba-symbols of p:Fo~w,Fy...F, w,,
(denoted by pgb,(p)) is the following graph. The set of its nodes is the disjoint union
of B(F),0=i=n,, and thereis an edge from x,(F;, 4;) to x;(F;,, Ay) iff a,(F;)
depends on a,(F,,) in p for some a,€A,, a,¢A,. From these graphs we construct the
induced production graphs {ipgh,.(p)|p€ P} as above, i.e. by taking the least fixpoint
of the following system of equations.

ngbn(p)ngbn(p)u {(l(Fn B)a S(Fh A)>|0§l§npa A;'ﬁQ’ B#Q and AUBE
GH(F,)}U {<’(Fu Bl, S(Fi] A2)>’ <S(Fi’ Al), i(Fi, B2)>| none Of Ai and Bi (l=]9 2)
is 0, {4,UBli=1,2}SII(F) and there isa gcP with left-hand side F; such that
G(Fy, By, s(Fs, ADYCingbe(@)*)-

Remark 3.6. If for each FEN II(F)={{a}|lacv(F)}U {8}, then ipgh.(p)=ipg(p)
for every p€P.
The following alogrithm can be used to compute the ipgh, relations.

Algorithm 3.7.

Step 1. For each pcP set ipghy(p)=pgb,(p)U{(i(F, B), s(F, A))|F occurs
in p, A#0, B#0 and ,AUBEII(F)}

Step 2. If j=0, then for each pcP let ipgh;.,(p)=ipgh;(p)U{((F, By,
s(F, Ap)), (s(F, Ay), i(F,By))| none of A;,B; (i=1,2) is 0, {4,UB]i=1,2}S
CII(F), F occurs on the right-hand side of p and on the left-hand side of such a
g€ P for which (i(F, B,), s(F, A;))€ipgb;(g)*}

Repeat step 2 until such a j is found for which ipgb;(p) =ipgb;.,(p) for all p€P.
Then ipgh,(p)=ipgb;(p).

It is easy to see that the time complexity of this algorithm is polynomial in the
parameters of G.

Lemma 3.8. Given a collection IT of visit sets for G, there exists a gsmv descrip-
tion function ¢ for IT iff ipgh,(p) is acyclic for every p€P.

Proof. (a) (¢ exists=ipgh, is acyclic)

It is enough to prove that if (x,(F, 4,), xo(F, 4;))€ipgh,(p)\pgb.(p), then
for every derivation tree f and F-labelled node n, of ¢ the following statement holds.
If h is the computation sequence for ¢ respecting g, then the first occurrence of
x,(ny, Ay) precedes that of x,(ng, 4,) in h. We shall prove this statement by an
induction following algorithm 3.7. First we make the following observation.

If 4,Svi(ny) and A,Sv2(n,) for some v}, vi€Il(n,), then consider the se-
quence ny, ..., n, (M=0) of nodes and the sequences v}(ng), ..., vL(n,) and
v3(ny), ..., V5 (n,) of visit elements with the following properties.

1) For each O=i<m, n;,, is the father of n; and v{,,(n;;,) (j=1,2) are those
visit elements for which the ba-symbols of v{(n;) can be found in the visit trace cor-
responding to v}, ;(n;+,) as first occurrences in h.

A multi-visit characterization of absolutely noncircular attribute grammars 25

2) a) vk(n,) =0vi(n,) =v, but ol(n)=ovi(m) if i<m, or
b) n,=2 and v.(Z) # v%(2).

Itis 1mportant to note that the correct choice of vf,;(n;4,)in 1) can also be done
by stepplng ‘upwards in t, following the nodes 7; 1, ..., By ...r Z.

Now it is clear that the first occurrence of x,(r,, 1) precedes that of x,(n,, A5)
in h iff one of the following three conditions holds.

(i) m=0;
(i) m=1, vL=1v2, and vL_, precedes vZ_; in 0(v,);
(i) np=2, vh="{a), vh=

This means that the order of the first occurrence of x;(n,, A;) and x,(n,, A,) in h
does not depend on the subtree of ¢ below n,.

As a basis of our induction let (x,(F, Ay), x5(F, A5))€ipgby(p). The only pos-
sible case x; =i, x,=s and A;UA,€II(F) is trivial.

Now let (x,(F, 4,), x,(F, Ag))Engb,H(p)\ngb (p) (j=0), and suppose that
the statement holds for every appropriate (xl(F A, x2(F’, Ay))Eipgh;(p’). Agaln,
we can restrict ourselves to the case x1=l xo=s and A,;UA,¢4II(F). Then F is a
right-hand side nonterminal of p. If n, is an occurrence of a right-hand side nontermi-
nal of some r€P, then by construction {i(F, A4,), s(F, Ay))€ipgh;,1(r), too. Let
g€ P such that the left-hand side of g is F and ((F, A4)), s(F, Az))Engb (¢9)*. Then
there exists a sequence of nonvoid ba-symbols x,(F,, By)...x;(F,, B) such that
Xo(F5, B)=i(F, A), x,(F, B)=s(F, 4y)" and {(x;_1(F;_1, B;-p), xi(F,, B))€
€ipgb;(g) for each i€[l]. Change the subtree below n, to an arbitrary subtree with
top production g. If ¢’ is the resulting subtree and 4’ is the computation sequence for
1" respecting g, then we have again that the order of the first occurrence of i(F, 4,)
and s(F, 4,) is the same in k" as in h. On the other hand, the inductive hypothesis and
the feasibility condition imply that for each i€[l] the first occurrence of x;_,(F;_y
B,_,) precedes that of x;(F;, B;) in ', so we are through.

(b) (ipgb, is acyclic= o exists)

For p: Fy=~woFy...F, w, €P, vy=AUBCII(F,) (A4S S(Fy), BEI(Fy)) we
construct o(v,) as follows Lét s(Fy, Ay, ..., s(Fy, Ay, i(F;, By), ..., i(F;_, B,)
be all the nonvoid ba- symbols that can be reached on a reversed path from s(Fo, A)
in ipgb,(p) (provided it is a nonvoid ba-symbol). Then define @(ve(Fp))=01(F,)-.-
.0 (F,) so that

(i) v (F,), ..., v(F,) are all the visit elements of the right-hand side nontermi-
nals such that F, =F; and v;(F,)NA4,(F;)#0 for some ré[k], or F,=F; and
v;(F,) N By(F;,)#0 for some s¢[m];

(i) if 1<1< j=1, x,(F,,, 4y) and x,(F,,, A,) are nonvoid ba-symbols of v;(F,)
and U () respecnveIYS then <x2(nys 2) xO(Fn,’ Al))élpgb (p)+

Those nonvoid visit elements of the rlght-hand side nonterminals that are not
listed in (i) for any v€ll (Fy) are put into Q(@(FO)) in an arbitrary order satlsfymg (ii).
Finally, the tail of ¢(8(F,))is O(F,)...0(F, ,)- Itis easy to check that such a g is indeed
a gsmv description function for II.

The proof of the following lemma is left to the reader.

26 E. Gombés and M. Bartha

Lemma 3.9. If I is a collection of visit sets for G such that ipgb_. (p) is acyclic for
every p€EP, then G is anc.

Our main theorem is now an immediate consequence of lemmas 3.8, 3.9 and
remark 3.6.

Theorem 3.10. G is gsmv iff it is anc,

4. The top-down controlled /-ordered property

A deterministic finite state derivation tree automaton (dfsdt) for a context free
grammar Go=(N, T, P, Z) is a triple Q=(Q, g, {u,|p€P}), where Q is a finite set
(the set of states), g€ Q is the initial state, and if p: Fo—=wyFy...F, w, €P, then u,
is a set of so called transition rules of the form qo(Fo)—»ql(Fl)...q,,p(F,,p) (q:€0),
where each g€ Q occurs at most once on the left-hand side of these rules. Q functions
in the following well-known way on an input derivation tree ¢ of G,. It starts by assign-
Ing state g to the root of #, then, if a nonterminal node n, of ¢ has already been assign-
ed a state g,, it assigns states (if possible) to the nonterminal sons of n, as follows. If
no 1s an occurrence of the left-hand side of p: Fo—~woF;... F, W, , m, ..., n,, are the
corresponding occurences of F, ..., F, , respectively and gqo(Fo) ~¢1(Fy)...q, (F,)€
€u,, -then for each #€[n,] Q assigns g; to n;. t is accepted by Q iff it is able to assign
a state to each nonterminal node of it in the above way.

Given an attribute grammar G and a dfsdt Q for G, a Q-defined /-ordering of G
is a partial function O which assigns for some pairs {g, F) (g€Q, FEN) a linear
order of v(F).

Definition 4.1. An attribute grammar G is top-down controlled /-ordered
(tcl-ordered) iff there is a dfsdt Q for G, and a Q-defined /-ordering O of G such that
for every derivation tree ¢ of G, there exists a linear order O, of the nodes of dtg (¢)
with the following properties.

(1) if a depends on b in a production occurring in ¢, then for the corresponding
occurrences of @ and b in dtg (¢) we have a<b in O, (feasibility);

(i) Q accepts all the derivation trees of G, (completeness);

(iii) if n is an F-labelled node in ¢ and Q assigns state g to n, then O(g, F) is
defined, and a<b in O(g, F) iff a<b in O, (O is respected).

Theorem 4.2. G is gsmv iff it is tcl-ordered.

Proof. We show the equivalence of anc and tcl-ordered properties.

(a) (tcl-ordered=ranc)

It is enough to prove that for every derivation tree ¢, if # is an F-labelled node in
t and Q assigns state g to n, then the following statement holds. If (a(F), b(F))€
¢ipg (p) for some p€P with a€I(F) and b€ S(F), then a<b in O(g, F). We omit
the proof of this statement since it is analogous to that of lemma 3.8/(a).

(b) (anc=>tcl-ordered)

Let Q=U(O(F) FEN), where O(F) is the set of l-orderings of v(F). We
construct {r,|p€P} and HE QXN by the following procedure.

Step 1. Put (g, Z) into H, where g is the unique l-ordering of v(Z).

A multi-visit characterization of absolutely noncircular attribute grammars 27

Step 2. If (go, Fo)€H (go is an lordering of v(Fy)), p: Fo-wiFy... Fyw, ,
then construct the graph ipg(p)=ipg(p)U {(a(Fy), b(Fp))la<b in gq,}. For each
i€[n,) choose an arbitrary [-ordering g; of v(F;) that extends the partial order

;E(p)“lv(Fi). Then add {(g;, F)li€[n,]} to H and qo(Fo)—»ql(Fl)...q,,’(F,,p) tor,.

Repeat step 2 until no more new elements can be added to H.

It is easy to see that if G is anc, then the graph ipg(p) constructed in step 2 is
always acyclic, so the automaton Q=(Q, g, {r,|p€P}) and the Q-defined /-ordering
0={((g, F), q)l(g, F)€H} satisfy the requirements of definition 4.1.

5. Implementations of the gsmv strategy

1) Implementation using recursive procedures.

Let G=(Go=(T, N, P,Z), A, v, {r,|p€P}) a gsmv attribute grammar, II a
collection of visit sets of G and ¢ a gsmv visit description function for II. We assume
that before starting attribute evaluation we are given a structure tree, the nodes of
which are represented by suitable data structures (e.g. records) with components for
the attributes, references to the sons, a rule indicator that indicates the production
applied to the node and a boolean flag for each visit element of the node which is true
iff the visit has already been executed. The initial value of these flags is false. Then for
each p: Fo—~woFy...F, w,, €P and v,€II(F,) we have a

_ procedure VISIT-p-vy(ne); node (ng);
comment Qp(uﬂ) =0 (le) iidd U,(Fm');

begin
compute all the i-attributes of v, at n,
Jor k=1 to |

comment let ny, ..., n,, be the sons of n, having
labels Fy, ..., F,,, Tespectively;
begin
if Tflag-v;-n,, then
begin
flag-v, - n,, =true;
case rule indicator - n,, of
comment let q, ..., g; be all the productions with left-hand side F,, ;
9 VISIT-¢,-0, (1) 5

q;: VISIT-g;-v,(n,,,);
esac
end;
end;
compute all the s-attributes of vy at n,
end

2) Implementation using a system of tasks with parameters.
Here we assume that each node n of the structure tree has the following binary
semaphores beyond the components (exept the flags) defined so far '

28 E. Gombas and M. Bartha

@) blnary semaphores i(n, v) and s(n,v) for each v€IlI(n) such that i(n,v)
5((n, v)) is true iff the evaluation of all the i-attributes (s-attributes, respectively) has
already terminated. We do not need #(n, v) (s(n, v)) if there are no i-attributes (s-
attributes, respectively) in v(n).

(i) a binary semaphore x(n, v), which is true iff the evaluation of v has already
begun.

The initial value of these semaphores is clearly false. We treat semaphores i(n, v)
and s(n, v) by the following primitives:

wait (w): L: if w=0 then goto L
send (w): w: =1
Semaphores x(n, v) will be treated by the indivisible Boolean procedure T'S(x)
(cf. [6]) of the form:
Boolean procedure TS(x)
Boolean x;

begin
TS:=x;
x:=true;
end

Now for each p: Fo—woFy...F, w,, and v€II(F,) we have a task:

p u(nO)’ nOde No;
wait (i(my, 09)); ... wait (i(my, v5))s
comment.: my 1s the ‘father of ny, it 1s a left-hand s1de occurrence of g€ P and
{i(my, Uo)|l€ [k]} are all the semaphores such that some aEv depends on
some bevy in g;
wait " (s(my, v})); ...; wait (s(m;, v}));
comment: my, ..., m, are all the sons of my(n,=m; for some je[n,)), is€[n,)
for each s€[/] and {s(m,,, v,s)lsé[l]} are all the semaphores such that some
a€v depends on some b€wvs, in g;
compute all the i-attributes of v;
send (i(n,v));
for j=1to i
begin
comment: @(v)=vy(F,)...v(F,), ny, ...,n,, are the sons of n, such that n,
is a left-hand 51de occurrence of ¢,€P;

if 1TS(x(n,,,v;)) then activate T, 00 ()
end;
wait (s(n,,,v)); ...; wait (s(n,, v));
compute all the s-atmbutes of v;
send s(n,, v)

We omitted the two case statements that should be applied to find the rules ¢
and {g, |j€[:]}-

3) Implementatlon using a task system so that overlaps are allowed among the
visit sets.

A multi-visit characterization of absolutely noncircular attribute grammars 29

For any nonterminal F choose a production py such that F occurs on the right-
hand side of py. For each s-attribute a€v(F) let v,={a, by, ..., b,}, where {b;i€
€[m]} are all the i-attributes of F such that a depends on b; in ipg(py). Clearly, v,
does not depend on the choice of pr. Let II(F)={v,|la€S(F)}. Now we assume that
each attribute a€v(n) has own semaphores x(n, @) and y(n, a@) at node »n of the
structure tree. y(n, a) is true iff the evaluation of a has terminated at node n. If ac 4;,
then x(n, a) is true iff the evaluation of a has already begun at n, and if acA4;, then
x(n, a) is true iff the evaluation of v, has already begun. It p: Fo—wyF;... F, w, €P
and v,€I1(F,), then we have the following task:

Tp,va(no); nOde ("0)';
Sfor j=1 tom
comment: v,={a, by, ..., b,};
if 1 TS(x(no, b)) then
begin wait (y(mo, b))); ...; wait (y(m, bl));
wait (y(m$; af)); ... “wait (y(m@, a));
comment: m, is the father of Hy, it 1s a left-hand side occurrence of gep,
my, ..., m,_ are the sons of m, and {bli€[k1}U {ails€[/]} are all the attri-
butes bj depends on in g;
compute b;;
send (y(na, b));
end;
comment: @i, ..., g; aie all the s-attributes a depends on in p, n,, ..., n, are
the sons of n0 such that #, 1s the left-hand side of g¢,€ P, a;€v(F,) for each

SR ()
if 1TS(x(n,,,a J)) then activate Ty, ap5
wait (y(n,,, @)); ...; wait (y(n,‘,a,))
compute a;

send (y(no, a))

6. NP-completeness

We have seen that the problem whether an attribute grammar is gsmv can be
decided in polynomial time. However, we shall prove that it is NP-complete to decide
whether an attribute grammar is generalized stmple m-visit for a fixed m=2.

Theorem 6.1. The problem whether an attribute grammar is generalized simple.
2 visit is NP-complete.

Proof: This problem is in NP, since we can guess an appropriate collection of
visit sets IT by a nondeterministic algorithm in polynomial time and check whether
ipgh,. is acyclic using algorithm 3.7.

To prove NP-completeness we construct for every Boolean formula F, in con-
junctive normal form an attribute grammar G(F,) such that F, is satisfiable iff
G(F,) is gs-2-visit.

Let F, be a Boolean formula which is a product of sums of literals. A literal is
either P or not P for some Boolean variable P. If Fy=F;*...* F,and F;=L{+...+ L} ,
i€[n], then in G(F,) we have a nonterminal P for each varlable P, nontermmals Fi, .oy

30 E. Gombds and M. Bartha

..., F, for each factor, nonterminals Li, ..., L{ , i€[n] for each literal and nontermina,
Fy, which is the start symbol. If P is a variable nonterminal, then I(P)={, i}
S(P)={s, 8, 83}, F, has s; and all the other nonterminals have 7, and s,. The pro-
ductions and the corresponding production graphs are the following.

H S
E o .
5
}:\ / \
F, « o s+ F,o . Ll. 0. La. . L, .

@ co &

il. Sy il 5y il 51 il. S l.]_ Sy
Fy~ F*..xF, FE-Li+..+L
a) b)
iy 5 i
/0 1/1‘\ 011 ch
iy 0 Sz 5 S iy ,': s‘, .sl s.
Li—~P L~ not P
c) d)
iy Iy S S5 s
[] L] []] []
\.__/
P2
e)

Let G’ (F,) be the attribute grammar which differs from G (F,) only in that v(P)=
={i, Iy, 51, Sz} for each Boolean variable P of F,. The pg’s of G’(F,) are the restric-
tions of the pg’s of G(Fy) to this set of attributes. It was shown in [1] (Theorem 4.1)
that G’(F,) is simple multi visit iff F, is satisfiable. On the other hand G(F,) is gs-2
visit iff G' (F,) is simple multi visit. Indeed, if G’ (F,) is smv, then we can fix II(P)=
={{i1, 51, 8}, {iz> 52}} or I(PY={{i1, 51}, {ia, 52, 5}} for each variable P. If G’(Fy)
1s not smv, then there are at least two occurrences of a variable P in the derivation
tree of G’ (F,) such that the visits {i;, 5,} and {i;, s,} of P must be evaluated in dif-
ferent order at these occurrences. Hence s cannot be put into any of these two visit
sets, it must be evaluated in a third visit.

I

A multi-visit characterization of absolutely noncircular attribute grammars 31

To show NP-completeness for m=>2 we only have to define m—2 preliminary
visits to the variable nonterminals so that e.g. for m=3 the last three pg-graphs of
the previons figure should be

1y 81 I Sy

/ /0\ ® ’s' ° ‘ ° i’F—/.S'

iy 52 5 8 i i iy Sz) 5
L.~ P Lj -~ not P
c) d)

i iy S2 51 s i’ s

.\k_’_f/. % ¢
P12

e)

Abstract

The concept of smv attribute grammar is generahzed by using redundant computation sequences
in the specification of visit sets and visit sequences. It is proved that these gsmv attribute grammars

- -are -the same as the absolutely noncircular ones.

An attribute grammar is top-down controlled /-ordered if there is a deterministic finite state
top-down tree automaton such that for every node of every derivation tree, the order in which the
attributes of the node must be evaluated is determined by the state in which the automaton passes
through the node. It is proved that an attribute grammar is generalized smv iff it is top-down con-
trolled /-ordered.

Finally it Is shown that the problem, whether an attribute grammar is gs m-visit for a fixed
m=2 is NP-complete.

RESEARCH GROUP ON THEORY OF AUTOMATA DEPT. OF COMPUTER SCIENCE
HUNGARIAN ACADEMY OF SCIENCES A. JOZSEF UNIVERSITY
SOMOGYI U. 7. ARADI VERTANUK TERE 1.
SZEGED, HUNGARY SZEGED, HUNGARY
H-6720 H-6720

References

[1] ENGELFRIET, J. and FILE, G., Simple multi-visit attribute grammars, Journal of Computer and
System Sciences, v. 24, 1982, pp. 283—314.

[2] KAsTENS, U., Ordered attribute grammars, Acta Informatica, v. 13, 1980, pp. 229—256.

[3] GymMOTHY, T., SIMON, E. and MAKAY, A., An implementation of the HLP, Acta Cybernetica,
v. 6, 1983.

[4] KENNEDY, K. and WARREN, S. K., Automatic generation of efficient evaluators for attribute
grammars, Conf. Record of the Third ACM Symp. on Principles of Programming Languages,
1976, pp. 32—49.

[5] KNuTH, D. E., Semantics of context-free languages, Math. Systems Theory, v. 2, 1968, pp. 127—
145.

[6] SHAW, A. C., The logical design of operating systems, Prentice-Hall, Inc., 1974.

{ Received Nov. 17, 1983)

Indexed LL (k) Grammars

R. PARCHMANN, J. DUSKE, J. SPECHT

1. Introduction

In the literature a number of extensions of context-free languages have been
proposed. The motivation for this is to describe certain constructs of ptogramming
languages which are not context-free. An impo1tant class of such an extension are
the indexed languages introduced by Aho [1].

In the area of context-free languages, the LL (k) languages are of special interest.
In[10] and [11] proposals have been made to generalize this notion to the indexed case.

Indexed languages coincide with the I0-macro languages introduced in [2]. In_
'[6], Mehlhorn defined the notion of a strong LL{k) macro grammar and investigated
this class of grammars. Furthermore he defined the notion of a general LL(k) macro
grammar and stated the following problems for these classes of grammars:

(a) Is the class of languages defined by the strong LL(k) condition equal to the
class of languages defined by the general LL(k) condition?

(b) Is the general LL(k) condition decidable for a given k?

In [10], Sebesta and Jones gave a positive answer to question (b) for indexed
grammars without e-productions in the case k=1.

In this paper we will answer completely these two questions for indexed LL(k)
grammars.

In Section 2, basic notions and definitions will be given and compared with those
introduced in {10] and [11].

In Section 3 it will be proved that the strong indexed LL(k) property is decidable
for a given k.

In Section 4 we will show that the strong indexed LL(k) languages are determi-
nistic indexed languages which were introduced in [7]. In Section 5 deterministic
context-free languages will be characterized as right linear strong indexed LL(1)
languages.

In Section 7 the main result of this paper, namely the decidability of the general
indexed LL(k) property will be proved. This will be shown by using a general transfor-
mation on indexed grammars given in Section 6. This transformation converts an
arbitrary indexed grammar into an equivalent grammar which is a strong indexed
LL(k) grammar iff the original one is a general indexed LL(k) grammar. This answers

3 Acta Cybernetica VIIf1

*°

34 R. Parchmann, J. Duske, J. Specht

the question (a) posed above. The decidability of the strong indexed LL(k) property
then implies the decidability of the general indexed LL(k) property, which answers
question (b).

2. Definitions of indexed L.1(k) grammars

In this section we will consider subclasses of indexed grammars. Aho [1] intro-
duced indexed grammars and languages. We will state these notions in the following
form:

Definition 2.1. An indexed grammar is a 5-tuple G=(N, 7,1, P, S), where

(1) N, T, I are finite pairwise disjoint sets; the sets of variables, terminals, and
indices, respectively. ‘

(2) P is a finite set of pairs (Af, &), AEN, feIU{e}, a€(NI*UT)*, the set of
productions. (Af, o) is denoted by Af—a.

(3) SeN, the start variable.

Let a=u1B1ﬂ1u2B2ﬁ2...Bkﬁkuk+1 With uiET* for le[l: k+1], and BJEN,
B;€I* for j€[l: k] with k=0 be an element of (N/*UT)* andlet ycI*. Then we
set

a:y = uy By fryusBofsy ... By Prytigss-

For u, ve(NI*UT)* we set u=v iff u=@,Afyp,, v=¢,(0:7)@, with @,, @€

€(NI*UT)* and Af—acP. = is the n-fold product and = is the reflexive, transitive
closure of =.

The language L(G) generated by an indexed grammar G=(N, T,1, P, S) is
the set L(G)={wlweT* and S>w). A language L is called an indexed language
iff L=L(G) for an indexed grammar G.

The subclasses of indexed grammars considered in this paper are the indexed
LL(k) — and strong indexed LL (k) grammars, whose definitions are generalizations
of the corresponding context-free notions. Furthermore we will compare these defini-
tions with the corresponding definitions introduced in [10] and [11]. First we will
introduce some basic notions.

Let ~ be an alphabet and let k=1 be an integer. ®Z* denotes the set of all
words w over X with |w|=k, where |w| denotes the length of w. The function
®: p*~x* s the identity on ¥ X* and assigns to each we€Z* with |w|>k the
prefix of w of length k.

Now let G=(N, T, I, P, S) be an indexed grammar. Let n: Af—f be a pro-
duction, let k=1, and let y€I*. Then we set

First, (1) = {Pu|S *= wAa ™= wl *= wu),
First, (7,) = {Pu|Ay*= 0 *= u},

where w, u€T*, and where *= and "= are leftmost derivations. Furthermore we
set for OE(NI*UT)*

First, () = {Pu|0*= u} with wuecT*.

From now on, all derivations are assumed to be leftmost derivations.

Indexed LL(k) Grammars . 35

Now we define the notion of an indexed LL(k) grammar (ILL(k) grammar).
This notion corresponds to the context-free LL(k) grammars.

Definition 2.2. Let G=(N, T, 1, P, S) be an indexed grammar and let k=1
be an integer. G is called an ILL(k) grammar if the following holds:
Let
S *= wAdya "= wl,*=> wx and

S *=> wAyo T= wl, *='wy

be two leftmost derivations with A€EN, yel*, «c(NI*UT)*, and w, x, yeT*.
Then ®x=®y implies n=n".

(Note: I=0 yields the context-free LL(k) grammars.)

Remark. Let G be an ILL (k) grammar. Then for each word we€L(G) there is
exactly one leftmost derivation according to G.

Example 2.1. Consider the indexed grammar G=(N, T, I, P, S) with N=
={S,4,B,C}, T={a, b, c} and I={f, g}. The productions in P are =,: S—~aAf,
Ty: S—~bAg, ny: A—~B, ny: A~C, mns: Bf—a, ng: Cf—b, n;: Cg—~a, and ng:
Bg—c. Only the following derivations are possible:

S =aAf = aBf = aa,

S = adf=aCf= ab,
- : : S=bAg =bBg = bc,

S =bAg = bCg = ba.

Obviously G is an ILL(J) grammar.
As for the context-free case it is possible to define the notion of a strong ILL(k)

grammar.

Definition 2.3. Let G=(N,T,I, P, S) be an indexed grammar and let k=1
be an integer. G is called a strong ILL(k) grammar if First,(n) NFirst,(n")=0 holds
for all productions m=n" which possess the same lefthand side or are of the form
n: A—a, n'; Af—-ao’ with fE€L :

(Note: I=9 yields the context-free strong LL(k) grammars.)

Remark. It is easy to see that strong ILL(k) grammars are ILL(k) grammars.
The ILL(1) grammar G of Example 2.1 is not a strong ILL(1) grammar because
First,(n;)={a, ¢} and First,(n,)={a, b}. This shows that an ILL(k) grammar is
not necessarily a strong 1ILL(k) grammar even for k=1. This differs from the con-
text free case.

We can state:

Theorem 2.1. 1) A strong ILL(k) grammar is an ILL(k) grammar. 2) An ILL(1)
grammar is not necessarily a strong ILL(1) grammar.

We will call a language a (strong) ILL(k) language if there exists a (strong)
ILL(k) grammar generating this language.

3

36 R. Parchmann, J. Duske, J. Specht

We will now compare our definition of ILL(k) — and strong ILL(k) grammars
with the definitions of indexed LL2(k) — and indexed LL1(k) grammars introduced
in [10]. '

Obviously, an ILL(k) grammar is an indexed LL2(k) grammar. On the other
hand consider the indexed grammar given by the productions n,: S—Af, n,: 4A—a,
and my: Af—a. The two possible leftmost derivations

S "= Af "= a,
Sm=> Af = a

of the same word a according to this grammar show that it is not an ILL(1) grammar,
but the LL2(1) condition is still satisfied.

The notion of a strong ILL(k) grammar and that of an LL1(k) grammar are in-
comparable.

The indexed grammar G, given by the productions z,: S—adf, n,: S—~bAg,
ng: Af-ab, and my: Ag—ac is obviously a strong ILL(1) grammar.

G, is not an indexed LL1(1) grammar, since BASE(G,) (see [10]) is not a context-
free strong LL(1) grammar. This stems from the fact that in leftmost derivations
according to G,, applicability of n, excludes applicability of 7, and vice versa. On the
other hand consider the indexed grammar G, given by the productions =,: S—A4f,
7t,: S—~Ag, and my: A-a in P. G, is not a strong ILL(1) grammar, since
First, (n,) NFirst, ()= {a}. G, obviously is an indexed LL1(1) grammar.

Furthermore, G, is not an indexed LL2(1) grammar, which shows that Theorem
4 in [10] is false.

In [11], three types of indexed LL(k) grammars, the a, §, y-ILL(k) grammars
were introduced. It is easy to see that the definitions of a-ILL(k)- and ILL(k) gram-
mars and those of B-ILL(k)- and strong ILL(k) grammars coincide. These notions
are defined but are not investigated further in [11], where only y-ILL(k) grammars
are investigated. These grammars do not even include all context-free LL(k) gram-
mars.

3. Properties of strong ILL(k) grammars and languages

In this section we will first show that, given an indexed grammar G and a pro-
duction n€P, the language First,(n) can be given effectively. This result implies
that it is decidable whether a given indexed grammar is a strong ILL(k) grammar for
a given k. Furthermore, we will call an indexed grammar “‘reduced”, if each produc-
tion occurs in at least one derivation of a terminal word. With the aid of First,(n),
we can construct, given an indexed grammar G, an equivalent reduced indexed
grammar.

Theorem 3.1. Let an indexed grammar G=(N, T, I, P, S), a. production
n€ P, and an integer k=1 be given. Then an indexed grammar G” with L(G")=
=First,(z) can be constructed effectively.

Proof. Construct the indexed grammar G'=(N,T’,I,P’,S) with T’'=
=TU{#}, and P’=PU{n"} where n": Af— 4o if n: Af-a. It is easy to con-
struct a finite transducer M with M(L(G’))=First,(n). Here we use the notion
“finite transducer” as given in [1].

-

Indexed LL(k) Grammars 37

From Theorem 3.1 and Lemma 3.2 in [1] it follows that we can construct effecti-
vely an indexed grammar G” with L(G")=M(L(G’))=First,(r).
Now we can state

Corollary 3.1. Let G=(N, T, I, P, S) be an indexed grammar, 7 a productlon
of G, k=1 an integer, y€I*, and BE(NI*UT)* Given a v€®T* it is decidable
whether

(1) v€First, (), (2) v€First, (), (3) v€First,(n,y) holds.

Proof. (1) Construct an indexed grammar G” with L(G”)=First,(n). In [5]
it is shown that the membership problem for indexed languages is decidable.

(2) With the aid of G construct the indexed grammarG’—(N U{S'}. T, 1, P, S")
where S’ is a new start variable and P’=PU{r’} where n’: $'—~0 isa new produc-
tion. Then we have First,(8)=First, ().

(3) Let Afbe the lefthand side of the production 7. If z cannot be applied to Ay,
then we have First,(n,y)=0. If Ay*=0, then First,(r, y)=First,(§) holds.

Corollary 3.2. Let G=(N, T, 1, P, S) be an indexed grammar and k=1 be
an integer. It is decidable whether G is a strong ILL(k) grammar.

Since the language First,(n) can be given effectively for an indexed grammar G,
it is possible to single out all productions of G which never appear in derivations
of terminal words. We will call an indexed grammar without such productions
“reduced”.

_ Definition 3.1. An indexed grammar G=(N,T,I, P,S) with L(G)=0 is
called reduced if for each n€ P there exists a derivation of a terminal word in which
7 is. applied.

Theorem 3.2. Let G=(N, T, 1, P, S) be an indexed grammar with L(G)=0.
Then it is possible to construct a reduced indexed grammar G'=(N, T, 1, P’, S)
which is equivalent to G.

Proof. Determine for each production = the language First,(n). If First,(x)=0
then remove the production. The grammar G’ obtained in this way is reduced and
obviously L(G)=L(G") holds. .

4. Strong ILL(k) languages are deterministic indexed languages

In [7] an indexed pushdown automaton (IPDA) has been defined, and it has been
shown that these automata accept exactly the indexed languages.

Furthermore, a deterministic IPDA (d-IPDA) has been introduced in [7]. The
class of languages accepted by these automata is called the class of deterministic
indexed languages (DIL’s). This class has properties similar to those of the class of
deterministic context-free languages [7, 8]. In this section we will show that the strong
ILL(k) languages form a subclass of the DIL’s.

Theorem 4.1, If G=(N, T, I, P,S) is a strong ILL(k) grammar then L(G)
is a deterministic indexed language.

38 R. Parchmann, J. Duske, J. Specht

Proof. We will construct a d-IPDA K which accepts the language L(G)$*
where $ is an endmarker not in T. Since the deterministic indexed languages are closed
under right quotient with regular sets {8], the language L(G) is a DIL.

The states of K are the contents of a buffer of length k. This buffer contains a
lookahead of k input symbols. Furthermore, the automaton simulates leftmost deri-
vations according to G.

Set K=(Z, X,Iy, Ty, 0,2, Ay, 8, F) with Z=®X*U{z,}, X=TU{8},
Ih=NUTU{4,}, where 4, is a new element, I';=1I, zy=g,=e, F={z,;}, and ¢
will be defined as follows:

(1) For all ucX* with |u|=k-—2 and acX set
| (ua, (Ao, ©)€5(u, a, (Ao, ©)).
For all yeX®Y, acX set
(ua, (S, €)(4y, €))€d(u, a, (4,, €)).

(2) Let n: Af—B,y,...B,y, be a production of G, r=0, B£NUT, and
y:€I* for i€[l: r]. Then set (v, (By,71)...(B,,7,))E(v, e, (4, 1)) if |v|=k "and
v€ First,(n), where © is the maximal prefix of v with o€ T™*.

(3) For all b€X, acT, and u€X*~! set (ub, e)€5(au, b, (a, €)).

4) (2, €)€6(3, e, (4o, ©)).

Obviously, we have L(K)=L(G)$*. Since G is a strong ILL(k) grammar, we
have |8(z, x, (B, g))|=1 for all z€Z, x¢XU{e}, Ber,, and g€lIU{e}. (For
example: 6(v, e, (4, €)) with -A€N can only be defined in (2). If [8(, e, (4, €))|>1
we have a contradiction to the strong ILL(k) condition.)

It is easy to see that in each configuration (z, w, 6) of K at most one move is
possible. (For example: 6(v, e, (4, €))=0 and 6(v, e, (4,f))#9 in (2) for AEN
and f€I leads to a contradiction to the strong ILL(k) condition.)

Therefore K is a deterministic IPDA.

5. Strong ILL(k) languages and deterministic context-free languages

Theorem 4.1. shows that the class of strong ILL(k) languages is contained in the
class of DIL’s. The DIL’s include all deterministic context-free languages, which we
will now characterize as a special class of strong ILL(1) languages.

Theorem 5.1. For each deterministic context-free language L there exists a
strong ILL(1) grammar G with L=L(G).

. Proof. Choose-a deterministic pda K=(Z, T, T, 6, zy, Ay, F) with- L=L(K).
We may assume that in a final state, K may make no e-move (see [4], p. 239). Now
construct- the following indexed grammar G=(N, T, I, P,S) with N=ZU{S}
and I=T. The productions of G will be defined as follows:

2) If 6(z,a,A)=(z, B,...B,), then the production zA4A—+az’B,...B, is in P.
3) For each z€F the production z—e is in P.

Indexed LL(k) Grammars 39

Obviously, G is a strong ILL(1) grammar generating L.
The productlons of the indexed grammar G in the foregoing proof are of a spe-
cial “right linear” form. Let us define:

Definition 5.1. An indexed grammar G=(N, T, I, P, S) is called a right linear
indexed grammar, if each production in P has one of the forms A4f—aBy or Af—a
with A4, BEN, felU{e}, acTU{e}, and yel*.

Recall that an indexed grammar G=(N, T, 1, P, S) is called an RIR grammar
(right linear indexed right linear) if all productions in P are of one of the forms
Af—-aB, Af~a, or A—aBf, where A, BEN, acTU{e}, and felU{e}.

RIR grammars generate exactly the context-free languages. (see [1]).

Obviously, each RIR grammar is a right linear indexed grammar. On the other
hand, it is easy to show that for each right linear indexed grammar there is an equiv-
alent RIR grammar.

Therefore we can state:

Theorem 5.2. Right linear indexed grammars generate exactly the context-free

languages.
Now we can state:

Corollary 5.1. Each deterministic context-free language is generated by a right

linear strong ILL(1) grammar.
To prove the converse of this statement, we first need the following lemma.

Lemma 5.1. For each right linear indexed grammar G=(N, T, I, P, S) there
_exists an equivalent right linear indexed ‘grammar G’ with the following properties:

1) There is exactly one start production.
2) All the other productions are of the form Af—a with fe.
3) If G is a strong ILL(k) grammar, then G’ is a strong ILL(k) grammar.

Proof. Set G'=(N',T,I’,P’,S’) with N'=NU{S’), I'=IU{#} and
P'={S’>S4#}UP", where P” is defined as follows:

a) If Af—-a€P, f#e, then Af—-acP”.

b) If A--a€P, then Ag—a: geP” for all gel'.

Obviously, G’ is a right linear indexed grammar which satisfies 1) and 2), and
is equlvalent to G. Furthermore, it is easy to see that if G is a strong ILL(k) grammar,
then G’ is a strong ILL(k) grammar too.

Now we can prove:

Theorem 5.3. Each right linear indexed grammar G=(N, 7,1, P, §) which
is a strong ILL(1) grammar, generates a deterministic context-free language.

Proof. If L(G)=0 then L(G) is a deterministic context-free language. If L(G)##

#0, construct G'=(N", T, I’, P’, §") according to the proof of Lemma 5.1. Further-

«more we can assume w.l.0.g. that G’ is reduced. We will define a pda K which accepts

the language L(G")$, where $ is a new symbol. K buffers a lookahead of length oneé

in its states and simulates leftmost derivations according to G’. The strong ILL(1)
property of G’ then implies that K is a deterministic pda.

Set. K=(Z, X, T, 0,2, %, F) with Z=N"X(TU{e,$PU{z,}, X=TU{S},

r=r, z,=(S’,e), F= {z,} and define & as follows: :

40 R. Parchmann, J. Duske, J. Specht

(1) For all c€X let ((S,c), #)€6((S",e), ¢, %)
(2) Let n: Af—aBy be a production in P with A=S’.
(a) If as£e then ((B,c),7)€d((4,a),c,f) for all c€X.
(b) If a=e then ((B,b),7)€d((4, b), e,f) for all beWFirst,(n)S.
(3) Let mn: Af-+a be a production in P.
(@) If a=e then (z,,€)€d((4, a),$,f)
(b) If a=e then (z;,e)€6((4,83),e,f).
First we make the following observations concerning K:

Claim 1. 1If 6((4, a), ¢, f)#9 for a, c€ X then thereis a production n: Af—~ax
and {a}=First,(n)=®First,(n)$.

Claim 2. If 5((A, a),e,f)#0 for acX then there is a production n: Af—«
with a=e or the first symbol of « is in N and furthermore a¢ WFirst,(n)$.

Claim 1 and Claim 2 correspond to the subcases (2) and {b) respectively in the
above definition of é.

Claim 3. For all z€Z, c€XU{e}, and feI' we have [6(z, c,f)|=1.

If z=(S",e) then |6(z,¢,f)|=1 obviously holds. Now assume z=(4, a)
with a€X and [6(z, ¢, f)|>1. Then there are productions « and =’ with ns=7" and
ac ™ (Firsty(m)$)@ (First,(n’)$). This is a contradiction to the strong ILL(1) pro-
perty of G.

Now consider z=(A4, @) with a€X and fe€I. If d(z, e, f)#0 and 6(z, c,f) =0
for a c€X then Claim 1 and Claim 2 state the existence of two productions 7 and 7’
with n>n’ and furthermore a€®(Firsty(n)$)N® (First,(z')$). But this is a con-
tradiction to the strong ILL(1) property of G.

If z=(S’,) then 6(z, e, /)=0 holds. Together with Claim 3 this shows that X
is a deterministic pda.

To prove L(K)=L(G)$ we need

Claim 4. If S#">wAy#*>wv, w,v€T*, AEN, according to G’ then
(25, w08, #) FEL (4, 0,0,y #) according to K, and cv’=v$ with cse.

The claim will be proved by induction on n.

If n=0 then w=y=e and A=s. According to K we have

((S’, €), v8, #)((S, o), v, #) with ¢’ =v$ and c #e.

Assume the claim holds for all k=n.

Let S#">wAdy#">waBy #*>wav be given where acTU{e}. From the
induction hypothesis (z,, wav$, %) - ((4, ¢’), v”, y#) with ¢’v"=av$ and
¢’#e follows. If now a€T then ¢’=a and v”=v$ holds. According to K the move
(4, @), 08,y) ((B, ¢), v',y’#) with cv'=0v$ and cse is possible. If a=e
then c¢'v”"=v$ and c¢’€®(First;(7)$) holds. According to K the move
(A4, N, v", 74)= ((B, ¢’), v”, ¥’ #) is possible. This completes the induction.

Now, by induction on n we will show

Claim 5. If (zy, wo8, #) F=2= (4, ¢),v',y#) with w,v€T*, cv'=v$ and
c#e holds according to K then Si#">wdy4 holds according to G.

. Indexed LL(k) Grammars 41

If n=0 then we have ((S’, €), wv8, %)i ((S, ¢), v', y %) with cv'=v$ accord-
ing to K. This implies w=y=e and S#°>wSy# holds according to G. Assume
the claim holds for all k=n and let (zy, wo$, %) F2 (47, ¢), 0%, ¥ %)
(4, 0,v,y#) with c’=0v$ and cs#e be given.

[PW 2

If v"=v" then c¢=c’ and cv"=v$ holds. From the induction hypothesis
S#">wd’y # follows. Since ((4', ¢),v",y" #) ((4, ¢),v", y %) holds, there is a
production © with wA’y #"=>wAy .

If v”#v" then v”"=cv” and w=w'c’. From the induction hypothesis S #"=>
">w'A’y’ % follows. Since ((4’,c"),v",7" %) ((4,¢),v",y#) holds there is a
production 7 with w’ A’y #"=>w'c’Ay % =wAy #. This completes the induction.

Now let wEL(K), i.e. (zg, w, #) += (4, ©),d, y %)~(z,, e,7"). Here we have
cither d=3% or d=e and ¢=$. If d=$ then w=w’c$. Obviously, w'ccT*
holds. Therefore the derivation S#*=w'Ady# exists according to Claim 5. Since
((4,¢), 8,y)~ (zs, &,) holds, there is a production n: Af—c with w'Ay#m=>
*»w’c. Therefore wc€L(G) and w=w'c$€¢L(G)$. If d=e and c¢=$ then
w=w'$ with w'€T™, and the derivation S *=>w'Ay# exists according to Claim
5. Since ((4,9), e, 74) (zs, e,7") holds there is a production n:4f—+e with
w'Ay #*>w’. Therefore w'€L(G’) and w=w'$<L(G")$, and hence L(K)S L(G)S.

Conversely, let weL(G'), ie. S#*3wdys=>w=w'¢’, ¢’¢TU{e}. Then
(20, W'¢’S, #) X ((4, ©), d, y 4) with cd=c’$ and c>e holds according to Claim 4.
If ¢’=e then ¢=$ and d=e hold. Hence the move ((4,3),e,7%)(zs,¢,7)
exists. If ¢’€T then c=c’, d=$, and the move ((4,¢),$,y#)(z,, e, 7)) exists.

Therefore w$€L(K) and hence L(G)$& L(K). N :
. Together ‘with the inclusion L(K)S L(G)$ this shows L(K)=L(G)S.

Since K is a deterministic pda, L(G)$ is a deterministic context-free language
which implies that L(G’) is a deterministic context-free language as well (see [3],
Theorem 11.2.2). :

Combining Corollary 5.1 and Theorem 5.3 we can state

Theorem 5.4. The class of deterministic context-free languages is exactly the
class of right linear indexed strong ILL(1) languages.
~ The indexed grammar for the language {a"b"c"|n=1} given in [1] is a strong
ILL(1) grammar. This proves :

Theorem 5.5. The class of strong ILL(1) languages properly contains the class
of the deterministic context-free languages.

6. A general transformation of indexed grammars

In Section 3 it was shown that the strong indexed LL(k) property is decidable.
This will be used in Section 7 to prove the main result of this paper, namely the de-
cidability of the (general) indexed LL(k) property.

To this end we first investigate in this section properties of two functions which
are defined with respect to a given indexed grammar. Let G=(N, T, 1, P, S) be an
indexed grammar and let A: 7*—~L and u: (NI*UT)*~M be two functions in
two finite nonempty sets L and M. 1 and g can be interpreted as assigning information

42 R. Parchmann, J. Duske, J. Specht

4(y) and u(0) from finite domains L and M to words y€I* and O€(NI*UT)*, res-
pectively. If 2. and u satisfy certain compatibility conditions C, and C,, then it is pos-
sible to construct a grammar G, equivalent to G which simulates the derivations of G
and attaches in left sentential forms wAy8 of G the information A(y) and u(6) to the
variable 4. This means that the values of the functions 4 and g can be “computed™
during leftmost derivations.

Let us now state the compatibility conditions C; and C,.

(C) ¥ A(y)=A(y) then A(fy) =A(fyo) for all y,y,€I% and fel
(C) If A(n) =A@y and pu(0) = p(0y) then u(0:y,6)) = u(0:9,6,) for
all 8, 0,6(NI*UT)*, 0 NI*UT, and vy, y.,€1"

Note: If C, is satisfied then it is easy to see that l(yl) A(yy) implies A(ay)=
=A(ay,) for all a€l*. Furthermore it easy to prove that if C, holds then A(y,)=
—(y2) and p(6)=p(By) imply p(0:7,0)=p(0:y,60) for all He(NI*UT)*.
We will now give examples for functions 2 and u satisfying the conditions C;
and C,. .

Example 6.1. Let G=(N, T, I, P, S) be an indexed grammar. Set L=2(N),
the power set of N, and set A1(y)={4]|4y*=>e}. We will show that A satisfies condi-
tion C,. For this purpose let y,, y.€I* with A(y)=A(ys), f€I and A€i(fy,) be
given. Since A€A(fyy), there exists a derivation Afy,*»e. If Af*=>e, then
A€A(fys) obviously holds. Otherwise there exists a derivation Af*=B,...B, with
BEN, i€ll: n] and By,*=e for i€[l: n] holds. Therefore B,€A(y)= A(yz) and
hence B;y,*=e for i€[1: n] holds too. Consequently we have Afy,*=B,7y,...
...B,,y2*=>e and A€A(fy,) follows. This shows A(fy)SA(fyd)- The converse
inclusion follows by symmetry.

Example 6.2. Let G,=(N, T, P, §) be a context-free grammar which can be
interpreted as an indexed grammar G=(N, T, I, P, S) with I=0. Let L be a finite
nonempty set and let A: 7*—~L be defined by A(e)=¢q for a g€L. Obviously A
satisfies condition C;. Fora k=1 set M="T* and define u(6)= {u|6*=>v, veT™,

u=®p}=First,(6) for all 8¢(NUT)*. We will show that p satisfies condition C,,.
Let 0,, 0,6(NUT)* with p(6;)=p(8,) be given. Let §¢(NUT)* and let vEy(GBl)
Hence there exists a derivation 80,*=w with v=%®w. This derivation can be writ-
ten as 00,*s>u, 0 > wuu,=w. If |u;|=k then v=®u,€u(60,) holds. Now assume
|uy]<k. We can state the existence of a derivation 0,*=>d, with ®j,=®uy, since
1(0)=u(8;). Hence 00,*=>u,0,*>u i, and ®u,ii,=v€u(60,) holds. Therefore we
have p(66,)S 1(60,). The converse inclusion simply holds by symmetry.*

This completes the examples and we return to the general discussion.

Let L=LU{g} where g is a new element. With the aid of 1 the function
A1: I*XL—L is defined for all y€I* and g€L by

I, @) =A0yy) if g=21(G") fora yer*
=g otherwise.

If 2 satisfies the condition C; then] is well defined.

Indexed LL(k) Grammars 43

Now set M=M U {m} where /i is a new element and define the function
g (NI*UTY*XMXL—+M for all ¢(NI*UT)*, méM, and gc¢L by :

B0, m,q) = pu@:90) if qg=4Ai(y) for a yeI*
and m=pu@) for a 6,€(NI*UT)
=m otherwise.

If p satisfies the condition C, then i is well defined. Now we can state

Lemma 6.1.

(1) If 2 is effectively computable and satisfies the condition C, then A(I*) and
are effectively computable, too.

(2) If A and p are effectively computable and satisfy the conditions C,; and C,
then p((N/*UT)*) and j are effectively computable, too.

Proof. (1) We will first show that the value of A for an index word with. length
greater tlhan or equal to |L| can be obtained by applying A to a word of length less
than |L

Let 1 be effectively computable, i.e. there is an algorithm 4, which determines for
each given y€I* the value A(y). With the aid of A4, determine the.set A((UL1-DJ¥),
(Recall that (IHI=D]* denotes the set of all words over / with length less than or equal
to |[L|—1.) : - .

Let y=f;...f1€I* with r§|L| be given and let ¢q,=A(f;...fy) for k€[0:r).
There exist i, j€{0:r] with i<j and ¢;,=g; because |L|=r. Since A satisfies the
condition C, we have A(y)=A(f,...fj+1fi---f)- Hence A(I*)=A(UEI=DI*) and this
implies that A(I*) is effectlvely computable.

To show that 1 is effectively computable let yc/* and g€L be given. If
q¢A(I*) then I(y,q)=g holds. Otherwise, if q€A(I*), determine a y’€(LI-Df*
with "A(y")=¢ and compute the value l(yy) with the aid of A4,. This completes the
proof of (1).

(2) We will first show that for each BE(NI *UT)* there exists a 0’¢(NI*UT)*
with p(0)=pu(6"), and with the length of the index words in 8’ restricted by |L|.
In the next step we show that it suffices to compute the values of u for words over
(NI*UT)* with length less than {M|.

Let A be effectively computable and let 4 and x satlsfy the condltlons C,and C,.
First we will show by induction on the length that for each 8¢(NI*UT)* there
exists a 0’€ (N(IL-DI*UT)* with u(@)=p(6"). In case 6=e the assertion is
trivial. Let 0=0, 0, with 0,6 NI*UT and 0,c(NI*UT)*. The 1nduct10n hypothesis
guarantees the existence of a 03¢ (N(UH-DI*YUT)* with p(6,)=p(

If 0,=acT then u@)=p(ad)=p(ad)=pu@) with ¢ (N((”“l 1)I*)UT)*
since y satisfies condition C,,.

Now let 0,=AycNI*. Part (1) of this lemma guarantees the existence of a

Y’ €UL-DI* with A(y)=A(y’). Since y satisfies the condition C,, we have u(6)=
—/,t(A y0)=u(A:y'0)=p(0") with 6’¢ (N((“‘I DroyuT)t.

Now let u be effectively computable, i.e. there is an algorithm A4, which determi-
nes for each O€(NI*UT)* the value p(f). With the aid of 4, determine the set

p(IMI=D(N(L=D*YJ T)*). We will show that this set equals p((NT*UT)*).

44 R. Parchmann, J. Duske, J. Specht

Let a 8¢ (NI*UT)* be given. We have proved above the existence of a
0 (N(UH-DMUT)* with u(@)=p(8). Let 6’=6,...6, with §ENI*UT for
k€{l: r] and r=|M|. If we set m=u(6;...0,) for k€[0: r] then there exist
i,je[0: r] with i<j and m;=m;. Since p satisfies the condition C,, we have
#(0’)=ﬂ(0’ ee 0j+10i .o 01).

This implies p((N/*UT)*)=p(UMI-DN(IL-DI*)UT)*) and therefore
u((NI*UT)*) is effectively computable.

It remains to be shown that j is effectively computable. Let 8€(N/*UT)*,
méM, and g€L be given. If mep((NI*UT)*) and g€A(/*) then determine a 6,
with p(6,)=m and ay with A(y)=g and compute the value u(8:y0,)=p(6, m,q)
with the aid of 4,. Otherwise, if m=m or g=g, we have j(0, m,q)=m. This
completes the proof of the lemma.

Starting with an indexed grammar G=(N, T, 1, P, S) and functions 1 and u
satisfying C, and C,, we will construct an indexed grammar G,,=(N’, T, I’, P’, §”).
This grammar is structurally equivaient to G, i.e. generates the same set of terminal
strings and the same set of derivation trees (ignoring the labels of the intermediate
nodes).

Define N'=NXMXL, I'=IXL and S’=(S,m,,q,) with my=p(e) and
qo=4(e).

For the definition of P° we need two functions ¢ and . The function
@: I*XL—~(IXL)*=I"* attaches a second component to each index f; in an index
word f;...f,. For a given g€L the second component of f; will be value A(f;.;...
wiSns @), 1.e. @ is defined by

¢(e,q)=e, and
o(f) =10 @)o(r. q) for all yeI*, fel, and g¢€L.

The function y: (NI*UTY*XM XL~ (NXMXL)(IXD*UT)=(N'I"*UT)*
attaches two components to the variables 4; in a word A;y,A4,y,...4,y, of (NI*U
UT)* wit