56,037 research outputs found

    Debugging tasked Ada programs

    Get PDF
    The applications for which Ada was developed require distributed implementations of the language and extensive use of tasking facilities. Debugging and testing technology as it applies to parallel features of languages currently falls short of needs. Thus, the development of embedded systems using Ada pose special challenges to the software engineer. Techniques for distributing Ada programs, support for simulating distributed target machines, testing facilities for tasked programs, and debugging support applicable to simulated and to real targets all need to be addressed. A technique is presented for debugging Ada programs that use tasking and it describes a debugger, called AdaTAD, to support the technique. The debugging technique is presented together with the use interface to AdaTAD. The component of AdaTAD that monitors and controls communication among tasks was designed in Ada and is presented through an example with a simple tasked program

    Out-Of-Place debugging: a debugging architecture to reduce debugging interference

    Get PDF
    Context. Recent studies show that developers spend most of their programming time testing, verifying and debugging software. As applications become more and more complex, developers demand more advanced debugging support to ease the software development process. Inquiry. Since the 70's many debugging solutions were introduced. Amongst them, online debuggers provide a good insight on the conditions that led to a bug, allowing inspection and interaction with the variables of the program. However, most of the online debugging solutions introduce \textit{debugging interference} to the execution of the program, i.e. pauses, latency, and evaluation of code containing side-effects. Approach. This paper investigates a novel debugging technique called \outofplace debugging. The goal is to minimize the debugging interference characteristic of online debugging while allowing online remote capabilities. An \outofplace debugger transfers the program execution and application state from the debugged application to the debugger application, both running in different processes. Knowledge. On the one hand, \outofplace debugging allows developers to debug applications remotely, overcoming the need of physical access to the machine where the debugged application is running. On the other hand, debugging happens locally on the remote machine avoiding latency. That makes it suitable to be deployed on a distributed system and handle the debugging of several processes running in parallel. Grounding. We implemented a concrete out-of-place debugger for the Pharo Smalltalk programming language. We show that our approach is practical by performing several benchmarks, comparing our approach with a classic remote online debugger. We show that our prototype debugger outperforms by a 1000 times a traditional remote debugger in several scenarios. Moreover, we show that the presence of our debugger does not impact the overall performance of an application. Importance. This work combines remote debugging with the debugging experience of a local online debugger. Out-of-place debugging is the first online debugging technique that can minimize debugging interference while debugging a remote application. Yet, it still keeps the benefits of online debugging ( e.g. step-by-step execution). This makes the technique suitable for modern applications which are increasingly parallel, distributed and reactive to streams of data from various sources like sensors, UI, network, etc

    Software reliability perspectives

    Get PDF
    Software which is used in life critical functions must be known to be highly reliable before installation. This requires a strong testing program to estimate the reliability, since neither formal methods, software engineering nor fault tolerant methods can guarantee perfection. Prior to the final testing software goes through a debugging period and many models have been developed to try to estimate reliability from the debugging data. However, the existing models are poorly validated and often give poor performance. This paper emphasizes the fact that part of their failures can be attributed to the random nature of the debugging data given to these models as input, and it poses the problem of correcting this defect as an area of future research

    Distributed Debugging With I/O Abstraction

    Get PDF
    This thesis presents a simple, yet powerful, set of mechanisms for testing and debugging distributed applications consisting of modules that communicate through well-defined data interfaces. The tools allow default or programmer-defined functions to be attached to various communication events so that particular data values at interesting points in the program are made available for testing and debugging. The debugging status of each component of the communication interface can be controlled separately so that various debugging information can be turned on and off during program execution. By attaching breakpoints to programmer-defined fucntions in a standard debugger, fine-grained examination of each module of the applicaton can be integrated with the coarse-grained communication debugging information provided by our tools

    Semantics-based Automated Web Testing

    Full text link
    We present TAO, a software testing tool performing automated test and oracle generation based on a semantic approach. TAO entangles grammar-based test generation with automated semantics evaluation using a denotational semantics framework. We show how TAO can be incorporated with the Selenium automation tool for automated web testing, and how TAO can be further extended to support automated delta debugging, where a failing web test script can be systematically reduced based on grammar-directed strategies. A real-life parking website is adopted throughout the paper to demonstrate the effectivity of our semantics-based web testing approach.Comment: In Proceedings WWV 2015, arXiv:1508.0338

    Test-Signal Search for Mixed-Signal Cores in a System-on-Chip

    Get PDF
    The well-known approach towards testing mixed-signal cores is functional testing and basically measuring key parameters of the core. However, especially if performance requirements increase, and embedded cores are considered, functional testing becomes technically and economically less attractive. A more cost-effective approach could be accomplished by a combination of reduced functional tests and added structural tests. In addition, it will also improve the debugging facilities of cores. Basic problem remains the large computational effort for analogue structural testing. In this paper, we introduce the concept of Testability Transfer Function for both analogue as well as digital parts in a mixed-signal core. This opens new possibilities for efficient structural testing of embedded mixed-signal cores, thereby adding to\ud the quality of tests
    • …
    corecore