View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NASA Technical Reports Server

S | /69893

N89-16280 /7

DEBUGGING TASKED ADA PROGRAMS

by

R.G. Fainter

Virginia Tech,

and ‘

T.E. Lindquist |
Arizona State University

Abstract

The applications for which Ada was developed require distributed implementations of the
language and extensive use of tasking facilities. Debugging and testing technology as it applies 10
parallel features of languages currently falls short of needs. Thus, the development of embedded
systems using Ada poses special challenges to the software engineer. Techniques for distributing
Ada programs, support for simulating distributed target machines, testing facilities for tasked
programs, and debugging support applicable to simulated and to real targets all need to be
addressed. This paper presents a technique for debugging Ada programs that use tasking and it
describes a debugger, called AdaTAD, to support the technique. The debugging technique is
presented together with the user interface to AdaTAD. The component of AdaTAD that monitors
and controls communication among tasks has been designed in Ada and is presented through an

example with a simple tasked program.

Bl 1.

https://core.ac.uk/display/42829703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. INTRODUCTION

Because of the distributed nature of the Space Station and its unmanned platforms, software
that the Space Station uses must be highly distributed. This implies, therefore, that the task will be
used extensively in Space Station software. Because of the difficulties associated with locating
errors in tasked programs and because of the cost of programming errors in Space Station
software, tools to aid in the production of correct programs must be developed. Such a tool 1s
currently under development and is described in this paper.

One view of program testing [1] indicates that a program has been tested when every
statement in the program has been executed at least once and every possible outcome of each
program predicate has occurred at least once. Considerable literature addressing techniques for
testing software reflects a view of testing that is consistent with this definition. Although this
definition does not naturally extent to tasked programs, it is indicative of the view that testing
occurs late in software development and is oriented toward validation.

In contrast, debuggers have traditionally had utility in earlier software development activities.
Accordingly, debuggers are used as automated support for locating errors and determining what is
needed to correct errors. Ideally, testing is used to identify the presence of errors and debuggers to
support location and correction. When tasking facilities are included in a language, however. the
software designer is left without good testing techniques, and debugging must enter into the
process of identifying the existence of errors.

Helmbold (2] suggests that "Debuggers for parallel programs have to be more than passive
information gatherers--they should automatically detect errors”. When tasking errors directly
depend on the semantics of the language, a debugger is able to actively aid in detecting ervors.
More commeoenly, errors are also dependent on the specific logic of task interaction and the usc of
the language.To take an active role in identifying this more complex type of errors, the debugger
must include facilities to analyze the logic of the program. Helmbold distinguishes types of tasking
errors as "Task Sequencing Errors” and "Deadness”. AdaTAD provides task information that may
be used to detect either type of tasking errors, although it does not actively detect errors.

AdaTAD is a debugger whose capabilities are specific to the problems of concurrent
programs. The name AdaTAD is an acronym for Ada Task Debugger. Most debuggers allow the
user to trace the execution of a program, but the pro yram remains under control of the operating

system. AdaTAD differs from other debuggers by exzrcising direct control over the execution of a

Debugging Tasks with AdaTAD B.1.1.2

program's tasks. The user is able to specify which tasks run when, at what rate and for how long.
Of course, to emulate more closely the environment in which a program is to execute, the user may
defer these decisions to the runtime system, and simply monitor task synchronization and
communication. AdaTAD combines typical debugging facilities with others specific to supporting
the Ada constructs for rendezvous.

Space Station software may be configured in many different ways. One possible scenurio
might involve an Ada program with tasks running on an Earth-based computer, on one or more
computers aboard the main station and on computers on one or more unmanned platforms,
AdaTAD has the capability to allow the software engineer to debug such a program in at least two
different ways. Firstly, the software engineer may construct, solely on ground based computers,
an environment similar to that which exists on the Space Station for debugging purposcs.
Secondly, because AdaTAD itself may be distributed, the program may be run under AdaTAD in
the actual Space Station environment. This allows the software engineer a great deal of flexibiliny
in exercising the program under a variety of conditions.

A method for debugging tasked Ada programs and AdaTAD are presented jointly in this
paper. Our approach to task debugging centers on removing task errors from three successive
levels of consideration. Errors within tasks, which are principally independent of other tasks. are
first addressed. Next, the communication and synchronization structure among tasks is addressed.
and finally, any application specific concerns are addressed. AdaTAD, as it relates to these levels.
is discussed in the following three sections together with a discussion of our approach to
debugging. A subsequent section addresses the design of AdaTAD. Ada is used in the design 1o
allow increased effectiveness on multiprocessor applications, and to show how the rendezvous
constructs can be used to control the execution of tasked Ada programs. An Ada implementation ol

AdaTAD would require emitting special code from the compiler for synchronization with AduTAD

2. LOGIC ERRORS WITHIN A TASK

The first level of usage for the debugger is to address logic errors within each of a program’s
tasks. These errors are exclusive of intertask communication and synchronization. Removing
them is synonomous to removing errors detected during unit testing of software. At this level. we
assume that interactions with other tasks are correct and examine the activities of the task itself,
Testing and debugging at this stage considers a piece of software in absence of all elements of its

environment except any procedures or functions it calls. For example, a task may use information

Debugging Tasks with AdaTAD B.11.3

ONIQINAL PACE 'S
OF POOR QUALITY

obtained from other tasks to retrieve and update information in a database. Task logic to perform
operations on the database is considered, at this level, exclusive of synchronization with other
tasks.

AdaTAD facilities are used in conjunction with a testing strategy in which some form of code
analysis may be performed. AdaTAD is designed to aid in executing test cases and in removing
any errors subsequently found.

2.1 User's View of AdaTAD

AdaTAD provides many facilities which are common to source level debuggers in addition to
those specific to tasks. After introducing the manner in which AdaTAD includes common
functions, facilities specific to removing logic errors from tasks are presented.

Command Entry

‘ In accordance with the findings of Wixon [3), AdaTAD is designed to use command driven
user input instead of either a menu or iconic input. Commands exist to control the initiation,
configuration, and completion of an AdaTAD session as well as to control the execution of the task
being debugged. Arguments to commands are entered as parameters to the command line itself.
Each task has a keyboard assigned to it for interactive input. When a task is the current task its
keyboard is the physical terminal to which the task has been assigned.

Information Display

Since so much information is made available to the user of AdaTAD, a well engincered
display is critical. We have designed an interface that combines textual and graphical status
information in a windowing framework. The concept of windowing has recently received much
attention. Windows allow a process to assume that it has a dedicated output device, independent of
whether the window is being viewed. Assignment of screen geography can vary dynamically
under user control to allow variable presentation of information.

The AdaTAD display consists of a set of task windows and a task interaction status display.
‘The user may configure windows on the screen by using the WINDOW DEFINITION
command. Figure | shows a task window and the panes that are included (the task interaction

.smrus display is presented in the next section). The panes display information about the current

Debugging Tasks with AdaTAD B.1.1.4

ORIGINAL PaCE
OF POGR QUALITY

execution state of the task, information on designated variables, the source code context and task
output.

AdaTAD control commands manage the appearance of the debugger to the user and perform
basic initiation and termination of users programs. The commands include:

EXECUTE --initiate program and enable execution
DEFINE_WINDOW --specify size and location of a window
200M --alter the size of a window
CURRENT_TASK --task to which taskless commands apply
ASSIGN --associate i/o device with a task
TERMINATE --complete the interactive session

Although these commands are not specific to a particular task, they are needed in tailoring u
specific debugging session for logic errors.

Task Name: Buf_control CE - integer, local, 0
Execution Mode: NORMAL
Breakpoints at: LAB
‘ Execution Information Data Information
-> Select
when CE>0
accept INSERT (X : in out ELEMENT) do
CE :=CE + 2;
Source Code Context Display
Task Qutput Area

Figure 1. Task Window Format.

Task Execution Information and Control

Debugging Tasks with AdaTAD B.1.¢.5

Two breakpoint facilites are provided for controlling the execution of statements within a
task. Assertion breakpoints may be placed within the a task by adding an ASSERT statement to
the program, and unconditional breakpoints may be associated with any statement of a task. Since
several allocated tasks may have the same task body, breakpoints cause breaks to occur in all tasks
having the body.

Four modes of task execution are provided to accommodate various debugging techniques.

NORMAL --execute until encountering break
SINGLE STEP --user initiated statement execution
TIMED --€Xecute statements at a given rate
WAIT --suspend task execution

When a task halts execution at a true or unconditional breakpoint, the task is placed in a
WAIT mode of execution. Execution is resumed by explicitly placing the task in another execution
mode (NORMAL, SINGLE_STEP, or TIMED).

Examination of Data.

AdaTAD provides facilities for viewing or altering the values of program objects by the
object’s source code name. If tasks communicate via shared variables, then AdaTAD aids in

detecting any attempt to violate the assumptions described in section 9.11 of the Ada Language
Reference Manual {4].

2.2 Using AdaTAD to Remove Logic Errors

Testing and debugging the logic errors within tasks can best be done by removing the
influence exerted by the task’s environment. The environment must be specified by the test case
and controlled by the debugger. All interactions with other tasks, such as entry calls to the tested
task, accepts of calls made by the tested task, or the use of shared variables are controlled during
testing and debugging by AdaTAD stub facilities.

The test cases for this phase can be characterized as including input, environment and
expected results. When the task is initiated in a state satisfying the input condition and executed in
the environment specified then it should exhibit the expected results. The input condition describes

Debugging Tasks with AdaTAD B.1.§.6

the values of inputs to the task. These may include the initial state of a database used by the task or
of objects obtained through input.

The environment specification must describe the necessary interactions with other tasks to
carry out a test case. When selective waits or conditional or timed entry calls are contained in the
task, the specification indicates specific paths through the constructs relevant to the test. For
example, a test case that is to examine a specific delay alternative must specify in its environment
section conditions causing that delay to be executed. Further, to obtain the information needed for
a test case it may be necessary to specify which task is to call a specific entry to the tested task.

The anticipated results of executing a test case may not be as simply expressed as an output
condition to be true when execution completes. Tasks may execute indefinitely, may terminate in
synchronization with others, or may transmit their results to other tasks through entry parameiers.
Accordingly, the anticipated result may be a condition to be true at a specific point during execution
of the task (possibly within an iteration).

AdaTAD Support

AdaTAD facilities are used to execute test cases, and debugging can be done in conjunction
with testing if needed. Facilities supporting the execution of test cases can be compared to those of
other debuggers for handling procedure stubs. In AdaTAD, these facilites include commands to:

1. Cause a terminate condition to evaluate true,

2. Provide a dummy entry call to a task with specific
arguments,

3. Cause an entry call to another task to be accepted and
out parameters from that call to be set,

4. Deterministically select an alternative in a

nondeterministic selective wait,
5. Selectively satisfy durations on delay statements.

3. SYNCHRONIZATION AMONG TASKS

After checking the logic within a task, the communication and synchronization amony tushs
is considered. This step is analogous to integration testing in that the cooperation among possibly
several tasks is addressed. Data flow and control flow through tasks of the program are obscrved
at this level of testing and debugging. From the perspective of a single task, this level checks, in a
rudimentary manner, the task’s tasking environment. Subtle timin interactions and interactions

with the operating environment are left to the final level of cio! g,

Debugging Tasks with AdaTAD B1L.7

JGINRL PATE
OF POOR QUALITY

The scenario for testing and debugging follows the same approach as with task logic. Test
cases dre identified using source code analysis. Test cases are run using AdaTAD support, and
errors are located and removed using AdaTAD debugging facilities. Test cases focus on task
interaction. Input conditions and expected results are included, but no specific information
describing task execution constraints is included.

3.1 Task Interaction Status

AdaTAD's Task Interaction Status window depicts the state of rendezvous and consequently
is particularly useful for synchronization testing. Within the window a graph is used to represent
tasks of the program and relationships between tasks. Each task has a corresponding node in the
graph, and relationships such as "depends on" and "is in rendezvous with" are depicted by
directed edges from one task to another. Figure 2 shows a hypothetical program unit, called T1, at
some point of execution, and Figure 3 is the legend for the task status area. T1 has four
subordinate tasks, T2, T3, T4 and TS. Each of these subordinates has an underlying task type;
A2 for T2, TS and A3 for T3, T4. Arcs with solid arrow heads indicate the dependent relation
among tasks. Thus in this example, T1 has caused initiation of T2 and TS. Rendezvous and
communication status is conveyed through double-line arcs. The arc from T2 to TS, with shaded
lines, indicates that T2 is waiting at an unaccepted entry call to TS's entry E1. EI has a single
input (IN) parameter, and for this call A is the argument.

Debugging Tasks with AdaTAD B.1,i .8

ORIGINAL PAGE 1S
OF POOR QUALITY

~@

Program Unit

Task [ateraction Status Window

The large shaded arrowheads (without bodies) pointing at TS indicate the task will not be
immediately accepting the call to EI. TS is waiting at a selective-wait with three open accepts
(12, E3, E4). The large solid arc from T3 to T4 indicates that these two tasks are currently in
rendezvous. T3 is the calling task and T4 is the accepting task, as indicated by the arrow-head.

For entry ES the argument is B, which is an IN OUT parameter.

Dcbugging Tasks with AdaTAD B.1.1.9
DNGINAL page 15
OF POOR QUALITY

T1 > T2 Task dependence -- T2 depends on TI

Task name [and its type]

4P,
I gy
LR n——) Y I V.

E1§1’1 T2 T2 has an open accept for EI(P)

4—A—>
T1 E__—'IID T2 Tl and T2 are in rendezvous at El(A)

T1 has queued a call to T2.EI(A)

Shadings for Execution Modes

O Normal Execution

Waiting at statement SI

At S1 Suspended

At S1 in Delay

At S1 after Single Step Throttled n
sec/stmt

Legend

Figure 3. Legend for the task interaction status display

The main program unit, T1, is currently in a WAIT state of execution, as indicated by the
shaded task node for T1. The small s in the lower right of the task node indicates the task is

Debugging Tasks with AdaTAD B.1.1.10

ORIINIL PACE "
OF ®OCR QUALIT

waiting because it was suspended.

3.2 Execution Control For Checking Interactions

The displays generated by AdaTAD for checking task interactions are the same as those for
logic checking within a task, but the capabilities available to the user differ. When checking task
interactions, AdaTAD does not allow the user to:

1. Provide a dummy entry call to another task, or
2. Provide a dummy accept of an outstanding entry call.

Additional facilites are provided to specifically aid in debugging task interactions. These
include:

1. Break at rendezvous beginning/completion,
2. Examine the calling queue for an entry,

3. Reorder the calling queue for an entry

4. Examine/alter arguments to an entry call.

Rendezvous breakpoints provide a means for control to return to the user at the boundaries of
a rendezvous. When both tasks reach the synchronization point, the user may need to examine
assertions, arguments, or results to determine correct communication between tasks. Rendezvous
breakpoints may be associated with either pairs of tasks or with entries within a task. In one
situation, the user may be interested in examining communication between tasks T1 and T2 cuch
time they rendezvous, independ of the entry at which rendezvous occurs. In another situation, a
user may need to know parameter information each time that a specific entry within a task in called,
independent of what task is calling.

4. APPLICATION SPECIFIC USES OF ADATAD

The final stage of debugging considers the operating environment in which the tasks must
cxeeute. For an embedded system, thic may include operating within a set of heterogencous

processors, each with different resources and capabilities. Testing and debugging at this level is

Dcbugging Tasks with AdaTAD B.1.4.11

ORIGINAL PAGE 18
OF POOR QUALITY

often accomplished with a simulation of the operating environment. While specific tools are
necessary to support this activity, AdaTAD provides facilities that are useful in a general manner to
the problem of addressing the operating environment.

The problems that may arise in this phase of testing include timing inconsistencies among
tasks, space requirements of a task, or resource contention caused by task interaction. Device
interactions for special purpose input or output may be one cause. Another cause may be
constraints imposed on the program by task distribution or the interaction between the task
scheduling strategy and the operating environment.

AdaTAD provides facilities that allow the user to monitor program elements that will reveal
these environment related problems. Ultimately, we recognize that the program under observation
may to some extent be perturbed by the debugger. Nonetheless, a certain amount of debugging can
be useful in this phase. To a large degree, testing technology is not appropriate for revealing
application specific errors. This is an area in which ad hoc stress testing has been most
successfully applied.

The capabilities that support this aspect of testing include:

1. Call Queue Display,
Entry Call Frequency,
Accept Entry Frequency,
Statement Execution Frequency,

o WP

Object Update Frequency.

" .1e user can request that certain entry call queues be displayed automatically when modified.
This provides a monitoring ability for a service rendezvous that is used by several tasks. The
frequency displays allow the user to selectively obtain information that will show the contention
points in a program. Entry czll frequency may be obtained in two forms, entry call by any task and
entry call by a named task. Statement and Object frequency information is useful in determining the
dynamic space requirements of a task. One can observe executions of allocator statements or
updates to objects detailing the size of dynamic structures. Although these facilities do not directly
support monitoring interactions with the external environment, often internal objects or statements
reflect their status.

S. THE DESIGN OF ADATAD

As with any debugger, AdaTAD requires specific modifications to the compiler and linker.
To allow the debugger itself to be designed and implemented in Ada, source code changes are made
to provide synchronization through AdaTAD entries. AdaTAD is, itself, a set of Ada tasks. There

Debugging Tasks with AdaTAD B.1.4.12

[,

Ry
T O A g i g .

- .- r o a———r——

are four major cooperating tasks including:

1. AdaTAD Coordinator,

2. Data Base Monitor,

3. Command Processor, and
4. Terminal Communicator.

There are also two arrays of tasks, including:

1. Logical Processor Tasks and
2. Terminal Drivers.

Additionally, there is a task to handle input/output between the user's program and
non-terminal input/output devices. Figure 4 is a diagram of the overall structure of AdaTAD.
AdaTAD tasks communicate via the rendezvous and a shared variable. The data base stores
. execution information about the user's tasks. AdaTAD effectively makes each user task purt of a
logical processor task, which controls its exeuction. ‘Ine terminal communicator is responsible for
receiving user commands and updating t 'k displays. The data base monitor provides operations
that both synchronize access to the data and perform data storage and retrieval functions. The
coordinator mediates communication among logical processors whose user tasks arc

synchronizing. The coordinator is also responsible for directing parsed user commands to the
appropriate logical processor.

Debugging Tasks with AdaTAD B.1.1.13

700} ¢—p < P pata Base
Monitor
Terminal
Terminal Task
Drivers 1TD1 [€— communicator
TDO-TDn Task
cen Command
Processor
TOn |[¢—> Task
Data Base

Shared
Variable

Davice Driver
for Other P AdaTAD
Devices Coordinator Task
>
$ '
LPO LP1 LP2 e LPn

Logical Processor
Tasks - LP1-LPn

Figure 4. Task structure of AdaTAD.

5.1 Design of the Logical Processors

Logical processors are the most complex tasks in AdaTAD, vecause they monitor and control
the synchronization among user tasks. Synchronization with other AdaTAD tasks is uscd to
communicate the current state of execution to the data base maintained by the Coordinator. Logical
processors have four entries for receiving input from the command interpreter, for servicing
rendezvous requests from user tasks, for notifying rendezvous completion from servicing tasks,
and for notifying task termination from other logical processors. Three tasks are defined within

Debugging Tasks with AdaTAD B.1.1.14

T W A e

each Logical Processor. The EXECUTOR task directly controls environment for the user task, the
TRANSMITTER task serves as a funnel for messages to the coordinator, and the
EXECUTION_AREA_MONITOR maintains the variables which reflect the current execution state
of the user task. Although the presence of three tasks complicates the Logical Processor, it allows
for maximal parallelism in the execution of the Logical Processor, and it minimizes the time spent
by the user task in synchronization with AdaTAD.

Receive_User_Command

Through this entry, the logical processor is called by the coordinator when a user command
is to be executed by the logical processor. A case statement within this entry selects the proper
code to implement the command. With only two exceptions, the implementation of the commands
at this level involve setting values in the execution data base. For example, if the user wants to

change the execution state of a task, the command is channeled to the appropriate logical processor
and the execution state variable is changed.

Receive_Rendezvous_Completion.

When a rendezvous between two user tasks completes, the calling task must be released for
further execution. To do this, the AdaTAD coordinator calls Receive_Rendezvous_Request. The
call indicates that a rendezvous requested by the task running on the logical processor has been
completed. The entry updates the local data base so that the user task can continue execution. Any

arguments which were changed by the rendezvous exist in the argument list and are copied to the
appropriate area.

The Executor Task

This task directly controls execution of the user's task. The compilation system modifics the
user’s task to physically nest it within the Executor. The Executor has one entry which is called
when another user task has issurd an entry call to this task. The call is forwarded 1o the Exccutor
by the logical processor's Receive_Rendezvous_Request entry when the coordinator sends an entry
call. The compilation system converts rendezvous code into procedures that may be called 1o
perform the rendezvous code. Thus, when the user task is ready to accept the call, the appropriate
procedure is called.

Debugging Tasks with AdaTAD B.1.1.15

ORIGINAL PAGE 1S
OF POOR QUALITY

Transmitter Task

The Transmitter sends messages to the AdaTAD coordinator. It is called by the user's task to
request an input/output service or to inform the coordinator that a rendezvous has begun or
completed. Transmitter is called by the execution area monitor to send the current state of the data
base to the coordinator.

Execution Area Monitor Task

Since the execution data base is a shared variable that must be accessed by the Executor, the
Transmitter and the Logical Processor itself, synchronization to the information is provided by the
Execution_Area_Monitor. Tasks requiring information from the data base get the information by

making an entry call to the monitor. The task services the following entries.
Sing_step_rel: Called by the logical processor after the coordinator has signaled
that the user has pressed a key to cause execution of the next statement in single
step mode. The entry enables execution of the next statement.
Set_bk_state: Called by the Logical Processor to enable or disable breakpoint
checking.
Set_ex_md: Called by the Logical Processor whenever the execution mode is to
“be changed.
Set_ex_rt: Called by the Logical Processor to set the rate for timed execution.
Set_timed: Called by the Logical Processor to enter timed execution mode.
Examme exe: Called by the statement prologue to see whether statement
execution is enabled.

When there are no outstanding entry calls to the monitor, the current execution mode is
determined and the appropriate action is taken. If the execution mode is TIMED, the monitor
determines whether it is time to execute the next statement.

5.2 The Coordinator Task

The AdaTAD coordinator mediates communication among AdaTAD tasks. When user tasks
rendezvous, the coordinator handles communication among their Logical Processors. This
mediation occurs when a rendezvous is requested, when a rendezvous completes and when a
rendezvous begins. The Coordinator also mediates input/output requests for user tasks. To allow
all appropriate information regarding the execution status of tasks, all communication with the
underlying operating system must be recorded. This is done when a user's task requests service

and when control returns from the operating system facility. Two further functions of the

Debugging Tasks with AdaTAD B.1.1.16

ORJ ‘52\ 5k N‘, ¢-' 3
OF FOOR QUALITY

R R T T TRV .

Coordinator are to dispatch AdaTAD user commands to the appropriate Logical Processor and to
collect status information for data base modifications. The coordinator interactively accepts entry
calls to its entries in the order in which they arrive. We now describe the Coordinator in terms of
its entries,

Rendezvous_request.

When one user task requests a rendezvous with another, the requesting task's Logical
Processor makes a call to this entry of the Coordinator to initiate the rendezvous. The coordinator,
in executing the call, looks up the Logical Processor for the called task. The name of the called task
is taken from a descriptor list which also includes parameters for the call. Before making an entry
call to the Logical Processor of the called task, Coordinator sets an indicator to show that the calling
task is awaiting synchronization.

Rendezvous_begin,

When a rendezvous begins, the called task calls this entry with the names of the two
synchronized tasks. The entry updates the synchronization information for the two tasks. It ¢lears
the waiting indicator, sets the is_synchronized indicator and records the names of the culled
and calling tasks in the synchronization data base.

Rendezvous_completion.

When the called task completes its rendezvous code, its logical procesor calls this entry.
This occurs when the servicing task either terminates or encounters the end of the synchronized
code of an accept statement. The entry updates the synchronization data base to reflect the
rendezvous has completed. Further, an entry call is made to the logical processor running the
served task so it may continue execution. The single parameter for this entry is the name of the task
which has been served.

Data_base_update.

Each logical processor has local data that controls the execution of the user's task. When that
data changes, the central data base is periodically informed through calls to this entry by Logical

Debugging Tasks with AdaTAD B.1.4.17

ORIGINAL PAGE IS
OF POOR QUALITY

Processors. Parameters convey the task name and its execution state. A local procedure, which the
entry uses to perform the update, blocks the data base monitor task from looking at the data base
while doing the update.

§.3 Data Base Monitor Task

The data base monitor is used to implement exclusive modification of the data base and to
drive terminal updates of task status. An AdaTAD task acquires exclusive access to the data base
through the Monitor's Hold and Release entries (P and V). For example, Hold is called by the
Coordinator prior to making data base modifications required by a user command. After
completing the modifications, Release is called.

The current state of the data base is transmitted to the Terminal Communicator task for
display when no other task is modifying the data base. This is accomplished with an else clause on
the selective wait for the Monitor's Hold entry. If no AdaTAD task has queued a call to Hold when
the selective wait is encountered, then the else clause is executed and information is sent to the

. Terminal Communicator.

5.4 The Command Processor Task

The Command Processor analyzes the user commands. When a command is successfully
parsed, it is dispatched, along with its parameters, to the AdaTAD Coordinator for execution. Even
commands which affect information display are executed by the Coordinator. If a command is
erroneous, nothing is sent to the Coordinator, and an error message is sent back to the Terminal
Communicator. The internal procedure Analyze_Command does the lexical and syntactic analysis
of the command.

Parse is the only entry into the Command Processor. Parse is called by the Terminal
Communicator when unsolicited input occurs on a terminal.

5.5 The Terminal Communicator Task

A task's terminal input and output is controlled by the logical processor, through the
mediation of the Terminal Communicator. The Terminal Communicator also provides the
intelligence for display of the AdaTAD data base. The Terminal Communicator manages the

. windowing capability of AdaTAD. The five entries in this task receive information from the

Debugging Tasks with AdaTAD B.1.1.18

ORIGINAL PAGE IS
OF POOR QUALITY.

WYL SR A Ty AN Ay P AR T Wmein s e

Coordinator, the terminals, the Data Base Monitor and the Command Processor.
From_Terminal and From_Coordinator

The Terminal Communicator task has two accept statements for the From_Terminal entry.
The first handles unsolicited input from a terminal. Assuming that unsolicited input is a command,
the first accept receives an information string and passes that string along to the Command
Processor. For example, when the user enters the string "set wait", the Terminal Communicator
assumes that this is a command and sends it to the Command Processor.

The From_Coordinator entry is called by the Coordinator when a user task requires input or
output. We call this solicited input or output. The second accept for the From_Terminal entry is
used for input of solicited information. From_Terminal is accepted after accepting the
From_Coordinator entry. These entries are called when a user task has requested terminal input.

From_Command_Processor

This entry is called by the Command Processor when it has detected an error in a user
command. This entry displays the error message on the terminal from which the command was
entered.

5.6 The Terminal Drivers

The Terminal Drivers are an array of tasks that handle the transmission of data between the
physical terminals and the Terminal Communicator. The Terminal Driver has four entries and onc
internal task which has no entries.

The Output entry is called by the Terminal Communicator to write a string on a terminal. It
then calls the Output entry in the Terminal Driver. Output accepts the string and writes it on the
device through the appropriate Terminal Driver. The Input entry passes the string and the Termumal
Driver number to the Terminal Communicator.

Terminal_watcher

Internal to the Terminal Driver is a task whose sole job is to wait for an input string from the

terminal. When a string is received, as indicated by a terminal character, the task makes an entry

Debugging Tasks with AdaTAD B.1.1.19

call to the terminal driver's input entry, passing the string. The identify entry is called by the
Terminal Communicator as soon as the driver begins execution, to assign the driver a number,
which is used in all communication.

5.7 An Example of Synchronization Among User Tasks

Controlling the synchronization of user tasks is the most complex of actions that AdaTAD
performs. AdaTAD must intervene when a rendezvous request is made, when the rendezvous
begins, and again when the rendezvous ends. To keep track of these interactions, the compiler
converts user entry calls to calls of AdaTAD task entries. The compiler also generates code to
inform AdaTAD when a rendezvous actually starts and when it completes. In this manner,
AdaTAD can record the status of all user task synchronization. These actions occur whenever a
rendezvous request is made, but they are normally transparent to the user. The following
paragraphs describe what occurs in each case of AdaTAD intervention.

As an example of how AdaTAD controls execution, assume that two tasks (A and B) are
running. Assume that task A wants to make an entry call to task B's entry named E1. Since the
example is concerned with synchronization only, we assume that no data are passed during the
rendezvous. Assume further, task A is running on logical processor one and task B is running on
logical processor two.

Rendezvous Request

Task A has an entry call statement of the form B.E1. For this call, the compiler generates
code to produce an empty argument list (alist), which consists only of the head node. This node
names the calling task, the called task and the called entry. The compiler converts the statement
B.E1 into:

TRANSMITTER.SEND_RENDEZVQUS_REQUEST (alist);

The first action that takes place at execution time when task A is ready to make this
rendezvous is that the transmitter is invoked. The transmitter's send_rendezvous_request entry
accepts the call and immediately sets task A's execution mode to wait. Then, the transmitter
makes an entry call to the coordinator, passing the argument list along unchanged.

The request for rendezvous arrives at the coordinator's Rendezvous_Request entry. The

Debugging Tasks with AdaTAD B.1.1.20

VWAL

P —

coordinator looks in the argument list, to get the name of the called task, in this example, B, and
gets the number of the logical processor that is running the called task. The coordinator then looks
up the called entry name in the task data base. In this example, the entry is E1. The coordinator
uses the number to index the array of tasks which implement the logical processors. Next, the
coordinator makes an entry call to the Receive_Rendezvous_Request entry of the appropriate
logical processor. At this point, the synchronization information on the calling task, A, will be
updated to reflect that it is waiting for a rendezvous, and AdaTAD knows that a rendezvous request
has been made and that the calling task is in a wait state for that rendezvous. Further, the user
notices on the display that the calling task has entered a wait state awaiting a rendezvous. The
display also indicates the task being called, the state of the calling task and any other tasks awaiting
rendezvous.

When the Logical Processor accepts the rendezvous request, it passes the argument list to the
executor running task B. The Executor receives the request at its Rendezvous entry and extracts
the name of the called task and entry from the argument list. The name of the calling task (A) is
used later to tell the coordinator that the rendezvous is in progress. The name of the entry allows
the executor to request the proper entry into the user's task. If appropriate, the Executor calls the
procedure written by the compiler for the receiving task. This procedure decodes the argument list
and executes the entry call into the user's task. Assuming that the called task, B, is waiting at the
entry being called, the Executor's entry call is answered immediately and the user's task begins
execution,

Accepting a Rendezvous Request

The first thing that the user task's accept statement for E1 does is make an entry call to the
transmitter ~ with the name of the calling task. This entry call is to the
Send_Rendezvous_Beginning entry. The entry sets the called task's execution data base to retlect
that the called task is now runring, and then the coordinator is informed that the rendezvous is
beginning. The coordinator acts on this information by updating its synchronization information
data base. The user would now see that the rendezvous is in process in the display area. After the
user's task indicates that the rendezvous has been accepted, AdaTAD does not intervene. A user
observing the synchronized bechavior of the tasks would see that they obey the rules of
synchronization prescribed by Ada.

When the rendezvous between A and B is complete, the servicing task, B, encounters a call

to the Transmitter's entry Send_Rendezvous_Completion. The servicing task remains in a running

Debugging Tasks with AdaTAD B.11.21

ORIGINAL PAGE IS
OF POOR QUALITY

state until it reaches a point where it must wait for another rendezvous. The Transmitter sends a
message to the coordinator that the rendezvous is complete. As far as the servicing task’s logical
processor is concerned, the rendezvous is now over. However, there is still work for the
coordinator to do. Upon receiving notification of the termination of the rendezvous, the
coordinator updates its synchronization data base to reflect the end of the rendezvous. As far as the
coordinator is concerned, the rendezvous is now over, as indicated by calling
Receive_Rendezvous_Completion in the logical processor running the calling task. When the
calling task's logical processor receives this message, the calling task's execution mode is set to
run so it can proceed.

Wait for Synchronization

If the called task in the above scenario is not waiting at the entry, it would not immediately
inform the coordinator that the rendezvous had begun. Thus, the coordinator would reflect the
wait in its data base. The user would be able to see the called task executing elsewhere and the
calling task waiting.

6. SUMMARY

The problem of testing and debugging Ada programs that make extensive use of tasking
facilities has been addressed in this paper. We have considered an zpproach to debugging tasks
that is similar to the scenario in which software units are first considered. Following units,
interactions among units are addressed. Our approach recommends a three tier approach to
debugging tasked programs. The first tier considers the logic of tasks independent of their
interactions. The second tier addresses interactions among tasks that take place through rendezvous
and synchronized access to shared data. The final tier deals with application specific concerns.
Here, the subtlities of the interactions between a tasked program and its jperating environmaent are
considered.

We have presented the design of a debugger suitable for applying this methodology.
AdaTAD , which stands for Ada TAsk Debugger, includes facilities specific to each of the tiers.
When used in conjunction with a testing methodology, AdaTAD supports the execution of test
cases and the process of locating and fixing errors uncovered through testing. We have presented
the user interface to AdaTAD in conjunction with an explanation of the three tiered approach to
debugging tasked programs.

Debugging Tasks with AdaTAD B.1.) .22

e

The applications for which Ada is intended require a level of technology that currently
doesn't exist in today's Ada compilation systems. For embedded real-time systems, a compiler
must support the distribution of an Ada program across a set of possibly hetergeneous processors.
When such compilation systems appear, we will immediately be faced with the challenge of
demonstrating the reliability of Ada software. In addition to modifying existing testing and
debugging methodologies, special purpose tools such as AdaTAD will be required. To ease the
implementability of a system such as AdaTAD, we have designed the bulk of the system in Ada.
While an Ada design certainly compromises execution efficiency, it also eases implementations.
The final section of this paper has presented the Ada design of AdaTAD together with an example
of how synchronization can be controlled and monitored using Ada primitives.

7. REFERENCES

1. Miller, E.; etal. Program Testing, JEEE Computer, Vol. 11, No. 4, April 1978 pp.
10-12.

2. Helmbold and Luckham, "Debugging Ada Tasking Programs," JEEE Software, Muarch
198S.

3. Whiteside, I, Jones, S., Levy, P. and Wixon, D. "User Performance with Command.

Menu, and Iconic Interfaces,” in Proc, CHI '85 Human Factors in Computer Systems, (San
Francisco, April 14-18, 1985), ACM, New York, pp. 185-191.

4. Ada Language Reference Manual,

Debugging Tasks with AdaTAD B.11.23

