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Abstract

This thesis presents a simple, yet powerful, set of mechanisms for
testing and debugging distributed applications consisting of modules
that communicate through well-defined data interfaces. The tools allow
default or programmer-defined functions to be attached to various com-
munication events so that particular data values at interesting points
in the program are made available for testing and debugging. The de-
bugging status of each component of the communication interface can
be controlled separately so that various debugging information can be
turned on and off during program execution. By attaching breakpoints
to programmer-defined functions in a standard debugger, fine-grained
examination of each module of the application can be integrated with
the coarse-grained communication debugging information provided by
our tools.

1 Introduction

As more and more people jump into the global communication infrastruc-
ture, it is becoming increasingly important to provide user friendly tools for
writing distributed applications. 1/O abstraction provides all users with a
simplified communication paradigm, making it easy to quickly write distrib-
uted applications. The programming environment has been designed to work
in heterogeneous environments, with different programming languages run-
ning on various operating systems. I1/O abstraction also allows for dynamic
configuration of the communication environment. However, even with a sim-
pler communication model, it is necessary to provide users with a debugging
mechanism which will aid in finding bugs in user programs.

In this thesis, we will first introduce the I/O abstraction model being used
and discuss some of the background work that was necessary for creation of
the debugger. Alternate designs will be discussed, followed by a discussion



of the chosen design for our debugger. A manual for using the debugger may
also be found at the end of this thesis.

2 Background

I/O abstraction is based on a formal model of distributed computing called
I/O automata. [1] An I/O automaton is a state machine consisting of input
actions and locally controlled actions. The locally controlled actions can be
divided into output actions and internal actions. The I/O automaton may
change state on an input action and as a result, might perform an output
action. In addition, internal actions can change the state and cause output
actions as well.

The Programmers’ Playground [2] is a distributed application develop-
ment environment that is based, in part, on ideas from the I/O automaton
model. Specifications of I/O automaton systems can be described as “sched-
ule modules” that characterize the allowable sequences of events that can
occur at the module interface. Similarly, one can describe the “behavioral
specification” of a Playground module as the allowable sequence of states
that can occur at the presentation. For each module in a distributed ap-
plication, a programmer declares a set of published variables available for
other programs to read or write. At run-time, the user may specify (using
a GUI} logical connections between similarly typed variables in other mod-
ules. Once a connection is made between variables, a change in one readable
variable causes a change in the recipient writable variable. If the programmer
chooses, this change can be seamless. In other words, the variable will change
values without informing the programmer or interrupting the execution of the
program. The programmer may also declare a reaction function in which the
program can react to a change in a variable’s value. The system provides
asynchronous communication; however it also provides “first in first out” or
FIFO communication between modules.

The current implementation of the system requires a centralized connec-
tion manager. The connection manager is a Playground module itself and is
used in keeping track of connections between modules and sending requests
to modules. The GUI is a separate Playground module which connects to the
connection manager and receives all information about the current modules
running and the connections between them. When the user uses the GUI
to make a logical connection between variables, the GUI sends a connection
request to the connection manager. The connection manager then sends a
request to one of the modules, allowing that module to connect to the other



module. With this implementation, it is possible for each module to operate
only knowing the location of the connection manager and not knowing about
any other modules. To allow easy creation of graphical interfaces to Play-
ground modules, EUPHORIA [3] has been developed. EUPHORIA allows
a user to connect Playground variables to graphical items such as a box’s
height or a circle’s center.

The system was developed with the GNU C++ compilers on Sun SPARC-
stations running Solaris. To create a Playground application, users simply
needed to include a file in their C++ source and link their code with the lib-
rary. With the previous implementation of the system, each module consisted
of two processes communicating with shared memory and using semaphores
to control access to the shared memory. One process would control com-
munication between the modules. Incoming and outgoing information was
stored in shared memory. Whenever the user’s program accessed a Play-
ground variable, the shared memory was checked for new information. If the
user’s program set the value of a variable, information was placed into the
shared memory to be given to the other process. We found this implementa-
tion to be inefficient and difficult to port. We also found it more difficult to
design a debugger for a system using such an implementation. Therefore, we
removed the shared memory and semaphores and placed the communication
functionality inside of the Playground library. As a result, we have reduced
latency and round trip delays, we have made the system more portable by
removing operating system dependent calls, and we have prepared the system
for the introduction of a debugger.

3 Motivation

The Playground programming environment removes all the details of com-
munication from the user and presents the user with an easy to use GUI.
The GUI assists in showing the programmer how communication is occuring
within the system. This greatly reduces the need of a debugger; however, we
have found it necessary to provide the user with some type of mechanism that
will allow one to monitor changes in the published variables.

4 Related Work

Much related work has been done in the field of distributed debuggers. However,
most of this work revolves around a system where the communication is ex-
plicit in a program rather than implicit. Some of these systems require kernel



modification and daemons, hence preventing portability. For example, Smith
(4] introduces a system that uses kernel modifications and daemons working
with a debugger to debug a distributed program. Smith’s debugger allows
you to replay a process with the information stored by the daemons. IDD
[5] deeply embeds its debugger into the operating system and provides state
examination, stepping, tracing, and assertion monitoring. Although many of
the designs mentioned above have useful properties in certain environments,
they do not allow for a programming environment where the communication
is implicit such as the Playground. It is also important to remember that one
of the goals of the Playground Project is portability for heterogeneous envir-
onments, With such goals, we choose not to implement kernel modifications
and operating system specifics as part of our debugger

Other systems have introduced some useful concepts. Bugnet [6] intro-
duces a system with checkpoints for synchronizing two processes. Each pro-
cess then records information on I/O events and tracing information. This is
useful for seeing what events led up to the error. Amoeba [7] is a system where
the debugger is not transparent to target programs. Each program would has
knowledge of the debugger and all communication is synchronous. Amoeba
provides check-pointing (synchronizing programs at a checkpoint), and roll
back (reviewing the actions of programs). Some simpler systems synchronize
clocks and record events such as Bates and Wileden [8]. If events and traces
have been logged, Garcia-Molina [9] suggests bringing the program into an
“artificial” environment and trying to create the conditions that led to the
crash. With the Playground paradigm, it would be possible to create such
logging and synchronization mechanisms. These mechanisms could be useful
in the Playground environment, but we were unable to implement these ideas
due to time constraints.

5 Design

In designing a debugger for the Playground, it is important to remember that
communication in the Playground is implicit, and that connections between
modules are dynamic (IE, they can be changed at run time). This means,
that one module, A, might be connected to another module, B, during some
point of module A’s life. However, the user might quit module B and start
up a different module C. C might have a different functionality than B, and
the user might connect A to C in the GUI. Because these connections are
determined at run-time, the operation of a Playground application as a whole
is not deterministic. The ease of creating new communication graphs between



creates somewhat of a debugging environment in and of itself. As discussed
above, [9] Garcia-Molina mentions an “artificial environment” for reproducing
the error. The Playground model essentially allows you to create an “artificial
environment” in order to reproduce some errors. A module can be built to
provide the artificial environment necessary to reproduce the error.

It is also important to note that errors in distributed systems can occur in
the system calls that initiate, perform, and destroy communication streams.
The Playground completely removes this layer of complexity from the user.
Because the communication is implicit, the programmer does not have the
difficult task of ensuring that communication is occuring properly.

In keeping with the spirit of the I/O automaton model, we wanted the de-
bugger to allow the user to determine if each module was behaving in a manner
consistent with its behavioral specification. Therefore, we decided that the
debugger should monitor changes to the values in the module’s presentation.
To monitor the data, we determined that it would be useful for a user to place
a breakpoint on a logical connection between one variable to another. The
user could then step through the program to find out how the error occured.
For the long term, we also wished to have control of the debugger through the
GUIL We generated some alternate designs before settling on a final design.

5.1 Alternate Design

One design that we generated requires use of the GNU compilers and the GDB
debugger. It conmsists of a Playground module called the GDB extension.
Each GDB extension creates an invisible logical connection into the GUI
module. A user could specify that a link in the GUI was to be a debugging
link. The GUI module would then communicate with the GDB extension to
establish breakpoints. The GDB module would then communicate with GDB
to set the breakpoints in the debugger.

This method would be very difficult to implement. Although it would
be very user friendly, the design could not be ported to other systems. The
interface into GDB is poorly decumented, and on other systems with differ-
ent compilers and debuggers, there is not necessarily an interface into the
debugger at all. The complexity of implementing such a system was also a
drawback.

5.2 Design of the Debugger

The Playground model currently makes use of event-driven reaction functions.
One way to debug a program is to set a breakpoint on a function. To make



the debugger consistent with the Playground model, we created a mechanism
in which the user can register functions for events. These events include:

e Pre-Send: before the new value is set or sent
e Post-Send: after the new value has been set and sent

¢ Pre-Receive: before setting the PG variable to the incoming value

Post-Receive: after setting the PG variable to the incoming value

Pre-React: before calling the reaction function

o Post-React: after calling the reaction function

When an event occurs, a call to the registered function for that event
occurs. The user can set a breakpoint on this function and step through the
module’s source, or the function could simply print the value of the variable.
In addition, to simplify future enhancements, events may be filtered by setting
flags. These flags can be turned on and off throughout the module’s execution.
If a flag for a specific event has been turned off, that event will not trigger a
call to the user’s registered function.

This design is highly portable. Breakpoints can be set in any development
environment on the registered debugging function. The user can then browse
through the local and remote variables in the program upon the given event.
The debugger is also extremely easy to use and contains the functionality to
be fully extended with GUI support.

6 Future Work and Summary

To make the debugger easier to use, we would eventually like to support flag
setting for each published variable through the GUI. We also hope to support
data visualization in the GUI such that you can see the data moving from the
origin of the link to the destination. Other possibilities for augmenting the
debugger include a distributed snapshot algorithm and event logging.

We have shown how the debugger can be useful in the Playground en-
vironment. Now that a simple mechanism exists to monitor what events
are occuring on a module’s published variables, we expect debug time for
distributed Playground applications to be reduced significantly.
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A  User’s Guide

The Programmers’ Playground provides a simple set of software tools to
assist the programmer in debugging applications. To use the debugger, you
can declare a set of debugging functions. Bach debugging function can get
called upon a specific event. These events include:

e Pre-Send: before the new value is set or sent

Post-Send: after the new value has been set and sent

Pre-Receive: before setting the PG variable to the incoming value

Post-Receive: after setting the PG variable to the incoming value

Pre-React: before calling the reaction function

e Post-React: after calling the reaction function

Debugging functions can be registered with the debugger for each event.
‘The debugger allows registration of functions for each Playground variable.
When an event occurs, the veneer will call the registered function for that
event if the flag is set.

A simple debugging function would print the value of the Playground
variable. If using in conjunction with a debugger such as GDB, a breakpoint
can be placed on a debugging function.

The'debugger also allows flag setting for specifying if an event should trig-
ger its respective debugging function. Eventually, Playground will support
run-time flag setting via the GUL.

A.1 PGdebug
PGdebug registers a Playground variable with the debugger:

PGint a;
PGpublish(a,"a" ,RW_WORLD);
PGdebug(a);

This would register the Playground integer a with debugger. By default,
all flags are set, meaning that events will trigger the registered functions.
Also by default, a function that prints the value of the variable is registered
for each event. This default function is defined as follows:



voild
PGdefaultDebug(PGobj* x)
{

cout << "DEBUG value: *;

x~>print(};

cout << endl;

}

You may override the defaults in your call to PGdebug. Following the
PGobj pointer, you can set flags, followed by the call-back functions as in the

example below:

void

dummy (PGobj* x)
{

+

/...

PGint a; .
PGpublish(a,"a" ,RW_WORLD) ;

PGdebug(a, // This is the PGobject we wish to debug
(cbfDEBUGPRESEND | cbfDEBUGPOSTSEND | // These are the flags
cbfDEBUGPREREACT | cbfDEBUGPOSTREACT),

Zdummy, // This
" &dummy, // This
&PGdefaultDebug, // This

&PGdefaultDebug, // This
&dumnmy , // This
&dummy) ; // This

is
is
is
is
is
is

the pre-send callback function ptr

the pest-send callback functicn ptr
the pre-receive callback function ptr
the post-receive callback function ptr
the pre-react callback function ptr
the post-react callback function ptr

The example above registers callback functions for all events, but only
sets flags for the pre-send, post-send, pre-react, and post-react events. These
events will trigger a call to the dummy function. If using a debugger, a
breakpoint could be placed on the dummy function.,

PGdebug can be called at any time after a call to PGinitialize. The
variable must be published before calling PGdebug.

A.2 PGdebugSetFunction

After a call to PGdebug, you may change your registered function for a
specific event with a call to PGdebugSetFunction:



void dummy(PGobj* x)
{
by

/...

PGreal a;

PGpublish(a,”a",RW_WORLD) ;

PGdebug(a, cbfDEBUGPRERCYV | cbfDEBUGPRESEND) ;
PGdebugSetFunction(a,fDEBUGPRERCV,&dummy);
PGdebugSetFunction(a, fDEBUGPRESEND, &dummy) ;

In the example above, the call to PGdebug would register functions for
Playground variable a and set the flags for the pre-receive event and the pre-
send event. The call to PGdebugSetFunction changes the call-back function
from the PGdefaultDebug function to the dummy function for the specified
events. The code above effectively registers the dummy function for the two
events, and it sets flags for those events. This insures a call to dummy will
occur upon the events, pre-receive and post-receive.

The second parameter, the event specifier, can be one of the following
constants:

o fDEBUGPRESEND
s fDEBUGPOSTSEND
¢ TDEBUGPRERCV

IDEBUGPOSTRCY

fDEBUGPREREACT

fDEBUGPOSTREACT

A.3 PGdebugSetFlags

PGdebugSetFlags allows you to set flags which specify which events will
trigger calls to the registered functions:

PGstring str;

PGpublish(str,"str" ,RH_WORLD) ;

PGdebug{str);

PGdebugSetFlags(str,cbfDEBUGPRESEND | cbfDEBUGPOSTSEND );
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The code above will register the Playground variable str with the debug-
ger and register the default debug functions for each event. The PGdebug-
SetFlags function will set the flags for the events pre-send and post-send that
might occur with the variable str.

Flags can also be set when registering your variable with PGdebug. The
code above could also be written as follows to achieve the same effect:

PGstring str;
PGpublish(str,"str" ,RH_WORLD);
PGdebug (str, cbfDEBUGPRESEND | cbfDEBUGPOSTSEND ) ;

Therefore, calls to PGdebugSetFlags are most useful at runtime. See the
Extended Example for an example which sets flags at runtime.

More than one flag can be specified by using the | operator. Valid call-
back function flags are:

o cbfDEBUGPRESEND
e chfDEBUGPOSTSEND
e cbfDEBUGPRERCV
o cbfDEBUGPOSTRCV
e cbfDEBUGPREREACT

e cbfDEBUGPOSTREACT

11



A.4 Extended Example

// consumer-debug.cc

/!

// This module has a single writable integer presentation variable.
// Whenever the value changes, it is printed to standard output.

// The module quits if the value goes negative.

1

// Debug code has been added such that:

// - the integer is registered with the debugger, default debug function is
!/ registered for all events on the integer

// - functions are registered for pre-receive and post-receive events on the
/7 integer, which overrides the default debug function for those

7/ events.

// - if the PG int changes to a number greater than 100, the flags

1 change such that the pre-react and post-react events causs a call

/ to the registered functions for that event (default debug function in
1/ this case)

// - if the PG int changes to a number less than 100, the flags are changed
// such that the pre-receive and the post-receive events trigger a call
!/ to the registered functions for that event (debug_prercv and

// debug_postrcv respectively in this case),

#include <iostream.h>
#include "PG.hh"

static int done = 0;
void

test_and_print(PGobj* v) {
PGint& i = (PGint&) *v;

if (i <0)
done = 1;
alse
{
if (i > 100)

PGdebugSetFlags(i,cbfDEBUGPREREACT | cbfDEBUGPOSTREACT);
if (1 <= 100)
PGdebugSetFlags(c, cbfDEBUGPRERCV | cbfDERUGPOSTRCV);

12



cout << i << endl;

¥

void

debug..postrcv(PGobj* a)

{
cout << "DEBUG postrcv:";
a->print();
cout<<endl;

b

void

debug_prercv(PGobj* a)

{
cout << "DEBUG prercv:";
a~->print();
cout<<endl;

}

int
main()
{
PGint ¢ = 03

PGinitialize("CONSUMER");
PGpublish(c,"c" ,WRITE_WORLD) ;

PGdebug(c);

PGdebugSetFunction(c,fDEBUGPRERCV, debug_prercv);
PGdebugSetFﬁnction(c,fDEBUGPDSTRCV,debug_postrcv);
PGdebugSetFlags(c, c¢bfDEBUGPRERCV | cbfDEBUGPOSTRCV):

PGreact(c,test_and_print);
PGreactUntilTrue(done,0,0);

PGterminate();

13
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