5 research outputs found

    Data-based fault detection in chemical processes: Managing records with operator intervention and uncertain labels

    Get PDF
    Developing data-driven fault detection systems for chemical plants requires managing uncertain data labels and dynamic attributes due to operator-process interactions. Mislabeled data is a known problem in computer science that has received scarce attention from the process systems community. This work introduces and examines the effects of operator actions in records and labels, and the consequences in the development of detection models. Using a state space model, this work proposes an iterative relabeling scheme for retraining classifiers that continuously refines dynamic attributes and labels. Three case studies are presented: a reactor as a motivating example, flooding in a simulated de-Butanizer column, as a complex case, and foaming in an absorber as an industrial challenge. For the first case, detection accuracy is shown to increase by 14% while operating costs are reduced by 20%. Moreover, regarding the de-Butanizer column, the performance of the proposed strategy is shown to be 10% higher than the filtering strategy. Promising results are finally reported in regard of efficient strategies to deal with the presented problemPeer ReviewedPostprint (author's final draft

    The NoiseFiltersR Package: Label Noise Preprocessing in R

    Get PDF
    In Data Mining, the value of extracted knowledge is directly related to the quality of the used data. This makes data preprocessing one of the most important steps in the knowledge discovery process. A common problem affecting data quality is the presence of noise. A training set with label noise can reduce the predictive performance of classification learning techniques and increase the overfitting of classification models. In this work we present the NoiseFiltersR package. It contains the first extensive R implementation of classical and state-of-the-art label noise filters, which are the most common techniques for preprocessing label noise. The algorithms used for the implementation of the label noise filters are appropriately documented and referenced. They can be called in a R-user-friendly manner, and their results are unified by means of the "filter" class, which also benefits from adapted print and summary methods.Spanish Research ProjectAndalusian Research PlanBrazilian grant-CeMEAI-FAPESPFAPESPUniv Granada, Dept Comp Sci & Artificial Intelligence, E-18071 Granada, SpainUniv Sao Paulo, Inst Ciencias Matemat & Comp, Trabalhador Sao Carlense Av 400, BR-13560970 Sao Carlos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Talim St 330, BR-12231280 Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Talim St 330, BR-12231280 Sao Jose Dos Campos, SP, BrazilSpanish Research Project: TIN2014-57251-PAndalusian Research Plan: P11-TIC-7765CeMEAI-FAPESP: 2013/07375-0FAPESP: 2012/22608-8FAPESP: 2011/14602-7Web of Scienc

    DECODE:Deep Confidence Network for Robust Image Classification

    Get PDF
    The recent years have witnessed the success of deep convolutional neural networks for image classification and many related tasks. It should be pointed out that the existing training strategies assume there is a clean dataset for model learning. In elaborately constructed benchmark datasets, deep network has yielded promising performance under the assumption. However, in real-world applications, it is burdensome and expensive to collect sufficient clean training samples. On the other hand, collecting noisy labeled samples is much economical and practical, especially with the rapidly increasing amount of visual data in theWeb. Unfortunately, the accuracy of current deep models may drop dramatically even with 5% to 10% label noise. Therefore, enabling label noise resistant classification has become a crucial issue in the data driven deep learning approaches. In this paper, we propose a DEep COnfiDEnce network, DECODE, to address this issue. In particular, based on the distribution of mislabeled data, we adopt a confidence evaluation module which is able to determine the confidence that a sample is mislabeled. With the confidence, we further use a weighting strategy to assign different weights to different samples so that the model pays less attention to low confidence data which is more likely to be noise. In this way, the deep model is more robust to label noise. DECODE is designed to be general such that it can be easily combine with existing architectures. We conduct extensive experiments on several datasets and the results validate that DECODE can improve the accuracy of deep models trained with noisy data

    Classification et apprentissage actif à partir d'un flux de données évolutif en présence d'étiquetage incertain

    Get PDF
    This thesis focuses on machine learning for data classification. To reduce the labelling cost, active learning allows to query the class label of only some important instances from a human labeller. We propose a new uncertainty measure that characterizes the importance of data and improves the performance of active learning compared to the existing uncertainty measures. This measure determines the smallest instance weight to associate with new data, so that the classifier changes its prediction concerning this data. We then consider a setting where the data arrives continuously from an infinite length stream. We propose an adaptive uncertainty threshold that is suitable for active learning in the streaming setting and achieves a compromise between the number of classification errors and the number of required labels. The existing stream-based active learning methods are initialized with some labelled instances that cover all possible classes. However, in many applications, the evolving nature of the stream implies that new classes can appear at any time. We propose an effective method of active detection of novel classes in a multi-class data stream. This method incrementally maintains a feature space area which is covered by the known classes, and detects those instances that are self-similar and external to that area as novel classes. Finally, it is often difficult to get a completely reliable labelling because the human labeller is subject to labelling errors that reduce the performance of the learned classifier. This problem was solved by introducing a measure that reflects the degree of disagreement between the manually given class and the predicted class, and a new informativeness measure that expresses the necessity for a mislabelled instance to be re-labeled by an alternative labeller.Cette thèse traite de l'apprentissage automatique pour la classification de données. Afin de réduire le coût de l'étiquetage, l'apprentissage actif permet de formuler des requêtes pour demander à un opérateur d'étiqueter seulement quelques données choisies selon un critère d'importance. Nous proposons une nouvelle mesure d'incertitude qui permet de caractériser l'importance des données et qui améliore les performances de l'apprentissage actif par rapport aux mesures existantes. Cette mesure détermine le plus petit poids nécessaire à associer à une nouvelle donnée pour que le classifieur change sa prédiction concernant cette donnée. Nous intégrons ensuite le fait que les données à traiter arrivent en continu dans un flux de longueur infinie. Nous proposons alors un seuil d'incertitude adaptatif qui convient pour un apprentissage actif à partir d'un flux de données et qui réalise un compromis entre le nombre d'erreurs de classification et le nombre d'étiquettes de classes demandées. Les méthodes existantes d'apprentissage actif à partir de flux de données, sont initialisées avec quelques données étiquetées qui couvrent toutes les classes possibles. Cependant, dans de nombreuses applications, la nature évolutive du flux fait que de nouvelles classes peuvent apparaître à tout moment. Nous proposons une méthode efficace de détection active de nouvelles classes dans un flux de données multi-classes. Cette méthode détermine de façon incrémentale une zone couverte par les classes connues, et détecte les données qui sont extérieures à cette zone et proches entre elles, comme étant de nouvelles classes. Enfin, il est souvent difficile d'obtenir un étiquetage totalement fiable car l'opérateur humain est sujet à des erreurs d'étiquetage qui réduisent les performances du classifieur appris. Cette problématique a été résolue par l'introduction d'une mesure qui reflète le degré de désaccord entre la classe donnée manuellement et la classe prédite et une nouvelle mesure d'"informativité" permettant d'exprimer la nécessité pour une donnée mal étiquetée d'être ré-étiquetée par un opérateur alternatif

    Classification et apprentissage actif à partir d'un flux de données évolutif en présence d'étiquetage incertain

    Get PDF
    This thesis focuses on machine learning for data classification. To reduce the labelling cost, active learning allows to query the class label of only some important instances from a human labeller. We propose a new uncertainty measure that characterizes the importance of data and improves the performance of active learning compared to the existing uncertainty measures. This measure determines the smallest instance weight to associate with new data, so that the classifier changes its prediction concerning this data. We then consider a setting where the data arrives continuously from an infinite length stream. We propose an adaptive uncertainty threshold that is suitable for active learning in the streaming setting and achieves a compromise between the number of classification errors and the number of required labels. The existing stream-based active learning methods are initialized with some labelled instances that cover all possible classes. However, in many applications, the evolving nature of the stream implies that new classes can appear at any time. We propose an effective method of active detection of novel classes in a multi-class data stream. This method incrementally maintains a feature space area which is covered by the known classes, and detects those instances that are self-similar and external to that area as novel classes. Finally, it is often difficult to get a completely reliable labelling because the human labeller is subject to labelling errors that reduce the performance of the learned classifier. This problem was solved by introducing a measure that reflects the degree of disagreement between the manually given class and the predicted class, and a new informativeness measure that expresses the necessity for a mislabelled instance to be re-labeled by an alternative labeller.Cette thèse traite de l'apprentissage automatique pour la classification de données. Afin de réduire le coût de l'étiquetage, l'apprentissage actif permet de formuler des requêtes pour demander à un opérateur d'étiqueter seulement quelques données choisies selon un critère d'importance. Nous proposons une nouvelle mesure d'incertitude qui permet de caractériser l'importance des données et qui améliore les performances de l'apprentissage actif par rapport aux mesures existantes. Cette mesure détermine le plus petit poids nécessaire à associer à une nouvelle donnée pour que le classifieur change sa prédiction concernant cette donnée. Nous intégrons ensuite le fait que les données à traiter arrivent en continu dans un flux de longueur infinie. Nous proposons alors un seuil d'incertitude adaptatif qui convient pour un apprentissage actif à partir d'un flux de données et qui réalise un compromis entre le nombre d'erreurs de classification et le nombre d'étiquettes de classes demandées. Les méthodes existantes d'apprentissage actif à partir de flux de données, sont initialisées avec quelques données étiquetées qui couvrent toutes les classes possibles. Cependant, dans de nombreuses applications, la nature évolutive du flux fait que de nouvelles classes peuvent apparaître à tout moment. Nous proposons une méthode efficace de détection active de nouvelles classes dans un flux de données multi-classes. Cette méthode détermine de façon incrémentale une zone couverte par les classes connues, et détecte les données qui sont extérieures à cette zone et proches entre elles, comme étant de nouvelles classes. Enfin, il est souvent difficile d'obtenir un étiquetage totalement fiable car l'opérateur humain est sujet à des erreurs d'étiquetage qui réduisent les performances du classifieur appris. Cette problématique a été résolue par l'introduction d'une mesure qui reflète le degré de désaccord entre la classe donnée manuellement et la classe prédite et une nouvelle mesure d'"informativité" permettant d'exprimer la nécessité pour une donnée mal étiquetée d'être ré-étiquetée par un opérateur alternatif
    corecore