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DECODE: Deep Confidence Network for

Robust Image Classification
Guiguang Ding, Yuchen Guo, Kai Chen, Chaoqun Chu, Jungong Han, and Qiongai Dai

Abstract—The recent years have witnessed the success of deep

convolutional neural networks for image classification and many

related tasks. It should be pointed out that the existing training

strategies assume there is a clean dataset for model learning. In

elaborately constructed benchmark datasets, deep network has

yielded promising performance under the assumption. However,

in real-world applications, it is burdensome and expensive to

collect sufficient clean training samples. On the other hand, col-

lecting noisy labeled samples is much economical and practical,

especially with the rapidly increasing amount of visual data in

the Web. Unfortunately, the accuracy of current deep models may

drop dramatically even with 5% to 10% label noise. Therefore,

enabling label noise resistant classification has become a crucial

issue in the data driven deep learning approaches. In this paper,

we propose a DEep COnfiDEnce network, DECODE, to address

this issue. In particular, based on the distribution of mislabeled

data, we adopt a confidence evaluation module which is able to

determine the confidence that a sample is mislabeled. With the

confidence, we further use a weighting strategy to assign different

weights to different samples so that the model pays less attention

to low confidence data which is more likely to be noise. In this

way, the deep model is more robust to label noise. DECODE

is designed to be general such that it can be easily combine

with existing architectures. We conduct extensive experiments

on several datasets and the results validate that DECODE can

improve the accuracy of deep models trained with noisy data.

Index Terms—Deep Learning, Robustness, Confidence Model.

I. INTRODUCTION

I
MAGE classification has drawn considerable research in-

terest from artificial intelligence, machine learning, and

computer vision communities for several decades. It is funda-

mental for object recognition [1], scene understanding [2], and

many other important tasks [3–7]. After a long time with hand-

crafted features [8, 9] and shallow models [10, 11], researchers

have witnessed the dramatic progress in recent years benefiting

from the development of deep convolutional neural networks

(CNN) [12–15], which has led to beyond-human performance

in many benchmarks, including object recognition benchmark

ImageNet [1] and face recognition benchmark LFW [3]. By a
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Fig. 1: We use a keyword “dog” to retrieve images in Google

image search engine. Surprisingly, several non-dog images,

like cat or background images, arise in the top-ranked results.

large number of local convolutions, nonlinear transformations,

and complicated combinations, deep CNN is able to exploit

the intrinsic characteristics of images and construct powerful

semantic features from images as well as accurate classifiers.

Generally, training a deep CNN model follows a standard

supervised learning pipeline [16]. Firstly, a sufficiently large

sample set with labels is collected, e.g., by expert labeling.

Then, the labeled training set is fed into the model and an

optimization algorithm is adopted, e.g., stochastic gradient

descent, to tune the model parameters to minimize a kind

of loss function, e.g., cross-entropy loss. However, it is easy

to observe that a deep CNN model has a huge number of

parameters, which is significantly more than previous shallow

classification models. This property leads to a fact that training

a deep CNN model requires much more training images than

are needed for training shallow models. For example, a SVM

classifier usually has hundreds to thousands of parameters, and

hundreds of labeled samples can always result in good perfor-

mance. On the contrary, a deep CNN model, like AlexNet [12]

or DenseNet [15], may have millions of parameters such that it

is highly probable for a deep CNN model to overfit a training

set with only hundreds of images. In practice, a training set

with at least tens of thousands of labeled images is required to

train a deep CNN model especially when trained from scratch.

A. Motivation and Contribution

Due to the demand for a large number of labeled samples,

how to collect a sufficient training set seems to be a critical

issue for deep CNN model training. One may observe that

the current training strategies simply assume that there is a

relatively clean dataset available for model training, which is

collected by, for example, expert labeling. This assumption
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Fig. 2: The classification error rate of different models on different datasets with respect to different label noise ratios.

holds for many elaborately constructed benchmarks, like Ima-

geNet. However, in practice, collecting such a large labeled

training set is expensive and burdensome. For example, it

may take millions of dollars to label an image dataset with

ImageNet scale on Amazon Mturk platform. On the con-

trary, collecting labeled samples from Internet, e.g., retrieving

images from image search engine like Google using target

keyword, turns out to be a convenient and economical way,

which has drawn attention from some works [17, 18]. It

can provide nearly labor-free labeled images with potentially

unlimited size. Intuitively, the top-ranked images should be

highly related to the target keyword so that they are always

regarded as high-quality labeled images. Unfortunately, Web

images are very noisy in practice. For example, as shown

in Fig. 1, we use a keyword “dog” to retrieve images from

Google image search engine. In the top-ranked images,

there are several non-dog images, like cat images. When

there are label noise, the performance of deep CNN models

may drop dramatically. Empirically, we conduct experiments

on MNIST [4], AwA [19] and CIFAR10 [20] datasets with

LeNet [4], AlexNet [12] and DenseNet [15]. We add label

noise to the training data by randomly mislabeling some

images. The classification error rates on test set w.r.t. the

noise ratio (the ratio between mislabeled images and all

training images) are plotted in Fig. 2. Obviously, the error

rate increases significantly with a little label noise. In some

scenarios, even 5% to 10% label noise doubles the error

rate. In addition, when performing recognition in complex

background, the label noise also exists and has significant

negative impact on the overall recognition accuracy [21–23].

The phenomenons above motivate us to develop robust deep

CNN model training strategy to alleviate the negative influence

of label noise in training data on the model so that it can

work better in practical scenarios. In particular, we propose

a deep confidence network (DECODE) to address this issue.

Specifically, by analyzing the data distribution of mislabeled

images, we propose a simple yet effective confidence evalua-

tion strategy to assign confidence score/weight to each sample.

The purpose is to identify mislabeled images (i.e., noise) and

assign small weights to them while assign large weights to

confident ones. With the weighting strategy, the model will pay

more attention to high-confidence samples, which are more

likely to have correct labels, while it pays less attention to low-

confidence samples, which are more likely to be mislabeled.

To sum up, we make the following contributions in this paper:

1. We propose a novel framework, deep confidence network

(DECODE), for robust image classification. It is capable of

alleviating the adverse influence of noisy labels on training

data in order to improve the accuracy of deep CNN models.

2. A simple yet effective confidence evaluation strategy is

given based on the distribution of samples to identify noisy

samples in training set. It produces a confidence score for each

sample which reflects how likely the sample is mislabeled.

Based on the confidence score, large training weights are

assigned to high-confidence samples while small weights are

given to low confidence ones. With this strategy, we can train

deep CNN models with noisy data especially from scratch.

From the application perspective, DECODE has the follow-

ing properties, making it practical in real-world applications:

3. DECODE is architecture independent such that it can be

seamlessly combined with several popular CNN architectures,

including LeNet, AlexNet, and the state-of-the-art DenseNet.

4. Experiments on several benchmark datasets and Web

images demonstrate that DECODE can indeed improve the

robustness of existing models, which verifies its effectiveness.

II. RELATED WORK

Learning with noise is an important research topic in image

classification and many related areas. This is a crucial issue

especially for real-world applications because there is no

guarantee that the training samples have perfectly clean labels.

To address this issue, many approaches have been proposed,

which can be roughly categorized into three main frameworks.

Noise robust algorithms. Many researchers notice that why

the noisy samples significantly affect the model is because

the model tries to “over-fit” the noise samples as they may

contribute larger loss to the objective function than the normal

samples. Therefore, one straightforward solution is to adopt

noise-robust algorithms to train a model [6, 24–26], in which

over-fitting avoidance techniques, such as regularization, are

utilized to partially handle the label noise [27, 28]. In [25],

Manwani et al. investigated the robust learning problem in the

empirical risk minimization framework. It theoretically ana-

lyzed the robustness of different classification loss functions.

Dietterich discussed the robustness of ensemble algorithm like

bagging and boosting under label noise [29]. Abellan et al.

considered to improve the robustness of decision tress [30]

with continuous features and missing data. However, these

approaches mentioned above seem to be effective only when

label noise can be managed by over-fitting avoidance [31].
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Bartlett et al. demonstrated that most of the loss functions

used by them are not completely robust to label noise [32].

Semi-supervised algorithms. Another popular strategy to

handle label noise is semi-supervised learning. In this frame-

work, extra supervision aiming at identifying mislabeled train-

ing samples is utilized. In particular, another dataset with

clean labels is constructed to assist the training with noisy

labels under semi-supervised paradigm [33]. One widely-used

approach is to use the combination of clean and noisy datasets

to pre-train a model and then finetune it only with the clean

set, where co-training and multi-view learning algorithms are

often adopted. Veit et al. demonstrated that the above strategy

did not fully leverage the information contained in the clean

set. They proposed to use the pre-trained CNN model and

the clean dataset to pre-process the noisy set and the both

datasets were utilized to train a final model [34]. In addition,

other semi-supervised techniques like label propagation are

also utilized. For example, Chen et al. [35] proposed to use

constrained bootstrapping and Fergus et al. [36] adopted a

graph-based approach. They used a clean dataset to learn a

feature representation and then constructed a mapping between

noisy and clean annotations. However, they require a purely

clean training set which is unavailable in many real-world

scenarios. Furthermore, it seems quite difficult to incorporate

their complicated strategies into the end-to-end CNN training.

Data relationship based algorithms. Many approaches

attempt to explore the relationship in data, like image-image,

image-label, label-label dependencies. Intuitively, the samples

or labels are not independent to each other, whose relationship

can be learned from data. Then based on the relationship,

mislabeled samples are expected to be identified. Natarajan

et al. [37] and Sukhbaatar et al. [38] proposed to explore the

noisy label distribution and take it into consideration during

model training. Xiao et al. adopted an image-conditional noise

model to capture the relationship between images and noisy

labels. Veit et al. [34] proposed to capture the dependency

of label noise from the input image, by learning a cleaning

network about conditional dependency on image features. In

addition, many other approaches attempted to identify the

mislabeled samples by mining the relationship between data

and then remove or correct them [39, 40]. However, these

approaches get in trouble in distinguishing informative hard

examples from harmful mislabeled ones. Some methods may

remove too many suspicious samples and the over-cleaning

could seriously reduce the performances of classifiers [31].

The above approaches mostly focus on training shallow

models with noisy training data. Recently, how to train deep

models with noise has drawn increasing interest. Wu et al. [41]

proposed to incorporate a regularization terms with the model

parameters to exploring the relationship between features and

classes in order to address the noise in video frames. Reed

et al. [42] proposed a noise reconstruction method based on

the data consistency using a bootstraping strategy, denoted as

BOOTS. In their approach, a prediction is considered con-

sistent if the same prediction is made given similar percepts.

The noise distribution is modeled as a matrix mapping model

and it is utilized to detect inconsistency and correct noisy

labels. However, their approach assumes that there is explicit

mapping rules contained in label noise. Once the label noise is

distributed randomly or has complicated patterns, their model

may fail to construct the mapping matrix. Chen et al. [17]

proposed to address the noise in a large dataset by another

clean dataset as auxiliary supervision. However, their approach

may fail when we train a model from scratch with no clean

dataset, which is the main focus of this paper. Szegedy et

al. [43] investigated the robustness of deep CNN model to

adversarial samples. It is shown that even small noise in

samples may lead to large misclassification rate. The effect

of noisy training data is also considered in [44] and [45]. In

summary, how to train a deep CNN model from scratch with

only noisy training set is still an open and challenging issue.

Unsupervised algorithms. As surveyed in [46], there are

many unsupervised algorithms for noise and outlier detection.

However, these approaches are not feasible for our setting.

In this paper and many related literatures, label noise instead

of data noise is the focus. There is difference between them.

For example, in AwA dataset for animal classification, label

noise is that a tiger image is wrongly labeled as lion while

data noise is that a non-animal image is included into the

dataset. By unsupervised approaches, it is possible to identify

the nonanimal images because they are outliers in the dataset

which are far from all classes. However, a true tiger image will

lie close to other tiger images, no matter what label it has. If it

is wrongly labeled as lion, it will be an outlier for lion images,

but not an outlier for the whole dataset because it is close to

tiger images. In this case, it is difficult to be identified without

label information in an unsupervised manner. In this paper, we

care more about data that has wrong labels, instead of outliers

of the dataset. As shown later, mislabeled samples lie close to

normal data such that it is very difficult to detect them in a

totally unsupervised manner. But with the class label, we can

observe that some samples are outliers for their class.

DECODE is different from existing works in three perspec-

tives. Firstly, the framework is different. There are many non-

deep approaches for learning with noise. However, it is not

clear how to combine them with deep networks, while DE-

CODE itself is a deep learning framework. Compared to other

deep approaches, we introduce a novel confidence evaluation

module which is able to estimate the likelihood that a sample

is mislabeled. The network can be trained in an end-to-end

manner which can be combined with any existing deep CNN

architectures. Secondly, the strategy is different. Some existing

deep robust learning approaches require a clean dataset as

auxiliary information to learn the true distribution of data.

However, the clean dataset is sometimes very unavailable or

expensive to construct. In this paper, we focus on learning from

only one noisy dataset. For this setting, existing approaches

mainly utilize the softmax output to identify the mislabeled

data. However, softmax output is only reflects the probability

that the sample belongs to each class. In each class, there

are always many sub-classes where they may vary a lot from

each other. Obviously, the softmax output is unable to well

handle the intra-class diversity. DECODE, on the contrary,

uses the fc output for analysis. The fc output is widely used as

the image feature which can provide the relationship among

images. Compared to softmax output, it provides much more
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Fig. 3: Visualization of features after different number of training iterations. We use CIFAR10 dataset and DenseNet. In these

figures, “true class1” denotes samples having observed label “class1” and true label “class1”, and analogous to “true class2”.

“false class1” denotes samples having observed label “class1” but true label “class2”, i.e., there are mislabeled and noise.

information, like the similarity between images and the cluster

structure of data. In particular, DECODE adopts clustering

hypothesis for noise identification. In addition, it assumes

multiple clusters for each class, which is capable of handling

the intra-class diversity and the sub-class structure for each

class. Obviously, this strategy is more reasonable than the

softmax based strategy. Moreover, Fig. 3 shows the behavior

of deep networks during training with noise in practice, which

lays solid foundation for DECODE. Thirdly, DECODE can

be applied to more settings and applications. In fact, we

can combine DECODE with any existing architectures, like

LeNet, AlexNet and DenseNet. DECODE does not make any

assumption about the noise distribution. Many other related

approaches have some assumptions about the distribution. For

example, BOOTS works well for conditional label permuta-

tion, but fails in many other cases, like uniform permutation.

III. DEEP CONFIDENCE NETWORK

A. Problem Definition and Notation

The problem is defined as follows. We are given a set of

training data X = {xi|xi = {ri, li, l̃i}}, where ri denotes

the raw information of an image, like the RGB pixel values,

l̃i ∈ L is the true label of xi which is unknown for training,

and li ∈ L is the observed label for xi which has a probability

to be different from l̃i. Our goal is to train a model M using

the noisy training set X to predict the true label of a test image.

Given a model and an input image, we denote the intermediary

output (e.g., the output of a fully-connected layer) as fi.
In this paper, we consider uniform random label noise.

Given an image xi, we have p(li = l̃i|xi) = ρ and p(li =
c|xi) = (1 − ρ)/(C − 1), ∀c ∈ L\l̃i, where C = |L| is the

number of classes in training set and ρ is the probability that

the observed label is correct which is unknown for training.

B. Observation

First of all, it is worthy of investigating the behavior of label

noise during training. We use CIFAR10 dataset and 40-layer

DenseNet trained from scratch for illustration. We set the noise

rate (nr = 1 − ρ) to 0.1 and train the model with the noisy

training set. We extract the output of the last pooling layer

(pool3), which is a 448-dimensional vector, as the feature

of each image. We use t-sne [47] to visualize the features.

In particular, we randomly select two classes “class1” and

“class2”. The visualization is shown in Fig. 3. “true class1”

denotes samples with correct label “class1”, and analogous

to “true class2”. We care more about “false class1” denoting

samples whose observed label is “class1” while true label is

“class2”, i.e., they are mislabeled. Fig. 3 shows the trend

of “false class1” samples with respect to different training

iterations. We have one important observation from the result.

There is an interesting phenomenon on “false class1”. At the

beginning, e.g., after only 5k or 10k iterations, “false class1”

samples perform more like the “true class2” samples than “true

class1” samples. One possible and intuitive reason is that the

model does not fit the data very hard at beginning and it

only focuses on coarse characteristics of images to distinguish

categories. In this scenario, it is difficult for the model to tell

the difference of “false class1” and “true class2” because they

actually have the same true labels given different observed

labels. With further training, e.g., to 200k iterations, the model

is capable of finding the fine and tiny features to distinguish

them such that “false class1” samples gradually move towards

“true class1” samples. In fact, when a human is learning to

distinguish different object categories, he/she will focus on

coarse and general characteristics at first so that some outliers

may be mis-recognized, and then the tiny detail is noticed [48].

Similar behavior of deep CNNs has been observed in [49]

too. Their results suggest that deep networks tend to prioritize

learning simple patterns first and then fit the abnormal data.

It takes a long procedure, instead of a one-step operation,

for a deep CNN model to fit the label supervision from training

set. This observation inspires us to involve a early stop strategy

into the pipeline of model training. In particular, we propose

to check the confidence of the model to a sample and assign

small training weight to samples whose confidence is low.

In fact, this strategy is somehow analogous to many semi-

supervised learning (SSL) approaches [33]. In SSL, a model

trained with some labeled samples is applied to a large number

of unlabeled samples. Then the unlabeled samples with large

confidence, e.g., measured by the maximum probability to a

category p(c|x), are selected and treated as labeled samples

to retrain the model because they are very likely to belong

to the corresponding categories. With more training data and

knowledge, the performance of this model can be improved in

most cases. Our idea is similar to it but from the opposite view.

We stop the training procedure in half way and then apply the

obtained model to all labeled training samples. As suggested in
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Fig. 4: The proposed DECODE for training deep CNN model with noisy labels. Conventional training strategy assigns the same

weight to all samples. We find out that samples with noisy labels have different behavior from the ones with true labels during

training. Based on this observation, we propose a confidence evaluation module to find the mislabeled samples and further

assign different training weights to different samples. In this way, the influence of noisy samples is effectively suppressed.

Fig. 3, noisy/mislabeled samples tend to have low probability

to their target labels because they should have other labels.

Therefore, it is reasonable to assign smaller weights to them

for subsequent training steps to suppress their influence so that

the model can focus on samples which have true labels.

C. Framework and Approach

Based on the observation above, we propose DECODE for

training deep CNN model with noisy data, whose framework is

briefly illustrated in Fig 4. Previous training strategy assigns

the same weight to all training samples. In this paper, we

propose to give different weights for different samples, where

the weight is determined by the confidence that it is correctly

labeled based on the output of current model. A small weight is

assigned to samples which are likely to have noisy labels. Then

the weighted loss is backpropagated to tune model parameters.

DECODE is architecture independent and we can combine

it to any deep CNN architectures. In fact, existing architectures

mostly follow a convolution-fully connected (fc) style which

has a large number of convolution layers (together with

activation and pooling layers) at first and a few fully connected

layers at last. In this work, we adopt the output of the last layer

before the classification layer as fi for a sample xi, like the

pool3 layer in DenseNet and fc7 layer in AlexNet.

Now we compute the confidence of each training sample.

Confidence evaluation is based on the clustering hypothesis1

which is also demonstrated in Fig. 3. Clustering hypothesis as-

sumes that data from the same class should form a cluster and

be similar to each other, which is a fundamental assumption for

many machine learning techniques, including semi-supervised

learning [33]. In DECODE, we also utilize this hypothesis. In

particular, for each class c ∈ L, we have a set of clustering

1https://en.wikipedia.org/wiki/Cluster hypothesis

centers kcj for it, whose number is Kc. In this simplest case,

we use 1 cluster center for each class. However, in real-world

scenarios, the class structure is more complicated. Therefore,

it seems more reasonable to assume multiple cluster centers

for each class. Then we introduce a violation factor as below:

v(xi) =
∑

c∈L

Kc∑

j=1

f(max(0, d(fi, k
li
j(xi)

)− d(fi, k
c
j) + λ)) (1)

Here, d(·, ·) is a distance measure, like Euclidean distance and

cosine distance. λ is a non-negative margin parameter. j(xi) =
argminjd(fi, k

li
j ). We care about the abnormal samples which

violate the clustering hypothesis, i.e., its distance to its own

class’ center is larger than to other classes’ centers. f(x) is a

counter function which counts the times of violations. It can

be hard count where f(x) = 1 if x is true or 0 otherwise, or

soft count f(x) = x which considers the degree of violation.

Obviously, the larger v(xi) is, the more likely xi is to be

mislabeled because it is closer to many other classes’ centers

instead of its own observed label’s center. One may say that

there is a very simple strategy by considering the softmax

output pi of a sample. However, our strategy in Eq. (1) has one

advantage over this strategy. Eq. (1) considers the distribution

structure of training data while softmax based one considers

the information of a single sample only. Therefore, Eq. (1) uses

more information such that its prediction is more reliable.

Based on the violation factor, it is straightforward to define

the confidence which is a monotonically decreasing function of

the violation factor. In this paper, we adopt a simple function

which simultaneously normalize the value to [0, 1] as below:

confi = exp(−αv(xi)) (2)

where α is a factor to control the decay rate. Then, we can

compute training weight wi using confi. As confi has been
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Algorithm 1 Training DECODE

Input: Training data X , model structures, parameters;

Output: A deep CNN model;

1: Randomly initialize the model;

2: Run k-means clustering on image features for each class

to get the initial cluster centers kcj ;

3: repeat

4: Select a training batch B;

5: Forward B through the model and get image feature f ;

6: Compute violation factor v(xi) using fi by Eq. (1);

7: Compute confi and training weight wi by Eq. (2);

8: Compute the weighted loss by Eq. (3);

9: Back-propagate the weighted loss by SGD;

10: Update centers kcj by Eq. (4);

11: until Convergence or maximum iterations;

12: Return the obtained model;

normalized, we simply set wi = confi. Given a training batch

B = {xi|i = 1, ..., b}, the weighted loss is defined as below:

Loss(B,ϕ) =

b∑

i=1

wiloss(xi, li, ϕ) (3)

where ϕ is the current model and loss is a loss function like

cross entropy. With a training weight, the influence of noise

can be effectively suppressed so that the model is more robust.

The learning algorithm now consists of two parts, training

deep network and training confidence evaluation module.

When training a deep network, we can use stochastic gradient

descent to minimize Eq. (3) just like the usual way. This can be

done easily based on existing deep learning tolls, like Caffe2.

Then we need to update the confidence evaluation module. In

particular, we need to update cluster centers kcj . Inspired by

[50], these centers can be also updated by gradient descent.

Specifically, in each training batch, center kcj is updated as:

kc
j = kc

j − τ

∑b

i=1
δ(j(xi) = j ∧ li = c)wi∂d(fi, k

c
j)/∂k

c
j

1 +
∑b

i=1
δ(j(xi) = j ∧ li = c)

(4)

where τ is a tiny step size and δ(z) is an indicator function

which is 1 if z is true or 0 otherwise. Here we also take the

weight wi into consideration so that the centers focus more on

reliable samples. Here ∂d(fi, k
c
j)/∂k

c
j is the partial derivative

of the distance measure to kcj . In this paper, we consider the

Euclidean distance. We can utilize other distance or similarity

measures also, like cosine and inner-produce similarity. We

empirically find out that Euclidean distance is slightly better.

We summarize the training algorithm of DECODE in Al-

gorithm 1. It basically follows the mini-batch based iterative

procedure for training a deep CNN model. The main difference

lies in line 6 to line 9 where we evaluate the confidence of a

sample and assign a training weight based on its confidence

so that the influence of mislabeled samples is suppressed. The

confidence evaluation module is updated adaptively in line 10.

Based on the training algorithm above, the obtained deep CNN

model shows more robustness to label noise in training data.

2https://github.com/BVLC/caffe

TABLE I: Description of benchmark datasets

Dataset #classes #training #test

MNIST 10 60, 000 10, 000
AwA 50 24, 380 6, 095

CIFAR10 10 50, 000 10, 000

As shown in Algorithm 1, training DECODE requires just

a few extra operations than the standard back-propagation

based deep model training, which includes computing the

violation factor, confidence, and the training weight. These

operations only need some simple vector operations, of which

the computational cost is much less than the cost of the

forward and backward propagation in the convolution layers.

Therefore, the training speed is comparable to training in

the original way. Based on the Caffe toolbox, training an

AlexNet can be done in a few hours using one GPU.

IV. EXPERIMENT

A. Data Preparation

In our empirical studies, we select three different benchmark

datasets which have different size, complexity, and topics.

MNIST [4]. MNIST dataset is a handwritten digits dataset.

It consists of 70, 000 handwritten images representing a digit

from “0” to “9” where 60, 000 images are used as training set

and the other 10, 000 are test set. Each image has a size of

28× 28 and each pixel is represented by its gray-scale value.

Animals with Attributes (AwA) [19]. AwA dataset is build

for recognizing animal images in the wild. It has 50 animal

species together with 30, 475 images. We randomly split 80%
images as training set and the remaining 20% images as test

set. Because the images are captured in the wild, they have

various and noisy background, and the animals show different

poses. Therefore, this dataset is complicated to some extent.

CIFAR10 [20]. CIFAR10 dataset is a popular dataset for

image classification task. It has 10 common objects like

“truck” and “cat” where each object has 6, 000 image. We

follow the standard split where 50, 000 images are utilized for

training and the other 10, 000 images are used for evaluation.

B. Deep CNN Models

We consider three deep CNN models. The first is LeNet [4]

which is a very simple deep CNN model published about

twenty years ago, which is one of the earliest deep CNN

models. LeNet is mainly for simple datasets like MNIST.

The second is AlexNet [12] published in 2012. It is one of

the most well-known models. It achieved great success in

ImageNet challenge and attracted considerable attention from

both academia and industry. The third is DenseNet [15] which

is one of the state-of-the-art networks currently. In this paper,

we consider the 40-layer (k = 12) network. DenseNet is the

most complicated and has the best performance. There are

also many other network structures, such as VGG [13] and

ResNet [14]. But they have similar complexity and perfor-

mance with the selected structures in our experiment. Hence

we do not use them all but some representative ones. In fact,

the proposed DECODE framework can be combined with them

all since network structure itself is not the focus of this paper.
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TABLE II: The classification error rate comparison on different datasets with different models.
LeNet@MNIST AlexNet@AwA AlexNet@CIFAR10 DenseNet@CIFAR10

Noise Rate Original DECODE Original DECODE Original DECODE Original DECODE

0% 0.85% 1.48% 30.27% 30.14% 9.56% 8.80% 7.00% 6.60%
5% 2.97% 1.51% 34.08% 32.86% 10.75% 9.89% 12.07% 8.84%
10% 5.32% 1.53% 34.84% 34.74% 11.01% 9.93% 14.33% 10.90%
15% 9.46% 1.70% 38.26% 36.05% 11.69% 10.01% 17.51% 11.44%
20% 13.25% 1.73% 41.27% 37.71% 11.82% 10.92% 18.66% 12.51%
25% 15.58% 1.81% 43.87% 37.36% 12.83% 11.28% 20.27% 13.71%
30% 18.88% 1.84% 44.21% 37.44% 12.91% 11.35% 22.61% 14.02%
35% 25.95% 2.60% 47.51% 39.47% 13.45% 12.28% 23.46% 15.00%
40% 30.62% 2.77% 47.50% 39.09% 14.08% 12.62% 25.74% 15.62%

C. Experiment Settings

We evaluate our framework for image classification task.

The classification error rate on test set is used as the metric:

Error Rate =

∑nt

i=1 I(pi 6= l̃i)

nt

(5)

where nt is the number of test samples, l̃i is the true label of i-
th sample and pi is the predicted label by the model, and I(x)
is an indicator function which is 1 if x is true or 0 otherwise.

Our goal is to evaluate models trained with noisy data.

But we should notice that the benchmark datasets are almost

noiseless. So we manually add label noise to them. In par-

ticular, we set a noise rate nr. Then given a training sample

with label l̃i, its observed label li which is actually used for

training is sampled with probability p(li = l̃i) = 1 − nr and

p(li = c) = nr/(C − 1), ∀c ∈ L\l̃i where C = |L|. We

change the value of nr in 0.05 : 0.05 : 0.4 and construct a

new noisy training set. A deep CNN model is trained by the

new training set and is evaluated on the test set. In this way,

we can comprehensively evaluate the robustness of models.

D. Implementation Details

To implement DECODE, we use Caffe toolbox. For all

cases, we set the base learning rate as 1e-4 and weight decay

as 5e-5. The batch size is 128. For MNIST, the maximum

iteration is 30k. For AwA and CIFAR10, we train DECODE

for 300k. If we use a pre-trained model for initialization, it may

contain noiseless knowledge from other dataset. So we train

all models from scratch. Because we use random initialization,

the features fi produced at the beginning have very low quality

so that the confidence evaluation is not reliable since the

cluster structure is not significant after random initialization.

As observed in Figure 3, the noise data has little influence

on training at very beginning because the model tries to

capture general knowledge applicable for most data. So we

train networks without the confidence evaluation for the first

1k iterations by assigning the same weight 1 to all samples.

E. Effectiveness Verification

We firstly verify the effectiveness of DECODE. We change

the noise rate and evaluate the classification error on test set for

each method. The comparison between the original model and

DECODE is summarized in Table II and the trends are plotted

in Figure 5. It can be observed that the performance of LeNet,

AlexNet, and DenseNet drops dramatically with more noise

while DECODE shows more robustness. Therefore, DECODE

consistently and significantly outperforms the original ones.

Besides, we have the following observations from the results.

Firstly, LeNet@MNIST raises error rate by 29.77% when

we increase the noise rate from 0 to 40%, AlexNet@AwA

raises by 17.23%, AlexNet@CIFAR10 raises by 4.52%, and

DenseNet@CIFAR raises by 18.74%. On the other hand,

with the proposed DECODE, the error rates are raised by

1.29%, 8.95%, 3.82%, and 9.02% respectively, relatively sup-

pressing the influence of noise by 95.67%, 48.06%, 15.49%
and 51.87% compared to the original models. The results

demonstrate that DECODE can indeed improve the robustness

of existing models, which is the motivation of this paper.

Secondly, we can observe that DECODE has slightly bet-

ter performance for AlexNet@AwA, AlexNet@CIFAR, and

DenseNet@CIFAR when the noise ratio is 0. When nr = 0,

there is no extra manual noise in the datasets. In this case, we

use the original datasets. Since these datasets were elaborately

collected, we can regard them as “clean” datasets. One pos-

sible reason is that the original datasets may contain noise to

some extent. DECODE is capable of addressing the noise and

leads to better performance. One may argue that the examples

close to the boundary is informative. But we should notice

that they are more likely to be mislabeled in practice since

they are more ambiguous. From one side, if a model pays

more attention to them, it can obtain important knowledge to

distinguish two classes if these examples are correctly labeled.

However, on the other side, if they are mislabeled, paying more

attention to them leads to a worse model since it is misled. In

DECODE, samples close to boundary are paid less attention

to so that the noise in them has less impact on the model. In

addition, doing so can also make the model focus more on the

general knowledge of a class, which makes it generalize better

on test data. In MNIST, the data is quite simple and we can

regard it as a purely clean dataset. So the examples close to

boundary provide useful information. DECODE down-weight

them so that it performs slightly worse than the original model.

However, when there is only 5% noise, the performance of

original model drops significantly while DECODE does not.

AwA and CIFAR10 are collected from real world and they

are more complicated than MNIST. Therefore, they naturally

contain label noise themselves. In this situation, paying more
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Fig. 5: The classification error rate comparison on different datasets with different models.

attention to examples close to boundary is likely to mislead the

model and thus DECODE has better performance. In fact, in

practical applications, when the model is trained by a training

set collected from real world for a complicated task, like

a fine-grained classification task, it is almost impossible to

ensure that the training set is as clean as MNIST. The results

demonstrate that DECODE can perform well in practice.

Thirdly, on CIFAR10 dataset, noise has less impact on

AlexNet than DenseNet. In fact, DenseNet is one of the most

state-of-the-art architectures and it is able to discover more

knowledge and details from training data, and that is why

DenseNet performs better when there is 0% noisy data. As

discussed above, a network progressively fit the data where

general knowledge is firstly captured and specific details later.

For DenseNet, the noisy information is “over-fitted” because

DenseNet is complicated enough so that the model is heavily

influenced. On the other hand, AlexNet is relatively simpler

than DenseNet such that it is not able to finely capture the

distribution of noise. In this case, AlexNet seems more robust

to noise data and thus performs better. With DECODE, the

performance drop of DenseNet is effectively suppressed.

Fourthly, LeNet@MNIST has the largest performance drop

among all settings. In fact, MNIST is the easiest dataset in

our experiment and the intra-class variance is relatively small.

Therefore, it is easy to capture the information of training

data, even if we use a simple network like LeNet. In this

way, the network will try to fit noisy data during training

and get significantly affected. On the other hand, DECODE

utilizes the cluster structure to evaluate the confidence of each

training sample. The small intra-class variance makes it easier

to identify the outliers and assign very small weights to them.

Because the dataset is easy, DECODE achieves only 2.77%
error rate even with 40% mislabeled images in training data.

Fifthly, the results demonstrate of the superiority of image

features from the fc layer to the softmax output for confidence

evaluation. Using the softmax output to identify mislabeled

samples is exactly the method in our baseline BOOTS. It

adopts the inconsistency of softmax output as the metric. By a

bootstrapping framework, it pays less attention to inconsistent

labels. By doing so, it attempts to develop more robust models.

However, it has strong assumption to the noise distribution.

It mainly focuses on conditional label permutation. There-

fore, it performs observably worse in the experiments where

uniform noise is adopted. In addition, softmax output only

shows the probability relationship between data. It ignores

the complicated multi-cluster structures. For example, even

for class “dog”, there are some sub-classes of “dog” which

have significant appearance difference to each other, like

“Labrador” and “Chiwawa”. The softmax output is not able

to reflect the difference. In DECODE, we base our framework

on clustering hypothesis and several clusters are used for each

class. In this way, the intra-class diversity is well addressed.

Identifying mislabeled data is analogous to detecting abnormal

samples for a class. Well capturing the intra-class diversity

can help to achieve this goal and lead to more robust models.

We notice that some works attempt to calibrate the softmax

output [51] in order to make deep networks more accurate.

Unfortunately, calibrating softmax fails to address the noisy

labels because it is not capable of handling the complicated

multi-cluster structures in real-world image datasets.

Finally, to better verify the effectiveness of DECODE, we

show some exemplar images in Fig. 6. In particular, we use

DenseNet@CIFAR10 in this experiment and set noise ratio to

30%. The training weights obtained by Eq. (1) and (2) after

50k iterations are given. Generally, the noisy samples which

are mislabeled have very small training weights (e.g., < 0.2)

while the correct samples have large weights (e.g., > 0.8). This

phenomenon clearly demonstrates that DECODE can indeed

identify noisy samples and suppress their influence by assign-

ing small weights to them while capturing the knowledge in

correct training samples by assigning large weights to them.

F. Comparison to Other Approaches

Besides DECODE, there are some approaches focusing

on training deep CNN with noisy labels. We consider two

state-of-the-art approaches in this section. The first work is

[18] which uses an extra layer to match the noisy label

distribution, denoted as NLD. The second work is [42] which

employs bootstrapping to address the noisy samples, denoted

as BOOTS. Although there are many approaches discussed in

Section II working on learning with noise, they mostly focus

on non-deep approaches. It is not clear how to combine them

with deep CNN training. We still consider one baseline [52],

termed as IR, in the comparison. However, it is a shallow

approach which cannot be trained in an end-to-end manner

in deep networks. Therefore, we use a pretrained AlexNet on

ImageNet as the feature extractor for AwA and CIFAR. This

approach takes the features from the pretrained deep model

as input and trains a series of one-vs-all binary classifiers for

each class. For MNIST, we use the raw pixel gray values as

image features. It should be noticed that it needs the noise rate

as side information, for which the true noise rate is adopted.
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Airplane

Automobile
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Cat

Deer

Dog

Frog

Horse

Ship

Truck

0.95 1.00 0.92 0.87 0.23 1.00 0.95 0.11 0.24 0.95

1.00 0.93 0.11 0.97 0.96 0.48 1.00 0.04 0.96 0.85

0.93 0.92 0.89 0.15 0.17 0.96 0.55 1.00 0.84 1.00

0.08 0.97 0.92 1.00 0.98 0.54 0.94 1.00 1.00 0.17

0.91 0.12 0.03 1.00 0.15 0.98 0.96 1.00 0.88 0.94

0.95 1.00 0.91 0.44 0.96 0.98 0.09 0.04 0.06 1.00

0.97 0.13 0.92 1.00 0.95 0.02 0.75 0.08 0.84 1.00

0.04 0.97 0.07 1.00 0.88 1.00 1.00 0.94 0.98 0.01

0.98 1.00 1.00 0.04 0.06 0.88 0.06 0.94 1.00 0.95

0.97 0.06 1.00 0.87 1.00 0.96 0.98 0.03 0.11 0.91

Fig. 6: Exemplars of confidence evaluation and sample weighting. We use DenseNet@CIFAR10 for demonstration. We set

noise ratio to 30% and train DenseNet with DECODE. We show the training weight obtained by Eq. (1) and (2) after training

for 50k iterations. The texts on the left denote the true class labels. The images with green boxes are with the correct labels

while the ones with red boxes are with the wrong labels. DECODE can effectively identify mislabeled (noisy) samples and

assign very small weight to them to suppress their influence. On the other hand, correct samples always have large weight.
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Fig. 7: The classification error rate comparison on different datasets with different models.
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Fig. 8: More investigation on robust image classification.

Here we consider LeNet@MNIST, AlexNet@AwA and

DenseNet@CIFAR10. The classification error rates under d-

ifferent noise rates for all approaches are plotted in Fig. 7.

Generally, these approaches have better performance than the

original ones, especially when there is large noise rate, e.g.,

40%. DECODE significantly outperforms the other two ap-

proaches, which demonstrates its superiority for robust image

classification. We can observe BOOTS is only slightly better

than the original models. This is because BOOTS mainly

focuses on conditional label permutation. For example, a “dog”

image may be mislabeled as “cat” but not “truck”. In our

experiments we use uniform label noise so that they cannot

well handle this situation. In fact, because the confidence

evaluation in DECODE is based on the cluster structure of

images, it is more general than BOOTS and capable of han-

dling more kinds of label permutations. NLD is more flexible

about how the noise is generated and thus it is much better than

BOOTS. However, NLD relies heavily on the estimation of the

distribution of noise, which is a quite challenging task. In fact,

it seems the estimation of NLD is not accurate enough in many

cases. On the other hand, DECODE addresses the noise from

the data perspective and makes use of the data distribution

to estimate the probability that a sample is mislabeled, which

seems more reliable and accurate from the experiment results.

G. Comparison on YFCC100M

To better verify the efficacy of DECODE, we adopt an-

other large-scale real-world benchmark dataset Yahoo Flickr

Creative Commons 100 Million (YFCC100M)[53], which is

an ideal benchmark for learning from noise. In particular, we

use the “Sports”, “Artifacts” subsets, which have 238 and 323
classes, as well as 150k and 170k images respectively. For

each subset, we use 70% examples as the training set and the

remaining 30% examples as the test set. Since these datasets

have many classes, we follow [54] and adopt mean average

precision (mAP) as the evaluation metric. Since we focus on

the methodology of learning from noisy labels rather than

squeezing the performance numbers, we still utilize AlextNet

as the basic model for our evaluation. For these datasets, we

train DECODE for 500k iterations. The other training details

are the same as the ones introduced in Section IV.D.

The comparison is shown in Fig. 8(a). From the results we

can observe that DECODE consistently and significantly out-

performs the other baseline approaches, which demonstrates

the effectiveness of DECODE for large-scale noisy datasets.

H. More Results

It is interesting to investigate how to deal with the low-

confidence samples. In the above experiments, we use soft

weight given by Eq. (2). In fact we can use hard weight. For

example, we can set a threshold τ and assign weight 1 to

samples of which the confidence is larger than τ and weight

wn to the ones of which the confidence is smaller than τ . Here

we use LeNet@MNIST for analysis. We change the value of

τ in [0.05 : 0.05 : 0.3] and report the best results for hard

weight. We summarize the comparison between hard weight

with different wn and soft weight in Table III. Generally, as

nr increases, assigning smaller weights (e.g., 0.01) leads to

better result and directly removing the suspicious samples (i.e.,

wn = 0) can result in good performance. Soft assign performs
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TABLE III: The effect of weighting strategies

wn nr = 0% nr = 10% nr = 35%
0 1.28% 1.53% 3.01%

0.01 1.12% 1.24% 3.44%
0.1 0.91% 2.13% 15.34%
0.5 0.89% 4.11% 23.98%
soft 1.48% 1.53% 2.60%

a little worse than wn = 0.01 when nr = 0% and nr = 10%
because soft assign not only changes the weight of suspicious

samples, but also has moderate impact on normal samples. In

this case, the knowledge in normal data is likely to be under-

explored. But we need to point out that hard assign needs

another hyper-parameter τ which is difficult to set because

we are unaware of the noise ratio and the properties of image

features in advance. Therefore, using the soft assign strategy

seems more reasonable and practical in real-world scenarios.

In addition, learning transferable features is an important

task for deep networks. After pretraining, the transferable

features can be used for other tasks, like detection [55],

retrieval [56], and tracking [57]. In this part, we investigate

the transferability of the deep networks trained with noise data.

In particular, since AwA has more classes than CIFAR10, we

pretrain a deep model by AwA with noise. Then we use the

last fc layers output as image feature for CIFAR data, which

is a 4, 096-dimensional vector for AlexNet. We use AlexNet

as the model and train it on AwA by the settings introduced

in Section IV.D. Then the image features are extracted for

CIFAR10. A linear SVM classifier is employed as classifier.

When training the SVM, we set the parameter C = 1 consis-

tently in all experiments. We adopt libLinear3 toolbox. We use

the original AlexNet and the DECODE version. Besides, we

also consider two non-deep approaches as baseline [58, 59].

CIFAR10 is noiseless and we only change the nr for AwA.

The results are summarized in Fig. 8(b). It can be observed

that deep based features yield better results than the non-

deep ones in most cases. More importantly, DECODE shows

better performance than the original AlexNet. When the nr
keeps increasing, AlexNet has observable performance drop

while DECODE’s drop is much smaller. The results above

indicate that DECODE is capable of generating transferable

features, even trained by noisy data. In addition, as introduced

in the algorithm, the uncertain and difficult samples which

require detailed information to distinguish are down weighted

so that the deep network can pay more attention to the general

knowledge of a class, making it generalize better on test data.

We also consider to pretrain a model on a noisy source

dataset (e.g., AwA with 35% noisy labels) and then finetune

it on a target dataset(e.g., CIFAR10). We find out that if

the target dataset is clean, the finetuned DECODE is only

marginally better than the original AlexNet because the clean

dataset may correct the wrong knowledge in the pretrained

models. On the other hand, if the target dataset is noisy,

the results are very similar to the ones in TABLE II. This

observation is consistent with [60]. They also notice that

3http://www.csie.ntu.edu.tw/∽cjlin/liblinear/
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Fig. 9: The performance by training with Web images.

pretraining on a noisy dataset has less influence if it is then

finetuned on a clean dataset than directly using the features.

Furthermore, we use uniform random noise in the ex-

periments above. One may care about the structured label

noise. With structured noise, the probability that one image

is mislabeled as a wrong class varies for different classes. For

example, a “dog” image is more likely to be mislabeled as

“wolf” than “fish” because it is more similar to the former.

In this part we investigate the performance under structured

noise. In particular, we use AwA dataset. AwA dataset has

an attribute vector for each class which is an 85-dimensional

binary vector describing the attributes like the color of an

animal category. The similarity between two classes attribute

vectors can reflect the relationship between them. If two

classes have similar attributes, they have many properties in

common. Based on the attribute similarity, we can define

the structured noise. Specifically, it is reasonable to assume

that two similar classes are more likely to be mislabeled to

the other. We generate the structured label noise as follows

based on the attribute/class similarity. Suppose the cosine

similarity between class A and B is cos(A,B)4. We define

the probability that an image in A is mislabeled as B to be

nr∗cos(A,B)/Z , where nr is the pre-defined noise ratio (like

5%), and Z =
∑

C 6=A cos(A,C) is a normalized factor. With

the probability, the training images are randomly mislabeled.

We still use AlexNet here. The comparison is shown in

Fig. 8(c). It can be observed that the overall performance

with structured label noise is slightly worse than the uniform

noise. This is reasonable because the mislabeled data from

similar classes is more difficult to identify. But DECODE still

has much better performance than the original model, which

indicates that DECODE can well address the structured noise.

I. Training with Web Images

Collecting a large number of clean training images is

expensive. On the other hand, retrieving labeled images from

Web is almost free. In some cases, we can use Web images to

help the target task. The Web images are noisy as shown in

4Since the attribute vectors in the dataset have 0/1 binary elements, the
cosine similarity between two attribute vectors is definitely non-negative.
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Fig. 1, which indicates that adopting a robust model training

approach is necessary. Now, we investigate the performance of

DECODE for training with Web images. In particular, we use

AlexNet@CIFAR10 because AlexNet seems more robust in

this case. We use the class name in CIFAR10 as keywords to

retrieve images in Google Image search engine and the firstly

returned images are used as labeled training data. We also use

a small number of clean samples in CIFAR10 for training.

We add 5, 000 Web images (500 per class) into training data

and we change the number of clean samples per class from 0 to

500. We compare the original model with only clean training

data, the original model with both clean and Web data, and

DECODE with both clean and Web data. The comparison is

summarized in Fig. 9. Obviously, incorporating Web images

can significantly improve the performance, especially there

are only a few clean samples like 10 or 50, although Web

images are noisy. By using DECODE, the accuracy is further

improved. When the Web images dominate the training set,

e.g., there are less than 100 clean images per class, the

improvement given by DECODE is more significant. This

comparison clearly demonstrates that DECODE can indeed

suppress the impact of noise and explore valuable knowledge.

V. CONCLUSION

In this paper, we investigate training deep CNN models with

noisy training data. We show that existing CNN models are so

fragile that their performance drops significantly with only a

small portion of mislabeled training samples. To address this

issue, we propose a deep confidence network (DECODE) for

robust training. In particular, we adopt an effective confidence

evaluation module based on the cluster structure of data. It as-

signs small training weights to suspicious samples to suppress

the influence of noisy data. Then we use the weighted data

for training and iteratively update the weight. In this way, the

obtained CNN models are more robust to noise. DECODE is

designed to be general and we combine it with LeNet, AlexNet

and DenseNet which have different complexity. Experiments

on several datasets are carried out and the results demonstrate

DECODE can indeed lead to more robust deep CNN models,

which validates the effectiveness of DECODE. We also test

DECODE using Web images and the results show that the

performance can be improved observably by using DECODE.
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