821 research outputs found

    MIN-COST WITH DELAY SCHEDULING FOR LARGE SCALE CLOUD-BASED WORKFLOW APPLICATIONS PLATFORM

    Get PDF
    Cloud computing is a promising solution to provide the resource scalability dynamically. In order to support large scale workflow applications, we present Nuts-LSWAP which is implementation for Cloud workflow. Then, a novel Min-cost with delay scheduling algorithm is presented in this paper. We also focuses on the global scheduling including genetic evolution method and other scheduling methods (sequence and greedy) to evaluate and decrease the execution cost. Finally, three primary experiments divided into two parts. One parts of experiment demonstrate the global mapping algorithm effectively, and the second parts compare execution of a large scale workflow instances with or without delay scheduling. It is primarily proved the Nuts-LSWAP is efficient platform for building Cloud workflow environment

    Workflow scheduling for service oriented cloud computing

    Get PDF
    Service Orientation (SO) and grid computing are two computing paradigms that when put together using Internet technologies promise to provide a scalable yet flexible computing platform for a diverse set of distributed computing applications. This practice gives rise to the notion of a computing cloud that addresses some previous limitations of interoperability, resource sharing and utilization within distributed computing. In such a Service Oriented Computing Cloud (SOCC), applications are formed by composing a set of services together. In addition, hierarchical service layers are also possible where general purpose services at lower layers are composed to deliver more domain specific services at the higher layer. In general an SOCC is a horizontally scalable computing platform that offers its resources as services in a standardized fashion. Workflow based applications are a suitable target for SOCC where workflow tasks are executed via service calls within the cloud. One or more workflows can be deployed over an SOCC and their execution requires scheduling of services to workflow tasks as the task become ready following their interdependencies. In this thesis heuristics based scheduling policies are evaluated for scheduling workflows over a collection of services offered by the SOCC. Various execution scenarios and workflow characteristics are considered to understand the implication of the heuristic based workflow scheduling

    Resource provisioning and scheduling algorithms for hybrid workflows in edge cloud computing

    Get PDF
    In recent years, Internet of Things (IoT) technology has been involved in a wide range of application domains to provide real-time monitoring, tracking and analysis services. The worldwide number of IoT-connected devices is projected to increase to 43 billion by 2023, and IoT technologies are expected to engaged in 25% of business sector. Latency-sensitive applications in scope of intelligent video surveillance, smart home, autonomous vehicle, augmented reality, are all emergent research directions in industry and academia. These applications are required connecting large number of sensing devices to attain the desired level of service quality for decision accuracy in a sensitive timely manner. Moreover, continuous data stream imposes processing large amounts of data, which adds a huge overhead on computing and network resources. Thus, latency-sensitive and resource-intensive applications introduce new challenges for current computing models, i.e, batch and stream. In this thesis, we refer to the integrated application model of stream and batch applications as a hybrid work ow model. The main challenge of the hybrid model is achieving the quality of service (QoS) requirements of the two computation systems. This thesis provides a systemic and detailed modeling for hybrid workflows which describes the internal structure of each application type for purposes of resource estimation, model systems tuning, and cost modeling. For optimizing the execution of hybrid workflows, this thesis proposes algorithms, techniques and frameworks to serve resource provisioning and task scheduling on various computing systems including cloud, edge cloud and cooperative edge cloud. Overall, experimental results provided in this thesis demonstrated strong evidences on the responsibility of proposing different understanding and vision on the applications of integrating stream and batch applications, and how edge computing and other emergent technologies like 5G networks and IoT will contribute on more sophisticated and intelligent solutions in many life disciplines for more safe, secure, healthy, smart and sustainable society

    Ensemble-based network edge processing

    Get PDF
    Estimating energy costs for an industrial process can be computationally intensive and time consuming, especially as it can involve data collection from different (distributed) monitoring sensors. Industrial processes have an implicit complexity involving the use of multiple appliances (devices/ sub-systems) attached to operation schedules, electrical capacity and optimisation setpoints which need to be determined for achieving operational cost objectives. Addressing the complexity associated with an industrial workflow (i.e. range and type of tasks) leads to increased requirements on the computing infrastructure. Such requirements can include achieving execution performance targets per processing unit within a particular size of infrastructure i.e. processing & data storage nodes to complete a computational analysis task within a specific deadline. The use of ensemblebased edge processing is identifed to meet these Quality of Service targets, whereby edge nodes can be used to distribute the computational load across a distributed infrastructure. Rather than relying on a single edge node, we propose the combined use of an ensemble of such nodes to overcome processing, data privacy/ security and reliability constraints. We propose an ensemble-based network processing model to facilitate distributed execution of energy simulations tasks within an industrial process. A scenario based on energy profiling within a fisheries plant is used to illustrate the use of an edge ensemble. The suggested approach is however general in scope and can be used in other similar application domains

    STaRS: A scalable task routing approach to distributed scheduling

    Get PDF
    La planificación de muchas tareas en entornos de millones de nodos no confiables representa un gran reto. Las plataformas de computación más conocidas normalmente confían en poder gestionar en un elemento centralizado todo el estado tanto de los nodos como de las aplicaciones. Esto limita su escalabilidad y capacidad para tolerar fallos. Un modelo descentralizado puede superar estos problemas pero, por lo que sabemos, ninguna solución propuesta hasta el momento ofrece resultados satisfactorios. En esta tesis, presentamos un modelo de planificación descentralizado con tres objetivos: que escale hasta millones de nodos, sin una pérdida de prestaciones que lo inhabilite; que tolere altas tasas de fallos; y que permita la implementación de varias políticas de planificación para diferentes situaciones. Nuestra propuesta consta de tres elementos principales: un modelo de datos genérico para representar la disponibilidad de los nodos de ejecución; un esquema de agregación que propaga esta información por una capa de red jerárquica; y un algoritmo de reexpedición que, usando la información agregada, encamina tareas hacia los nodos de ejecución más apropiados. Estos tres elementos son fácilmente extensibles para proporcionar diversas políticas de planificación. En concreto, nosotros hemos implementado cinco. Una política que simplemente asigna tareas a nodos desocupados; una política que minimiza el tiempo de finalización del trabajo global; una política que cumple con los requerimientos de fecha límite de aplicaciones tipo "saco de tareas"; una política que cumple con los requerimientos de fecha límite de aplicaciones tipo "workflow"; y una política que otorga una porción equitativa de la plataforma a cada aplicación. La escalabilidad se consigue a través del esquema de agregación, que provee de suficiente información de disponibilidad a los niveles altos de la jerarquía sin inundarlos, y el algoritmo de reexpedición, que busca nodos de ejecución en varias ramas de la jerarquía de manera concurrente. Como consecuencia, los costes de comunicación están acotados y los de asignación muestran un comportamiento casi logarítmico con el tamaño del sistema. Un millar de tareas se asignan en una red de 100.000 nodos en menos de 3,5 segundos, así que podemos plantearnos utilizar nuestro modelo incluso con tareas de tan solo unos minutos de duración. Por lo que sabemos, ningún trabajo similar ha sido probado con más de 10.000 nodos. Los fallos se gestionan con una estrategia de mejor esfuerzo. Cuando se detecta el fallo de un nodo, las tareas que estaba ejecutando son reenviadas por sus propietarios y la información de disponibilidad que gestionaba es reconstruida por sus vecinos. De esta manera, nuestro modelo es capaz de degradar sus prestaciones de manera proporcional al número de nodos fallidos y recuperar toda su funcionalidad. Para demostrarlo, hemos realizado pruebas de tasa media de fallos y de fallos catastróficos. Incluso con nodos fallando con un periodo mediano de solo 5 minutos, nuestro planificador es capaz de continuar dando servicio. Al mismo tiempo, es capaz de recuperarse del fallo de una fracción importante de los nodos, siempre que la capa de red jerárquico que sustenta el sistema pueda soportarlo. Después de comprobar que es factible implementar políticas con muy distintos objetivos usando nuestro modelo de planificación, también hemos probado sus prestaciones. Hemos comparado cada política con una versión centralizada que tiene pleno conocimiento del estado de cada nodo de ejecución. El resultado es que tienen unas prestaciones cercanas a las de una implementación centralizada, incluso en entornos de gran escala y con altas tasas de fallo

    Energy-aware simulation of workflow execution in High Throughput Computing systems

    Get PDF
    Workflows offer a great potential for enacting corelated jobs in an automated manner. This is especially desirable when workflows are large or there is a desire to run a workflow multiple times. Much research has been conducted in reducing the makespan of running workflows and maximising the utilisation of the resources they run on, with some existing research investigates how to reduce the energy consumption of workflows on dedicated resources. We extend the HTC-Sim simulation framework to support workflows allowing us to evaluate different scheduling strategies on the overheads and energy consumption of workflows run on non-dedicated systems. We evaluate a number of scheduling strategies from the literature in an environment where (workflow) jobs can be evicted by higher priority users

    Scheduling in Grid Computing Environment

    Full text link
    Scheduling in Grid computing has been active area of research since its beginning. However, beginners find very difficult to understand related concepts due to a large learning curve of Grid computing. Thus, there is a need of concise understanding of scheduling in Grid computing area. This paper strives to present concise understanding of scheduling and related understanding of Grid computing system. The paper describes overall picture of Grid computing and discusses important sub-systems that enable Grid computing possible. Moreover, the paper also discusses concepts of resource scheduling and application scheduling and also presents classification of scheduling algorithms. Furthermore, the paper also presents methodology used for evaluating scheduling algorithms including both real system and simulation based approaches. The presented work on scheduling in Grid containing concise understandings of scheduling system, scheduling algorithm, and scheduling methodology would be very useful to users and researchersComment: Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 201

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201
    corecore