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ABSTRACT 

Service Orientation (SO) and grid computing are two computing paradigms that when put 

together using Internet technologies promise to provide a scalable yet flexible computing 

platform for a diverse set of distributed computing applications. This practice gives rise to the 

notion of a computing cloud that addresses some previous limitations of interoperability, 

resource sharing and utilization within distributed computing.  

In such a Service Oriented Computing Cloud (SOCC), applications are formed by composing 

a set of services together. In addition, hierarchical service layers are also possible where general 

purpose services at lower layers are composed to deliver more domain specific services at the 

higher layer. In general an SOCC is a horizontally scalable computing platform that offers its 

resources as services in a standardized fashion. 

Workflow based applications are a suitable target for SOCC where workflow tasks are 

executed via service calls within the cloud. One or more workflows can be deployed over an 

SOCC and their execution requires scheduling of services to workflow tasks as the task become 

ready following their interdependencies. 

In this thesis heuristics based scheduling policies are evaluated for scheduling workflows over 

a collection of services offered by the SOCC. Various execution scenarios and workflow 

characteristics are considered to understand the implication of the heuristic based workflow 

scheduling.  
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CHAPTER 1 
INTRODUCTION 

With the advent of the Internet technologies, many new computing paradigms have emerged 

over the last few years. Two such paradigms that have gained considerable attention are grid 

computing [1] and service oriented computing [2-4]. Grid computing evolved from the resource 

aggregation models to meet the ever increasing need for computing power. With the Internet, it 

became possible to connect distributed resources together to create a grid of computing resources 

that together can serve as an execution platform for diverse computing applications. At the same 

time existing or new applications started to appear over the Internet as services that can be 

consumed by other applications.  

Both paradigms compliment each other and together they can further enhance the benefits 

offered by them individually [5]. Combined together they offer a computing environment that 

inherits the scalability of a grid and the flexibility of service-orientation to form a more robust 

distributed computing platform [6]. While the grid offers protocols to create large scale 

computing platforms, the Service Oriented Architecture (SOA) offers a standardize way to 

expose resources and applications for a grid over the Internet. Given that Internet is often 

referred to as a computing cloud, the notion of computing services backed by a grid over a cloud 

can be referred to as Services Oriented Computing Cloud (SOCC) [7-9]. Simply put, SOCC is a 

computing grid that offers its resources via (web) services. Every computing cloud is backed by 

a grid, however not every grid powers a computing cloud. 

SOCC type models have attracted attention from both research organizations and commercial 

enterprises [10-12]. For enterprise datacenters in particular, SOCC promises to reduce the 
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overhead associated with the resource management and maintenance of hosting of a large 

number of independent applications [13]. In absence of SOCC, dedicated hardware is allocated 

to the applications. The physical resources are allocated to each application such that the 

application performance is acceptable during the peak load times. Given that peak load time 

windows are relatively small and occur infrequently, the physical resources allocated to each 

application tend to sit idle and cannot be shared by other applications that can benefit from more 

resources. This practice ends up creating resource silos within enterprise datacenters and requires 

management and maintenance of each silo independently. This scenario is depicted in figure 1-1 

where two such simplified silos for two application workflows are shown for the illustration 

purposes.  

 

Figure 1-1. Resource silos with an enterprise datacenter 

SOCC provides a way to break resource silos by exposing resources as general purposes 

reusable services that can be shared among many applications. For example, the figure 1-1 

scenario is redrawn in figure 1-2 to show the resource sharing by introduction of a service layer. 

With this approach, datacenters can easily scale horizontally by adding more resources and 

exposing them through existing or additional services [10]. The resource maintenance overhead 

is reduced by having to maintain a general purpose resource cloud as opposed to a segmented 
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resource collection. In addition to the resource sharing, interoperability among independent 

applications also becomes possible. Applications themselves can offer their functionality in 

terms of the services that can be utilized by other applications. Application development also 

benefits from the service orientation as it can serve as a standard methodology when creating and 

deploying new applications.  

 
Figure 1-2. A simple Service Oriented Computing Cloud (SOCC) 

Given the benefits associated with SOCC it is interesting to evaluate different application 

models that can benefit from such a computing platform. One such application model is 

workflow based. In a workflow one or more tasks together in some order are executed to 

complete a business process [14]. In the scope of enterprise SOCC, the workflows can represent 

business processes such as generating insurance quotes, performing credit card billing, 

generating business intelligence reports, processing data for business integration, etc. 

Workflow execution over a SOCC can be conceived as one or more service calls to execute 

workflow tasks. Such an execution requires the scheduling of workflow tasks to the services 

when tasks become ready for execution following their task dependency order. In addition, in an 
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enterprise SOCC it is likely that multiple workflows require execution at the same time. Figure 

1-1 provides an example of a simplified SOCC for two workflows. From the figure, workflow 

tasks are scheduled to five different services that offer three compute resources. Each workflow 

has its own tasks and execution order (task dependencies). Workflows can also have execution 

constraints associated with them such as execution completion deadlines, or other performance 

requirements. 

Execution of multiple-workflows requires careful scheduling over an SOCC. A scheduler 

needs to account for all outstanding workflows in the system and perform scheduling using some 

technique to ensure that the system goals are met [15]. System goals can be workflow 

performance, uniform resource utilization, system throughput, etc.  

In this work, workflow scheduling for a collection of independent workflows in a scope of a 

reference SOCC is studied. In particular heuristic based workflow scheduling is examined with 

the help of experiments. The thesis presents experimentation results that are useful when 

implementing workflow scheduler for SOCC. The thesis is organized as follows. 

The second chapter provides a detailed research problem description. The third chapter 

provides the relevant work towards the scheduling within the related domains of service 

orientation and computing grids. In the fourth chapter, research goals and objectives are outlined. 

The fifth chapter provides terminology for workflow scheduling within the cloud. 

Experimentation methodology and setup are described in chapter six, and the seventh chapter 

contains the experimentation result discussion. Chapter eight concludes the thesis.
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CHAPTER 2 
RESEARCH DESCRIPTION 

Scenario 

In an enterprise datacenter implemented as an SOCC, there can be one or more collections of 

workflows that require execution at regular intervals. For example, every 12 hours, a collection 

of workflows need to be executed. Workflows are independent of each other and can run 

simultaneously however they are generally long running applications with execution lengths that 

can span multiple hours.  During their execution all of the workflow tasks are performed by 

invoking various services. The services that are consumed by the workflows are deployed across 

various resources within the cloud.  

The underlying resources and the corresponding services are shared among the workflows as 

the services offer common functionality such as database access, billing services, image 

processing, etc. At anytime, the number of tasks requiring execution can be much higher than the 

number of available services in the cloud. For example, there can be 250 tasks requiring 

execution while the total number of services in a cloud is 50. A large task to service ratio is 

desirable to control the cloud costs when service utilization across workflow tasks is not uniform 

(not all of the services are invoked continuously).  

The scheduling of the workflows is typically performed manually by the IT staff. The 

scheduling entails the selection of the services and the appropriate start time for each workflow. 

Some manual estimation is performed by the IT staff to ensure that the final schedule provides 

the completion of all the workflows. 
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Opportunity 

The workflow characteristics such as number of tasks and corresponding execution lengths 

are variable.  Workflows continuously evolve as the underlying data changes and through the 

ongoing business activity. While existing workflows change their requirements, new workflows 

are also continuously added to the cloud to support the business growth. The changes in the 

existing workflow requirements and the additional new workflows require more complicated 

schedules by the IT staff. Given that the workflow lengths are long and the number of tasks 

(service calls) regularly change, it becomes increasingly cost prohibitive to devise the schedules 

by hand. 

Such a datacenter SOCC can benefit from the automation of the workflow scheduling to 

reduce the human involvement and therefore reduce the costs associated with composing and 

maintaining the workflow schedules.     

Problem 

By considering the above mentioned scenario it is possible to generalize the problem of 

workflow scheduling automation as follows.  

In a service oriented computing cloud, a workflow collection requires execution over a shared 

set of services. Each workflow is executed by executing all of the workflow tasks in the order 

of their dependencies. Therefore at anytime one or more tasks belonging to one or more 

workflows are ready for execution. The number of available services is generally much lower 

than the number of outstanding tasks and therefore, tasks must be scheduled to the services in 

some order. The workflow execution requires automated scheduling to avoid the human 

interaction and the related cost associated with manual scheduling.  
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The scheduler has to decide on the workflow/task execution order and the corresponding 

service allocation. For simplicity it can be assumed that all of the services and tasks are 

homogeneous. However, there are other variables in the cloud that require consideration while 

making scheduling decisions. These variables are the total number of services, the total 

number of workflows with their corresponding tasks, and the execution length of each task. 

Further not all of the workflows are ready for execution at the same time, and their readiness 

or arrival into the system is to be considered, as well. 

In this work, workflows are Directed Acyclic Graph (DAG) based and therefore their 

scheduling over a distributed set of services is an NP complete problem [16, 17]. But 

approximation techniques can be used for their scheduling. It is possible to apply scheduling 

heuristics for workflow scheduling. For example, scheduling workflows in the order of their 

execution lengths and allocating a fixed number of services to the workflow are two scheduling 

heuristics. The heuristics can be based on certain scheduling policies. For example, in order to 

select among multiple ready tasks, scheduling can use a prioritization policy to devise certain 

selection heuristics such as task execution lengths. However, each scheduling policy (and the 

heuristics) will impact the performance of the workflows and of the cloud in some way. Further, 

certain policies will perform differently with different cloud configurations. For example, 

scheduling workflows in the order of their arrival may only work well when the overall number 

of tasks is small and the workflows complete their execution before more workflows arrive for 

execution.  

Research Questions 

Two scheduling policies of workflow prioritization and service partitioning are considered in 

this work. The prioritization policy helps to select among many ready tasks or workflows for 
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scheduling to a small number of services. The partitioning policy helps to allocate a fixed 

number of services to each workflow. Various scheduling heuristics are used to implement both 

policies, resulting in many scheduling scenarios. For example, in one scheduling scenario, the 

workflow execution length is the heuristic to prioritize the workflows. In another scenario a fixed 

number is used to partition the available services among the prioritized workflows. A scheduling 

scenario is a representation of one or more scheduling heuristics based on one or both scheduling 

policies. 

In order to understand the impact of each scheduling policy on various scenarios the 

following two metrics are used.  

System Throughput. The system throughput is measured in terms of the total completion 

time of all the workflows in the system. 

Workflow Performance. The workflow performance is measured in terms of the average 

workflow completion time.  

There are several variables that can affect the cloud behavior for the system throughput and 

the workflow performance. Together these variables define the cloud configuration. In this 

research following variables are considered to represent various cloud configurations.  

Cloud Size. The number of services in a cloud available for workflow execution determines 

the cloud size or its capacity.  

Workflow Arrival Pattern. The workflow arrival in a cloud can follow some distribution 

such as Uniform, Poisson, or Exponential. The workflow arrival pattern dictates the load on the 

cloud.  
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Workflow Structure.  The workflow structure is described in terms of the number of tasks, 

their dependencies on each other, and the number of concurrent tasks. More formal details on the 

workflow structure are provided later in chapter 5.  

Workflow Execution Deadlines. Workflows can have deadlines associated with them in 

terms of the completion times. For example, a workflow must finish its execution by a certain 

deadline after it starts the execution.  

In this research, a selected set of scheduling heuristics are applied against the various values 

of the above mentioned cloud variables. The performance of the scheduling policies is evaluated 

using the two above mentioned metrics to answer the following research questions. 

1. How does the cloud size impact the performance of the various scheduling policies in terms 
of the system throughput and the workflow performance? In general the performance of any 
scheduling policy will likely benefit with the increased number of services in a cloud. 
However, performance of various policies is compared with each other for different cloud 
sizes to evaluate their suitability.  

2. How do the workflow arrival patterns impact the scheduling? It is possible that not all of the 
workflows are ready for execution at the same time therefore scheduling is an ongoing 
activity. Different arrival patterns cause different amounts of workload on the cloud. The 
performance of the scheduling policies under different loads is examined.  

3. What role does a workflow structure play during scheduling? In particular what attributes of 
the workflow structure, such as number of tasks or the task dependencies are valuable in 
workflow scheduling?  

4. How do the workflows that have certain completion deadlines perform with the prioritization 
and the partitioning policies? 

More specific details on the values of the cloud configuration variables and the implemented 

scheduling heuristics are provided later in chapter 6 and 7. 
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CHAPTER 3 
LITERATURE REVIEW 

The research presented in this work is inspired by many elements of distributed computing 

including grid, workflow, and the service-orientation. The application of these elements occurs 

in various settings that can range from a small set of computing services to large-scale 

geographically dispersed high processing computing environments. Both academic and business 

enterprises are involved in the various modalities of the service oriented computing clouds of 

various sizes. Not all of the modalities provide execution for the workflow based applications. 

The workflow composition and usage is also diverse across the computing environments.  

In this chapter research is presented to establish the context for this work. As grid computing 

plays an essential role for SOCC and given that a computing cloud is a relatively new paradigm, 

the presented work is selected based on the following criteria.  

• Scheduling within the grid computing environments. E.g. enterprise, desktop, or scientific 
grids that provide the backbone of a computing cloud 

• Service Oriented (SO) execution model 

• Scheduling for single or multiple workflows including the description of workflow for 
scheduling purposes 

The following sub sections categorize the related work with a brief description of each 

category. The categories are outlined in no particular order.   

Enterprise Grid Computing 

Definition 

Enterprise grid computing refers to the commercial IT data centers that are host to various 

applications conducting the business operations [18, 19]. The application types include Customer 

Relationship Management (CRM), Enterprise Resource Planning (ERP), Business Intelligence 

(BI), and Management Information Systems (MIS) [20]. These applications are more and more 
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commonly being offered though web based portals or other Internet backed interfaces. The 

execution mode of these applications can be both online and offline. Further most of these 

applications contain many business processes that are represented as workflows. The workflows 

are transactional, database, and IO bound [21]. The underlying grid resources are web and 

application servers, databases, media storage, and infrastructure resources such as network load 

balancers and firewalls.  

Service Orientation 

Over time more and more enterprise grids are adopting the service oriented architecture 

(SOA) to solve the challenges of continuous change management, scale, and uniform resource 

utilization [22, 23]. However, such an adoption itself has costs and overhead associated with it. 

Existing applications need to be redesigned to work with the service oriented architectures in 

order to gain any benefits [24]. Therefore, during the transitional period it is common to find 

hybrid grids that provide certain resources as services whereas the other resources are provided 

in a more traditional fashion.  

Scheduling 

The business processes represent workflows that are invoked continuously throughout the 

application life cycle. The invocation times for workflows are both deterministic and 

nondeterministic. 

Given the business value associated with the workflows, most of the scheduling occurs in 

predetermined and static fashion. Each workflow is allocated the required set of resources well in 

advance. The focus of the scheduling is on the optimization of some metric e.g. mean execution 

time across the several invocations of the workflow. Dedicated and redundant resources are 

generally used to achieve the desired performance for each workflow [24]. In some cases more 
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dynamic techniques to workflow scheduling have also been explored and they are described in 

this section. 

As enterprise grids adopt service oriented architectures it is possible to outsource some of the 

services [25]. In such scenarios various vendors provide the services at varying costs depending 

on the associated QoS guarantees. Menasce et al. [26] build a theoretical model for the problem 

of resource allocation to workflow based enterprise applications. An example business workflow 

based theoretical model is used to define the scheduling/optimization problem. Workflow tasks 

that require various resource types (compute, data, service, and network) and various instances of 

each resource type with associated cost are considered in the model. The model is used to define 

an optimization problem of finding resource allocations that minimizes the overall execution cost 

while satisfying the execution time requirements. The problem is NP hard and a framework is 

provided to design solution heuristics. The work differentiates itself from similar problems in the 

domain of the multiprocessor scheduling by considering resources of multiple types. The 

heuristics are based on the cost of the resources and favor the least expensive resource first, 

unless the potential resource violates the maximum execution time. In case of a violation, 

backtracking is performed to select the next least expensive resource. Given the resource types, 

backtracking requires removal of one or more resources from the potential resources to avoid the 

selection of the previously rejected resources. The work is theoretical in nature but considers 

workflow execution for commercial enterprises. It calculates the optimum resource allocation for 

a workflow by simulating the workflow execution in advance. Similar to the approach in this 

work, heuristics are used to make the scheduling decisions. However, the developed framework 

only pays attention to a single workflow at a time and the underlying grid model is also not 

service oriented. 



 

 13

Elnikety et al. [27] consider workflows that are invoked via web requests. The workflows are 

part of a web application that spans multiple resources in the grid. They use the estimates 

available on the workflow execution time (cost) to perform workflow scheduling. In addition to 

the scheduling they also use admission control for the outstanding workflow queue in order to 

keep the system load under a desired threshold. The workflows share the underlying resources 

and have different execution lengths and resource requirements. Therefore, some scheduling is 

required for each workflow in order to sustain a reasonable system performance. Admission 

control is implemented upon request arrival and a workflow is only invoked if the overall system 

load does not exceed a certain threshold, therefore avoiding the system crash. Once admitted, the 

workflows are ordered in terms of their sizes, therefore implementing the Shortest Job First (SJF) 

scheduling heuristic. Experimentation reveals the workflow completion time (response time) to 

be reduced by a factor of 14 when compared to no scheduling and admission control. Urgaonkar 

et al. [28] also deal with the similar problem by monitoring a network of queues containing the 

workflows across the grid. They consider a multi-tier grid configuration where each tier has a 

corresponding workload queue. A continuous monitoring of the queue is used to establish the 

resource requirements and the additional resources are provisioned when necessary.  

Although both of the previous studies are geared towards E-commerce web sites, they are also 

relevant for an enterprise grid which is a host to many large scale service oriented web 

applications.  

Darlington et al. [29, 30] identify two categories of workflow scheduling. The first category is 

based on the real time data such as waiting time in the queue or the shortest remaining execution 

length. The second category is based on average metrics such as mean arrival time, or mean 

execution length. They use the second category for workflow scheduling to meet certain QoS 
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requirements (execution deadlines and corresponding failures) of workflows in a volatile grid. 

The grid model is chosen to be service-oriented and a central broker (scheduler) performs 

workflow task scheduling across the grid. Experimental evaluations are performed for the 

developed scheduling algorithms for a collection of workflows. Various workflow arrival rates 

are implemented to study the impact on the algorithm performance. The developed algorithms 

are compared with other traditional algorithms that solve similar problem(s). The evaluation 

metric is the workflow failure rate due to missed deadlines for different arrival rates and the 

mean execution times. Their algorithms perform dynamic scheduling and therefore perform 

better over the static algorithms and perform similar to the other dynamic algorithms. However, 

as the arrival rates increase the algorithm performance tend to become similar to the other 

traditional algorithms.  

One of the issues in the enterprise grid is of resource silos as described in chapter 1. This 

occurs due to the dedicated allocation of resources to the workflows, in order to ensure the 

performance guarantees during the peak time (high load). The resource silos drastically reduce 

the overall resource usage outside the short length peak time windows. Resource virtualization 

[31, 32] is becoming a mainstream trend to break such resource silos. A physical resource is 

virtually divided into one or more logical resources that are exposed as services to the 

workflows. One issue with virtualized resource sharing among competing workflows is not 

satisfying QoS for some workflows, as competing workflows have different resource needs. 

Padala et al. [33] develop a control system that adjusts the resource sharing among applications 

to ensure the desired QoS and maintains the high resource utilization. The Control system 

implements a scheduler that is responsible for controlling physical CPU among various virtual 

machines executing various workflow tasks. The scheduling heuristic is Simple Earliest Deadline 
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First (SEDF) that distributes the CPU among virtual machines using a weight factor for a fixed 

time interval. The weight factor is based on the established resource utilization thresholds and 

ensures certain QoS for applications in terms of their response times. The CPU allocation varies 

from one time interval to another time interval in order to adapt to the workload on each virtual 

machine. The workload is estimated by using the actual workload in the last interval. A detailed 

simulation is conducted in conjunction with the theoretical modeling of the problem in order to 

provide various benchmarks on the performance of their design under various load conditions. 

The work does not directly perform any workflow scheduling but schedules CPU among virtual 

machines executing workflows. It is shown that by adapting to the workload during runtime, 

establishing resource utilization thresholds, and by prioritizing the applications in terms of their 

business value, it is possible to achieve the desired QoS. 

Another approach towards datacenter resource consolidation is to assign resources based on 

the historic performance of a workflow. Rolia et al. [34] calculated the task to CPU assignment 

over historic CPU usage for each workflow. The calculation is done using two techniques of 

linear programming [35] and genetic programming [36]. All of the servers are consolidated into 

one large computing grid and available CPUs are then assigned tasks per the calculated 

assignments. The linear programming turned out to be very compute and time intensive yet it 

provided better schedules over genetic programming. Both of the algorithms did not generate 

optimal schedules but delivered reasonable results. In dynamic enterprises it is likely that historic 

performance varies considerably over time and there is a continuous effort required towards 

collecting application traces. However for large size enterprise grids running hundreds of 

applications such efforts result in considerable resource consolidation [37]. A similar approach is 

described by Rolia et al. [38, 39] for resource management within the enterprise grids. Their 
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framework utilizes profiles of resource demand for workflows. The profiles are created by the 

observation of the workflows for a number of weeks. In addition to the resource demand profiles, 

workflows also have service classes associated with various tasks. Each service class represents a 

resource access assurance such as Guaranteed, Best Effort, etc. Given the observed resource 

requirements and access assurances, schedules are created for each workflow so that the 

minimum amount of resources is allocated to satisfy the access and resource requirements. 

Admission control and monitoring are applied to ensure that the workflows meet their QoS 

without consuming unnecessary resources. They [40] also explore WS-Agreement [41] to 

reserve resources during scheduling.  

The boundaries of an enterprise grid vary from one organization to another. In some cases an 

enterprise grid can be formed by connecting geographically dispersed datacenters together [20]. 

Wong et al. [42] experiment with the execution of various MPI (Message Passing Interface) 

applications across a geographic wide enterprise grid. Given that the MPI application tasks 

communicate with each other, the network and CPU heterogeneity becomes a factor while 

scheduling MPI applications across geographically distributed grid resources. Their study reveals 

the viability of the enterprise grid for MPI applications even with the higher costs of 

communication. The applications in general benefit from the increased number of resources 

although careful planning is required to ensure the feasibility of an enterprise grid for MPI 

applications. Jia et al. [43] also consider a geographic distributed enterprise grid as a middleware 

for E-commerce portals which provide an aggregate of the business processes and intelligence. 

In order to process the huge amount of data aggregated over multiple large size data sources, 

they categorize the workflows and grid into three levels of data-flow, mining-flow, and 

knowledge-flow. The lower level provides services to the higher level workflows and services in 
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order to allow development of more complex systems. Each level of the grid is data centric 

where raw data is transformed into useful data during the transition from lower level to the upper 

level. Each grid level contains dynamically generated workflows that process the data from 

lower level services and populate the current level data sources. The three logical levels for 

workflows and the grid are created to separate various business intelligence activities. The 

motivation is to investigate and provide techniques to dynamically generate and execute 

workflows to generate business intelligence data for the E-commerce. The work identifies and 

provides example triggers that can be used to initiate workflow generation and execution. The 

explicit scheduling of the workflow is not directly discussed and redundancy based techniques 

are suggested to deal with the workflow task contention to improve the response time. The 

underlying grid implementation in the architecture is based on Globus [44] toolkit. 

Table 3-1. Overview of sample enterprise grid computing systems 
Literature Workflows Workflow 

Contention? 
Scheduling Approach SOCC 

Model 
Menasce et al. Business 

processes 
No Heuristics – resource cost No 

Elnikety et al. Web requests Yes Heuristics – 
Small job first 

No 

Urgaonkar et al. Web requests Yes Approximate –Predictive & 
On demand 

No 

Darlington et al. Scientific & 
Business 
processes 

Yes Approximate –  Mean 
execution length 

Yes 

Padala et al. Web & 
Database requests 

Yes Heuristic – 
Early deadline first 

No 

Rolia et al. Business 
processes 

Yes Approximate – 
Mathematical programming

No 

Wong et al. Benchmarking 
applications 

No Optimal – 
Enumerative 

No 

Jia et al. Business 
intelligence 

Yes Heuristic – 
Resource redundancy 

No 
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Summary 

Enterprise grid computing holds promise for the SOCC model for either individual or 

competing workflow oriented applications. Table 3-1 summaries the discussion presented in this 

section for the relevant characteristics to the current research. As evident from the table the 

related work has some elements common to workflow oriented SOCC computing. However, an 

explicit SOCC execution model is missing from most of the work. This is due to the costs 

associated with a transition to the pure SOCC base model. Additionally the definition of software 

as a service (SaaS) is also open to interpretation and often existing infrastructure components are 

termed as services although such components may not follow a more standardized definition of 

the SasS.  

Desktop Grid Computing 

Definition 

A computational grid that is formed over a collection of personal computers is referred to as a 

desktop grid [45-47]. There are millions of personal computers connected to the Internet that are 

not continuously being utilized. The collective amount of idle processing time and storage across 

any large collection of personal computers can surpass the resources available within a super 

computing environment. Therefore, the motivation behind a desktop based grid is to utilize the 

aggregated resources (CPU, disk) over the Internet to perform computations that would 

otherwise require expensive high processing infrastructure. Generally, a computer owner 

voluntarily participates in desktop grids and does not dedicate the compute resources to the grid. 

Therefore, a desktop grid lacks any control over the participant computers and must operate in an 

unobtrusive fashion. Typically desktop grid applications make use of the idle compute resources 

across the grid in a best case effort. There have been numerous studies done to search/scavenge 
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or trace the resource availability within desktop grids to efficiently utilize the available resources 

and add more robustness to the application execution [48, 49]. 

Service Orientation 

Interoperability and more standardized implementations within desktop grids are possible 

through the service oriented architecture [50]. Initially, desktop grids such as SETI@home [51] 

were created as proprietary and closed systems. Volunteers wanting to contribute their resources 

to multiple grid systems need to host multiple components. Given the participation in a desktop 

grid is on volunteer basis, service based implementation makes it viable for resource owners to 

host one or more grid services in order to benefit from their contribution [52]. Various efforts 

have been made to integrate service oriented architecture into the desktop grids [53, 54]. With 

this integration it is also possible to expose desktop grids to the other grid paradigms such as 

enterprise grids [55]. 

Scheduling 

Given the large scale and volatility of desktop grids, scheduling has generally been for the 

independent task applications. However, there is work done towards the large scale desktop grids 

that is presented in the Theoretical Work section later in this chapter. All of the scheduling 

references presented here are for the independent task applications. 

Jaesun et al. [56] outline the problem of CPU waste when large chunks of work are distributed 

to the clients by the centralized server. The waste occurs when clients are not able to compute the 

entire allocated chunk due to their departure from the grid. The distribution of larger chunks is 

necessary in order to minimize the client-server communication in light of a very large number 

of clients. As a solution they propose scheduling proxies that are used to distribute work among 

the cluster of clients. Such a proxy can collect a much larger chunk of work from the server and 
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then distribute smaller chunks of work among the clients within its cluster. It also monitors the 

clients for their availability and takes corresponding actions to get the assigned tasks completed. 

The clients are clustered within according to their network proximity. Event-driven simulation is 

used to measure the performance of their solution. The underlying work is similar to 

SETI@home and consists of independent tasks. 

SungJin et al. [57] present a theoretical work for dealing with the fault tolerance that is 

associated with the grid resource failure. Such failures are either due to the departure of the 

resource from the grid or due to the execution of the non grid tasks on the resource. Such failures 

can result in a live lock problem which halts the execution of the entire job. The live lock 

problem occurs as the resource computer continues to execute tasks even in the case of a failure 

and therefore do not return a failed result to the scheduler. A heart beat based monitoring of the 

resources is suggested as a solution to detect the task failures for the scheduler to take the 

corresponding actions. A theoretical proof is given to show that the performance of their 

proposed fault tolerant scheduling algorithm over the other existing scheduling algorithms.  

Anglano et al. [58, 59] also consider resource failure within a desktop grid while performing 

the task scheduling. Their fault tolerance approach is based on the knowledge that is available 

about the tasks and the target resources. They conclude that such a knowledge-based scheduling 

can result in better performance over knowledge-free scheduling. Two task selection policies 

combined with four resource selection policies are used to perform the scheduling. Tasks are 

selected based on their execution time residuals, and resource selection is based on their CPU 

availability and the fault-time distributions. The tasks are independent but submitted as a 

collection, where the entire collection needs to be executed. Simulation based experimentation is 

used to evaluate the scheduling policies. The experimentation reveals that the task selection 
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based on the longest tasks first policy performs better overall. This is due the fact that in the 

simulated grid environments, executing longest tasks first reduces the overall completion time of 

the entire collection of the submitted tasks. In addition, resource selection in order of the highest 

predicted CPU power yields better results over selecting resources with the predicted failure 

distributions.  

HongSoo et al. [60] employ agents to conduct operations in a volunteer computing grid to 

further improve the performance of the system. The grid resources are characterized in terms of 

their volatility and durability. Two types of agents are created in the system. The first agent type 

is responsible for task allocation, load balancing, result collection, and resource monitoring. The 

second agent type is responsible for the task migration, check pointing, and the replication. The 

first type of agents performs task scheduling throughout the system and the second type of agents 

take actions to ensure the task completion. For example, after the initial scheduling, agents 

perform more aggressive check pointing and task replication for highly volatile resources. The 

evaluation of the agent based scheduling and execution is performed over the Korea@home 

system. The scheduling approach is to load balance tasks among resources based on their 

characterization. With an experimental evaluation, based on the throughput, they achieve a 58% 

improvement over the traditional First Come First Served (FCFS) based scheduling. Chakravarti 

et al. [61] also study the agent based task scheduling for an organic grid. The grid operations are 

handled via agents that have no prior system knowledge and adapt to the environment as the 

system state evolves. In this work, there are also two types of agents for scheduling and for 

computation. The scheduling agents are allocated a (logical) tree of resources. The resources 

closer to the top have higher performance and are preferred for scheduling over the resources at 

the lower levels. Overtime the tree structure is adjusted as more accurate data about resource 
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performance becomes available and the high performance resources are moved up. The 

experimental evaluations are performed to prove the viability of their proposed system. The 

results are not compared to any other system but the scalability, performance, and fault tolerance 

of the system is measured and shown to be acceptable for the application in the experimentation.  

Baohua et al. [62] consider a data intensive task scheduling within a desktop grid. The 

challenge with any distributed data intensive execution is the overhead associated with the 

transfer of data to the target resource. They compare FTP and BitTorrent [63] data/file transfer 

protocols for load conditions under which each protocol performs better over the other. Three 

scheduling heuristics based on the order of task completion times are implemented with the 

corresponding file transfer protocols to outline the improvements over the basic RoundRobin 

heuristic. 

Table 3-2. Overview of sample desktop grid computing systems 
Literature Applications Scheduling Approach SOCC Model 
Jaesun et al. Physically distributed 
SungJin et al. Adaptive for fault tolerance 
Anglano et al. Execution time residuals 
HongSoo et al. Physically distributed 
Chakravarti et al. Adaptive & physically distributed 
Baohua et al. Heuristics – Completion times 
Kondo et al. 

Non 
workflow & 
independent 

task 
applications. Heuristics – Resource performance & 

task replication 

No strict SOCC 
model, however 
each desktop can 
be abstracted as a 
service instance 

within the overall 
grid therefore, 
exhibiting the 
SOCC model. 

 
Kondo et al. [64] study task execution over a desktop grid when there are more resources than 

the number of tasks. Given the abundance of resource there is an opportunity to consider task 

scheduling policies that are alternative to the simple FIFO based scheduling. The FIFO is 

deemed to be reasonable scheduling policy under the scenarios of resource contention. They 

apply three scheduling policies of Resource Prioritization, Resource Exclusion, and Task 

Replication to obtain the near optimal results for the tasks on hand. They observe that resource 
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exclusion based on task makespan with task replication is proven to be the best scheduling policy 

where the results come within a factor 1.7 of the optimal solution. Their simulation is trace 

driven from a commercial desktop grid Entropia.  

Summary 

In desktop grid computing systems, generally a large size of independent task applications 

have been considered due to the lack of complexities associated with the workflow execution. 

The selected sample work in this section towards the desktop grids which is relevant to my 

research is summarized in table 3-2. The scheduling within this domain is for the system 

throughput which attempts to execute maximum number of tasks possible. Although, no SOCC 

execution model is present, the individual desktop when exposed as a service can provide more 

interoperability among the competing applications.  

Scientific Grid Computing 

Definition 

In academic and research organizations, computing grids are implemented to create high 

processing computing (HPC) environments. Such computing grids are formed with the 

collaboration of one or more organizations by networking their high processing compute 

resources such as clusters, storage area networks, server farms, and supercomputers. Therefore, a 

scientific grid operates within multiple administrative domains. The primary motivation behind 

such grids is to assemble computing power that otherwise would be impossible or cost 

prohibitive. One example of such a scientific grid is GriPhyN [65]. The target applications of 

such computing grids are resource intensive and research oriented. There are many types of 

applications being executed within such grids including workflow based applications [66, 67].  

Service Orientation 
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The scientific grid community has adopted the SOCC implementation after the emergence of 

web services. In addition there have been efforts to standardize the SOCC implementations. One 

such effort that has gained popularity is the Open Grid Service Architecture (OGSA) [68]. 

Services are viewed as constructs to create virtual organizations (computing grids) by exposing 

the heterogeneous resources of the independent physical organizations. In particular a notion of 

Grid Service has been introduced to provide grid infrastructure components in a well defined 

fashion [5]. That is, in addition to the standardized interfaces, services are also assigned specific 

semantics. The semantics are used to describe the service behavior that is to be consistent across 

each implementation of a service. Similar to the other service oriented architectures, OGSA 

proposes hierarchical organization of the grid services. The core services are at the lower layers 

(infrastructure), which are then utilized by the domain specific higher layer services. An example 

of the core services include resource selection, scheduling, secure execution, data management, 

authentication, and fault recovery [69]. 

Scheduling 

Application scheduling within scientific or research oriented grid computing is a well studied 

research area. Workflow based applications are a subset of the overall set of grid applications. 

Given the complexity associated with the workflows, their scheduling has also received 

considerable attention. Scheduling techniques roughly fall into three categories namely List 

Heuristics, Duplication, and Clustering [15]. The workflow task dependencies require scheduling 

in such a fashion that the overall execution length (makespan) of the workflow is minimized. 

Within List Heuristics, tasks are queued according to their execution order (task dependencies) 

and selected for scheduling using some priority. Scheduling with Duplication attempts to 

duplicate predecessors tasks in such a way that overall minimizes the workflow completion time. 
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Clustering based scheduling is designed to minimize the workflow makespan by reducing the 

communication overhead among tasks executing on different resources. Tasks requiring 

communication with each other are clustered or scheduled on the same resource. Yu et al. [70] 

perform a detailed survey of the workflow management systems and present a taxonomy to 

categorize various systems. Some of their work is summarized here due to its relevancy to the 

current research.  

Condor [71], a compute-intensive grid system, provides a mechanism called DAGMan [72] to 

schedule workflows within the Condor enabled grid. DAGMan is a meta-scheduler that manages 

the workflow tasks dependencies. Its name is derived from the structure of the workflows 

(Directed Acyclic Graph -- DAG) that it schedules. DAGMan relies on the workflow description 

to submit tasks in a predefined order. However, DAGMan is limited in terms of the task 

dependencies. In particular it is unable to handle branching or looping. The actual scheduling of 

the tasks is done by the Condor scheduler.  

Pegasus [73] is a workflow management component within the GriPhyN grid [65] and it 

performs scheduling of the abstract workflows onto the grid resources. Abstract workflows do 

not describe specific grid resource requirements and are generally used to increase the portability 

of a workflow. At runtime suitable mechanisms are used to find the actual resource mappings for 

the abstract workflow tasks. Pegasus uses scheduling policies of random resource selection, and 

of performance prediction. The performance prediction is based on the historic data that is being 

stored for every workflow during its execution. Pegasus converts the actual scheduling of the 

tasks into Condor jobs, which are then executed by the DAGMan. 

Taverna [74] is a workflow management system for bioinformatics workflows. It operates 

within the myGrid [75] system which is a collaboration of many European research 
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organizations. Taverna provides its own workflow specification language to describe the 

workflows in terms of their input, output, data, and control flow. It also provides a user interface 

to manipulate workflows and select available resources for workflow tasks and users can view 

the workflow progress through the interface. The myGrid is a service oriented grid and offers 

several types of infrastructure services to the workflow management system of Taverna. 

GrADS [76] is a grid system targeted towards scientific users without programming 

background within organizations across North America. The overall scheduling objective within 

GrADS is to minimize the workflow makespan. The grid resources are ranked in terms of the 

performance corresponding to the workflow tasks on hand. The performance is based on the 

execution cost plus the data movement costs to the particular resource. The resource performance 

ranks are then used by various scheduling heuristics to map tasks to the resources. The 

implemented scheduling heuristics are based on the order of task completion times. Further, 

GrADS continuously monitors workflow execution and performs rescheduling when a certain 

performance drops from the predetermined threshold. Rescheduling is either done by stop/restart 

or by moving tasks to the better resources if available, while considering the costs associated 

with the data movement.  

GridFlow [77] organizes the grid into three logical layers; resource, local, and global grid. 

Local grid represents resources within one organization, whereas the global grid contains all of 

the local grids. It also provides a user interface to compose workflows. Workflows contain sub-

workflows that are mapped to the local grids. Initially workflow execution is simulated to find 

the optimal schedule and then the actual scheduling occurs where local grids are mapped to the 

sub-workflows. The underlying grid system is agent based where each agent controls a local 
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grid. GridFlow also employs heuristic algorithms to minimize the workflow makespan and 

resource idle time. 

Gridbus [78] is a service-oriented grid that models itself after economic principles. Grid 

resource management is performed by assessing supply and demand of the grid resources. The 

grid supports parameter sweep based workflows with the QoS specifications. The specification is 

expressed via a proprietary XML based language. The scheduling decisions are driven by events 

that occur in a tuple-space. In addition, just in time scheduling and rescheduling for failed tasks 

is also performed. The major difference of the Gridbus approach from other contemporary grids 

is the use of market-based principles to makes the scheduling decisions. 

Table 3-3. Overview of sample scientific grid computing systems 
Literature Workflows Workflow  

Contention 
Scheduling Approach SOCC Model 

Condor Performance driven Possible 

Pegasus Random & performance 
prediction 

No 

Taverna Performance driven Yes 

GrADS Performance driven 
heuristics 

No 

GridFlow Performance driven 
heuristics 

No 

Gridbus Market driven Yes 

ASKALON   

All 
workflows 
represent 

scientific & 
research 

applications. 

All of the 
workflows are 

executed 
independent of 

each other. 

Performance driven 
heuristics 

Possible 

 
ASKALON [79] provides a generic workflow development and execution framework for 

transparent access to a grid. The motivation behind such an access is to free the application 

developers from the grid level details. The transparent access is achieved via services such as 

scheduler, execution engine, resource manager, and performance predictions. These services are 
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built on top of the Globus grid framework. An XML based language is provided to develop the 

workflows. These workflows are then transformed into Directed Acyclic Graphs (DAGs) by loop 

unrolling (see chapter 5) . The DAGs are then scheduled across the grid using DAG based 

heuristics. The Workflows are large scale scientific applications and the goal is to study the 

impact of each scheduling heuristic on various workflows. Therefore, the focus of the study is on 

the individual workflows and their performance optimization as opposed to the collection of 

workflows. The study provides a good example where workflows are unrolled and transformed 

into large scale DAGs.  

There are fuzzy boundaries between scientific and enterprise grids. Some of such differences 

are outlined in [18, 20, 21]. 

Summary 

The relevant work presented in this section is summarized in table 3-3. Given that workflows 

in this domain represent the research applications, they are executed in isolation of other 

workflows and therefore workflow contention is not an issue. As seen in table 3-3, the individual 

workflow performance is the focus of the scheduling. In some instances, the workflow execution 

is performed in SOCC based environment.  

Workflow Description Languages 

As the name suggests, expression languages are used to describe the workflow structure, their 

task dependencies and the other execution requirements that are useful in workflow execution 

automation. It also allows for a standardization of workflow execution within a computing cloud. 

Most of these languages are XML based and do not always consider service oriented workflow 

execution. There have been quite a few workflow languages proposed over the years, however, a 

standard language has yet to emerge.  



 

 29

One of the commonly used expression languages is the Business Process Execution language 

for Web Services (BPEL4WS) [80]. It is built by combining some of the elements from two 

other expression languages of Web Services Flow Language (WSFL) [81] and XLANG [82]. It 

allows the description of workflow execution in both an abstract and actual manner. At the 

abstract level not all of the workflow execution details are specified and the execution 

transformation to the actual behavior is left up to the system. BPEL4WS defines interaction 

behaviors of various entities (workflow tasks) in terms of web services based message exchange. 

Another expression language that provides an abstract description of workflow execution is 

the Abstract Grid Workflow Language (AGWL) [83]. The motivation behind an abstract 

description is to save the user from the concrete implementation details of the system. The 

workflow execution is described as a graph of activities that are mapped to the resources in the 

grid. Such a graph also describes data and control flow for the workflow execution. It supports 

parallel task execution including parallel loops and has data access constructs available. Such a 

data access mechanism allows more flexibility to the workflows that have sophisticated data 

needs. The limitation of any abstract language is difficulty in transformation from abstract to 

actual execution description. Such a transformation is left up to the system developer and will 

vary from one implementation to another.  

Table 3-4. Characteristics of sample workflow description languages 
Language Description Approach 
BPEL4WS Abstract/Concrete Task execution in terms of 

web services calls. 
AGWL Abstract Graph based task invocation 

order. 
DAML-S Concrete Calls to semantic web 

services. 
GSFL Concrete P2P oriented service calls. 
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In order to avoid some of the limitations with abstract workflow description, DAML-S [84] 

brings semantics to the service execution. By associating semantics to the service calls, it is 

possible to provide more consistent system behavior. However, an auto-generated 

implementation of the service methods to satisfy the semantics is the best way to avoid human 

error and interpretation of the semantics.  

Another commonly known workflow language specifically designed for the grid services is 

the Grid Service Flow Language (GSFL) [85]. Its motivation is to provide a language that 

supports peer-to-peer interaction among the services for data exchange without going through an 

execution engine intermediary. A larger amount of data is expected to exchange hands among 

grid services therefore any central control is seen as a bottleneck. Further it also focuses on 

providing more flexibility in workflow task execution order. Certain task or corresponding 

services may not always be invoked given the different workflow instances and the time 

windows associated with the task executions. 

Summary 

An overview of the sample workflow description languages is shown in table 3-4. The 

workflow description can be in abstract terms where the implementation specific details are left 

out to provide more flexibility and broader coverage of the language. Each language has its own 

way of describing the workflow task execution. 

Composite Web Services 

There is also a trend [86-91] to execute workflows over non-cloud collections of services and 

it is generally referred to as composite web services. One or more web services are pooled 

together and invoked in a certain order to execute the workflow. Therefore, each composition is 

specific for a certain workflow. Composite web service workflow execution can be considered as 

an execution unit of an SOCC execution model, as shown in the figure 3-1. That is an SOCC is a 
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collection of composite web services. The scheduling decision specific to the unit can be 

considered as a local decision whereas a cloud scheduler is considered to be making global 

scheduling decisions. In our work no local scheduling is employed and all of the decisions are 

made globally in a centralized fashion.  

 

Figure 3-1. Composite services as an execution unit for a SOCC 

Scheduling in composite workflows is generally focused on the optimization of multiple 

invocations of the workflow. Redundancy is a common technique that is used to provide 

improved performance and therefore, workflow scheduling concerns itself with the selection of a 

service instances that can meet certain QoS objectives. Response time is another metric that is 

generally improved with the service scheduling.  

The work of Chafle et al. [92] is about decentralized orchestration of the composite web 

services. Orchestration refers to the act of invocation control within the web services. A 

centralized orchestration is generally done via a controller that can cause bottlenecks and some 

unnecessary data transfer overhead. With decentralized orchestration it is possible to avoid 

pitfalls of the centralized orchestration but it requires much more thought into design. Various 

design issues such as distributed error recovery and fault handling, communication overhead, and 

code partitioning are explored. A proof of concept implementation is provided to validate 

proposed design choices. The underlying composition forms a single workflow that computes a 
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route between origin and the destination. Scheduling is not a concern and web services calls are 

predetermined. 

Table 3-5. Overview of sample composite web services systems 
Literature Scheduling Organization Scheduling Approach 
Chafle et al. Decentralized Predetermined dedicated 

resources 
Zhang et al. Centralized Best Expected Execution 

Time 
  

Zhang et al. [93] consider web services and grid convergence and propose a composition and 

scheduling architecture for the grid based web services. The composition is for the selection of a 

set of web services for the workflow execution. The scheduling is responsible for determining 

the task readiness during workflow execution and mapping the tasks to the services. The 

scheduling is done by matching task parameters with the resource performance. Both the 

composition of services and the task assignment are only for one workflow at a time. Simulation 

based experiments over Globus Toolkit based prototype grid is used to show the performance of 

their algorithms. 

Summary 

A composite web service (workflow) is an execution unit of the SOCC execution model. The 

scheduling within composite services is to optimize the multiple invocations of the single 

workflow and is considered local scheduling. 

Theoretical Work 

There has been considerable theoretical work towards DAG scheduling that is relevant to the 

workflow scheduling given the DAG structure of the workflow. A sample [94-96] of such work 

considers cloud based resources for workflow scheduling and explores scheduling approaches 

for various types of workflows. The workflow types are defined in terms of the workflow 
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structure. The workflow structure consists of many levels (see chapter 5), where each level 

contains tasks that can be executed in parallel. The subsequent level contains the (independent) 

children of the parallel parent tasks. The schedules are evaluated in terms of the number of ready 

tasks during each scheduling step. The maximum number of ready tasks makes it possible to 

minimize the makespan of the entire workflow. 

Rosenberg et al. [94] first considered mesh structured workflows and theoretically proved that 

scheduling workflow tasks in order of their dependencies results in an optimal schedule. All of 

the independent tasks are at the same level and are scheduled lexicographically. The direction of 

task scheduling is termed as parent-oriented. That is all of the parents are executed before any of 

the children can be executed. Although, the selected scheduling heuristic of parent-orientation to 

maximize the number of eligible tasks (hence optimal) seems intuitive, it is shown that other 

intuitive approaches fail to produce any optimal results.  

Secondly, Rosenberg et al. [95] expand their study to consider more complex workflows such 

as Reduction-Mesh (RM), Reduction-Tree (RT), and Fast Fourier Transformation (FFT). The 

scheduling evaluation criterion is extended to include minimum memory requirements in 

addition to the maximum number of ready tasks. The basis of the schedules developed for all 

three workflow types is the parent-orientation, as previously described. Such an intuitive 

scheduling approach previously proved to be necessary and sufficient to produce optimal results 

when optimality criteria only included maximization of the eligible tasks. However, parent-

orientation is not sufficient when optimality criteria include minimum memory requirements as 

well. The study develops schedules that are optimal for maximizing eligible tasks for all three 

DAG types. The developed schedule for reduction-mesh DAG is also optimal for the memory 

requirements. The schedules for reduction-tree and FFT DAGs are approximately optimal for the 
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memory requirements. Additionally, it is mathematically proven [95] that any other intuitive 

scheduling scheme which may result in maximum eligible tasks cannot produce memory 

efficient schedules. On the other hand schedules that are memory efficient fail to maximize the 

eligible tasks. All three schedules define a particular task execution order for the consecutive 

scheduling steps at each diagonal level of a DAG.  Together with the parent-orientation such 

execution orders result in the optimal results. 

Table 3-6. Overview of sample theoretical research towards workflow scheduling 
Literature Workflow Structure Scheduling Approach 
Rosenberg et al-1 Mesh structured graphs Parent Oriented & 

Lexicographically 
Rosenberg et al-2 Reduction-Mesh (RM), -Tree (RT),  

Fast Fourier Transformation (FFT) 
Task execution order based on 
the workflow structure 

Rosenberg et al-3 Composites of RM, RT, FFT Priority order 
 

Finally Rosenberg et al. provided a framework of scheduling a large set of complex structured 

workflows [96]. The basis of this work is optimal schedules developed in the last two described 

studies. They use the previously defined workflow (DAG) types as the building blocks of much 

larger and complex workflows. Given the optimal schedule for each building block is known, the 

optimal schedules for composite workflow is obtained by identifying a priority order among the 

building blocks. Once the workflows are scheduled in order of the priority order of their building 

blocks the resulting schedule is proven to be optimal. In addition to the build block composition, 

the study also identifies the more important aspect which is the decomposition of the workflows 

into its building blocks so the optimal schedules can be identified.  

Three studies together strive to provide theoretical principles towards cloud workflow 

scheduling. The results found in this work [94-96] are universal in nature and are applicable 

across many flavors of cloud computing systems. 
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Summary 

The theoretical work presented in this section is summarized in the table 3-6. Various DAG 

based workflow structures are studied for their suitable scheduling policies so that the overall 

execution time is minimized. The work explores various task execution orders that generate 

maximum number of ready tasks possible and therefore, minimizing the total execution time for 

any workflow. 

Conclusions 

Given the above described literature review, various implementation and usage scenarios are 

seen for the following three elements of cloud computing. 

• Grid computing 

• Service Oriented Architecture 

• Workflows based applications 

There is a large amount of work towards grid computing which has been classified into three 

different categories of enterprise, desktop, and scientific grid computing. This categorization is 

based on the target execution environment setup and on the structure of the applications being 

considered for execution. Since a computing cloud is backed by a grid, the motivation behind 

this categorization is to differentiate between the purpose and objectives of various grid 

implementations, in order to better extract the relevant research findings for the this research. A 

commentary towards the Service Orientation (SO) within each category is provided to survey the 

current state and challenges of the Service Oriented Computing Cloud (SOCC) adoption. In 

addition the survey also touches on the structure of the applications and identifies workflow and 

non workflow based applications.  
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Workflow scheduling for SO environments in isolation from the grid computing is also 

presented in conjunction with the theoretical scheduling and description of the workflow 

scheduling.  

In conclusion the key findings of the literature review are: 

Service Orientation (SO) is in its early stages of adoption within the grid/cloud community. 

This is partly due to the fact that the cloud computing in itself is not a mature implementation 

methodology. Work continues towards the implementation challenges of a cloud and some of the 

work has started to look at SO to solve some of the challenges. Both SO and the grid computing 

emerged around the same time and are complimentary methodologies. However, their integration 

results in limited and constrained execution environments that cannot be used as a general 

purpose computing platform to fully gain the benefits associated with the SOCC. The limitations 

arise due to the infant nature of both methodologies. Efforts such as OGSA [68] are work 

towards the generalization and standardization of the SOCC based implementation. 

One of the SOCC adoption challenges is migration/conversion of the existing systems and 

applications to make use of the SOCC. In particular some legacy application refactoring needs to 

occur before it can be executed in terms of services. One approach to avoid large refactoring of 

the application has been to wrap the existing application within a service that can then be 

invoked as a service. However, this approach is limiting in a sense that the application is bound 

to a single service for all of its functionality.  

Another ongoing challenge with SOCC is the behavior of the grid services. It is possible to 

have multiple implementations of the same service with different behavior making it difficult to 

ensure the QoS associated with the service invocation.  
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Workflow based SO also has some challenges in terms of their description/representation, 

application development, and invocation/execution over distributed services. Some efforts such 

as [80-85] are underway to address some of these challenges by standardization.  

Interoperability among SOCC systems and support for general purpose workflow execution 

environments is a work in progress. One outstanding item is to consider multiple workflow 

execution within an SOCC where workflows (and their tasks) are competing for resources.  
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CHAPTER 4 
RESEARCH GOALS 

As described in the last chapter, cloud computing borrows from many similar domains 

including the independent task CPU cycle harvesting based desktop computing, the enterprise 

datacenter grids and other extreme of the research oriented large scale computing environments. 

Various degrees of service orientation are present within the various modalities of the grid 

environments which form the cloud backbone. Going forward, more and more of the grid 

systems will adopt services as their construct to offer their resources, therefore aligning 

themselves closely with the SOCC. Workflows have often been one of the client applications of 

the grid environments and their execution has been explored in much detail. Expression 

languages to describe workflows, theoretical work towards optimal workflow scheduling and 

optimization of the multiple invocations of the isolated workflows are some of the efforts to 

execute the workflows within grids.  

In order to further enrich the domain of workflow execution within a SOCC, this thesis 

considers competing workflow scheduling (and execution) over a pure SOCC execution model. 

Every cloud resource is considered to be exposed as a service and more than one workflows are 

competing for the services during their execution.  

The problem statement formed in chapter 2 is to serve as a tool while investigating 

• Workflow oriented application scheduling 

• Resource competing collection of independent workflows requiring execution 

• Pure service oriented computing cloud as an execution platform for the competing 
workflows 
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The motivation behind this research is to understand issues while considering SOCC as a 

general purpose computing platform for a collection of workflows. Both the workflow 

performance and the system throughput are used to evaluate various scheduling techniques.
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CHAPTER 5 
WORKFLOWS & SCHEDULING 

A workflow is a collection of tasks connected together in a certain order for their execution. 

In this thesis workflows are modeled as Directed Acyclic Graphs (DAGs). It is possible to model 

workflows in a variety of methods including with the description languages such as BPEL4WS 

[80], WSFL [81], AGWL [83], GSFL [85] , previously described in chapter 3. However, DAG 

based modeling is a common technique that has been well studied [97]. Each node in a DAG 

represents a workflow task and directed links indicate the task dependencies.  

In a DAG task dependencies are indicated with the unidirectional links between the tasks. The 

task originating the dependency is the parent task and the task depending on the parent task is the 

child task. Every task has a parent except for the root task that is the first task in the execution 

order. Figure 5-1 illustrates an example DAG structured workflow. 

 

Figure 5-1. An example DAG structured workflow 

Workflows with only one parent per child are considered. Although, it is possible to have 

multiple parents for a child, a workflow can be transformed such that each child only has one 

parent to simplify its structure. Such a workflow transformation creates multiple instances of a 
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child task for each parent, therefore, resulting in a single parent-child relationship. Figure 5-2 

shows such a transformation for a simple workflow. 

 

Figure 5-2. Workflow transformation for a single parent per child 

Additionally, it is possible that workflows contain loops. Such loops are generally represented 

in a DAG by performing the loop unrolling [97, 98]. One such simplified loop unrolling is shown 

in figure 5-3. In this example a simple workflow repeats task C three times and therefore 

contains a loop. Such a loop is then unrolled by creating C1, C2, and C3 tasks which represents 

unique invocations of the task C.   

 

Figure 5-3. Workflow (DAG) loop unrolling 

Tasks in a workflow can also have sibling tasks. One way to define sibling relationship is to 

consider task execution. All of the tasks that can be executed in parallel are sibling to each other. 

It is likely that not all of the siblings can start and finish execution at the same time depending on 

their readiness for execution. 
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Task Readiness 

Task readiness for execution can be defined in two ways. One way a task becomes ready for 

execution is when its parent completes execution. The second way a child can become ready is 

when its parent and all the parent’s siblings complete execution. The second definition of a child 

readiness is more restrictive. Tasks become ready at a slower rate, however, more tasks become 

ready at the same time. This also introduces a notion of workflow levels or steps for its 

execution. A workflow level contains tasks that become ready at the same time. All of the tasks 

within a level are sibling of each other. Figure 5-4 shows a workflow with four levels. 

 

Figure 5-4. A workflow with four levels 

Size 

Workflow size is measured as the sum of all of its task lengths. A task length indicates the 

number of units to complete the execution of a task. A simple workflow with three tasks of 

length 10, 20, and 25 has a size of 55. Workflow size indicates total units required to complete 

its execution. Figure 5-5 shows an example workflow with its task sizes.  

 

Figure 5-5. An example workflow of size 55 (10 + 20 + 25) 
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Depth 

For a workflow without discrete levels or execution steps, the depth is simply the number of 

tasks along the longest execution path starting at the root task. An execution path is a chain of 

tasks linked together in order of their dependencies. Figure 5-6 shows an example longest 

execution path. For workflows with levels, the depth is equal to number of levels as seen in 

figure 5-4. 

 

Figure 5-6. Example workflow depth 

Breadth 

The maximum numbers of tasks in a workflow requiring parallel execution at any time 

measures the breadth of the workflow. This measurement is useful when determining the number 

of services for a workflow. The breadth of the workflow can vary depending on the execution 

constraints placed on tasks. For example, when tasks execute irrespective of their siblings the 

breadth of the workflow is the maximum number of tasks that can become eligible for execution 

at anytime. In other cases, when tasks must execute in conjunction with their siblings, the 

breadth is the maximum number of siblings in a workflow. Figure 5-7 shows an example 

workflow with a breadth of six tasks. 
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Figure 5-7. An example workflow breadth of six tasks 

Arrival Time 

The time at which workflows arrive in the system can be modeled to have various random 

distributions such as exponential, poison, uniform, etc. Chapter 6 provides more details on the 

implemented arrival time distributions. 

Scheduling 

Given the above definition of the workflow, the scheduling activity becomes a routine of 

allocating outstanding workflow tasks to the available services in the system. One or more 

queues can be implemented to track outstanding tasks of all the workflows, which are then 

allocated to the services using some order as the services become available. Since all of the 

workflows are allocated services from a same pool, they are then competing for the services 

within the cloud.  

Figure 5-8 provides an overview example of the scheduling activity as described in this 

research. There are three workflows W1, W2, and W3 with ten tasks all together competing for 

three services S1, S2, and S3 in the example. Workflow arrival into the system is over time and 

workflow tasks become ready for scheduling only after their parent tasks have completed the 
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execution. In this example, we assume that workflow arrival is depicted from left to right, that is, 

W1 arrives first, followed by W2 and then W3.  

 

Figure 5-8. Overview of scheduling workflow collections over SOCC 

The scheduler has individual queues (Q1, Q2, and Q3) for each workflow, where each queue 

is sorted in the order of task dependencies. These queues are loaded upon the workflow arrival 

into the system. Using the workflow queues, the scheduler then applies a certain scheduling 

policy to create the master queue for the ready tasks. The master queue is dynamic throughout 

the system life cycle and is always ordered by the scheduling policy. The available services are 

allocated to the tasks from the left to the right until all of the services are allocated or there are no 

more unscheduled tasks in the master queue. In figure 5-8, three tasks W1T1, W2T2, W3T3 are 

first allocated to the services S1, S2, and S3. After service S3 becomes available when the task 
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W3T3 finishes its execution, it is the allocated to the next task W1T2 in the queue. Next the 

service S1 becomes available and is allocated to the next task W3T2 in the queue and so on. 
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CHAPTER 6 
EXPERIMENTATION 

In order to study the scheduling of workflow collections over SOCC, simulation based 

experimentation is conducted. The simulation implements various scheduling scenarios that are 

necessary to complete the research presented in this thesis. In this chapter, experimentation setup 

and design details are provided to aide with the discussion of the results in the next chapter.  

Simulation Methodology 

A random number generation is used to prepare the input data for the simulation. Once 

generated, the input data is saved and used across various experimentation runs. For example the 

workflows are generated using various random numbers for the number of tasks, the task 

dependencies, and the workflow arrival times. During experimentation, the same set of 

workflows is used while simulating each of the scheduling heuristics for a given cloud size and 

the workflow arrival pattern. The consistent input data makes it possible to achieve the same 

output when repeating a particular experiment. The repetition is often necessary to ensure the 

proper simulation behavior due to software bugs.  

The experiment maintains its own time clock to simulate the parallelism of the cloud. For 

example, to simulate the parallel execution of the scheduled tasks, the services are sequentially 

executed between the two clock ticks. 

Cloud Modeling 

The simulation models an SOCC environment to execute the various scheduling scenarios. 

There are three main components of the modeled cloud including the services, workflows, and 

the scheduler.  
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Services 

The workflow tasks are executed by invoking the services after the scheduler assigns tasks to 

the available services. Only one task is assigned to a service at any time, and therefore during 

task execution that service is not available for scheduling. All of the services in the cloud are 

modeled to be homogeneous for simplicity. A cloud with multiple service types partitions the 

scheduling activity to pools of various service types. 

Task execution by a service is modeled via a stack. Each level in a stack represents an 

operational unit. Therefore, at a simulation step, task execution is a computation of a single 

operational unit. 

The services are made available through a directory. However, due to the homogeneous 

nature of the services no service discovery and description is implemented. 

The number of services in a cloud is the cloud size or the cloud capacity. Various number of 

cloud sizes are used to study their affect on the workflow scheduling performance. 

Workflows 

A complete description of the workflow and definition of its attributes is provided in chapter 5 

and is referenced in this section.  

All of the workflows are generated in advance using various random number seeds. The seeds 

are used for the number of workflow tasks, size of each task, the workflow breadth, and the 

number of children for each task (task dependencies).  

There are two types of workflows that are generated for the experimentation. The first type is 

called the Evolving DAG (EDAG) and the second type is called the Constant DAG (CDAG). 

Figure 6-1 shows an example of both workflow types. The EDAG workflows are evolving in 

terms of the number of tasks at each level, whereas the CDAG workflows do not increase the 
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number of tasks at each level beyond a fixed value and therefore, have somewhat constant 

structure.  

 
Figure 6-1. An example of EDAG & CDAG workflow types for the experimentation 

The two workflow types are used to model the applications of different resources 

requirements. The EDAG workflows have an increasing number of resource requirements as 

their execution proceeds. The CDAG workflows always keep the resource requirement under a 

fixed value.  

The workflows are modeled to arrive randomly in the cloud for the execution. Two such 

distributions are used to model three arrival time patterns during various experiments. The first 

pattern is called continuous, which is a uniform distribution, where single workflows arrive at 

fixed intervals. The second pattern is also a uniform distribution, but a fixed number (more than 

one) of workflows arrive at fixed intervals. This pattern simulates workflow arrival in bursts. The 

third pattern follows an exponential distribution. Figure 6-2 shows an example of these three 

patterns for the arrival time of 25 workflows.  
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Figure 6-2. Example arrival time distributions for 25 workflows 
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Figure 6-3. Example size distributions for 25 workflows 
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The figure 6-3 shows the example size distributions for a sample of workflows for illustration 

purposes. Three size distributions are implemented to see their impact on the scheduling policies.  

Scheduler 

Three implementations of the scheduler are available in the simulator to execute any of the 

two scheduling policies and their corresponding heuristics. The basic implementation of any 

scheduler is queue based. Scheduler maintains a queue to track the workflow arrival into the 

system. In addition, various queues are maintained to track the execution of each workflow. 

Scheduling is performed over a centralized scheduling queue that contains all of the ready tasks 

in the system belonging to the various workflows. The scheduling queue is sorted as per the 

scheduling policy and its corresponding heuristics. For example, for the scheduling policy of 

prioritization and the heuristic of shortest task, the scheduling queue sorts all of the tasks in order 

of their lengths regardless of their workflow association. 

Measurements 

The following measurements are tracked within all of the simulated experiments: 

Wait Time is the time a workflow waits in the system after its arrival and before it is 

successfully allocated at least one service to start its execution. It is calculated by the following 

equation 

Wait Time = Execution Start Time – Arrival Time 
 

Execute Time is simply a difference between the workflow execution end time and the start 

time. It represents the total time a workflow spends executing and is indicative of workflow 

performance. It is calculated by the following equation 

Execute Time = End Time – Start Time 

Finish Time is a time at which a workflow finishes execution and exits the system. It is the 

sum of the workflow wait and the execute time. A workflow may or may not successfully 
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complete its execution when it is finished due to the associated deadline. The workflow finish 

time is calculated by the following equation 

Finish Time = Wait time + Execute Time 
 

Total Finish Time is the sum of all the workflow finish times in the system. This 

measurement indicates the overall cloud performance for a particular set of workflows.  

Average Finish Time is the average of the finish time across all of the workflows belonging 

to a particular set. This measurement is useful in developing some idea of the individual 

workflow performance in a given cloud configuration.  

Scheduling Policies 

As previously described in chapter 2, two scheduling policies of workflow prioritization and 

service partitioning are implemented.  

Workflow Prioritization. Under this scheduling policy the scheduler sorts the workflows and 

tasks using a certain priority while selecting the workflows and tasks for service allocations. 

There are eight different heuristics that are used for prioritization and these heuristics are 

outlined in the table 6-1 and 6-2.  

The heuristics in table 6-1 are based on the size attribute, which is the indication of the 

execution lengths. Both the individual task sizes and the collective workflow sizes are used to 

formulate the four heuristics in table 6-1. The heuristics of TSTT and TLTT focus on the size of the 

ready tasks regardless of which workflows the tasks may belong to. With these two heuristics, it 

is possible that at the end of a scheduling step, ready tasks belonging to the different workflows 

are scheduled and multiple workflows are being scheduled concurrently. The heuristics of TSWT 

and TLWT consider the overall size of the workflow while selecting the tasks for scheduling. The 

rational behind consideration of task sizes versus the workflow sizes is to see which size makes 

the difference in terms of the system throughput and the workflow performance. 
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Table 6-1. List of scheduling heuristics based on size (execution lengths) 
Heuristic Acronym  Description 
Shortest Task ST Ready tasks are selected for scheduling in ascending 

order of their sizes.  
Longest Task LT Ready tasks are selected for scheduling in descending 

order of their sizes. 
Shortest Workflow SW Ready tasks are selected for scheduling in ascending 

order of their workflow sizes. 
Longest Workflow LW Ready tasks are selected for scheduling in descending 

order of their workflow sizes. 
 

Figure 6-3 provides an overview of the scheduling heuristics based on the size attribute as 

listed in table 6-1. Given the dynamic nature of the scheduling, a snapshot of a very simplified 

system is presented in figure 6-3. There are two workflows W1, and W2 with size 100 and 200 

units respectively and two services S1, and S2 within the system. In the snapshot there are three 

tasks W1T2, W2T1, and W2T2 sizes of 15, 10, and 30 respectively that belong to both 

workflows. The resulting scheduling selection order via each heuristic is shown in the figure 6-3. 

Although, a simplified scenario, it can be seen that each heuristic results into a different order for 

task selection and scheduling. Further it can also be seen that number of tasks (three) is larger 

than the number of services (two). After the first two tasks are assigned to the two services, the 

third task waits until one of the services (S1) becomes available for further assignments.  
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Figure 6-3. A simplified scheduling scenario using size based heuristics 

The next set of four heuristics in presented in table 6-2 and it is based on the task 

dependencies within each workflow. The TMCTT and TMOTT pay attention to the workflow 

execution progress that is a direct result of the task dependencies. The TLDTT and TMDTT simply 

look at the number of dependent tasks to select the tasks for scheduling. The rational behind 

these four heuristics is to see how task dependencies impact the system throughput and the 

workflow performance. 

Table 6-2. List of scheduling heuristics based on task dependencies 
Heuristic Acronym  Description 
Most Completed Tasks MCT Preference is given to the ready tasks that belong to the 

workflow that has the most number of the completed 
tasks. 

Most Outstanding 
Tasks 

MOT Preference is given to the ready tasks that belong to the 
workflow that has the most number of the outstanding 
tasks. 

Least Dependent Tasks LDT Preference is given to the ready tasks that belong to the 
workflow that has the least number of the dependent 
tasks. 

Most Dependent Tasks MDT Preference is given to the ready tasks that belong to the 
workflow that has the most number of the dependent 
tasks. 
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In figure 6-4, a snapshot of a simplified system is shown to illustrate the behavior of each 

heuristic presented in table 6-2. There are two workflows W1, and W2 and two services S1, and 

S2 in the system. The figure lists the system state information in terms of the workflow task 

dependencies. For example, at the time of the snapshot each workflow has a certain number of 

completed, outstanding, and dependent tasks. The number of dependent tasks is a constant metric 

and does not change throughout the workflow execution. There are three ready tasks W1T23, 

W2T14, and W2T15 in the snapshot. These tasks are then sorted and scheduled using each of the 

heuristics and results are displayed in the figure 6-4. 

 

Figure 6-4. A simplified scheduling scenario using task dependency based heuristics 

The implementation of this scheduler is greedy in nature. That is, using a particular heuristic, 

the scheduler attempts to allocate as many ready tasks as possible, given the service availability. 

The overall approach here is to achieve maximum service utilization by saturating the cloud with 

the workflows. This approach makes it possible to view the impact of each scheduling heuristic 

when a cloud is operating at its maximum capacity. 
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Figure 6-5. A simplified scheduling scenario with the service partitioning 

Service Partitioning. The scheduling approach under this policy is to attempt a number of 

service allocations for a workflow up to a pre-determined threshold. The threshold is based on 

the workflow breadth, which is an indicator of the maximum service requirement for a workflow. 

Various factors of the workflow breadth are used during the simulation to determine the service 

count threshold. Figure 6-5, presents three such factors of 25%, 50%, and 75% to partition 

services among two workflows W1, and W2. As seen different breadth factors result into 

different number of service allocations for each workflow. Therefore, the service count threshold 

is directly proportional to the workflow breadth and the actual value will vary from workflow to 

workflow in a given set of workflows. Figure 6-5, does not restrict the number of services within 

the cloud and shows the ideal service allocations (service count threshold). However, in reality 

any cloud will have a fixed number of services and the service threshold counts determined via 

partitioning policy may or may not be available for allocation. In this case the workflow will 

only be allocated the maximum number of available services close to the service count threshold. 

The rational behind this scheduling policy is to see the impact of a more controlled scheduling 

approach on the system and workflow performance. The control occurs in terms of the number of 

services partitioned/allocated among the outstanding workflows in the system. This is different 

than the uncontrolled scheduling policy of prioritization, described in the last section. With the 
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prioritization policy, workflows or tasks get a certain order of execution but there is no control 

over the number of services allocated to each workflow. With service portioning it is possible to 

control the number of services allocated to each workflow. It is possible to use many heuristics 

to decide on the number of services allocated to each workflow. In this thesis the workflow 

breadth is used to determine the service count that is allocated to each workflow.  

Notice that the service allocation is a best case effort given the service availability in the 

cloud. A service is generally only available for scheduling when it is not executing any 

previously scheduled tasks. During the execution, services are allocated to the outstanding 

workflows as they become available. A workflow remains outstanding until the number of 

allocated services becomes equal to the specified threshold. For example, a workflow with a 

threshold of 5 services will remain outstanding until it has been allocated 5 services. However, 

outstanding status of the workflow does not impede its execution. A workflow starts execution as 

soon as the first service is allocated to the workflow. Therefore, during the workflow execution, 

the number of allocated services can be less than or equal to its threshold.  

Deadlines. Implementation of this scheduler is an extension of both service partitioning and 

workflow prioritization schedulers. The target of this scheduler is to address workflow deadlines, 

when present. That is, this scheduler prioritizes deadline workflows over non deadline 

workflows. Deadline workflows are considered to have two deadlines. An end time ( TETT) 

deadline is by which a workflow must terminate its execution and a maximum execution length 

( TMELT) after the workflow is scheduled. From the scheduling point of view, sufficient resources 

must be allocated to a deadline workflow that it meets both of its deadlines. Failure to meet 

either deadline results in the overall incompletion of the workflow. 
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The service partitioning scheduler is used as a base scheduler because it provides control over 

the number of services allocated to the workflows. The cloud can have workflows with or 

without deadlines, therefore various possibilities on how scheduling for deadlines occur exist. 

Three such possibilities while giving deadline workflows a priority are implemented and each 

subsequent implementation is an extension of the previous implementation. These three 

implementations are simply referred to as deadline-1, deadline-2, and deadline-3.   

First (deadline-1), results obtained with the service partitioning scheduler are used. Using the 

best performing threshold, the workflows are scheduled in an order that prioritizes deadline 

workflows over non deadline workflows, among outstanding workflows in the queue. Order 

among the deadline workflows themselves when selecting between two deadline workflows, can 

be based on four attributes; the workflow arrival times, the MEL deadline, ET deadline, or the 

respective workflow sizes.  

In the second implementation (deadline-2), the scheduler implements two separate thresholds 

for deadline and non deadline workflows, respectively. This is in addition to the deadline priority 

based workflow selection. The workflow without deadlines can be run without any time 

constraints, and by allocating more services to the workflows with deadlines improves their 

chance of meeting their deadlines. The non deadline workflows are restricted to a very small 

number of services (one or two) to make room for the deadline workflows. The service count 

threshold for the deadline workflows is set to meet their MEL. The number of services that will 

meet the MEL is determined and an attempt is made to allocate such a number of services. A 

workflow is not scheduled until the number of resources meeting its MEL becomes available.  

The third implementation (deadline-3) of the scheduler is similar to the second 

implementation. It initially allocates the services for the deadline workflows that are sufficient to 
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meet the MEL deadline, but it continues to allocate more services until the optimal number of 

services is allocated or the workflow finishes its execution. The optimal number of resources is 

equal to the workflow breadth. This implementation is to favor the ET deadline. That is by 

attempting to allocate the optimal number of services, chances to achieve the ET may improve. 

Objectives 

Given the discussion presented in this chapter the experimentation objectives can be 

summarized as follows: 

• Model and execute a Service Oriented Computing Cloud (SOCC) via simulation 

• Schedule and execute DAG based workflows over the modeled SOCC 

o Implement prioritization and portioning based scheduling policies. Both 
scheduling policies are instantiated using many scheduling heuristics as described 
in the last section. 

o Schedule two DAG types of EDAG and CDAG 

• Implement various cloud sizes in terms of the number of services 

• Implement various workflow arrival times and workflow sizes and task dependencies 

• Measure system throughput and average workflow performance for each implemented 
scheduling scenario  

• Analyze the results to present the performance of scheduling policies in various scenarios 
in terms of 

o System throughput 

o Workflow performance 

o Impact of workflow structure (task dependencies)  

o Ability to meet execution deadlines 
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CHAPTER 7 
RESULTS 

There are four research questions formulated at the end of chapter 2, which are as follows. 

1. How does the cloud size impact the performance of the various scheduling policies in terms 
of the system throughput and the workflow performance? In general the performance of any 
scheduling policy will likely benefit with the increased number of services in a cloud. 
However, performance of various policies is compared with each other for different cloud 
sizes to evaluate their suitability.  

2. How do the workflow arrival patterns impact the scheduling? It is possible that not all of the 
workflows are ready for execution at the same time therefore scheduling is an ongoing 
activity. Different arrival patterns cause different amount of workload on the cloud. The 
performance of the scheduling policies under different loads is examined.  

3. What role does a workflow structure play during scheduling? In particular what attributes of 
the workflow structure, such as number of tasks or the task dependencies are valuable in 
workflow scheduling. 

4. How do the workflows that have certain completion deadlines perform with the prioritization 
and the partitioning policies? 

Table 7-1. All possible values of the experimentation parameters 
Scheduling 
Policy 

Cloud Size Workflow 
Arrival Patterns 

Workflow 
Structure 

Deadlines 

Prioritization Variable/Fixed Fixed, Burst, 
Exponential 

EDAG/CDAG Yes/No 

Partitioning Variable/Fixed Fixed, Burst, 
Exponential 

EDAG/CDAG Yes/No 

Deadlines Variable/Fixed Fixed, Burst, 
Exponential 

EDAG/CDAG Yes/No 

 
In this chapter, the results of the experimentation are outlined. The results are described to 

answer the four research questions above.  
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There are three sections in this chapter. The first two sections describe the results for 

workflow prioritization and service partitioning scheduling policies, respectively. The last 

section describes the results for the deadline oriented workflows.  

Table 7-1 presents the overall experiment configuration parameters and their implemented 

values. Each following section first describes the parameter value of the results described in each 

section and the motivation behind their selection. 

Workflow Prioritization 

Workflow and Cloud configuration 

There are two workflow sets used for scheduling using the prioritization heuristics described 

in table 6-1 and table 6-2. The configuration parameters for both workflow sets are shown in 

table 7-2, and 7-3. The sets are simply referred to as sets I, and II. Set I contains EDAG 

workflows and set II contains CDAG workflows. Workflows within each set are also different 

from each other in terms of the number of tasks, task lengths and the task dependencies. The 

workflows in each set follow an exponential distribution for their sizes. That is there are a large 

number of smaller size workflows and a small number of larger size workflows in each set. The 

motivation behind the two selected sets is to study the impact of the workflow structure, 

identified by workflow type, on the scheduling. The workflows in both sets are opposite of each 

other. As seen in table 7-3, set I has workflows with a large number of tasks (up to ~24000) with 

small execution lengths (1-10 seconds). Whereas, set II has a relatively small number of tasks (7-

10) with longer task lengths (1000 seconds). As previously mentioned in chapter 6, the EDAG 

workflows have increasing number of resource requirements as their execution progresses, 

whereas the CDAG workflows generally have fixed resource requirement throughout their 

execution.  
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Table 7-2. Workflow configuration parameters for the priority scheduler  
Set Workflow 

Type 
Workflow 
Count 

Size Task 
Readiness 

Task Length 

I EDAG 100 Variable 
exponentially 
distributed 

Per level Variable 
exponentially 
distributed 

II CDAG 1000 Variable 
exponentially 
distributed 

Per level Variable 
exponentially 
distributed 

 

Table 7-3. Workflow detailed configuration for the priority scheduler 
Set Depth Breadth Task 

Length 
Mean 
(seconds) 

Number 
of 
Tasks 

Average 
Number 
of Tasks 

Workflow 
Size 

Average 
Workflow 
Size 

I 1 – 6 1 – 
19336 

10  
exponentially 
Distributed 

1 – 24835 2595 2 – 262141 27347 

II 20 7 – 10 1000 
exponentially 
Distributed 

77 – 147 110 67438 – 
195199 

122745 

 
In table 7-4, other experimental configuration parameters are shown. As evident, various 

cloud sizes, and workflow arrival time distributions are implemented in order to see their impact 

on the heuristic performance. 

Table 7-4. System configuration parameters for prioritization scheduler 
Set Cloud Size (# of services) Arrival Time 
I 100, 500, 1000 Exponential, Continuous, Bursts 
II 100, 500, 1000 Exponential, Continuous, Bursts 
 
Results 

Following is the overview of the results obtained under prioritization based scheduling 

1. System throughput remains (almost) the same across all heuristics implemented that 
prioritize the workflows or their tasks. This is due to the fact that workflow scheduling order 
does not change the overall outstanding work.  
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2. Workflow performance significantly varies across various scheduling heuristics. The 
heuristics considering overall workflow size as opposed to the individual task size perform 
better. 

3. The heuristic performance tends to diminish as the cloud size increases because more 
services are available for workflow execution. Therefore, with a larger cloud sizes 
prioritization based scheduling is sub optimal and other scheduling techniques are needed to 
optimize workflow performance. 

4. Workflow arrival times impact the scheduling only when they introduce significant load on 
the cloud resources. Only exponential distribution managed to introduce significant load on 
the cloud during the experiment.  

5. Workflow structures (EDAG or CDAG) dictate the number of workflows that can be 
scheduled within a cloud. Some heuristics perform differently with different workflow types. 
Additionally, given their resource requirement, heuristic based scheduling is only effective 
when cloud is under high workload.  

System throughput 

Given the greedy nature of the priority scheduler the overall throughput of the cloud stays 

relatively the same across various scheduling heuristics. Regardless of the workflow order 

resulting from the priority heuristics, the overall amount of work keeps the underlying services 

busy until all of the workflows are executed. This is revealed in figure 7-1 and 7-2. Additionally, 

given the scheduler attempts to allocate as many services as possible to the outstanding workflow 
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tasks, the service utilization is at the maximum level. 

 

Figure 7-1. Finish times for set I workflows across all scheduling heuristics 

 
Figure 7-2. Finish times for set II workflows across all scheduling heuristics 
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Workflow Performance 

For workflow set I (EDAG) and set II (CDAG) in conjunction with the smaller cloud size, 

there exist performance gaps between various heuristics. Figures 7-1 and 7-2 display the 

individual heuristic performance for a case where such differences are significant. The heuristic 

performance in 7-1 and 7-2 are charted for a cloud of 100 services when the arrival time was 

exponentially distributed. Overall the Shortest Workflow and the Least Dependent Tasks 

perform the best, whereas the Shortest Task performs the worst. 

The results in figure 7-1 and 7-2 provide two insights. First the workflow selection order is 

important. Second, consideration of the overall workflow size rather than the individual task size 

makes a difference in performance. In set I, there are a larger number of small size workflows 

and a small number of large size workflows. Keeping the EDAG structure of the workflows in 

mind, scheduling smaller workflows first allows more and more workflows to be executed 

earlier, therefore, reducing their wait times. On the other hand, when the larger workflows are 

scheduled first, they consume most of the cloud resources, causing much longer wait times for a 

large number of smaller size workflows. In set II, the number of workflows (1000) is much 

larger than the number of workflows (100) in set I. The increased number of workflows was 

necessary to generate a similar amount of load on the cloud. The Shortest Workflow and Least 

Dependent Tasks continue to perform best for set II as well. However, in terms of worst 

performance Longest Task now beats Shortest Task. Remember that workflows in set II are of 

CDAG type and have long task sizes. Therefore, when Longest Tasks are scheduled first, the 

wait time for tasks belonging to other workflows is increased. This results is an overall longer 

finish times as compared to the Shortest Task. Further, Longest Workflow does not have the 
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poor performance as in the case of set I. The Longest Workflow becomes a viable option in set II 

as the size variance among workflows is much smaller than set I.  

The scheduling based on the individual task sizes does not guarantee any particular order for 

workflows and that is the reason behind the poor performances of heuristics of Shortest Task, 

Longest Task, and Longest Workflow that are either based on the individual task sizes or prefer 

large size workflows. 

 
Figure 7-3. Finish times for set II workflows across selected scheduling heuristics 

There are two other interesting observations available from figure 7-1. The first observation is 

for the performance of Most Completed Task heuristic. It comes right after Shortest Workflow 

and Least Dependent Tasks. This heuristic can be valuable in scenarios when workflow sizes or 

information on their task dependencies is not available, making Shortest Workflow and Least 

Dependent Task impossible. Workflow execution progress can be monitored in terms of the 

work completed, therefore, making Most Completed Tasks a viable option. The second 

observation is for the Arrival Time (TATT) heuristic that is absent from the original heuristic 
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description in the table 6-1. This heuristic was injected to see the impact of scheduling 

workflows in order of their arrival. Arrival Time performance lies in the middle and there are 

four other heuristics that perform worse than Arrival Time. It is an interesting observation in a 

sense that such a simple scheduling heuristic can still yield reasonable results over other 

heuristics requiring more information about the workflows.  

One more important thing to note is the scale in figure 7-2. Given the sheer amount of data in 

figure 7-2, from the initial visual inspection it may seem that most of the heuristics are 

performing similar to each other as they appear very close to each other. However, when 

compared in terms of scale, it is revealed that the performance gaps between these heuristics still 

remain significant to matter their selection. In figure 7-3, a close up view of the heuristic 

performance is shown to provide the difference in performance for heuristics that, at first, appear 

too close to each other in figure 7-2. As seen in figure 7-3, the performance difference between 

the heuristic of Shortest Workflow and the Longest Workflow is on average 120,000 seconds 

(2,000 minutes or 33.33 hours). That is Longest Workflow heuristic on average takes 120,000 

second more than Shortest Workflow to finish the execution of each workflow shown in figure 

7-3. 

Cloud Size 

The above results in figure 7-1 and 7-2 are for the small cloud sizes. In general, as the number 

of services in a cloud is increased, the performance gaps between heuristics start to diminish. 

This is because with more resources it is possible to execute the arriving workflows sooner, 

therefore, reducing the average wait time and making the selection order less important. There 

are 100 services for the workflows in figure 7-1. When the same workflows shown in figure 7-1 

are executed with 500 services as opposed to 100 services, the results are shown in figure 7-4. As 
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seen the performance gaps between heuristics have reduced significantly in comparison to the 

heuristic performance for the same workflows but fewer services (100) in figure 7-1. With the 

larger cloud sizes, the service utilization is uneven across services as only a subset of services 

stay busy throughout the execution. 

 
Figure 7-4. Impact of the additional number of services on the performance of heuristics  

Workflow arrival time patterns 

The exponential arrival time distribution causes the most amount of load on the cloud. A 

relatively large number of workflows arrive close to each other therefore overwhelming the 

system. With the uniform arrival time, whether workflows arrive continuously or in bursts with 

fixed intervals, the overall outstanding workflows in the system remains small. This small 

number of workflows is a manageable load for the cloud in general and workflows can be 

scheduled sooner with smaller wait times. Therefore, workflow prioritization through heuristics 

when workflow arrival does not cause significant load on the cloud is less effective. Figure 7-5 

shows such an impact of the arrival times on the performance of heuristics for 100 services cloud 

with the uniform arrival time. However, with uniform arrival rate, it is possible to partition the 
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cloud into smaller subsets. The smaller subset cloud can then take advantage of the scheduling 

heuristics to deliver the reasonable performance. The freed up services in the other cloud 

partitions can be subsequently employed towards the other arrival time patterns or for the 

resource intensive workflows. Therefore, it can further reduce or eliminate the large workflows 

that can potentially impact the overall cloud performance.  

 
Figure 7-5. Scheduling heuristic performance with (uniform) burst arrival pattern 

Summary 

In a smaller size service cloud, workflow wait times are the key when scheduling continuous 

stream of workflows in a greedy fashion. Any scheduling technique that reduces the average wait 

time for the workflow performs the best. Scheduling heuristics provide a way to reduce the 

workflow wait times by considering the workflow sizes. When workflows are scheduled in 

increasing order of size, the overall wait times across workflows are minimized resulting in the 

best performance in terms of the average finish time. The task dependencies do not seem to make 

any significant differences when all of the workflows follow similar task dependency structure. 

However, different task dependency structure, EDAG vs. CDAG, results in different service 
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requirement patterns. The EDAG workflows require a very large number of services for a short 

period of time, whereas the CDAG workflows require a small number of services for longer 

periods of time. The different service requirements patterns then dictate the number of 

workflows that should be scheduled for heuristics to be an effective mechanism. The number of 

tasks in a workflow directly contributes to the workflow size and is already considered as part of 

the workflow size based heuristics.  

The workflow wait times can also be reduced via other methods as well. First, by adding more 

resources to the cloud more and more workflows can be scheduled soon after their arrival. 

Second, by making the workflow arrival into the system more uniform, it is possible to keep the 

number of outstanding workflows small enough. Cloud partition is another technique that can be 

applied to eliminate the factors causing longer wait times. For example, small number of larger 

workflows can be allocated to a subset of the cloud so they do not cause longer delays for the 

large number of smaller workflows. 

Service Partitioning 

Workflow and Cloud configuration 

Tables 7-5 and 7-6, show the various configurations of the simulation results of the partitioning 

scheduler discussed in this section. As seen, all three set contain CDAG workflows. The service 

partitioning based scheduling turns out to be a poor candidate for the EDAG workflows. This is 

due to their increasing resource requirement that always surpasses the number of services 

available within the cloud. In such a limited resource environment, only a greedy scheduling 

approach such as workflow prioritization described in previous section yields the best results for 

EDAG workflows. With such a greedy approach the prioritized workflows compete and 

consume the maximum number of services possible. Whereas with service partitioning EDAG 
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workflows end up with a smaller number of service allocation and therefore significantly suffer 

in performance. 

Table 7-5 indicates three workflow-sets I, II, and III of 100 CDAG workflows each. The first 

set I contains 100 identical (instances of a single workflow) workflows. This set is to simulate a 

scenario where multiple executions of a workflow are invoked over a period of time, e.g. to 

process different data sets at each execution. The last two sets II and III have variable size 

workflows, where the overall size is uniformly and exponentially distributed, respectively. These 

two sets differ in terms of their workflow breadths. The last two sets are selected to study the 

scenarios where multiple workflows of various breadths and sizes are executed within the cloud. 

This is to see any relationship between workflow breadth, sizes and the number of allocated 

services i.e. the service partition.  

 

Table 7-5. Workflow configuration parameters for the partitioning scheduler 
Set Workflow 

Type 
Workflow 
Count 

Size Task Length Breadth 
(tasks) 

I CDAG 100 Fixed Fixed 10 

II CDAG 100 Variable 
uniformly 
distributed 

Fixed 10 

III CDAG 100 Variable 
exponentially 
distributed 

Fixed 1-14 

 
Table 7-6 shows three other variables for each workflow set. Each set is executed multiple 

times across the indicated cloud sizes, service count thresholds, and scheduling heuristics. The 

service count threshold, as previously described in chapter 6, determines the service portion and 

it is based on the workflow breadth. The three scheduling heuristics are Arrival Time ( TATT), 
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Shortest Workflow ( TSWT), and Longest Workflow ( TLWT). These three heuristics provide the order 

in which the workflows are selected for scheduling. 

Table 7-6. Configuration for the service partitioning scheduler 
Set Cloud Size 

(service count) 
Service Count 
Threshold (%) 

Heuristic 

I 100, 200, 300 25, 50, 75 AT, SW, LW 
II 100, 200, 300 25, 50, 75 AT, SW, LW 
III 100, 200, 300 25, 50, 75 AT, SW, LW 
 

The motivation behind implementing heuristics, in addition to the service count threshold, is 

to see any further improvements in the system. For example, if a 25% threshold performs best in 

some cases, is it possible to extend the performance gains by considering various orders of the 

workflow selection.  

All of the workflows sets have exponential arrival time distribution. The other arrival time 

distribution does not seem to generate any significant load on the cloud to warrant any 

sophisticated scheduling. 

Results 

Following is the overview of the results obtained under the partitioning based scheduling 

1. System throughput varies across various service partitions (count thresholds). The workflow 
size and breadth distribution dictates what service count thresholds and cloud size perform 
better. 

2. Individual workflow performance is also affected by the partition size and on average a 
service threshold of 50% (1/2 of the workflow breadth) performs well.  

3. Workflow arrival patterns that introduce significant load on the cloud such as exponential 
distribution are benefited by the service partitioning scheduling. Other arrival patterns simply 
do not have enough load on the cloud to require any scheduling. 

4. EDAG type workflows are a poor candidate for the service partitioning scheduling and 
require more greedy scheduling approaches for better results. CDAG type workflows make a 
good candidate for service partitioning as this scheduling policy provide more control over 
service allocation per workflow. 
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5. No deadlines were implemented as part of this scheduler. 

 
System Throughput & Cloud Size 

Set I & II. While considering the total finish times (overall system throughput) there is a 

relationship between the cloud size and the service count threshold.  

For set I and II, smaller threshold values perform better with the smaller cloud sizes. The total 

finish times are much lower with the smaller-size-smaller-threshold combination as compared to 

the smaller-size-larger-thresholds. For example in figure 7-6, total finish times for set II with 

Arrival Time heuristic are shown. For the cloud size of 100 and 200, service count threshold of 

25% performs better over 50%, and 75%. As the number of services is increased to 300, 50% 

threshold becomes better. Note that the workflow in these sets (I, and II) is either identical or 

similar to each other. With larger thresholds it is easy to saturate the cloud services with a small 

number of workflows, causing the rest of the workflows to wait. Whereas, with smaller 

thresholds it is possible to reduce the overall workflow wait times by allocating services more 

evenly among a large number of similar workflows. More workflows start the execution early 

on, which results in an overall better system performance.  
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Figure 7-6. Total finish times for set II workflows with Arrival Time heuristic 

Figure 7-7 shows the average wait times across the cloud sizes of each threshold for Set I. As 

more resources are added, it becomes possible to expand the number of services allocated to each 

workflow. This further expedites the workflow execution as in the case of 50% threshold and 

300 resources in figure 7-6. 
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Figure 7-7. Average wait times for set I workflows with Shortest Workflow heuristic 
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Figure 7-8. Total finish times for set III workflows with Arrival Time heuristic 

Set III. For the set III, the larger threshold performs better. This is in contrast to the results 

obtained with set I, and II. The breadth and size of workflows in set III fluctuate quite a bit and 

have exponential size distribution as shown in figure 6-3. As per exponential distribution, there 

are a large number of relatively smaller workflows in set III and a few large workflows. The 

larger threshold for abundant smaller workflows results in a small number of service allocations 

per workflow which is easy to accommodate, yet it provides better performance for the 

individual workflow and the overall system performance. For example, consider a case of 40 

workflows with a breadth 6 or less. Even with the large threshold of 75%, the allocations are 

between 1-4 services. The overall results are shown in figure 7-8. Smaller threshold performs 

significantly poor. This is due to the fact that the larger workflows get a very small set of 

services and delay the overall completion of the workflow set.  
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System Throughput and Heuristics 

Set I. In terms of improvements related to the scheduling heuristics, for set I, there are no 

further improvements. This is because both Shortest Workflow and Longest Workflow heuristics 

are based on the workflow sizes and set I contains identical size workflows.  

Set II & III. For set II, and III, Longest Workflow performs better in some cases as seen in 

figure 7-9. This is largely for the small cloud sizes when longest workflows in conjunction with 

the small threshold do not consume a lot of cloud resources, leaving more resources available for 

the rest of the workflows.  

 

Figure 7-9 Scheduling heuristic performance for total finish time 
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Figure 7-10 Average finish time of set II for Longest Workflow heuristic 

Workflow Performance. In comparison to the total finish time, which is a measurement of 

the overall system performance, average finish time gives a sense of the individual workflow 

performance. There is no correlation between workflow sizes and the individual finish times. 

Workflows of various sizes arrive randomly into the system and are allocated services using 

some scheduling policy. It is possible that a relatively small workflow performs poorly (longer 

finish time) because they arrived at a time in the system when most of the services were already 

allocated, therefore causing it to wait for a long time. 

Set I & II. In general, service count threshold of 50% results a better average performance for 

set I, and II workflows. This is due the fact that workflow sizes in those two sets follow a 

uniform size distribution. Therefore, on average most of the workflows take advantage of more 

resources with 50% threshold over 25% thresholds. Figure 7-10 displays average finish times for 

set II with Longest Workflow heuristic. As more services are added, 75% starts to perform 
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similar to (and eventually better) the 50% threshold. This trend is likely to continue as more 

services are added, ultimately arriving at an ideal scenario where all of the workflows have 

optimal number of services allocated to them.  

Set III. For set III, 75% threshold works better in most cases. In general, given the cloud size 

the larger threshold provides better average performance as it results in better service allocation 

for a large number of smaller workflows as seen in figure 7-11.  

 

Figure 7-11. Average finish time of set III for Arrival Time heuristic 
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Figure 7-12. Average finish time of set III for Longest Workflow heuristic 

Workflow performance & Heuristics 

In terms of improvements related to the scheduling heuristics, Shortest Workflow with 50% 

threshold provides further improvements in average time for most cases. With the Longest 

Workflow heuristic a few very large workflows with larger threshold can consume more services 

resulting in poor average performance. In other cases, heuristics do not have any further impact 

on the average performance. Figure 7-13 shows improvements brought with the Smallest 

Workflow heuristic. 
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Figure 7-13. Scheduling heuristic performance for average finish time 

Workflow Arrival Patterns 

Only exponential arrival times are considered as with the prioritization scheduler 

experimentation it was revealed that uniform distribution does not generate enough load on the 

system to the have scheduling make a significant difference. 

Service Utilization 

Under service partitioning the utilization is uneven, as after meeting the specified allocation 

threshold no more services are allocated to the workflow even when there are services available. 

Workflow Structure 

Only CDAG type workflows were considered as with EDAG workflows which have a very 

large number of tasks, only a greedy policy such as workflow prioritization works well. The 
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service partitioning results into uneven distribution of services and perform much poorly for 

EDAG workflows. 

Summary 

System throughput is a function of the workflow wait time. Therefore, when more and more 

workflows are able to begin their execution sooner, the overall finish time across all workflows 

is at its minimum. That is, there is no advantage to allocating more services to a subset of 

workflows while making other workflows wait. With workflows similar in structure or having 

similar service requirements, a small service allocation to evenly distribute service results in the 

reduced wait times. Whereas for the workflows with considerable variation in service 

requirements, allocating more services to the smaller workflows produces lowest wait times. In 

some cases of varied service requirements, a scheduling heuristic that can restrict the larger 

workflows from consuming most of the cloud services, can also deliver further improvements in 

the total finish times.  

Individual workflow performance depends on other workflows in the system. Obviously any 

scheme that allocates a number of services close to the optimal of service requirements for each 

workflow results in a better average performance. When the workflows in the system have 

similar service requirements, then allocating resources up to 50% of their optimum service count 

requirements yields the best average performance. In case of workflows with varied service 

requirements, best average finish times are achieved with the similar scheme as for the total 

finish times. That is, by allocating more services to smaller workflows and fewer services to the 

larger workflows, it is possible to achieve the best average times.   

Smallest Workflow has the best average performance when services are equally allocated to 

the workflows without consideration to the variation in their services requirements. No other 

consistent benefits of heuristics are realized.  
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Deadlines 

Workflow and Cloud Configuration 

Two CDAG workflow sets are selected for the deadlines scheduler execution. Their 

configuration is shown in table 7-6. The deadlines scheduler implementation is built on top of the 

service partitioning implementation. Therefore, the EDAG workflows did not prove to be 

suitable candidates for the same reason as with service partitioning. Restricting service 

allocations to a fixed threshold makes it almost impossible to achieve target deadlines. 

Table 7-6. Workflow configuration parameters for deadlines scheduler 
Set Workflow 

Types 
Workflow 
Count 

Deadline 
Workflows

Size Breadth 
(tasks) 

Deadline 
Generation 

I CDAG 100 25 Variable 
exponentially
distributed 

Variable 
uniformly 
distributed 
1-14 

Random 

II CDAG 100 25 Variable 
uniformly 
distributed 
 

Fixed 
10 

Random 

 
The only significant difference between two selected workflow sets in table 7-6 is the 

workflow sizes and their breadths. The variable vs. fixed breadth is a consideration while 

allocating services based on the workflow breadths. The overall number of the workflows with 

the deadlines in each set is set to 25% of the workflows in each set. A random selection is used 

to select workflows that are assigned deadlines. Workflows in each set arrive randomly by 

following an exponential distribution. The deadline and non deadline workflow arrival is 

intermixed together. Other arrival time distributions such as uniform did not pose any challenge 

towards achieving the deadlines as they generated relatively low load on the cloud. 
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The experimentation configuration is shown in table 7-7. Each workflow set is executed over 

a cloud of 100 services. The cloud size is kept constant for this scheduler as the objective is to 

study the impact of the fixed number of services, when a percentage of the overall workflows 

have dual deadlines. Otherwise by increasing the services in the cloud with the same number of 

deadline workflows, the problem becomes trivial. Each workflow is executed via all three 

different implementations as discussed in chapter 6, section Deadlines and for the reference 

purposes they are named deadline-1, deadline-2, and deadline-3.  

Table 7-7. Deadlines scheduler run configuration 
Set Cloud Size 

(resources) 
Arrival Time Implementation 

I 100 Exponential deadline-1, deadline-
2, deadline-3 

II 100 Exponential deadline-1, deadline-
2, deadline-3 

 
Results 

Following is the overview of the results obtained under the partitioning based scheduling 

1. Deadlines scheduler is a specialization of the workflow prioritization scheduler as the 
workflows are prioritized based on their deadlines. 

2. Deadline based prioritization among both deadline and non deadline workflows is a best case 
effort towards meeting any deadlines. 

3. Having dual deadlines causes more workflow execution incompletion. Either of the deadlines 
that is arrived first causes the workflow incompletion. 

The measurements for this scheduler are the number of workflows failing to meet their 

deadlines, the distribution of the failure between two deadlines, and the overall impact on the 

average performance for both deadline and non deadline workflows.  

For set I and II, the result of the various implementations towards meeting deadlines are 

shown in figure 7-14 and figure 7-15, respectively. These figures only include deadline 
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workflows and show the workflow completion status. A workflow has an incomplete status if it 

could not finish its execution due to either of the deadlines (ET or MEL).  

Each implementation tends to improve over the previous implementation or perform the same 

as the previous implementation. As seen there is no significant difference between two sets 

across each implementation. The implementation deadline-3 improves the results for set I and 

does not have any improvements in case of set II. This is because there is less of a chance to find 

more resources with deadline-3, as the same breadth workflows overall consume services more 

evenly than the variable breadth workflows as in set I. 
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Figure 7-14. Performance of deadlines scheduler for Set I workflows 
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Figure 7-15. Performance of deadlines scheduler for set II workflows 
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The workflow incompletion is a result of failing to meet one of the two deadlines MEL or ET. 

The type of the deadlines that cause the workflow incompletion during the experimentation is 

shown in the figures 7-16 and 7-17. Both deadline-2 and deadline-3 for each set I, and II do not 

allocate any services to the workflows until the services necessary for MEL are available. 

Therefore, all of the workflow incompletion is a result of ET. Either workflows stay in the 

outstanding workflow queue and the ET arrives or they start executing too late to meet their ET.  
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Figure 7-16. Set I workflow incompletion due to a certain deadline type 

For set I, with deadline-1 all of the workflow incompletion is due to the MEL deadline. That 

is none of the workflows were allocated enough services that allowed them to satisfy their 

maximum execution lengths. For set II, deadline-1 has workflow incompletion due to both of the 

deadlines MEL and ET. Since workflow breadth is more evenly distributed in set II, some of the 

workflows are eventually allocated therefore, beating there MEL deadline but the wait time for 

these allocations was long enough to cause the ET deadline.  
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Figure 7-17. Set II workflow incompletion due to a certain deadline type 

 
Lastly, the impact of each implementation on all of the workflows (deadline and non 

deadline) is shown in the figures 7-18 and 7-19. Deadline-1 has the best performance for both 

sets in terms of the average finish time for the workflows. However, it has the worse 

performance in terms of meeting the workflow deadlines as shown in figure 7-14 and 7-15. The 

impact of the deadline-2 and deadline 3 is similar with deadline 3 performing slightly better in 

some cases. For set I, the difference in performances are only for the larger (50% of the) 

workflows, where as with the set II, the performance difference is for most of the workflows 

except for the initial subset of the workflows that consumed most of the cloud services.   
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Figure 7-18. Set I workflow completion times (total finish times) 

 
 
Figure 7-19. Set II workflow completion times (total finish times) 

Summary 

The obvious conclusion is that with the mixed mode scheduling of deadline and non deadline 

workflows, there is a better chance of achieving the deadlines if more services can be made 

available to the deadline workflows. That is by restricting the services to the non deadline 

workflows more services are available for the deadline workflows. However, the service 
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requirement distribution across deadline workflows in the system does play a role as well. For 

workflows with similar service requirements, there is more competition especially with the 

smaller cloud sizes.  

In terms of which deadline caused a workflow to incomplete depends on the workflow arrival 

in the system. At the time of workflow arrival, a cloud may not have sufficient services to 

achieve both deadlines, resulting in the workflow termination. The workflows are not scheduled 

until they can be allocated enough services to guarantee their maximum execution lengths. This 

optimization is in place to save services when less than optimal service allocations for a 

workflow are only going to be wasted.  

There is a tradeoff between the overall workflow (both deadline and non deadline) 

performance and the number of deadlines achieved. Given the service requirements distribution 

among workflows, the impact on workflow performance is felt by more workflows when they 

are equally competing for services.
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CHAPTER 8 
CONCLUSIONS AND FUTURE WORK 

In this work detailed research is conducted towards workflow based application scheduling 

for a service oriented computing cloud (SOCC). The motivation behind this research is to 

identify and understand the scheduling issues while considering SOCC as a viable execution 

platform. For this purpose, a problem statement is formulated in chapter 2 to drive the overall 

research. In order to understand workflow scheduling within SOCC, all elements of the problem 

statement are explored. Workflow definition in terms of scheduling and execution over an SOCC 

is also formalized. Additionally a detailed survey is conducted to review all of the existing work 

in the related domains to establish the context for the research. Given the problem statement and 

the existing work survey, simulation based experimentation is conducted to implement the 

selected scheduling policies. 

Research Results 

The experimentation results reveal various considerations while scheduling different 

workflows within the SOCC based computing environment.  

There are three scheduling policies implemented; workflow prioritization, service 

partitioning, and deadlines. 

Four different variables are considered to represent the cloud configuration; cloud size, 

workflow arrival, workflow structure, and workflow execution deadlines. 

The scheduling performance is evaluated for two metrics; system throughput, and workflow 

performance. 
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Workflow Prioritization 

• System throughput is not affected by the workflow scheduling (execution) order. The overall 
amount of work is the same regardless of the execution order.  

• Individual workflow performance significantly varies across various prioritization heuristics.  

o Heuristics considering the overall workflow size as opposed to the individual task 
sizes perform better. 

o Further, the heuristics that prefer the smaller size workflows have better performance 
when there are large number of smaller workflows and a small number of larger 
workflows. 

o The workflow wait time is the key factor for controlling the workflow performance. 
By reducing the wait time it is possible to achieve the better workflow performance. 

• By increasing the cloud size, it is possible to eliminate the performance differences between 
various scheduling heuristics. With a large cloud size the scheduling order does not have any 
significant impact.  

o Workflow prioritization only matters in case of high load on the system. Under light 
workloads, the workflow prioritization does not matter. 

• The workflow structure plays a role in scheduling performance as the structure determines 
the number of tasks that are ready for execution at anytime therefore, determining the 
number of workflows that can be scheduled simultaneously.  

• For workflows with a large number of tasks, greedy scheduling seems to perform the best.  

o This also results in the maximum service utilization. 

Service Partitioning 

• For a large number of relatively small workflows, a more controlled scheduling such as 
service partitioning, which can fairly distribute the services among the workflows based on 
their resource requirement, is the best option.  

o For workflows with a large number of parallel tasks, service partitioning is a poor 
approach as it limits the number of services that can be allocated to parallel tasks. 

• When the workflows in the system have similar service requirements, then allocating 
resources up to 50% of their optimal service requirements yields the best average 
performance. In case of workflows with varied service requirements, best average finish 
times are achieved by allocating more services to smaller workflows and fewer services to 
larger workflows. 
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• Service partitioning only matters in case of high load on the system. Under light workloads, 
service partitioning does not matter. 

Deadlines 

• A controlled service allocation can be used to achieve workflow deadlines. However, this 
approach is only suitable for workflows with a relatively small number of parallel tasks. 

• More services can be added to help with meeting the workflow deadlines. 

• In the case of both deadline and non deadline workflows, a service partitioning that is biased 
towards workflows with deadline helps with meeting the deadlines. 

• Workflow arrival time into the system also affects the ability to meet workflow deadlines. 
Arrival at a busy time means there is a less likely chance that the workflow will meet its 
deadline. 

• There is a trade off between the workflow performance and deadlines achieved. The average 
workflow performance is affected when deadline workflows are given preference over non 
deadline workflows. 

In addition to the scheduling, various complimentary techniques, such as admission control 

and additional resource provisioning, are also possible to satisfy the workflow execution 

deadlines. 

Future Work 

The current research and results lay the ground work towards workflow execution within 

SOCC. In future, various extensions to the current research are possible to further enrich the 

problem domain.  

As a next step, an actual implementation of a service oriented cloud system should be 

conducted. This implementation should highlight various implementation challenges that should 

be addressed in order to realize the benefits associated with such an execution environment. 

Once an actual SOCC is in place, concrete workflows representing actual work should be 

scheduled and executed. Execution of the concrete workflows will require some analysis of the 

workflows to extract the sufficient information necessary for their scheduling. It will be 
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necessary to develop techniques for such an analysis and it would be intriguing to find out what 

kind of information is feasible and useful for scheduling. Further, various service types and 

corresponding workflow task types should be introduced to further enrich the problem domain 

and get closer to real world execution scenarios.  

Another important consideration is the transformation of the existing systems to the service 

oriented architecture. This transformation is necessary to gain benefits associated with the SOCC 

based execution model. Such a transformation for an existing system presents a significant 

investment and commitment and therefore directly impacts the adoption of the SOCC. In 

addition, the workflow based application development for a SOCC based environment also 

requires further research. There have been various workflow description languages and 

corresponding implementations available however a standardized approach is yet to become 

available. 

Conclusions 

There are various modalities of cloud computing emerging as the flexibility and power of 

such a computing model is realized. Cloud computing holds the promise to aggregate and offer 

software service points that can be consumed by interested entities. For academic and 

commercial organization this often means the outsourcing of some or all of their IT infrastructure 

and resources. At the same time, other entities can start to offer cloud services for parties 

interested in offloading their IT needs. However, general purpose cloud computing will take time 

to emerge. Over time more and more software services will become available within the cloud 

making it possible for organization to cut over to such services. However, in the meantime many 

independent, isolated and unique offerings of the cloud computing will continue to emerge and 

they will identify various integration points among clouds to deliver more general purpose 
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computing clouds. Enterprises can choose to implement their own clouds and at the same time 

consume third party cloud services when outsourcing is more feasible.  

A good starting point for any enterprise looking to experience cloud computing benefits is to 

push its non-critical applications over to the cloud. This will allow enterprises to learn 

application development, deployment and maintenance over the cloud. If the cloud is maintained 

by a third party vendor, this will also be an opportunity for both parties to understand the 

application needs and develop cloud services to address such needs. Theoretically, cloud is able 

to support any type of application with some amount of development effort. In practice, 

migrating existing applications over to the cloud will take time as cloud implementations start to 

offer services meeting the application needs. For example, migration of an E-commerce 

application over to the cloud would require application re-factoring to invoke database and 

invoice processing requests via service calls as opposed to traditional approach of function calls. 

In this research workflow oriented applications are executed over a computing cloud. These 

workflows varied in their structures and in terms of their execution lengths. Workflow based 

applications or independent task applications are most suited for cloud computing given the ease 

of task-to-service mapping. In other applications where there is lack of task boundaries and tasks 

are less autonomous more work is required to execute such applications over the cloud. A 

general purpose simulator developed as part of this research is used to evaluate various task-to-

service mapping heuristics. A large set of execution scenarios is implemented to identify various 

system requirements such as size of the cloud, the work load patterns and the corresponding 

system performance, and the control over workflow execution. In addition workflow 

characteristics that are necessary or helpful for scheduling purposes are also identified. 
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Additionally, a detailed survey of scheduling approaches within existing systems and research is 

also presented for reference purposes.  

In conclusion, service oriented cloud computing systems will continue to evolve and become 

more prevalent as they hold potential to resolve current distributed system problems. This trend 

will continue to prompt the development of various types of applications, tools, and supporting 

technologies to help with the system adoption.
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