

WORKFLOW SCHEDULING FOR SERVICE ORIENTED CLOUD COMPUTING

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

ADNAN FIDA

Keywords: cloud, grid, scheduling, services, simulation, workflows

© Copyright Adnan Fida, August, 2008. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226120505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the

College in which my thesis work was done. It is understood that any copying or publication or

use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

 Requests for permission to copy or to make other use of material in this thesis in whole or

part should be addressed to:

 Head of the Department of Computer Sciences

176 Thorvaldson Building

110 Science Place

 University of Saskatchewan

 Saskatoon, Saskatchewan

 S7N 5C9

 i

ABSTRACT

Service Orientation (SO) and grid computing are two computing paradigms that when put

together using Internet technologies promise to provide a scalable yet flexible computing

platform for a diverse set of distributed computing applications. This practice gives rise to the

notion of a computing cloud that addresses some previous limitations of interoperability,

resource sharing and utilization within distributed computing.

In such a Service Oriented Computing Cloud (SOCC), applications are formed by composing

a set of services together. In addition, hierarchical service layers are also possible where general

purpose services at lower layers are composed to deliver more domain specific services at the

higher layer. In general an SOCC is a horizontally scalable computing platform that offers its

resources as services in a standardized fashion.

Workflow based applications are a suitable target for SOCC where workflow tasks are

executed via service calls within the cloud. One or more workflows can be deployed over an

SOCC and their execution requires scheduling of services to workflow tasks as the task become

ready following their interdependencies.

In this thesis heuristics based scheduling policies are evaluated for scheduling workflows over

a collection of services offered by the SOCC. Various execution scenarios and workflow

characteristics are considered to understand the implication of the heuristic based workflow

scheduling.

ii

ACKNOWLEDGMENTS

I am thankful to my supervisor Dr. Ralph Deters for his continuous support and

encouragement to complete my thesis. Dr. Deters provided guidance and direction that was

necessary for me to move forward. I would also like extend thanks to my thesis committee

members including Dr. John Cooke, Dr. Julita Vassileva, and Professor. Denard Lynch who have

provided valuable feedback on this thesis. Additionally, Ms. Jan Thompson, Graduate

Correspondent at the department of Computer Science, has also been very helpful throughout my

program.

Finally I would also like to thank my colleagues, my employer and friends for their trust and

support.

iii

TABLE OF CONTENTS
 page

PERMISSION TO USE... i

ABSTRACT.. ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES.. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS..x

INTRODUCTION ...1

RESEARCH DESCRIPTION..5

Scenario... 5
Opportunity ... 6
Problem... 6
Research Questions... 7

System Throughput .. 8
Workflow Performance.. 8
Cloud Size .. 8
Workflow Arrival Pattern .. 8
Workflow Structure.. 9
Workflow Execution Deadlines ... 9

LITERATURE REVIEW ..10

Enterprise Grid Computing... 10
Definition ... 10
Service Orientation... 11
Scheduling.. 11
Summary .. 18

Desktop Grid Computing.. 18
Definition ... 18
Service Orientation... 19
Scheduling.. 19
Summary .. 23

Scientific Grid Computing.. 23
Definition ... 23
Service Orientation... 23
Scheduling.. 24
Summary .. 28

Workflow Description Languages .. 28
Summary .. 30

 iv

Composite Web Services .. 30
Summary .. 32

Theoretical Work .. 32
Summary .. 35

Conclusions... 35
RESEARCH GOALS ..38

WORKFLOWS & SCHEDULING ...40

Task Readiness.. 42
Size.. 42
Depth... 43
Breadth.. 43
Arrival Time.. 44
Scheduling... 44

EXPERIMENTATION..47

Simulation Methodology .. 47
Cloud Modeling .. 47

Services .. 48
Workflows.. 48
Scheduler.. 51

Measurements ... 51
Wait Time .. 51

Execute Time ...51
Finish Time ..51
Total Finish Time...52
Average Finish Time..52

Scheduling Policies... 52
Workflow Prioritization ... 52
Service Partitioning.. 56
Deadlines.. 57

Objectives ... 59
RESULTS ..60

Workflow Prioritization .. 61
Workflow and Cloud configuration ... 61
Results .. 62

System throughput ...63
Workflow Performance..65
Cloud Size..67

Summary .. 69
Service Partitioning... 70

Workflow and Cloud configuration ... 70
Results .. 72

System Throughput & Cloud Size ...73
System Throughput and Heuristics..77

 v

Workflow performance & Heuristics...80
Workflow Arrival Patterns...81
Service Utilization ...81
Workflow Structure ...81

Summary .. 82
Deadlines... 83

Workflow and Cloud Configuration .. 83
Results .. 84
Summary .. 89

CONCLUSIONS AND FUTURE WORK ..91

Research Results ... 91
Workflow Prioritization ... 92
Service Partitioning.. 92
Deadlines.. 93

Future Work .. 93
Conclusions... 94

REFERENCES ..97

 vi

LIST OF TABLES

Table page

Table 3-1. Overview of sample enterprise grid computing systems..................................17

Table 3-2. Overview of sample desktop grid computing systems22

Table 3-3. Overview of sample scientific grid computing systems...................................27

Table 3-4. Characteristics of sample workflow description languages29

Table 3-5. Overview of sample composite web services systems32

Table 3-6. Overview of sample theoretical research towards workflow scheduling.........34

Table 6-1. List of scheduling heuristics based on size (execution lengths).......................53

Table 6-2. List of scheduling heuristics based on task dependencies................................54

Table 7-1. All possible values of the experimentation parameters....................................60

Table 7-2. Workflow configuration parameters for the priority scheduler........................62

Table 7-3. Workflow detailed configuration for the priority scheduler.............................62

Table 7-4. System configuration parameters for prioritization scheduler62

Table 7-5. Workflow configuration parameters for the partitioning scheduler71

Table 7-6. Configuration for the service partitioning scheduler..72

Table 7-6. Workflow configuration parameters for deadlines scheduler83

Table 7-7. Deadlines scheduler run configuration...84

 vii

LIST OF FIGURES

Figure page

Figure 1-1. Resource silos with an enterprise datacenter ..2

Figure 1-2. A simple Service Oriented Computing Cloud (SOCC)3

Figure 3-1. Composite services as an execution unit for a SOCC.....................................31

Figure 5-1. An example DAG structured workflow ..40

Figure 5-2. Workflow transformation for a single parent per child...................................41

Figure 5-3. Workflow (DAG) loop unrolling ..41

Figure 5-4. A workflow with four levels ...42

Figure 5-5. An example workflow of size 55 (10 + 20 + 25) ..42

Figure 5-6. Example workflow depth ..43

Figure 5-7. An example workflow breadth of six tasks...44

Figure 5-8. Overview of scheduling workflow collections over SOCC............................45

Figure 6-1. An example of EDAG & CDAG workflow types for the experimentation....49

Figure 6-2. Example arrival time distributions for 25 workflows50

Figure 6-3. Example size distributions for 25 workflows..50

Figure 6-3. A simplified scheduling scenario using size based heuristics.........................54

Figure 6-4. A simplified scheduling scenario using task dependency based heuristics55

Figure 6-5. A simplified scheduling scenario with the service partitioning56

Figure 7-1. Finish times for set I workflows across all scheduling heuristics...................64

Figure 7-2. Finish times for set II workflows across all scheduling heuristics..................64

Figure 7-3. Finish times for set II workflows across selected scheduling heuristics.........66

Figure 7-4. Impact of the additional number of services on the performance of heuristics68

Figure 7-5. Scheduling heuristic performance with (uniform) burst arrival pattern..........69

Figure 7-6. Total finish times for set II workflows with Arrival Time heuristic...............74

 viii

Figure 7-7. Average wait times for set I workflows with Shortest Workflow heuristic....75

Figure 7-8. Total finish times for set III workflows with Arrival Time heuristic76

Figure 7-9 Scheduling heuristic performance for total finish time....................................77

Figure 7-10 Average finish time of set II for Longest Workflow heuristic.......................78

Figure 7-11. Average finish time of set III for Arrival Time heuristic..............................79

Figure 7-12. Average finish time of set III for Longest Workflow heuristic80

Figure 7-13. Scheduling heuristic performance for average finish time81

Figure 7-14. Performance of deadlines scheduler for Set I workflows85

Figure 7-15. Performance of deadlines scheduler for set II workflows.............................86

Figure 7-16. Set I workflow incompletion due to a certain deadline type.........................87

Figure 7-17. Set II workflow incompletion due to a certain deadline type88

Figure 7-18. Set I workflow completion times (total finish times)....................................89

Figure 7-19. Set II workflow completion times (total finish times)89

 ix

LIST OF ABBREVIATIONS

SO Service Orientation
SOCC Service Oriented Computing Cloud
SOA Service Oriented Architecture
SaaS Software as a Service
DAG Directed Acyclic Graph
EDAG Evolving Directed Acyclic Graph
CDAG Constant Directed Acyclic Graph
ST Shortest Task
LT Longest Task
SW Shortest Workflow
LW Longest Workflow
MCT Most Completed Tasks
MOT Most Outstanding Tasks
LDT Least Dependent Tasks
MDT Most Dependent Tasks
ET End Time
MEL Maximum Execution Length
MPI Message Passing Interface
RM Reduction-Mesh
RT Reduction-Tree
FFT Fast Fourier Transformation
FCFS First Come First Served

x

CHAPTER 1
INTRODUCTION

With the advent of the Internet technologies, many new computing paradigms have emerged

over the last few years. Two such paradigms that have gained considerable attention are grid

computing [1] and service oriented computing [2-4]. Grid computing evolved from the resource

aggregation models to meet the ever increasing need for computing power. With the Internet, it

became possible to connect distributed resources together to create a grid of computing resources

that together can serve as an execution platform for diverse computing applications. At the same

time existing or new applications started to appear over the Internet as services that can be

consumed by other applications.

Both paradigms compliment each other and together they can further enhance the benefits

offered by them individually [5]. Combined together they offer a computing environment that

inherits the scalability of a grid and the flexibility of service-orientation to form a more robust

distributed computing platform [6]. While the grid offers protocols to create large scale

computing platforms, the Service Oriented Architecture (SOA) offers a standardize way to

expose resources and applications for a grid over the Internet. Given that Internet is often

referred to as a computing cloud, the notion of computing services backed by a grid over a cloud

can be referred to as Services Oriented Computing Cloud (SOCC) [7-9]. Simply put, SOCC is a

computing grid that offers its resources via (web) services. Every computing cloud is backed by

a grid, however not every grid powers a computing cloud.

SOCC type models have attracted attention from both research organizations and commercial

enterprises [10-12]. For enterprise datacenters in particular, SOCC promises to reduce the

 1

overhead associated with the resource management and maintenance of hosting of a large

number of independent applications [13]. In absence of SOCC, dedicated hardware is allocated

to the applications. The physical resources are allocated to each application such that the

application performance is acceptable during the peak load times. Given that peak load time

windows are relatively small and occur infrequently, the physical resources allocated to each

application tend to sit idle and cannot be shared by other applications that can benefit from more

resources. This practice ends up creating resource silos within enterprise datacenters and requires

management and maintenance of each silo independently. This scenario is depicted in figure 1-1

where two such simplified silos for two application workflows are shown for the illustration

purposes.

Figure 1-1. Resource silos with an enterprise datacenter

SOCC provides a way to break resource silos by exposing resources as general purposes

reusable services that can be shared among many applications. For example, the figure 1-1

scenario is redrawn in figure 1-2 to show the resource sharing by introduction of a service layer.

With this approach, datacenters can easily scale horizontally by adding more resources and

exposing them through existing or additional services [10]. The resource maintenance overhead

is reduced by having to maintain a general purpose resource cloud as opposed to a segmented

 2

resource collection. In addition to the resource sharing, interoperability among independent

applications also becomes possible. Applications themselves can offer their functionality in

terms of the services that can be utilized by other applications. Application development also

benefits from the service orientation as it can serve as a standard methodology when creating and

deploying new applications.

Figure 1-2. A simple Service Oriented Computing Cloud (SOCC)

Given the benefits associated with SOCC it is interesting to evaluate different application

models that can benefit from such a computing platform. One such application model is

workflow based. In a workflow one or more tasks together in some order are executed to

complete a business process [14]. In the scope of enterprise SOCC, the workflows can represent

business processes such as generating insurance quotes, performing credit card billing,

generating business intelligence reports, processing data for business integration, etc.

Workflow execution over a SOCC can be conceived as one or more service calls to execute

workflow tasks. Such an execution requires the scheduling of workflow tasks to the services

when tasks become ready for execution following their task dependency order. In addition, in an

 3

enterprise SOCC it is likely that multiple workflows require execution at the same time. Figure

1-1 provides an example of a simplified SOCC for two workflows. From the figure, workflow

tasks are scheduled to five different services that offer three compute resources. Each workflow

has its own tasks and execution order (task dependencies). Workflows can also have execution

constraints associated with them such as execution completion deadlines, or other performance

requirements.

Execution of multiple-workflows requires careful scheduling over an SOCC. A scheduler

needs to account for all outstanding workflows in the system and perform scheduling using some

technique to ensure that the system goals are met [15]. System goals can be workflow

performance, uniform resource utilization, system throughput, etc.

In this work, workflow scheduling for a collection of independent workflows in a scope of a

reference SOCC is studied. In particular heuristic based workflow scheduling is examined with

the help of experiments. The thesis presents experimentation results that are useful when

implementing workflow scheduler for SOCC. The thesis is organized as follows.

The second chapter provides a detailed research problem description. The third chapter

provides the relevant work towards the scheduling within the related domains of service

orientation and computing grids. In the fourth chapter, research goals and objectives are outlined.

The fifth chapter provides terminology for workflow scheduling within the cloud.

Experimentation methodology and setup are described in chapter six, and the seventh chapter

contains the experimentation result discussion. Chapter eight concludes the thesis.

 4

5

CHAPTER 2
RESEARCH DESCRIPTION

Scenario

In an enterprise datacenter implemented as an SOCC, there can be one or more collections of

workflows that require execution at regular intervals. For example, every 12 hours, a collection

of workflows need to be executed. Workflows are independent of each other and can run

simultaneously however they are generally long running applications with execution lengths that

can span multiple hours. During their execution all of the workflow tasks are performed by

invoking various services. The services that are consumed by the workflows are deployed across

various resources within the cloud.

The underlying resources and the corresponding services are shared among the workflows as

the services offer common functionality such as database access, billing services, image

processing, etc. At anytime, the number of tasks requiring execution can be much higher than the

number of available services in the cloud. For example, there can be 250 tasks requiring

execution while the total number of services in a cloud is 50. A large task to service ratio is

desirable to control the cloud costs when service utilization across workflow tasks is not uniform

(not all of the services are invoked continuously).

The scheduling of the workflows is typically performed manually by the IT staff. The

scheduling entails the selection of the services and the appropriate start time for each workflow.

Some manual estimation is performed by the IT staff to ensure that the final schedule provides

the completion of all the workflows.

 6

Opportunity

The workflow characteristics such as number of tasks and corresponding execution lengths

are variable. Workflows continuously evolve as the underlying data changes and through the

ongoing business activity. While existing workflows change their requirements, new workflows

are also continuously added to the cloud to support the business growth. The changes in the

existing workflow requirements and the additional new workflows require more complicated

schedules by the IT staff. Given that the workflow lengths are long and the number of tasks

(service calls) regularly change, it becomes increasingly cost prohibitive to devise the schedules

by hand.

Such a datacenter SOCC can benefit from the automation of the workflow scheduling to

reduce the human involvement and therefore reduce the costs associated with composing and

maintaining the workflow schedules.

Problem

By considering the above mentioned scenario it is possible to generalize the problem of

workflow scheduling automation as follows.

In a service oriented computing cloud, a workflow collection requires execution over a shared

set of services. Each workflow is executed by executing all of the workflow tasks in the order

of their dependencies. Therefore at anytime one or more tasks belonging to one or more

workflows are ready for execution. The number of available services is generally much lower

than the number of outstanding tasks and therefore, tasks must be scheduled to the services in

some order. The workflow execution requires automated scheduling to avoid the human

interaction and the related cost associated with manual scheduling.

 7

The scheduler has to decide on the workflow/task execution order and the corresponding

service allocation. For simplicity it can be assumed that all of the services and tasks are

homogeneous. However, there are other variables in the cloud that require consideration while

making scheduling decisions. These variables are the total number of services, the total

number of workflows with their corresponding tasks, and the execution length of each task.

Further not all of the workflows are ready for execution at the same time, and their readiness

or arrival into the system is to be considered, as well.

In this work, workflows are Directed Acyclic Graph (DAG) based and therefore their

scheduling over a distributed set of services is an NP complete problem [16, 17]. But

approximation techniques can be used for their scheduling. It is possible to apply scheduling

heuristics for workflow scheduling. For example, scheduling workflows in the order of their

execution lengths and allocating a fixed number of services to the workflow are two scheduling

heuristics. The heuristics can be based on certain scheduling policies. For example, in order to

select among multiple ready tasks, scheduling can use a prioritization policy to devise certain

selection heuristics such as task execution lengths. However, each scheduling policy (and the

heuristics) will impact the performance of the workflows and of the cloud in some way. Further,

certain policies will perform differently with different cloud configurations. For example,

scheduling workflows in the order of their arrival may only work well when the overall number

of tasks is small and the workflows complete their execution before more workflows arrive for

execution.

Research Questions

Two scheduling policies of workflow prioritization and service partitioning are considered in

this work. The prioritization policy helps to select among many ready tasks or workflows for

 8

scheduling to a small number of services. The partitioning policy helps to allocate a fixed

number of services to each workflow. Various scheduling heuristics are used to implement both

policies, resulting in many scheduling scenarios. For example, in one scheduling scenario, the

workflow execution length is the heuristic to prioritize the workflows. In another scenario a fixed

number is used to partition the available services among the prioritized workflows. A scheduling

scenario is a representation of one or more scheduling heuristics based on one or both scheduling

policies.

In order to understand the impact of each scheduling policy on various scenarios the

following two metrics are used.

System Throughput. The system throughput is measured in terms of the total completion

time of all the workflows in the system.

Workflow Performance. The workflow performance is measured in terms of the average

workflow completion time.

There are several variables that can affect the cloud behavior for the system throughput and

the workflow performance. Together these variables define the cloud configuration. In this

research following variables are considered to represent various cloud configurations.

Cloud Size. The number of services in a cloud available for workflow execution determines

the cloud size or its capacity.

Workflow Arrival Pattern. The workflow arrival in a cloud can follow some distribution

such as Uniform, Poisson, or Exponential. The workflow arrival pattern dictates the load on the

cloud.

 9

Workflow Structure. The workflow structure is described in terms of the number of tasks,

their dependencies on each other, and the number of concurrent tasks. More formal details on the

workflow structure are provided later in chapter 5.

Workflow Execution Deadlines. Workflows can have deadlines associated with them in

terms of the completion times. For example, a workflow must finish its execution by a certain

deadline after it starts the execution.

In this research, a selected set of scheduling heuristics are applied against the various values

of the above mentioned cloud variables. The performance of the scheduling policies is evaluated

using the two above mentioned metrics to answer the following research questions.

1. How does the cloud size impact the performance of the various scheduling policies in terms
of the system throughput and the workflow performance? In general the performance of any
scheduling policy will likely benefit with the increased number of services in a cloud.
However, performance of various policies is compared with each other for different cloud
sizes to evaluate their suitability.

2. How do the workflow arrival patterns impact the scheduling? It is possible that not all of the
workflows are ready for execution at the same time therefore scheduling is an ongoing
activity. Different arrival patterns cause different amounts of workload on the cloud. The
performance of the scheduling policies under different loads is examined.

3. What role does a workflow structure play during scheduling? In particular what attributes of
the workflow structure, such as number of tasks or the task dependencies are valuable in
workflow scheduling?

4. How do the workflows that have certain completion deadlines perform with the prioritization
and the partitioning policies?

More specific details on the values of the cloud configuration variables and the implemented

scheduling heuristics are provided later in chapter 6 and 7.

 10

CHAPTER 3
LITERATURE REVIEW

The research presented in this work is inspired by many elements of distributed computing

including grid, workflow, and the service-orientation. The application of these elements occurs

in various settings that can range from a small set of computing services to large-scale

geographically dispersed high processing computing environments. Both academic and business

enterprises are involved in the various modalities of the service oriented computing clouds of

various sizes. Not all of the modalities provide execution for the workflow based applications.

The workflow composition and usage is also diverse across the computing environments.

In this chapter research is presented to establish the context for this work. As grid computing

plays an essential role for SOCC and given that a computing cloud is a relatively new paradigm,

the presented work is selected based on the following criteria.

• Scheduling within the grid computing environments. E.g. enterprise, desktop, or scientific
grids that provide the backbone of a computing cloud

• Service Oriented (SO) execution model

• Scheduling for single or multiple workflows including the description of workflow for
scheduling purposes

The following sub sections categorize the related work with a brief description of each

category. The categories are outlined in no particular order.

Enterprise Grid Computing

Definition

Enterprise grid computing refers to the commercial IT data centers that are host to various

applications conducting the business operations [18, 19]. The application types include Customer

Relationship Management (CRM), Enterprise Resource Planning (ERP), Business Intelligence

(BI), and Management Information Systems (MIS) [20]. These applications are more and more

 11

commonly being offered though web based portals or other Internet backed interfaces. The

execution mode of these applications can be both online and offline. Further most of these

applications contain many business processes that are represented as workflows. The workflows

are transactional, database, and IO bound [21]. The underlying grid resources are web and

application servers, databases, media storage, and infrastructure resources such as network load

balancers and firewalls.

Service Orientation

Over time more and more enterprise grids are adopting the service oriented architecture

(SOA) to solve the challenges of continuous change management, scale, and uniform resource

utilization [22, 23]. However, such an adoption itself has costs and overhead associated with it.

Existing applications need to be redesigned to work with the service oriented architectures in

order to gain any benefits [24]. Therefore, during the transitional period it is common to find

hybrid grids that provide certain resources as services whereas the other resources are provided

in a more traditional fashion.

Scheduling

The business processes represent workflows that are invoked continuously throughout the

application life cycle. The invocation times for workflows are both deterministic and

nondeterministic.

Given the business value associated with the workflows, most of the scheduling occurs in

predetermined and static fashion. Each workflow is allocated the required set of resources well in

advance. The focus of the scheduling is on the optimization of some metric e.g. mean execution

time across the several invocations of the workflow. Dedicated and redundant resources are

generally used to achieve the desired performance for each workflow [24]. In some cases more

 12

dynamic techniques to workflow scheduling have also been explored and they are described in

this section.

As enterprise grids adopt service oriented architectures it is possible to outsource some of the

services [25]. In such scenarios various vendors provide the services at varying costs depending

on the associated QoS guarantees. Menasce et al. [26] build a theoretical model for the problem

of resource allocation to workflow based enterprise applications. An example business workflow

based theoretical model is used to define the scheduling/optimization problem. Workflow tasks

that require various resource types (compute, data, service, and network) and various instances of

each resource type with associated cost are considered in the model. The model is used to define

an optimization problem of finding resource allocations that minimizes the overall execution cost

while satisfying the execution time requirements. The problem is NP hard and a framework is

provided to design solution heuristics. The work differentiates itself from similar problems in the

domain of the multiprocessor scheduling by considering resources of multiple types. The

heuristics are based on the cost of the resources and favor the least expensive resource first,

unless the potential resource violates the maximum execution time. In case of a violation,

backtracking is performed to select the next least expensive resource. Given the resource types,

backtracking requires removal of one or more resources from the potential resources to avoid the

selection of the previously rejected resources. The work is theoretical in nature but considers

workflow execution for commercial enterprises. It calculates the optimum resource allocation for

a workflow by simulating the workflow execution in advance. Similar to the approach in this

work, heuristics are used to make the scheduling decisions. However, the developed framework

only pays attention to a single workflow at a time and the underlying grid model is also not

service oriented.

 13

Elnikety et al. [27] consider workflows that are invoked via web requests. The workflows are

part of a web application that spans multiple resources in the grid. They use the estimates

available on the workflow execution time (cost) to perform workflow scheduling. In addition to

the scheduling they also use admission control for the outstanding workflow queue in order to

keep the system load under a desired threshold. The workflows share the underlying resources

and have different execution lengths and resource requirements. Therefore, some scheduling is

required for each workflow in order to sustain a reasonable system performance. Admission

control is implemented upon request arrival and a workflow is only invoked if the overall system

load does not exceed a certain threshold, therefore avoiding the system crash. Once admitted, the

workflows are ordered in terms of their sizes, therefore implementing the Shortest Job First (SJF)

scheduling heuristic. Experimentation reveals the workflow completion time (response time) to

be reduced by a factor of 14 when compared to no scheduling and admission control. Urgaonkar

et al. [28] also deal with the similar problem by monitoring a network of queues containing the

workflows across the grid. They consider a multi-tier grid configuration where each tier has a

corresponding workload queue. A continuous monitoring of the queue is used to establish the

resource requirements and the additional resources are provisioned when necessary.

Although both of the previous studies are geared towards E-commerce web sites, they are also

relevant for an enterprise grid which is a host to many large scale service oriented web

applications.

Darlington et al. [29, 30] identify two categories of workflow scheduling. The first category is

based on the real time data such as waiting time in the queue or the shortest remaining execution

length. The second category is based on average metrics such as mean arrival time, or mean

execution length. They use the second category for workflow scheduling to meet certain QoS

 14

requirements (execution deadlines and corresponding failures) of workflows in a volatile grid.

The grid model is chosen to be service-oriented and a central broker (scheduler) performs

workflow task scheduling across the grid. Experimental evaluations are performed for the

developed scheduling algorithms for a collection of workflows. Various workflow arrival rates

are implemented to study the impact on the algorithm performance. The developed algorithms

are compared with other traditional algorithms that solve similar problem(s). The evaluation

metric is the workflow failure rate due to missed deadlines for different arrival rates and the

mean execution times. Their algorithms perform dynamic scheduling and therefore perform

better over the static algorithms and perform similar to the other dynamic algorithms. However,

as the arrival rates increase the algorithm performance tend to become similar to the other

traditional algorithms.

One of the issues in the enterprise grid is of resource silos as described in chapter 1. This

occurs due to the dedicated allocation of resources to the workflows, in order to ensure the

performance guarantees during the peak time (high load). The resource silos drastically reduce

the overall resource usage outside the short length peak time windows. Resource virtualization

[31, 32] is becoming a mainstream trend to break such resource silos. A physical resource is

virtually divided into one or more logical resources that are exposed as services to the

workflows. One issue with virtualized resource sharing among competing workflows is not

satisfying QoS for some workflows, as competing workflows have different resource needs.

Padala et al. [33] develop a control system that adjusts the resource sharing among applications

to ensure the desired QoS and maintains the high resource utilization. The Control system

implements a scheduler that is responsible for controlling physical CPU among various virtual

machines executing various workflow tasks. The scheduling heuristic is Simple Earliest Deadline

 15

First (SEDF) that distributes the CPU among virtual machines using a weight factor for a fixed

time interval. The weight factor is based on the established resource utilization thresholds and

ensures certain QoS for applications in terms of their response times. The CPU allocation varies

from one time interval to another time interval in order to adapt to the workload on each virtual

machine. The workload is estimated by using the actual workload in the last interval. A detailed

simulation is conducted in conjunction with the theoretical modeling of the problem in order to

provide various benchmarks on the performance of their design under various load conditions.

The work does not directly perform any workflow scheduling but schedules CPU among virtual

machines executing workflows. It is shown that by adapting to the workload during runtime,

establishing resource utilization thresholds, and by prioritizing the applications in terms of their

business value, it is possible to achieve the desired QoS.

Another approach towards datacenter resource consolidation is to assign resources based on

the historic performance of a workflow. Rolia et al. [34] calculated the task to CPU assignment

over historic CPU usage for each workflow. The calculation is done using two techniques of

linear programming [35] and genetic programming [36]. All of the servers are consolidated into

one large computing grid and available CPUs are then assigned tasks per the calculated

assignments. The linear programming turned out to be very compute and time intensive yet it

provided better schedules over genetic programming. Both of the algorithms did not generate

optimal schedules but delivered reasonable results. In dynamic enterprises it is likely that historic

performance varies considerably over time and there is a continuous effort required towards

collecting application traces. However for large size enterprise grids running hundreds of

applications such efforts result in considerable resource consolidation [37]. A similar approach is

described by Rolia et al. [38, 39] for resource management within the enterprise grids. Their

 16

framework utilizes profiles of resource demand for workflows. The profiles are created by the

observation of the workflows for a number of weeks. In addition to the resource demand profiles,

workflows also have service classes associated with various tasks. Each service class represents a

resource access assurance such as Guaranteed, Best Effort, etc. Given the observed resource

requirements and access assurances, schedules are created for each workflow so that the

minimum amount of resources is allocated to satisfy the access and resource requirements.

Admission control and monitoring are applied to ensure that the workflows meet their QoS

without consuming unnecessary resources. They [40] also explore WS-Agreement [41] to

reserve resources during scheduling.

The boundaries of an enterprise grid vary from one organization to another. In some cases an

enterprise grid can be formed by connecting geographically dispersed datacenters together [20].

Wong et al. [42] experiment with the execution of various MPI (Message Passing Interface)

applications across a geographic wide enterprise grid. Given that the MPI application tasks

communicate with each other, the network and CPU heterogeneity becomes a factor while

scheduling MPI applications across geographically distributed grid resources. Their study reveals

the viability of the enterprise grid for MPI applications even with the higher costs of

communication. The applications in general benefit from the increased number of resources

although careful planning is required to ensure the feasibility of an enterprise grid for MPI

applications. Jia et al. [43] also consider a geographic distributed enterprise grid as a middleware

for E-commerce portals which provide an aggregate of the business processes and intelligence.

In order to process the huge amount of data aggregated over multiple large size data sources,

they categorize the workflows and grid into three levels of data-flow, mining-flow, and

knowledge-flow. The lower level provides services to the higher level workflows and services in

 17

order to allow development of more complex systems. Each level of the grid is data centric

where raw data is transformed into useful data during the transition from lower level to the upper

level. Each grid level contains dynamically generated workflows that process the data from

lower level services and populate the current level data sources. The three logical levels for

workflows and the grid are created to separate various business intelligence activities. The

motivation is to investigate and provide techniques to dynamically generate and execute

workflows to generate business intelligence data for the E-commerce. The work identifies and

provides example triggers that can be used to initiate workflow generation and execution. The

explicit scheduling of the workflow is not directly discussed and redundancy based techniques

are suggested to deal with the workflow task contention to improve the response time. The

underlying grid implementation in the architecture is based on Globus [44] toolkit.

Table 3-1. Overview of sample enterprise grid computing systems
Literature Workflows Workflow

Contention?
Scheduling Approach SOCC

Model
Menasce et al. Business

processes
No Heuristics – resource cost No

Elnikety et al. Web requests Yes Heuristics –
Small job first

No

Urgaonkar et al. Web requests Yes Approximate –Predictive &
On demand

No

Darlington et al. Scientific &
Business
processes

Yes Approximate – Mean
execution length

Yes

Padala et al. Web &
Database requests

Yes Heuristic –
Early deadline first

No

Rolia et al. Business
processes

Yes Approximate –
Mathematical programming

No

Wong et al. Benchmarking
applications

No Optimal –
Enumerative

No

Jia et al. Business
intelligence

Yes Heuristic –
Resource redundancy

No

 18

Summary

Enterprise grid computing holds promise for the SOCC model for either individual or

competing workflow oriented applications. Table 3-1 summaries the discussion presented in this

section for the relevant characteristics to the current research. As evident from the table the

related work has some elements common to workflow oriented SOCC computing. However, an

explicit SOCC execution model is missing from most of the work. This is due to the costs

associated with a transition to the pure SOCC base model. Additionally the definition of software

as a service (SaaS) is also open to interpretation and often existing infrastructure components are

termed as services although such components may not follow a more standardized definition of

the SasS.

Desktop Grid Computing

Definition

A computational grid that is formed over a collection of personal computers is referred to as a

desktop grid [45-47]. There are millions of personal computers connected to the Internet that are

not continuously being utilized. The collective amount of idle processing time and storage across

any large collection of personal computers can surpass the resources available within a super

computing environment. Therefore, the motivation behind a desktop based grid is to utilize the

aggregated resources (CPU, disk) over the Internet to perform computations that would

otherwise require expensive high processing infrastructure. Generally, a computer owner

voluntarily participates in desktop grids and does not dedicate the compute resources to the grid.

Therefore, a desktop grid lacks any control over the participant computers and must operate in an

unobtrusive fashion. Typically desktop grid applications make use of the idle compute resources

across the grid in a best case effort. There have been numerous studies done to search/scavenge

 19

or trace the resource availability within desktop grids to efficiently utilize the available resources

and add more robustness to the application execution [48, 49].

Service Orientation

Interoperability and more standardized implementations within desktop grids are possible

through the service oriented architecture [50]. Initially, desktop grids such as SETI@home [51]

were created as proprietary and closed systems. Volunteers wanting to contribute their resources

to multiple grid systems need to host multiple components. Given the participation in a desktop

grid is on volunteer basis, service based implementation makes it viable for resource owners to

host one or more grid services in order to benefit from their contribution [52]. Various efforts

have been made to integrate service oriented architecture into the desktop grids [53, 54]. With

this integration it is also possible to expose desktop grids to the other grid paradigms such as

enterprise grids [55].

Scheduling

Given the large scale and volatility of desktop grids, scheduling has generally been for the

independent task applications. However, there is work done towards the large scale desktop grids

that is presented in the Theoretical Work section later in this chapter. All of the scheduling

references presented here are for the independent task applications.

Jaesun et al. [56] outline the problem of CPU waste when large chunks of work are distributed

to the clients by the centralized server. The waste occurs when clients are not able to compute the

entire allocated chunk due to their departure from the grid. The distribution of larger chunks is

necessary in order to minimize the client-server communication in light of a very large number

of clients. As a solution they propose scheduling proxies that are used to distribute work among

the cluster of clients. Such a proxy can collect a much larger chunk of work from the server and

 20

then distribute smaller chunks of work among the clients within its cluster. It also monitors the

clients for their availability and takes corresponding actions to get the assigned tasks completed.

The clients are clustered within according to their network proximity. Event-driven simulation is

used to measure the performance of their solution. The underlying work is similar to

SETI@home and consists of independent tasks.

SungJin et al. [57] present a theoretical work for dealing with the fault tolerance that is

associated with the grid resource failure. Such failures are either due to the departure of the

resource from the grid or due to the execution of the non grid tasks on the resource. Such failures

can result in a live lock problem which halts the execution of the entire job. The live lock

problem occurs as the resource computer continues to execute tasks even in the case of a failure

and therefore do not return a failed result to the scheduler. A heart beat based monitoring of the

resources is suggested as a solution to detect the task failures for the scheduler to take the

corresponding actions. A theoretical proof is given to show that the performance of their

proposed fault tolerant scheduling algorithm over the other existing scheduling algorithms.

Anglano et al. [58, 59] also consider resource failure within a desktop grid while performing

the task scheduling. Their fault tolerance approach is based on the knowledge that is available

about the tasks and the target resources. They conclude that such a knowledge-based scheduling

can result in better performance over knowledge-free scheduling. Two task selection policies

combined with four resource selection policies are used to perform the scheduling. Tasks are

selected based on their execution time residuals, and resource selection is based on their CPU

availability and the fault-time distributions. The tasks are independent but submitted as a

collection, where the entire collection needs to be executed. Simulation based experimentation is

used to evaluate the scheduling policies. The experimentation reveals that the task selection

 21

based on the longest tasks first policy performs better overall. This is due the fact that in the

simulated grid environments, executing longest tasks first reduces the overall completion time of

the entire collection of the submitted tasks. In addition, resource selection in order of the highest

predicted CPU power yields better results over selecting resources with the predicted failure

distributions.

HongSoo et al. [60] employ agents to conduct operations in a volunteer computing grid to

further improve the performance of the system. The grid resources are characterized in terms of

their volatility and durability. Two types of agents are created in the system. The first agent type

is responsible for task allocation, load balancing, result collection, and resource monitoring. The

second agent type is responsible for the task migration, check pointing, and the replication. The

first type of agents performs task scheduling throughout the system and the second type of agents

take actions to ensure the task completion. For example, after the initial scheduling, agents

perform more aggressive check pointing and task replication for highly volatile resources. The

evaluation of the agent based scheduling and execution is performed over the Korea@home

system. The scheduling approach is to load balance tasks among resources based on their

characterization. With an experimental evaluation, based on the throughput, they achieve a 58%

improvement over the traditional First Come First Served (FCFS) based scheduling. Chakravarti

et al. [61] also study the agent based task scheduling for an organic grid. The grid operations are

handled via agents that have no prior system knowledge and adapt to the environment as the

system state evolves. In this work, there are also two types of agents for scheduling and for

computation. The scheduling agents are allocated a (logical) tree of resources. The resources

closer to the top have higher performance and are preferred for scheduling over the resources at

the lower levels. Overtime the tree structure is adjusted as more accurate data about resource

 22

performance becomes available and the high performance resources are moved up. The

experimental evaluations are performed to prove the viability of their proposed system. The

results are not compared to any other system but the scalability, performance, and fault tolerance

of the system is measured and shown to be acceptable for the application in the experimentation.

Baohua et al. [62] consider a data intensive task scheduling within a desktop grid. The

challenge with any distributed data intensive execution is the overhead associated with the

transfer of data to the target resource. They compare FTP and BitTorrent [63] data/file transfer

protocols for load conditions under which each protocol performs better over the other. Three

scheduling heuristics based on the order of task completion times are implemented with the

corresponding file transfer protocols to outline the improvements over the basic RoundRobin

heuristic.

Table 3-2. Overview of sample desktop grid computing systems
Literature Applications Scheduling Approach SOCC Model
Jaesun et al. Physically distributed
SungJin et al. Adaptive for fault tolerance
Anglano et al. Execution time residuals
HongSoo et al. Physically distributed
Chakravarti et al. Adaptive & physically distributed
Baohua et al. Heuristics – Completion times
Kondo et al.

Non
workflow &
independent

task
applications. Heuristics – Resource performance &

task replication

No strict SOCC
model, however
each desktop can
be abstracted as a
service instance

within the overall
grid therefore,
exhibiting the
SOCC model.

Kondo et al. [64] study task execution over a desktop grid when there are more resources than

the number of tasks. Given the abundance of resource there is an opportunity to consider task

scheduling policies that are alternative to the simple FIFO based scheduling. The FIFO is

deemed to be reasonable scheduling policy under the scenarios of resource contention. They

apply three scheduling policies of Resource Prioritization, Resource Exclusion, and Task

Replication to obtain the near optimal results for the tasks on hand. They observe that resource

 23

exclusion based on task makespan with task replication is proven to be the best scheduling policy

where the results come within a factor 1.7 of the optimal solution. Their simulation is trace

driven from a commercial desktop grid Entropia.

Summary

In desktop grid computing systems, generally a large size of independent task applications

have been considered due to the lack of complexities associated with the workflow execution.

The selected sample work in this section towards the desktop grids which is relevant to my

research is summarized in table 3-2. The scheduling within this domain is for the system

throughput which attempts to execute maximum number of tasks possible. Although, no SOCC

execution model is present, the individual desktop when exposed as a service can provide more

interoperability among the competing applications.

Scientific Grid Computing

Definition

In academic and research organizations, computing grids are implemented to create high

processing computing (HPC) environments. Such computing grids are formed with the

collaboration of one or more organizations by networking their high processing compute

resources such as clusters, storage area networks, server farms, and supercomputers. Therefore, a

scientific grid operates within multiple administrative domains. The primary motivation behind

such grids is to assemble computing power that otherwise would be impossible or cost

prohibitive. One example of such a scientific grid is GriPhyN [65]. The target applications of

such computing grids are resource intensive and research oriented. There are many types of

applications being executed within such grids including workflow based applications [66, 67].

Service Orientation

 24

The scientific grid community has adopted the SOCC implementation after the emergence of

web services. In addition there have been efforts to standardize the SOCC implementations. One

such effort that has gained popularity is the Open Grid Service Architecture (OGSA) [68].

Services are viewed as constructs to create virtual organizations (computing grids) by exposing

the heterogeneous resources of the independent physical organizations. In particular a notion of

Grid Service has been introduced to provide grid infrastructure components in a well defined

fashion [5]. That is, in addition to the standardized interfaces, services are also assigned specific

semantics. The semantics are used to describe the service behavior that is to be consistent across

each implementation of a service. Similar to the other service oriented architectures, OGSA

proposes hierarchical organization of the grid services. The core services are at the lower layers

(infrastructure), which are then utilized by the domain specific higher layer services. An example

of the core services include resource selection, scheduling, secure execution, data management,

authentication, and fault recovery [69].

Scheduling

Application scheduling within scientific or research oriented grid computing is a well studied

research area. Workflow based applications are a subset of the overall set of grid applications.

Given the complexity associated with the workflows, their scheduling has also received

considerable attention. Scheduling techniques roughly fall into three categories namely List

Heuristics, Duplication, and Clustering [15]. The workflow task dependencies require scheduling

in such a fashion that the overall execution length (makespan) of the workflow is minimized.

Within List Heuristics, tasks are queued according to their execution order (task dependencies)

and selected for scheduling using some priority. Scheduling with Duplication attempts to

duplicate predecessors tasks in such a way that overall minimizes the workflow completion time.

 25

Clustering based scheduling is designed to minimize the workflow makespan by reducing the

communication overhead among tasks executing on different resources. Tasks requiring

communication with each other are clustered or scheduled on the same resource. Yu et al. [70]

perform a detailed survey of the workflow management systems and present a taxonomy to

categorize various systems. Some of their work is summarized here due to its relevancy to the

current research.

Condor [71], a compute-intensive grid system, provides a mechanism called DAGMan [72] to

schedule workflows within the Condor enabled grid. DAGMan is a meta-scheduler that manages

the workflow tasks dependencies. Its name is derived from the structure of the workflows

(Directed Acyclic Graph -- DAG) that it schedules. DAGMan relies on the workflow description

to submit tasks in a predefined order. However, DAGMan is limited in terms of the task

dependencies. In particular it is unable to handle branching or looping. The actual scheduling of

the tasks is done by the Condor scheduler.

Pegasus [73] is a workflow management component within the GriPhyN grid [65] and it

performs scheduling of the abstract workflows onto the grid resources. Abstract workflows do

not describe specific grid resource requirements and are generally used to increase the portability

of a workflow. At runtime suitable mechanisms are used to find the actual resource mappings for

the abstract workflow tasks. Pegasus uses scheduling policies of random resource selection, and

of performance prediction. The performance prediction is based on the historic data that is being

stored for every workflow during its execution. Pegasus converts the actual scheduling of the

tasks into Condor jobs, which are then executed by the DAGMan.

Taverna [74] is a workflow management system for bioinformatics workflows. It operates

within the myGrid [75] system which is a collaboration of many European research

 26

organizations. Taverna provides its own workflow specification language to describe the

workflows in terms of their input, output, data, and control flow. It also provides a user interface

to manipulate workflows and select available resources for workflow tasks and users can view

the workflow progress through the interface. The myGrid is a service oriented grid and offers

several types of infrastructure services to the workflow management system of Taverna.

GrADS [76] is a grid system targeted towards scientific users without programming

background within organizations across North America. The overall scheduling objective within

GrADS is to minimize the workflow makespan. The grid resources are ranked in terms of the

performance corresponding to the workflow tasks on hand. The performance is based on the

execution cost plus the data movement costs to the particular resource. The resource performance

ranks are then used by various scheduling heuristics to map tasks to the resources. The

implemented scheduling heuristics are based on the order of task completion times. Further,

GrADS continuously monitors workflow execution and performs rescheduling when a certain

performance drops from the predetermined threshold. Rescheduling is either done by stop/restart

or by moving tasks to the better resources if available, while considering the costs associated

with the data movement.

GridFlow [77] organizes the grid into three logical layers; resource, local, and global grid.

Local grid represents resources within one organization, whereas the global grid contains all of

the local grids. It also provides a user interface to compose workflows. Workflows contain sub-

workflows that are mapped to the local grids. Initially workflow execution is simulated to find

the optimal schedule and then the actual scheduling occurs where local grids are mapped to the

sub-workflows. The underlying grid system is agent based where each agent controls a local

 27

grid. GridFlow also employs heuristic algorithms to minimize the workflow makespan and

resource idle time.

Gridbus [78] is a service-oriented grid that models itself after economic principles. Grid

resource management is performed by assessing supply and demand of the grid resources. The

grid supports parameter sweep based workflows with the QoS specifications. The specification is

expressed via a proprietary XML based language. The scheduling decisions are driven by events

that occur in a tuple-space. In addition, just in time scheduling and rescheduling for failed tasks

is also performed. The major difference of the Gridbus approach from other contemporary grids

is the use of market-based principles to makes the scheduling decisions.

Table 3-3. Overview of sample scientific grid computing systems
Literature Workflows Workflow

Contention
Scheduling Approach SOCC Model

Condor Performance driven Possible

Pegasus Random & performance
prediction

No

Taverna Performance driven Yes

GrADS Performance driven
heuristics

No

GridFlow Performance driven
heuristics

No

Gridbus Market driven Yes

ASKALON

All
workflows
represent

scientific &
research

applications.

All of the
workflows are

executed
independent of

each other.

Performance driven
heuristics

Possible

ASKALON [79] provides a generic workflow development and execution framework for

transparent access to a grid. The motivation behind such an access is to free the application

developers from the grid level details. The transparent access is achieved via services such as

scheduler, execution engine, resource manager, and performance predictions. These services are

 28

built on top of the Globus grid framework. An XML based language is provided to develop the

workflows. These workflows are then transformed into Directed Acyclic Graphs (DAGs) by loop

unrolling (see chapter 5) . The DAGs are then scheduled across the grid using DAG based

heuristics. The Workflows are large scale scientific applications and the goal is to study the

impact of each scheduling heuristic on various workflows. Therefore, the focus of the study is on

the individual workflows and their performance optimization as opposed to the collection of

workflows. The study provides a good example where workflows are unrolled and transformed

into large scale DAGs.

There are fuzzy boundaries between scientific and enterprise grids. Some of such differences

are outlined in [18, 20, 21].

Summary

The relevant work presented in this section is summarized in table 3-3. Given that workflows

in this domain represent the research applications, they are executed in isolation of other

workflows and therefore workflow contention is not an issue. As seen in table 3-3, the individual

workflow performance is the focus of the scheduling. In some instances, the workflow execution

is performed in SOCC based environment.

Workflow Description Languages

As the name suggests, expression languages are used to describe the workflow structure, their

task dependencies and the other execution requirements that are useful in workflow execution

automation. It also allows for a standardization of workflow execution within a computing cloud.

Most of these languages are XML based and do not always consider service oriented workflow

execution. There have been quite a few workflow languages proposed over the years, however, a

standard language has yet to emerge.

 29

One of the commonly used expression languages is the Business Process Execution language

for Web Services (BPEL4WS) [80]. It is built by combining some of the elements from two

other expression languages of Web Services Flow Language (WSFL) [81] and XLANG [82]. It

allows the description of workflow execution in both an abstract and actual manner. At the

abstract level not all of the workflow execution details are specified and the execution

transformation to the actual behavior is left up to the system. BPEL4WS defines interaction

behaviors of various entities (workflow tasks) in terms of web services based message exchange.

Another expression language that provides an abstract description of workflow execution is

the Abstract Grid Workflow Language (AGWL) [83]. The motivation behind an abstract

description is to save the user from the concrete implementation details of the system. The

workflow execution is described as a graph of activities that are mapped to the resources in the

grid. Such a graph also describes data and control flow for the workflow execution. It supports

parallel task execution including parallel loops and has data access constructs available. Such a

data access mechanism allows more flexibility to the workflows that have sophisticated data

needs. The limitation of any abstract language is difficulty in transformation from abstract to

actual execution description. Such a transformation is left up to the system developer and will

vary from one implementation to another.

Table 3-4. Characteristics of sample workflow description languages
Language Description Approach
BPEL4WS Abstract/Concrete Task execution in terms of

web services calls.
AGWL Abstract Graph based task invocation

order.
DAML-S Concrete Calls to semantic web

services.
GSFL Concrete P2P oriented service calls.

 30

In order to avoid some of the limitations with abstract workflow description, DAML-S [84]

brings semantics to the service execution. By associating semantics to the service calls, it is

possible to provide more consistent system behavior. However, an auto-generated

implementation of the service methods to satisfy the semantics is the best way to avoid human

error and interpretation of the semantics.

Another commonly known workflow language specifically designed for the grid services is

the Grid Service Flow Language (GSFL) [85]. Its motivation is to provide a language that

supports peer-to-peer interaction among the services for data exchange without going through an

execution engine intermediary. A larger amount of data is expected to exchange hands among

grid services therefore any central control is seen as a bottleneck. Further it also focuses on

providing more flexibility in workflow task execution order. Certain task or corresponding

services may not always be invoked given the different workflow instances and the time

windows associated with the task executions.

Summary

An overview of the sample workflow description languages is shown in table 3-4. The

workflow description can be in abstract terms where the implementation specific details are left

out to provide more flexibility and broader coverage of the language. Each language has its own

way of describing the workflow task execution.

Composite Web Services

There is also a trend [86-91] to execute workflows over non-cloud collections of services and

it is generally referred to as composite web services. One or more web services are pooled

together and invoked in a certain order to execute the workflow. Therefore, each composition is

specific for a certain workflow. Composite web service workflow execution can be considered as

an execution unit of an SOCC execution model, as shown in the figure 3-1. That is an SOCC is a

 31

collection of composite web services. The scheduling decision specific to the unit can be

considered as a local decision whereas a cloud scheduler is considered to be making global

scheduling decisions. In our work no local scheduling is employed and all of the decisions are

made globally in a centralized fashion.

Figure 3-1. Composite services as an execution unit for a SOCC

Scheduling in composite workflows is generally focused on the optimization of multiple

invocations of the workflow. Redundancy is a common technique that is used to provide

improved performance and therefore, workflow scheduling concerns itself with the selection of a

service instances that can meet certain QoS objectives. Response time is another metric that is

generally improved with the service scheduling.

The work of Chafle et al. [92] is about decentralized orchestration of the composite web

services. Orchestration refers to the act of invocation control within the web services. A

centralized orchestration is generally done via a controller that can cause bottlenecks and some

unnecessary data transfer overhead. With decentralized orchestration it is possible to avoid

pitfalls of the centralized orchestration but it requires much more thought into design. Various

design issues such as distributed error recovery and fault handling, communication overhead, and

code partitioning are explored. A proof of concept implementation is provided to validate

proposed design choices. The underlying composition forms a single workflow that computes a

 32

route between origin and the destination. Scheduling is not a concern and web services calls are

predetermined.

Table 3-5. Overview of sample composite web services systems
Literature Scheduling Organization Scheduling Approach
Chafle et al. Decentralized Predetermined dedicated

resources
Zhang et al. Centralized Best Expected Execution

Time

Zhang et al. [93] consider web services and grid convergence and propose a composition and

scheduling architecture for the grid based web services. The composition is for the selection of a

set of web services for the workflow execution. The scheduling is responsible for determining

the task readiness during workflow execution and mapping the tasks to the services. The

scheduling is done by matching task parameters with the resource performance. Both the

composition of services and the task assignment are only for one workflow at a time. Simulation

based experiments over Globus Toolkit based prototype grid is used to show the performance of

their algorithms.

Summary

A composite web service (workflow) is an execution unit of the SOCC execution model. The

scheduling within composite services is to optimize the multiple invocations of the single

workflow and is considered local scheduling.

Theoretical Work

There has been considerable theoretical work towards DAG scheduling that is relevant to the

workflow scheduling given the DAG structure of the workflow. A sample [94-96] of such work

considers cloud based resources for workflow scheduling and explores scheduling approaches

for various types of workflows. The workflow types are defined in terms of the workflow

 33

structure. The workflow structure consists of many levels (see chapter 5), where each level

contains tasks that can be executed in parallel. The subsequent level contains the (independent)

children of the parallel parent tasks. The schedules are evaluated in terms of the number of ready

tasks during each scheduling step. The maximum number of ready tasks makes it possible to

minimize the makespan of the entire workflow.

Rosenberg et al. [94] first considered mesh structured workflows and theoretically proved that

scheduling workflow tasks in order of their dependencies results in an optimal schedule. All of

the independent tasks are at the same level and are scheduled lexicographically. The direction of

task scheduling is termed as parent-oriented. That is all of the parents are executed before any of

the children can be executed. Although, the selected scheduling heuristic of parent-orientation to

maximize the number of eligible tasks (hence optimal) seems intuitive, it is shown that other

intuitive approaches fail to produce any optimal results.

Secondly, Rosenberg et al. [95] expand their study to consider more complex workflows such

as Reduction-Mesh (RM), Reduction-Tree (RT), and Fast Fourier Transformation (FFT). The

scheduling evaluation criterion is extended to include minimum memory requirements in

addition to the maximum number of ready tasks. The basis of the schedules developed for all

three workflow types is the parent-orientation, as previously described. Such an intuitive

scheduling approach previously proved to be necessary and sufficient to produce optimal results

when optimality criteria only included maximization of the eligible tasks. However, parent-

orientation is not sufficient when optimality criteria include minimum memory requirements as

well. The study develops schedules that are optimal for maximizing eligible tasks for all three

DAG types. The developed schedule for reduction-mesh DAG is also optimal for the memory

requirements. The schedules for reduction-tree and FFT DAGs are approximately optimal for the

 34

memory requirements. Additionally, it is mathematically proven [95] that any other intuitive

scheduling scheme which may result in maximum eligible tasks cannot produce memory

efficient schedules. On the other hand schedules that are memory efficient fail to maximize the

eligible tasks. All three schedules define a particular task execution order for the consecutive

scheduling steps at each diagonal level of a DAG. Together with the parent-orientation such

execution orders result in the optimal results.

Table 3-6. Overview of sample theoretical research towards workflow scheduling
Literature Workflow Structure Scheduling Approach
Rosenberg et al-1 Mesh structured graphs Parent Oriented &

Lexicographically
Rosenberg et al-2 Reduction-Mesh (RM), -Tree (RT),

Fast Fourier Transformation (FFT)
Task execution order based on
the workflow structure

Rosenberg et al-3 Composites of RM, RT, FFT Priority order

Finally Rosenberg et al. provided a framework of scheduling a large set of complex structured

workflows [96]. The basis of this work is optimal schedules developed in the last two described

studies. They use the previously defined workflow (DAG) types as the building blocks of much

larger and complex workflows. Given the optimal schedule for each building block is known, the

optimal schedules for composite workflow is obtained by identifying a priority order among the

building blocks. Once the workflows are scheduled in order of the priority order of their building

blocks the resulting schedule is proven to be optimal. In addition to the build block composition,

the study also identifies the more important aspect which is the decomposition of the workflows

into its building blocks so the optimal schedules can be identified.

Three studies together strive to provide theoretical principles towards cloud workflow

scheduling. The results found in this work [94-96] are universal in nature and are applicable

across many flavors of cloud computing systems.

 35

Summary

The theoretical work presented in this section is summarized in the table 3-6. Various DAG

based workflow structures are studied for their suitable scheduling policies so that the overall

execution time is minimized. The work explores various task execution orders that generate

maximum number of ready tasks possible and therefore, minimizing the total execution time for

any workflow.

Conclusions

Given the above described literature review, various implementation and usage scenarios are

seen for the following three elements of cloud computing.

• Grid computing

• Service Oriented Architecture

• Workflows based applications

There is a large amount of work towards grid computing which has been classified into three

different categories of enterprise, desktop, and scientific grid computing. This categorization is

based on the target execution environment setup and on the structure of the applications being

considered for execution. Since a computing cloud is backed by a grid, the motivation behind

this categorization is to differentiate between the purpose and objectives of various grid

implementations, in order to better extract the relevant research findings for the this research. A

commentary towards the Service Orientation (SO) within each category is provided to survey the

current state and challenges of the Service Oriented Computing Cloud (SOCC) adoption. In

addition the survey also touches on the structure of the applications and identifies workflow and

non workflow based applications.

 36

Workflow scheduling for SO environments in isolation from the grid computing is also

presented in conjunction with the theoretical scheduling and description of the workflow

scheduling.

In conclusion the key findings of the literature review are:

Service Orientation (SO) is in its early stages of adoption within the grid/cloud community.

This is partly due to the fact that the cloud computing in itself is not a mature implementation

methodology. Work continues towards the implementation challenges of a cloud and some of the

work has started to look at SO to solve some of the challenges. Both SO and the grid computing

emerged around the same time and are complimentary methodologies. However, their integration

results in limited and constrained execution environments that cannot be used as a general

purpose computing platform to fully gain the benefits associated with the SOCC. The limitations

arise due to the infant nature of both methodologies. Efforts such as OGSA [68] are work

towards the generalization and standardization of the SOCC based implementation.

One of the SOCC adoption challenges is migration/conversion of the existing systems and

applications to make use of the SOCC. In particular some legacy application refactoring needs to

occur before it can be executed in terms of services. One approach to avoid large refactoring of

the application has been to wrap the existing application within a service that can then be

invoked as a service. However, this approach is limiting in a sense that the application is bound

to a single service for all of its functionality.

Another ongoing challenge with SOCC is the behavior of the grid services. It is possible to

have multiple implementations of the same service with different behavior making it difficult to

ensure the QoS associated with the service invocation.

 37

Workflow based SO also has some challenges in terms of their description/representation,

application development, and invocation/execution over distributed services. Some efforts such

as [80-85] are underway to address some of these challenges by standardization.

Interoperability among SOCC systems and support for general purpose workflow execution

environments is a work in progress. One outstanding item is to consider multiple workflow

execution within an SOCC where workflows (and their tasks) are competing for resources.

38

CHAPTER 4
RESEARCH GOALS

As described in the last chapter, cloud computing borrows from many similar domains

including the independent task CPU cycle harvesting based desktop computing, the enterprise

datacenter grids and other extreme of the research oriented large scale computing environments.

Various degrees of service orientation are present within the various modalities of the grid

environments which form the cloud backbone. Going forward, more and more of the grid

systems will adopt services as their construct to offer their resources, therefore aligning

themselves closely with the SOCC. Workflows have often been one of the client applications of

the grid environments and their execution has been explored in much detail. Expression

languages to describe workflows, theoretical work towards optimal workflow scheduling and

optimization of the multiple invocations of the isolated workflows are some of the efforts to

execute the workflows within grids.

In order to further enrich the domain of workflow execution within a SOCC, this thesis

considers competing workflow scheduling (and execution) over a pure SOCC execution model.

Every cloud resource is considered to be exposed as a service and more than one workflows are

competing for the services during their execution.

The problem statement formed in chapter 2 is to serve as a tool while investigating

• Workflow oriented application scheduling

• Resource competing collection of independent workflows requiring execution

• Pure service oriented computing cloud as an execution platform for the competing
workflows

39

 39

The motivation behind this research is to understand issues while considering SOCC as a

general purpose computing platform for a collection of workflows. Both the workflow

performance and the system throughput are used to evaluate various scheduling techniques.

40

CHAPTER 5
WORKFLOWS & SCHEDULING

A workflow is a collection of tasks connected together in a certain order for their execution.

In this thesis workflows are modeled as Directed Acyclic Graphs (DAGs). It is possible to model

workflows in a variety of methods including with the description languages such as BPEL4WS

[80], WSFL [81], AGWL [83], GSFL [85] , previously described in chapter 3. However, DAG

based modeling is a common technique that has been well studied [97]. Each node in a DAG

represents a workflow task and directed links indicate the task dependencies.

In a DAG task dependencies are indicated with the unidirectional links between the tasks. The

task originating the dependency is the parent task and the task depending on the parent task is the

child task. Every task has a parent except for the root task that is the first task in the execution

order. Figure 5-1 illustrates an example DAG structured workflow.

Figure 5-1. An example DAG structured workflow

Workflows with only one parent per child are considered. Although, it is possible to have

multiple parents for a child, a workflow can be transformed such that each child only has one

parent to simplify its structure. Such a workflow transformation creates multiple instances of a

 41

child task for each parent, therefore, resulting in a single parent-child relationship. Figure 5-2

shows such a transformation for a simple workflow.

Figure 5-2. Workflow transformation for a single parent per child

Additionally, it is possible that workflows contain loops. Such loops are generally represented

in a DAG by performing the loop unrolling [97, 98]. One such simplified loop unrolling is shown

in figure 5-3. In this example a simple workflow repeats task C three times and therefore

contains a loop. Such a loop is then unrolled by creating C1, C2, and C3 tasks which represents

unique invocations of the task C.

Figure 5-3. Workflow (DAG) loop unrolling

Tasks in a workflow can also have sibling tasks. One way to define sibling relationship is to

consider task execution. All of the tasks that can be executed in parallel are sibling to each other.

It is likely that not all of the siblings can start and finish execution at the same time depending on

their readiness for execution.

 42

Task Readiness

Task readiness for execution can be defined in two ways. One way a task becomes ready for

execution is when its parent completes execution. The second way a child can become ready is

when its parent and all the parent’s siblings complete execution. The second definition of a child

readiness is more restrictive. Tasks become ready at a slower rate, however, more tasks become

ready at the same time. This also introduces a notion of workflow levels or steps for its

execution. A workflow level contains tasks that become ready at the same time. All of the tasks

within a level are sibling of each other. Figure 5-4 shows a workflow with four levels.

Figure 5-4. A workflow with four levels

Size

Workflow size is measured as the sum of all of its task lengths. A task length indicates the

number of units to complete the execution of a task. A simple workflow with three tasks of

length 10, 20, and 25 has a size of 55. Workflow size indicates total units required to complete

its execution. Figure 5-5 shows an example workflow with its task sizes.

Figure 5-5. An example workflow of size 55 (10 + 20 + 25)

 43

Depth

For a workflow without discrete levels or execution steps, the depth is simply the number of

tasks along the longest execution path starting at the root task. An execution path is a chain of

tasks linked together in order of their dependencies. Figure 5-6 shows an example longest

execution path. For workflows with levels, the depth is equal to number of levels as seen in

figure 5-4.

Figure 5-6. Example workflow depth

Breadth

The maximum numbers of tasks in a workflow requiring parallel execution at any time

measures the breadth of the workflow. This measurement is useful when determining the number

of services for a workflow. The breadth of the workflow can vary depending on the execution

constraints placed on tasks. For example, when tasks execute irrespective of their siblings the

breadth of the workflow is the maximum number of tasks that can become eligible for execution

at anytime. In other cases, when tasks must execute in conjunction with their siblings, the

breadth is the maximum number of siblings in a workflow. Figure 5-7 shows an example

workflow with a breadth of six tasks.

 44

Figure 5-7. An example workflow breadth of six tasks

Arrival Time

The time at which workflows arrive in the system can be modeled to have various random

distributions such as exponential, poison, uniform, etc. Chapter 6 provides more details on the

implemented arrival time distributions.

Scheduling

Given the above definition of the workflow, the scheduling activity becomes a routine of

allocating outstanding workflow tasks to the available services in the system. One or more

queues can be implemented to track outstanding tasks of all the workflows, which are then

allocated to the services using some order as the services become available. Since all of the

workflows are allocated services from a same pool, they are then competing for the services

within the cloud.

Figure 5-8 provides an overview example of the scheduling activity as described in this

research. There are three workflows W1, W2, and W3 with ten tasks all together competing for

three services S1, S2, and S3 in the example. Workflow arrival into the system is over time and

workflow tasks become ready for scheduling only after their parent tasks have completed the

 45

execution. In this example, we assume that workflow arrival is depicted from left to right, that is,

W1 arrives first, followed by W2 and then W3.

Figure 5-8. Overview of scheduling workflow collections over SOCC

The scheduler has individual queues (Q1, Q2, and Q3) for each workflow, where each queue

is sorted in the order of task dependencies. These queues are loaded upon the workflow arrival

into the system. Using the workflow queues, the scheduler then applies a certain scheduling

policy to create the master queue for the ready tasks. The master queue is dynamic throughout

the system life cycle and is always ordered by the scheduling policy. The available services are

allocated to the tasks from the left to the right until all of the services are allocated or there are no

more unscheduled tasks in the master queue. In figure 5-8, three tasks W1T1, W2T2, W3T3 are

first allocated to the services S1, S2, and S3. After service S3 becomes available when the task

 46

W3T3 finishes its execution, it is the allocated to the next task W1T2 in the queue. Next the

service S1 becomes available and is allocated to the next task W3T2 in the queue and so on.

47

CHAPTER 6
EXPERIMENTATION

In order to study the scheduling of workflow collections over SOCC, simulation based

experimentation is conducted. The simulation implements various scheduling scenarios that are

necessary to complete the research presented in this thesis. In this chapter, experimentation setup

and design details are provided to aide with the discussion of the results in the next chapter.

Simulation Methodology

A random number generation is used to prepare the input data for the simulation. Once

generated, the input data is saved and used across various experimentation runs. For example the

workflows are generated using various random numbers for the number of tasks, the task

dependencies, and the workflow arrival times. During experimentation, the same set of

workflows is used while simulating each of the scheduling heuristics for a given cloud size and

the workflow arrival pattern. The consistent input data makes it possible to achieve the same

output when repeating a particular experiment. The repetition is often necessary to ensure the

proper simulation behavior due to software bugs.

The experiment maintains its own time clock to simulate the parallelism of the cloud. For

example, to simulate the parallel execution of the scheduled tasks, the services are sequentially

executed between the two clock ticks.

Cloud Modeling

The simulation models an SOCC environment to execute the various scheduling scenarios.

There are three main components of the modeled cloud including the services, workflows, and

the scheduler.

 48

Services

The workflow tasks are executed by invoking the services after the scheduler assigns tasks to

the available services. Only one task is assigned to a service at any time, and therefore during

task execution that service is not available for scheduling. All of the services in the cloud are

modeled to be homogeneous for simplicity. A cloud with multiple service types partitions the

scheduling activity to pools of various service types.

Task execution by a service is modeled via a stack. Each level in a stack represents an

operational unit. Therefore, at a simulation step, task execution is a computation of a single

operational unit.

The services are made available through a directory. However, due to the homogeneous

nature of the services no service discovery and description is implemented.

The number of services in a cloud is the cloud size or the cloud capacity. Various number of

cloud sizes are used to study their affect on the workflow scheduling performance.

Workflows

A complete description of the workflow and definition of its attributes is provided in chapter 5

and is referenced in this section.

All of the workflows are generated in advance using various random number seeds. The seeds

are used for the number of workflow tasks, size of each task, the workflow breadth, and the

number of children for each task (task dependencies).

There are two types of workflows that are generated for the experimentation. The first type is

called the Evolving DAG (EDAG) and the second type is called the Constant DAG (CDAG).

Figure 6-1 shows an example of both workflow types. The EDAG workflows are evolving in

terms of the number of tasks at each level, whereas the CDAG workflows do not increase the

 49

number of tasks at each level beyond a fixed value and therefore, have somewhat constant

structure.

Figure 6-1. An example of EDAG & CDAG workflow types for the experimentation

The two workflow types are used to model the applications of different resources

requirements. The EDAG workflows have an increasing number of resource requirements as

their execution proceeds. The CDAG workflows always keep the resource requirement under a

fixed value.

The workflows are modeled to arrive randomly in the cloud for the execution. Two such

distributions are used to model three arrival time patterns during various experiments. The first

pattern is called continuous, which is a uniform distribution, where single workflows arrive at

fixed intervals. The second pattern is also a uniform distribution, but a fixed number (more than

one) of workflows arrive at fixed intervals. This pattern simulates workflow arrival in bursts. The

third pattern follows an exponential distribution. Figure 6-2 shows an example of these three

patterns for the arrival time of 25 workflows.

 50

Workflow Arrival Time Patterns

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Workflows

Ti
m

e
(s

ec
on

ds
)

Contnuous Burst Exponential

Figure 6-2. Example arrival time distributions for 25 workflows

Workflow Size Distribution Sample

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25
Workflows

S
iz

e

Fixed Uniform Exponential

Figure 6-3. Example size distributions for 25 workflows

 51

The figure 6-3 shows the example size distributions for a sample of workflows for illustration

purposes. Three size distributions are implemented to see their impact on the scheduling policies.

Scheduler

Three implementations of the scheduler are available in the simulator to execute any of the

two scheduling policies and their corresponding heuristics. The basic implementation of any

scheduler is queue based. Scheduler maintains a queue to track the workflow arrival into the

system. In addition, various queues are maintained to track the execution of each workflow.

Scheduling is performed over a centralized scheduling queue that contains all of the ready tasks

in the system belonging to the various workflows. The scheduling queue is sorted as per the

scheduling policy and its corresponding heuristics. For example, for the scheduling policy of

prioritization and the heuristic of shortest task, the scheduling queue sorts all of the tasks in order

of their lengths regardless of their workflow association.

Measurements

The following measurements are tracked within all of the simulated experiments:

Wait Time is the time a workflow waits in the system after its arrival and before it is

successfully allocated at least one service to start its execution. It is calculated by the following

equation

Wait Time = Execution Start Time – Arrival Time

Execute Time is simply a difference between the workflow execution end time and the start

time. It represents the total time a workflow spends executing and is indicative of workflow

performance. It is calculated by the following equation

Execute Time = End Time – Start Time

Finish Time is a time at which a workflow finishes execution and exits the system. It is the

sum of the workflow wait and the execute time. A workflow may or may not successfully

 52

complete its execution when it is finished due to the associated deadline. The workflow finish

time is calculated by the following equation

Finish Time = Wait time + Execute Time

Total Finish Time is the sum of all the workflow finish times in the system. This

measurement indicates the overall cloud performance for a particular set of workflows.

Average Finish Time is the average of the finish time across all of the workflows belonging

to a particular set. This measurement is useful in developing some idea of the individual

workflow performance in a given cloud configuration.

Scheduling Policies

As previously described in chapter 2, two scheduling policies of workflow prioritization and

service partitioning are implemented.

Workflow Prioritization. Under this scheduling policy the scheduler sorts the workflows and

tasks using a certain priority while selecting the workflows and tasks for service allocations.

There are eight different heuristics that are used for prioritization and these heuristics are

outlined in the table 6-1 and 6-2.

The heuristics in table 6-1 are based on the size attribute, which is the indication of the

execution lengths. Both the individual task sizes and the collective workflow sizes are used to

formulate the four heuristics in table 6-1. The heuristics of TSTT and TLTT focus on the size of the

ready tasks regardless of which workflows the tasks may belong to. With these two heuristics, it

is possible that at the end of a scheduling step, ready tasks belonging to the different workflows

are scheduled and multiple workflows are being scheduled concurrently. The heuristics of TSWT

and TLWT consider the overall size of the workflow while selecting the tasks for scheduling. The

rational behind consideration of task sizes versus the workflow sizes is to see which size makes

the difference in terms of the system throughput and the workflow performance.

 53

Table 6-1. List of scheduling heuristics based on size (execution lengths)
Heuristic Acronym Description
Shortest Task ST Ready tasks are selected for scheduling in ascending

order of their sizes.
Longest Task LT Ready tasks are selected for scheduling in descending

order of their sizes.
Shortest Workflow SW Ready tasks are selected for scheduling in ascending

order of their workflow sizes.
Longest Workflow LW Ready tasks are selected for scheduling in descending

order of their workflow sizes.

Figure 6-3 provides an overview of the scheduling heuristics based on the size attribute as

listed in table 6-1. Given the dynamic nature of the scheduling, a snapshot of a very simplified

system is presented in figure 6-3. There are two workflows W1, and W2 with size 100 and 200

units respectively and two services S1, and S2 within the system. In the snapshot there are three

tasks W1T2, W2T1, and W2T2 sizes of 15, 10, and 30 respectively that belong to both

workflows. The resulting scheduling selection order via each heuristic is shown in the figure 6-3.

Although, a simplified scenario, it can be seen that each heuristic results into a different order for

task selection and scheduling. Further it can also be seen that number of tasks (three) is larger

than the number of services (two). After the first two tasks are assigned to the two services, the

third task waits until one of the services (S1) becomes available for further assignments.

 54

Figure 6-3. A simplified scheduling scenario using size based heuristics

The next set of four heuristics in presented in table 6-2 and it is based on the task

dependencies within each workflow. The TMCTT and TMOTT pay attention to the workflow

execution progress that is a direct result of the task dependencies. The TLDTT and TMDTT simply

look at the number of dependent tasks to select the tasks for scheduling. The rational behind

these four heuristics is to see how task dependencies impact the system throughput and the

workflow performance.

Table 6-2. List of scheduling heuristics based on task dependencies
Heuristic Acronym Description
Most Completed Tasks MCT Preference is given to the ready tasks that belong to the

workflow that has the most number of the completed
tasks.

Most Outstanding
Tasks

MOT Preference is given to the ready tasks that belong to the
workflow that has the most number of the outstanding
tasks.

Least Dependent Tasks LDT Preference is given to the ready tasks that belong to the
workflow that has the least number of the dependent
tasks.

Most Dependent Tasks MDT Preference is given to the ready tasks that belong to the
workflow that has the most number of the dependent
tasks.

 55

In figure 6-4, a snapshot of a simplified system is shown to illustrate the behavior of each

heuristic presented in table 6-2. There are two workflows W1, and W2 and two services S1, and

S2 in the system. The figure lists the system state information in terms of the workflow task

dependencies. For example, at the time of the snapshot each workflow has a certain number of

completed, outstanding, and dependent tasks. The number of dependent tasks is a constant metric

and does not change throughout the workflow execution. There are three ready tasks W1T23,

W2T14, and W2T15 in the snapshot. These tasks are then sorted and scheduled using each of the

heuristics and results are displayed in the figure 6-4.

Figure 6-4. A simplified scheduling scenario using task dependency based heuristics

The implementation of this scheduler is greedy in nature. That is, using a particular heuristic,

the scheduler attempts to allocate as many ready tasks as possible, given the service availability.

The overall approach here is to achieve maximum service utilization by saturating the cloud with

the workflows. This approach makes it possible to view the impact of each scheduling heuristic

when a cloud is operating at its maximum capacity.

 56

Figure 6-5. A simplified scheduling scenario with the service partitioning

Service Partitioning. The scheduling approach under this policy is to attempt a number of

service allocations for a workflow up to a pre-determined threshold. The threshold is based on

the workflow breadth, which is an indicator of the maximum service requirement for a workflow.

Various factors of the workflow breadth are used during the simulation to determine the service

count threshold. Figure 6-5, presents three such factors of 25%, 50%, and 75% to partition

services among two workflows W1, and W2. As seen different breadth factors result into

different number of service allocations for each workflow. Therefore, the service count threshold

is directly proportional to the workflow breadth and the actual value will vary from workflow to

workflow in a given set of workflows. Figure 6-5, does not restrict the number of services within

the cloud and shows the ideal service allocations (service count threshold). However, in reality

any cloud will have a fixed number of services and the service threshold counts determined via

partitioning policy may or may not be available for allocation. In this case the workflow will

only be allocated the maximum number of available services close to the service count threshold.

The rational behind this scheduling policy is to see the impact of a more controlled scheduling

approach on the system and workflow performance. The control occurs in terms of the number of

services partitioned/allocated among the outstanding workflows in the system. This is different

than the uncontrolled scheduling policy of prioritization, described in the last section. With the

 57

prioritization policy, workflows or tasks get a certain order of execution but there is no control

over the number of services allocated to each workflow. With service portioning it is possible to

control the number of services allocated to each workflow. It is possible to use many heuristics

to decide on the number of services allocated to each workflow. In this thesis the workflow

breadth is used to determine the service count that is allocated to each workflow.

Notice that the service allocation is a best case effort given the service availability in the

cloud. A service is generally only available for scheduling when it is not executing any

previously scheduled tasks. During the execution, services are allocated to the outstanding

workflows as they become available. A workflow remains outstanding until the number of

allocated services becomes equal to the specified threshold. For example, a workflow with a

threshold of 5 services will remain outstanding until it has been allocated 5 services. However,

outstanding status of the workflow does not impede its execution. A workflow starts execution as

soon as the first service is allocated to the workflow. Therefore, during the workflow execution,

the number of allocated services can be less than or equal to its threshold.

Deadlines. Implementation of this scheduler is an extension of both service partitioning and

workflow prioritization schedulers. The target of this scheduler is to address workflow deadlines,

when present. That is, this scheduler prioritizes deadline workflows over non deadline

workflows. Deadline workflows are considered to have two deadlines. An end time (TETT)

deadline is by which a workflow must terminate its execution and a maximum execution length

(TMELT) after the workflow is scheduled. From the scheduling point of view, sufficient resources

must be allocated to a deadline workflow that it meets both of its deadlines. Failure to meet

either deadline results in the overall incompletion of the workflow.

 58

The service partitioning scheduler is used as a base scheduler because it provides control over

the number of services allocated to the workflows. The cloud can have workflows with or

without deadlines, therefore various possibilities on how scheduling for deadlines occur exist.

Three such possibilities while giving deadline workflows a priority are implemented and each

subsequent implementation is an extension of the previous implementation. These three

implementations are simply referred to as deadline-1, deadline-2, and deadline-3.

First (deadline-1), results obtained with the service partitioning scheduler are used. Using the

best performing threshold, the workflows are scheduled in an order that prioritizes deadline

workflows over non deadline workflows, among outstanding workflows in the queue. Order

among the deadline workflows themselves when selecting between two deadline workflows, can

be based on four attributes; the workflow arrival times, the MEL deadline, ET deadline, or the

respective workflow sizes.

In the second implementation (deadline-2), the scheduler implements two separate thresholds

for deadline and non deadline workflows, respectively. This is in addition to the deadline priority

based workflow selection. The workflow without deadlines can be run without any time

constraints, and by allocating more services to the workflows with deadlines improves their

chance of meeting their deadlines. The non deadline workflows are restricted to a very small

number of services (one or two) to make room for the deadline workflows. The service count

threshold for the deadline workflows is set to meet their MEL. The number of services that will

meet the MEL is determined and an attempt is made to allocate such a number of services. A

workflow is not scheduled until the number of resources meeting its MEL becomes available.

The third implementation (deadline-3) of the scheduler is similar to the second

implementation. It initially allocates the services for the deadline workflows that are sufficient to

 59

meet the MEL deadline, but it continues to allocate more services until the optimal number of

services is allocated or the workflow finishes its execution. The optimal number of resources is

equal to the workflow breadth. This implementation is to favor the ET deadline. That is by

attempting to allocate the optimal number of services, chances to achieve the ET may improve.

Objectives

Given the discussion presented in this chapter the experimentation objectives can be

summarized as follows:

• Model and execute a Service Oriented Computing Cloud (SOCC) via simulation

• Schedule and execute DAG based workflows over the modeled SOCC

o Implement prioritization and portioning based scheduling policies. Both
scheduling policies are instantiated using many scheduling heuristics as described
in the last section.

o Schedule two DAG types of EDAG and CDAG

• Implement various cloud sizes in terms of the number of services

• Implement various workflow arrival times and workflow sizes and task dependencies

• Measure system throughput and average workflow performance for each implemented
scheduling scenario

• Analyze the results to present the performance of scheduling policies in various scenarios
in terms of

o System throughput

o Workflow performance

o Impact of workflow structure (task dependencies)

o Ability to meet execution deadlines

 60

CHAPTER 7
RESULTS

There are four research questions formulated at the end of chapter 2, which are as follows.

1. How does the cloud size impact the performance of the various scheduling policies in terms
of the system throughput and the workflow performance? In general the performance of any
scheduling policy will likely benefit with the increased number of services in a cloud.
However, performance of various policies is compared with each other for different cloud
sizes to evaluate their suitability.

2. How do the workflow arrival patterns impact the scheduling? It is possible that not all of the
workflows are ready for execution at the same time therefore scheduling is an ongoing
activity. Different arrival patterns cause different amount of workload on the cloud. The
performance of the scheduling policies under different loads is examined.

3. What role does a workflow structure play during scheduling? In particular what attributes of
the workflow structure, such as number of tasks or the task dependencies are valuable in
workflow scheduling.

4. How do the workflows that have certain completion deadlines perform with the prioritization
and the partitioning policies?

Table 7-1. All possible values of the experimentation parameters
Scheduling
Policy

Cloud Size Workflow
Arrival Patterns

Workflow
Structure

Deadlines

Prioritization Variable/Fixed Fixed, Burst,
Exponential

EDAG/CDAG Yes/No

Partitioning Variable/Fixed Fixed, Burst,
Exponential

EDAG/CDAG Yes/No

Deadlines Variable/Fixed Fixed, Burst,
Exponential

EDAG/CDAG Yes/No

In this chapter, the results of the experimentation are outlined. The results are described to

answer the four research questions above.

 61

There are three sections in this chapter. The first two sections describe the results for

workflow prioritization and service partitioning scheduling policies, respectively. The last

section describes the results for the deadline oriented workflows.

Table 7-1 presents the overall experiment configuration parameters and their implemented

values. Each following section first describes the parameter value of the results described in each

section and the motivation behind their selection.

Workflow Prioritization

Workflow and Cloud configuration

There are two workflow sets used for scheduling using the prioritization heuristics described

in table 6-1 and table 6-2. The configuration parameters for both workflow sets are shown in

table 7-2, and 7-3. The sets are simply referred to as sets I, and II. Set I contains EDAG

workflows and set II contains CDAG workflows. Workflows within each set are also different

from each other in terms of the number of tasks, task lengths and the task dependencies. The

workflows in each set follow an exponential distribution for their sizes. That is there are a large

number of smaller size workflows and a small number of larger size workflows in each set. The

motivation behind the two selected sets is to study the impact of the workflow structure,

identified by workflow type, on the scheduling. The workflows in both sets are opposite of each

other. As seen in table 7-3, set I has workflows with a large number of tasks (up to ~24000) with

small execution lengths (1-10 seconds). Whereas, set II has a relatively small number of tasks (7-

10) with longer task lengths (1000 seconds). As previously mentioned in chapter 6, the EDAG

workflows have increasing number of resource requirements as their execution progresses,

whereas the CDAG workflows generally have fixed resource requirement throughout their

execution.

 62

Table 7-2. Workflow configuration parameters for the priority scheduler
Set Workflow

Type
Workflow
Count

Size Task
Readiness

Task Length

I EDAG 100 Variable
exponentially
distributed

Per level Variable
exponentially
distributed

II CDAG 1000 Variable
exponentially
distributed

Per level Variable
exponentially
distributed

Table 7-3. Workflow detailed configuration for the priority scheduler
Set Depth Breadth Task

Length
Mean
(seconds)

Number
of
Tasks

Average
Number
of Tasks

Workflow
Size

Average
Workflow
Size

I 1 – 6 1 –
19336

10
exponentially
Distributed

1 – 24835 2595 2 – 262141 27347

II 20 7 – 10 1000
exponentially
Distributed

77 – 147 110 67438 –
195199

122745

In table 7-4, other experimental configuration parameters are shown. As evident, various

cloud sizes, and workflow arrival time distributions are implemented in order to see their impact

on the heuristic performance.

Table 7-4. System configuration parameters for prioritization scheduler
Set Cloud Size (# of services) Arrival Time
I 100, 500, 1000 Exponential, Continuous, Bursts
II 100, 500, 1000 Exponential, Continuous, Bursts

Results

Following is the overview of the results obtained under prioritization based scheduling

1. System throughput remains (almost) the same across all heuristics implemented that
prioritize the workflows or their tasks. This is due to the fact that workflow scheduling order
does not change the overall outstanding work.

 63

2. Workflow performance significantly varies across various scheduling heuristics. The
heuristics considering overall workflow size as opposed to the individual task size perform
better.

3. The heuristic performance tends to diminish as the cloud size increases because more
services are available for workflow execution. Therefore, with a larger cloud sizes
prioritization based scheduling is sub optimal and other scheduling techniques are needed to
optimize workflow performance.

4. Workflow arrival times impact the scheduling only when they introduce significant load on
the cloud resources. Only exponential distribution managed to introduce significant load on
the cloud during the experiment.

5. Workflow structures (EDAG or CDAG) dictate the number of workflows that can be
scheduled within a cloud. Some heuristics perform differently with different workflow types.
Additionally, given their resource requirement, heuristic based scheduling is only effective
when cloud is under high workload.

System throughput

Given the greedy nature of the priority scheduler the overall throughput of the cloud stays

relatively the same across various scheduling heuristics. Regardless of the workflow order

resulting from the priority heuristics, the overall amount of work keeps the underlying services

busy until all of the workflows are executed. This is revealed in figure 7-1 and 7-2. Additionally,

given the scheduler attempts to allocate as many services as possible to the outstanding workflow

 64

tasks, the service utilization is at the maximum level.

Figure 7-1. Finish times for set I workflows across all scheduling heuristics

Figure 7-2. Finish times for set II workflows across all scheduling heuristics

 65

Workflow Performance

For workflow set I (EDAG) and set II (CDAG) in conjunction with the smaller cloud size,

there exist performance gaps between various heuristics. Figures 7-1 and 7-2 display the

individual heuristic performance for a case where such differences are significant. The heuristic

performance in 7-1 and 7-2 are charted for a cloud of 100 services when the arrival time was

exponentially distributed. Overall the Shortest Workflow and the Least Dependent Tasks

perform the best, whereas the Shortest Task performs the worst.

The results in figure 7-1 and 7-2 provide two insights. First the workflow selection order is

important. Second, consideration of the overall workflow size rather than the individual task size

makes a difference in performance. In set I, there are a larger number of small size workflows

and a small number of large size workflows. Keeping the EDAG structure of the workflows in

mind, scheduling smaller workflows first allows more and more workflows to be executed

earlier, therefore, reducing their wait times. On the other hand, when the larger workflows are

scheduled first, they consume most of the cloud resources, causing much longer wait times for a

large number of smaller size workflows. In set II, the number of workflows (1000) is much

larger than the number of workflows (100) in set I. The increased number of workflows was

necessary to generate a similar amount of load on the cloud. The Shortest Workflow and Least

Dependent Tasks continue to perform best for set II as well. However, in terms of worst

performance Longest Task now beats Shortest Task. Remember that workflows in set II are of

CDAG type and have long task sizes. Therefore, when Longest Tasks are scheduled first, the

wait time for tasks belonging to other workflows is increased. This results is an overall longer

finish times as compared to the Shortest Task. Further, Longest Workflow does not have the

 66

poor performance as in the case of set I. The Longest Workflow becomes a viable option in set II

as the size variance among workflows is much smaller than set I.

The scheduling based on the individual task sizes does not guarantee any particular order for

workflows and that is the reason behind the poor performances of heuristics of Shortest Task,

Longest Task, and Longest Workflow that are either based on the individual task sizes or prefer

large size workflows.

Figure 7-3. Finish times for set II workflows across selected scheduling heuristics

There are two other interesting observations available from figure 7-1. The first observation is

for the performance of Most Completed Task heuristic. It comes right after Shortest Workflow

and Least Dependent Tasks. This heuristic can be valuable in scenarios when workflow sizes or

information on their task dependencies is not available, making Shortest Workflow and Least

Dependent Task impossible. Workflow execution progress can be monitored in terms of the

work completed, therefore, making Most Completed Tasks a viable option. The second

observation is for the Arrival Time (TATT) heuristic that is absent from the original heuristic

 67

description in the table 6-1. This heuristic was injected to see the impact of scheduling

workflows in order of their arrival. Arrival Time performance lies in the middle and there are

four other heuristics that perform worse than Arrival Time. It is an interesting observation in a

sense that such a simple scheduling heuristic can still yield reasonable results over other

heuristics requiring more information about the workflows.

One more important thing to note is the scale in figure 7-2. Given the sheer amount of data in

figure 7-2, from the initial visual inspection it may seem that most of the heuristics are

performing similar to each other as they appear very close to each other. However, when

compared in terms of scale, it is revealed that the performance gaps between these heuristics still

remain significant to matter their selection. In figure 7-3, a close up view of the heuristic

performance is shown to provide the difference in performance for heuristics that, at first, appear

too close to each other in figure 7-2. As seen in figure 7-3, the performance difference between

the heuristic of Shortest Workflow and the Longest Workflow is on average 120,000 seconds

(2,000 minutes or 33.33 hours). That is Longest Workflow heuristic on average takes 120,000

second more than Shortest Workflow to finish the execution of each workflow shown in figure

7-3.

Cloud Size

The above results in figure 7-1 and 7-2 are for the small cloud sizes. In general, as the number

of services in a cloud is increased, the performance gaps between heuristics start to diminish.

This is because with more resources it is possible to execute the arriving workflows sooner,

therefore, reducing the average wait time and making the selection order less important. There

are 100 services for the workflows in figure 7-1. When the same workflows shown in figure 7-1

are executed with 500 services as opposed to 100 services, the results are shown in figure 7-4. As

 68

seen the performance gaps between heuristics have reduced significantly in comparison to the

heuristic performance for the same workflows but fewer services (100) in figure 7-1. With the

larger cloud sizes, the service utilization is uneven across services as only a subset of services

stay busy throughout the execution.

Figure 7-4. Impact of the additional number of services on the performance of heuristics

Workflow arrival time patterns

The exponential arrival time distribution causes the most amount of load on the cloud. A

relatively large number of workflows arrive close to each other therefore overwhelming the

system. With the uniform arrival time, whether workflows arrive continuously or in bursts with

fixed intervals, the overall outstanding workflows in the system remains small. This small

number of workflows is a manageable load for the cloud in general and workflows can be

scheduled sooner with smaller wait times. Therefore, workflow prioritization through heuristics

when workflow arrival does not cause significant load on the cloud is less effective. Figure 7-5

shows such an impact of the arrival times on the performance of heuristics for 100 services cloud

with the uniform arrival time. However, with uniform arrival rate, it is possible to partition the

 69

cloud into smaller subsets. The smaller subset cloud can then take advantage of the scheduling

heuristics to deliver the reasonable performance. The freed up services in the other cloud

partitions can be subsequently employed towards the other arrival time patterns or for the

resource intensive workflows. Therefore, it can further reduce or eliminate the large workflows

that can potentially impact the overall cloud performance.

Figure 7-5. Scheduling heuristic performance with (uniform) burst arrival pattern

Summary

In a smaller size service cloud, workflow wait times are the key when scheduling continuous

stream of workflows in a greedy fashion. Any scheduling technique that reduces the average wait

time for the workflow performs the best. Scheduling heuristics provide a way to reduce the

workflow wait times by considering the workflow sizes. When workflows are scheduled in

increasing order of size, the overall wait times across workflows are minimized resulting in the

best performance in terms of the average finish time. The task dependencies do not seem to make

any significant differences when all of the workflows follow similar task dependency structure.

However, different task dependency structure, EDAG vs. CDAG, results in different service

 70

requirement patterns. The EDAG workflows require a very large number of services for a short

period of time, whereas the CDAG workflows require a small number of services for longer

periods of time. The different service requirements patterns then dictate the number of

workflows that should be scheduled for heuristics to be an effective mechanism. The number of

tasks in a workflow directly contributes to the workflow size and is already considered as part of

the workflow size based heuristics.

The workflow wait times can also be reduced via other methods as well. First, by adding more

resources to the cloud more and more workflows can be scheduled soon after their arrival.

Second, by making the workflow arrival into the system more uniform, it is possible to keep the

number of outstanding workflows small enough. Cloud partition is another technique that can be

applied to eliminate the factors causing longer wait times. For example, small number of larger

workflows can be allocated to a subset of the cloud so they do not cause longer delays for the

large number of smaller workflows.

Service Partitioning

Workflow and Cloud configuration

Tables 7-5 and 7-6, show the various configurations of the simulation results of the partitioning

scheduler discussed in this section. As seen, all three set contain CDAG workflows. The service

partitioning based scheduling turns out to be a poor candidate for the EDAG workflows. This is

due to their increasing resource requirement that always surpasses the number of services

available within the cloud. In such a limited resource environment, only a greedy scheduling

approach such as workflow prioritization described in previous section yields the best results for

EDAG workflows. With such a greedy approach the prioritized workflows compete and

consume the maximum number of services possible. Whereas with service partitioning EDAG

 71

workflows end up with a smaller number of service allocation and therefore significantly suffer

in performance.

Table 7-5 indicates three workflow-sets I, II, and III of 100 CDAG workflows each. The first

set I contains 100 identical (instances of a single workflow) workflows. This set is to simulate a

scenario where multiple executions of a workflow are invoked over a period of time, e.g. to

process different data sets at each execution. The last two sets II and III have variable size

workflows, where the overall size is uniformly and exponentially distributed, respectively. These

two sets differ in terms of their workflow breadths. The last two sets are selected to study the

scenarios where multiple workflows of various breadths and sizes are executed within the cloud.

This is to see any relationship between workflow breadth, sizes and the number of allocated

services i.e. the service partition.

Table 7-5. Workflow configuration parameters for the partitioning scheduler
Set Workflow

Type
Workflow
Count

Size Task Length Breadth
(tasks)

I CDAG 100 Fixed Fixed 10

II CDAG 100 Variable
uniformly
distributed

Fixed 10

III CDAG 100 Variable
exponentially
distributed

Fixed 1-14

Table 7-6 shows three other variables for each workflow set. Each set is executed multiple

times across the indicated cloud sizes, service count thresholds, and scheduling heuristics. The

service count threshold, as previously described in chapter 6, determines the service portion and

it is based on the workflow breadth. The three scheduling heuristics are Arrival Time (TATT),

 72

Shortest Workflow (TSWT), and Longest Workflow (TLWT). These three heuristics provide the order

in which the workflows are selected for scheduling.

Table 7-6. Configuration for the service partitioning scheduler
Set Cloud Size

(service count)
Service Count
Threshold (%)

Heuristic

I 100, 200, 300 25, 50, 75 AT, SW, LW
II 100, 200, 300 25, 50, 75 AT, SW, LW
III 100, 200, 300 25, 50, 75 AT, SW, LW

The motivation behind implementing heuristics, in addition to the service count threshold, is

to see any further improvements in the system. For example, if a 25% threshold performs best in

some cases, is it possible to extend the performance gains by considering various orders of the

workflow selection.

All of the workflows sets have exponential arrival time distribution. The other arrival time

distribution does not seem to generate any significant load on the cloud to warrant any

sophisticated scheduling.

Results

Following is the overview of the results obtained under the partitioning based scheduling

1. System throughput varies across various service partitions (count thresholds). The workflow
size and breadth distribution dictates what service count thresholds and cloud size perform
better.

2. Individual workflow performance is also affected by the partition size and on average a
service threshold of 50% (1/2 of the workflow breadth) performs well.

3. Workflow arrival patterns that introduce significant load on the cloud such as exponential
distribution are benefited by the service partitioning scheduling. Other arrival patterns simply
do not have enough load on the cloud to require any scheduling.

4. EDAG type workflows are a poor candidate for the service partitioning scheduling and
require more greedy scheduling approaches for better results. CDAG type workflows make a
good candidate for service partitioning as this scheduling policy provide more control over
service allocation per workflow.

 73

5. No deadlines were implemented as part of this scheduler.

System Throughput & Cloud Size

Set I & II. While considering the total finish times (overall system throughput) there is a

relationship between the cloud size and the service count threshold.

For set I and II, smaller threshold values perform better with the smaller cloud sizes. The total

finish times are much lower with the smaller-size-smaller-threshold combination as compared to

the smaller-size-larger-thresholds. For example in figure 7-6, total finish times for set II with

Arrival Time heuristic are shown. For the cloud size of 100 and 200, service count threshold of

25% performs better over 50%, and 75%. As the number of services is increased to 300, 50%

threshold becomes better. Note that the workflow in these sets (I, and II) is either identical or

similar to each other. With larger thresholds it is easy to saturate the cloud services with a small

number of workflows, causing the rest of the workflows to wait. Whereas, with smaller

thresholds it is possible to reduce the overall workflow wait times by allocating services more

evenly among a large number of similar workflows. More workflows start the execution early

on, which results in an overall better system performance.

 74

Figure 7-6. Total finish times for set II workflows with Arrival Time heuristic

Figure 7-7 shows the average wait times across the cloud sizes of each threshold for Set I. As

more resources are added, it becomes possible to expand the number of services allocated to each

workflow. This further expedites the workflow execution as in the case of 50% threshold and

300 resources in figure 7-6.

 75

Figure 7-7. Average wait times for set I workflows with Shortest Workflow heuristic

 76

Figure 7-8. Total finish times for set III workflows with Arrival Time heuristic

Set III. For the set III, the larger threshold performs better. This is in contrast to the results

obtained with set I, and II. The breadth and size of workflows in set III fluctuate quite a bit and

have exponential size distribution as shown in figure 6-3. As per exponential distribution, there

are a large number of relatively smaller workflows in set III and a few large workflows. The

larger threshold for abundant smaller workflows results in a small number of service allocations

per workflow which is easy to accommodate, yet it provides better performance for the

individual workflow and the overall system performance. For example, consider a case of 40

workflows with a breadth 6 or less. Even with the large threshold of 75%, the allocations are

between 1-4 services. The overall results are shown in figure 7-8. Smaller threshold performs

significantly poor. This is due to the fact that the larger workflows get a very small set of

services and delay the overall completion of the workflow set.

 77

System Throughput and Heuristics

Set I. In terms of improvements related to the scheduling heuristics, for set I, there are no

further improvements. This is because both Shortest Workflow and Longest Workflow heuristics

are based on the workflow sizes and set I contains identical size workflows.

Set II & III. For set II, and III, Longest Workflow performs better in some cases as seen in

figure 7-9. This is largely for the small cloud sizes when longest workflows in conjunction with

the small threshold do not consume a lot of cloud resources, leaving more resources available for

the rest of the workflows.

Figure 7-9 Scheduling heuristic performance for total finish time

 78

Figure 7-10 Average finish time of set II for Longest Workflow heuristic

Workflow Performance. In comparison to the total finish time, which is a measurement of

the overall system performance, average finish time gives a sense of the individual workflow

performance. There is no correlation between workflow sizes and the individual finish times.

Workflows of various sizes arrive randomly into the system and are allocated services using

some scheduling policy. It is possible that a relatively small workflow performs poorly (longer

finish time) because they arrived at a time in the system when most of the services were already

allocated, therefore causing it to wait for a long time.

Set I & II. In general, service count threshold of 50% results a better average performance for

set I, and II workflows. This is due the fact that workflow sizes in those two sets follow a

uniform size distribution. Therefore, on average most of the workflows take advantage of more

resources with 50% threshold over 25% thresholds. Figure 7-10 displays average finish times for

set II with Longest Workflow heuristic. As more services are added, 75% starts to perform

 79

similar to (and eventually better) the 50% threshold. This trend is likely to continue as more

services are added, ultimately arriving at an ideal scenario where all of the workflows have

optimal number of services allocated to them.

Set III. For set III, 75% threshold works better in most cases. In general, given the cloud size

the larger threshold provides better average performance as it results in better service allocation

for a large number of smaller workflows as seen in figure 7-11.

Figure 7-11. Average finish time of set III for Arrival Time heuristic

 80

Figure 7-12. Average finish time of set III for Longest Workflow heuristic

Workflow performance & Heuristics

In terms of improvements related to the scheduling heuristics, Shortest Workflow with 50%

threshold provides further improvements in average time for most cases. With the Longest

Workflow heuristic a few very large workflows with larger threshold can consume more services

resulting in poor average performance. In other cases, heuristics do not have any further impact

on the average performance. Figure 7-13 shows improvements brought with the Smallest

Workflow heuristic.

 81

Figure 7-13. Scheduling heuristic performance for average finish time

Workflow Arrival Patterns

Only exponential arrival times are considered as with the prioritization scheduler

experimentation it was revealed that uniform distribution does not generate enough load on the

system to the have scheduling make a significant difference.

Service Utilization

Under service partitioning the utilization is uneven, as after meeting the specified allocation

threshold no more services are allocated to the workflow even when there are services available.

Workflow Structure

Only CDAG type workflows were considered as with EDAG workflows which have a very

large number of tasks, only a greedy policy such as workflow prioritization works well. The

 82

service partitioning results into uneven distribution of services and perform much poorly for

EDAG workflows.

Summary

System throughput is a function of the workflow wait time. Therefore, when more and more

workflows are able to begin their execution sooner, the overall finish time across all workflows

is at its minimum. That is, there is no advantage to allocating more services to a subset of

workflows while making other workflows wait. With workflows similar in structure or having

similar service requirements, a small service allocation to evenly distribute service results in the

reduced wait times. Whereas for the workflows with considerable variation in service

requirements, allocating more services to the smaller workflows produces lowest wait times. In

some cases of varied service requirements, a scheduling heuristic that can restrict the larger

workflows from consuming most of the cloud services, can also deliver further improvements in

the total finish times.

Individual workflow performance depends on other workflows in the system. Obviously any

scheme that allocates a number of services close to the optimal of service requirements for each

workflow results in a better average performance. When the workflows in the system have

similar service requirements, then allocating resources up to 50% of their optimum service count

requirements yields the best average performance. In case of workflows with varied service

requirements, best average finish times are achieved with the similar scheme as for the total

finish times. That is, by allocating more services to smaller workflows and fewer services to the

larger workflows, it is possible to achieve the best average times.

Smallest Workflow has the best average performance when services are equally allocated to

the workflows without consideration to the variation in their services requirements. No other

consistent benefits of heuristics are realized.

 83

Deadlines

Workflow and Cloud Configuration

Two CDAG workflow sets are selected for the deadlines scheduler execution. Their

configuration is shown in table 7-6. The deadlines scheduler implementation is built on top of the

service partitioning implementation. Therefore, the EDAG workflows did not prove to be

suitable candidates for the same reason as with service partitioning. Restricting service

allocations to a fixed threshold makes it almost impossible to achieve target deadlines.

Table 7-6. Workflow configuration parameters for deadlines scheduler
Set Workflow

Types
Workflow
Count

Deadline
Workflows

Size Breadth
(tasks)

Deadline
Generation

I CDAG 100 25 Variable
exponentially
distributed

Variable
uniformly
distributed
1-14

Random

II CDAG 100 25 Variable
uniformly
distributed

Fixed
10

Random

The only significant difference between two selected workflow sets in table 7-6 is the

workflow sizes and their breadths. The variable vs. fixed breadth is a consideration while

allocating services based on the workflow breadths. The overall number of the workflows with

the deadlines in each set is set to 25% of the workflows in each set. A random selection is used

to select workflows that are assigned deadlines. Workflows in each set arrive randomly by

following an exponential distribution. The deadline and non deadline workflow arrival is

intermixed together. Other arrival time distributions such as uniform did not pose any challenge

towards achieving the deadlines as they generated relatively low load on the cloud.

 84

The experimentation configuration is shown in table 7-7. Each workflow set is executed over

a cloud of 100 services. The cloud size is kept constant for this scheduler as the objective is to

study the impact of the fixed number of services, when a percentage of the overall workflows

have dual deadlines. Otherwise by increasing the services in the cloud with the same number of

deadline workflows, the problem becomes trivial. Each workflow is executed via all three

different implementations as discussed in chapter 6, section Deadlines and for the reference

purposes they are named deadline-1, deadline-2, and deadline-3.

Table 7-7. Deadlines scheduler run configuration
Set Cloud Size

(resources)
Arrival Time Implementation

I 100 Exponential deadline-1, deadline-
2, deadline-3

II 100 Exponential deadline-1, deadline-
2, deadline-3

Results

Following is the overview of the results obtained under the partitioning based scheduling

1. Deadlines scheduler is a specialization of the workflow prioritization scheduler as the
workflows are prioritized based on their deadlines.

2. Deadline based prioritization among both deadline and non deadline workflows is a best case
effort towards meeting any deadlines.

3. Having dual deadlines causes more workflow execution incompletion. Either of the deadlines
that is arrived first causes the workflow incompletion.

The measurements for this scheduler are the number of workflows failing to meet their

deadlines, the distribution of the failure between two deadlines, and the overall impact on the

average performance for both deadline and non deadline workflows.

For set I and II, the result of the various implementations towards meeting deadlines are

shown in figure 7-14 and figure 7-15, respectively. These figures only include deadline

 85

workflows and show the workflow completion status. A workflow has an incomplete status if it

could not finish its execution due to either of the deadlines (ET or MEL).

Each implementation tends to improve over the previous implementation or perform the same

as the previous implementation. As seen there is no significant difference between two sets

across each implementation. The implementation deadline-3 improves the results for set I and

does not have any improvements in case of set II. This is because there is less of a chance to find

more resources with deadline-3, as the same breadth workflows overall consume services more

evenly than the variable breadth workflows as in set I.

Deadline Workflow Completion

0

5

10

15

20

25

dealine-1 deadline-2 deadline-3

W
or

kf
lo

w
s

Incomplete Completed

Figure 7-14. Performance of deadlines scheduler for Set I workflows

 86

Deadline Workflow Completion

0

5

10

15

20

25

deadline-1 deadline-2 deadline-3

W
or

kf
lo

w
s

Incomplete Completed

Figure 7-15. Performance of deadlines scheduler for set II workflows

 87

The workflow incompletion is a result of failing to meet one of the two deadlines MEL or ET.

The type of the deadlines that cause the workflow incompletion during the experimentation is

shown in the figures 7-16 and 7-17. Both deadline-2 and deadline-3 for each set I, and II do not

allocate any services to the workflows until the services necessary for MEL are available.

Therefore, all of the workflow incompletion is a result of ET. Either workflows stay in the

outstanding workflow queue and the ET arrives or they start executing too late to meet their ET.

Deadline Type for Workflow Incompletion

0

5

10

15

20

25

dealine-1 deadline-2 deadline-3

W
or

kf
lo

w
s

Maximum Execution Length End Time

Figure 7-16. Set I workflow incompletion due to a certain deadline type

For set I, with deadline-1 all of the workflow incompletion is due to the MEL deadline. That

is none of the workflows were allocated enough services that allowed them to satisfy their

maximum execution lengths. For set II, deadline-1 has workflow incompletion due to both of the

deadlines MEL and ET. Since workflow breadth is more evenly distributed in set II, some of the

workflows are eventually allocated therefore, beating there MEL deadline but the wait time for

these allocations was long enough to cause the ET deadline.

 88

Deadline Types for Workflow Incompletion

0

5

10

15

20

25

dealine-1 deadline-2 deadline-3

W
or

kf
lo

w
s

Maximum Execution Length End Type

Figure 7-17. Set II workflow incompletion due to a certain deadline type

Lastly, the impact of each implementation on all of the workflows (deadline and non

deadline) is shown in the figures 7-18 and 7-19. Deadline-1 has the best performance for both

sets in terms of the average finish time for the workflows. However, it has the worse

performance in terms of meeting the workflow deadlines as shown in figure 7-14 and 7-15. The

impact of the deadline-2 and deadline 3 is similar with deadline 3 performing slightly better in

some cases. For set I, the difference in performances are only for the larger (50% of the)

workflows, where as with the set II, the performance difference is for most of the workflows

except for the initial subset of the workflows that consumed most of the cloud services.

 89

Figure 7-18. Set I workflow completion times (total finish times)

Figure 7-19. Set II workflow completion times (total finish times)

Summary

The obvious conclusion is that with the mixed mode scheduling of deadline and non deadline

workflows, there is a better chance of achieving the deadlines if more services can be made

available to the deadline workflows. That is by restricting the services to the non deadline

workflows more services are available for the deadline workflows. However, the service

 90

requirement distribution across deadline workflows in the system does play a role as well. For

workflows with similar service requirements, there is more competition especially with the

smaller cloud sizes.

In terms of which deadline caused a workflow to incomplete depends on the workflow arrival

in the system. At the time of workflow arrival, a cloud may not have sufficient services to

achieve both deadlines, resulting in the workflow termination. The workflows are not scheduled

until they can be allocated enough services to guarantee their maximum execution lengths. This

optimization is in place to save services when less than optimal service allocations for a

workflow are only going to be wasted.

There is a tradeoff between the overall workflow (both deadline and non deadline)

performance and the number of deadlines achieved. Given the service requirements distribution

among workflows, the impact on workflow performance is felt by more workflows when they

are equally competing for services.

91

CHAPTER 8
CONCLUSIONS AND FUTURE WORK

In this work detailed research is conducted towards workflow based application scheduling

for a service oriented computing cloud (SOCC). The motivation behind this research is to

identify and understand the scheduling issues while considering SOCC as a viable execution

platform. For this purpose, a problem statement is formulated in chapter 2 to drive the overall

research. In order to understand workflow scheduling within SOCC, all elements of the problem

statement are explored. Workflow definition in terms of scheduling and execution over an SOCC

is also formalized. Additionally a detailed survey is conducted to review all of the existing work

in the related domains to establish the context for the research. Given the problem statement and

the existing work survey, simulation based experimentation is conducted to implement the

selected scheduling policies.

Research Results

The experimentation results reveal various considerations while scheduling different

workflows within the SOCC based computing environment.

There are three scheduling policies implemented; workflow prioritization, service

partitioning, and deadlines.

Four different variables are considered to represent the cloud configuration; cloud size,

workflow arrival, workflow structure, and workflow execution deadlines.

The scheduling performance is evaluated for two metrics; system throughput, and workflow

performance.

 92

Workflow Prioritization

• System throughput is not affected by the workflow scheduling (execution) order. The overall
amount of work is the same regardless of the execution order.

• Individual workflow performance significantly varies across various prioritization heuristics.

o Heuristics considering the overall workflow size as opposed to the individual task
sizes perform better.

o Further, the heuristics that prefer the smaller size workflows have better performance
when there are large number of smaller workflows and a small number of larger
workflows.

o The workflow wait time is the key factor for controlling the workflow performance.
By reducing the wait time it is possible to achieve the better workflow performance.

• By increasing the cloud size, it is possible to eliminate the performance differences between
various scheduling heuristics. With a large cloud size the scheduling order does not have any
significant impact.

o Workflow prioritization only matters in case of high load on the system. Under light
workloads, the workflow prioritization does not matter.

• The workflow structure plays a role in scheduling performance as the structure determines
the number of tasks that are ready for execution at anytime therefore, determining the
number of workflows that can be scheduled simultaneously.

• For workflows with a large number of tasks, greedy scheduling seems to perform the best.

o This also results in the maximum service utilization.

Service Partitioning

• For a large number of relatively small workflows, a more controlled scheduling such as
service partitioning, which can fairly distribute the services among the workflows based on
their resource requirement, is the best option.

o For workflows with a large number of parallel tasks, service partitioning is a poor
approach as it limits the number of services that can be allocated to parallel tasks.

• When the workflows in the system have similar service requirements, then allocating
resources up to 50% of their optimal service requirements yields the best average
performance. In case of workflows with varied service requirements, best average finish
times are achieved by allocating more services to smaller workflows and fewer services to
larger workflows.

 93

• Service partitioning only matters in case of high load on the system. Under light workloads,
service partitioning does not matter.

Deadlines

• A controlled service allocation can be used to achieve workflow deadlines. However, this
approach is only suitable for workflows with a relatively small number of parallel tasks.

• More services can be added to help with meeting the workflow deadlines.

• In the case of both deadline and non deadline workflows, a service partitioning that is biased
towards workflows with deadline helps with meeting the deadlines.

• Workflow arrival time into the system also affects the ability to meet workflow deadlines.
Arrival at a busy time means there is a less likely chance that the workflow will meet its
deadline.

• There is a trade off between the workflow performance and deadlines achieved. The average
workflow performance is affected when deadline workflows are given preference over non
deadline workflows.

In addition to the scheduling, various complimentary techniques, such as admission control

and additional resource provisioning, are also possible to satisfy the workflow execution

deadlines.

Future Work

The current research and results lay the ground work towards workflow execution within

SOCC. In future, various extensions to the current research are possible to further enrich the

problem domain.

As a next step, an actual implementation of a service oriented cloud system should be

conducted. This implementation should highlight various implementation challenges that should

be addressed in order to realize the benefits associated with such an execution environment.

Once an actual SOCC is in place, concrete workflows representing actual work should be

scheduled and executed. Execution of the concrete workflows will require some analysis of the

workflows to extract the sufficient information necessary for their scheduling. It will be

 94

necessary to develop techniques for such an analysis and it would be intriguing to find out what

kind of information is feasible and useful for scheduling. Further, various service types and

corresponding workflow task types should be introduced to further enrich the problem domain

and get closer to real world execution scenarios.

Another important consideration is the transformation of the existing systems to the service

oriented architecture. This transformation is necessary to gain benefits associated with the SOCC

based execution model. Such a transformation for an existing system presents a significant

investment and commitment and therefore directly impacts the adoption of the SOCC. In

addition, the workflow based application development for a SOCC based environment also

requires further research. There have been various workflow description languages and

corresponding implementations available however a standardized approach is yet to become

available.

Conclusions

There are various modalities of cloud computing emerging as the flexibility and power of

such a computing model is realized. Cloud computing holds the promise to aggregate and offer

software service points that can be consumed by interested entities. For academic and

commercial organization this often means the outsourcing of some or all of their IT infrastructure

and resources. At the same time, other entities can start to offer cloud services for parties

interested in offloading their IT needs. However, general purpose cloud computing will take time

to emerge. Over time more and more software services will become available within the cloud

making it possible for organization to cut over to such services. However, in the meantime many

independent, isolated and unique offerings of the cloud computing will continue to emerge and

they will identify various integration points among clouds to deliver more general purpose

 95

computing clouds. Enterprises can choose to implement their own clouds and at the same time

consume third party cloud services when outsourcing is more feasible.

A good starting point for any enterprise looking to experience cloud computing benefits is to

push its non-critical applications over to the cloud. This will allow enterprises to learn

application development, deployment and maintenance over the cloud. If the cloud is maintained

by a third party vendor, this will also be an opportunity for both parties to understand the

application needs and develop cloud services to address such needs. Theoretically, cloud is able

to support any type of application with some amount of development effort. In practice,

migrating existing applications over to the cloud will take time as cloud implementations start to

offer services meeting the application needs. For example, migration of an E-commerce

application over to the cloud would require application re-factoring to invoke database and

invoice processing requests via service calls as opposed to traditional approach of function calls.

In this research workflow oriented applications are executed over a computing cloud. These

workflows varied in their structures and in terms of their execution lengths. Workflow based

applications or independent task applications are most suited for cloud computing given the ease

of task-to-service mapping. In other applications where there is lack of task boundaries and tasks

are less autonomous more work is required to execute such applications over the cloud. A

general purpose simulator developed as part of this research is used to evaluate various task-to-

service mapping heuristics. A large set of execution scenarios is implemented to identify various

system requirements such as size of the cloud, the work load patterns and the corresponding

system performance, and the control over workflow execution. In addition workflow

characteristics that are necessary or helpful for scheduling purposes are also identified.

 96

Additionally, a detailed survey of scheduling approaches within existing systems and research is

also presented for reference purposes.

In conclusion, service oriented cloud computing systems will continue to evolve and become

more prevalent as they hold potential to resolve current distributed system problems. This trend

will continue to prompt the development of various types of applications, tools, and supporting

technologies to help with the system adoption.

97

REFERENCES

[1] I. Foster, C. Kesselman and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable Virtual
Organizations," The International Journal of High Performance Computing Applications, vol.
15, pp. 200-222, 2001.

[2] M. P. Papazoglou, "Service-oriented computing: concepts, characteristics and directions,"
Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on, pp. 3-12, 2003.

[3] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris and D. Orchard. Web
services architecture. Available: http://www.w3.org/TR/ws-arch/

[4] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann and B. J. Kramer, "Service-oriented
computing: A research roadmap," in Service Oriented Computing (SOC); Dagstuhl Seminar
Proceedings, 2006,

[5] I. Foster, "Grid services for distributed system integration," Computer, vol. 35, pp. 37-46,
2002.

[6] S. C. Kendall, J. Waldo, A. Wollrath and G. Wyant, "A note on distributed computing," Sun
Microsystems, Inc, Mountain View, CA, USA, 1994.

[7] G. Lawton, "Moving the OS to the Web," Computer, vol. 41, pp. 16-19, 2008.

[8] R. Ramakrishnan, "Cloud Computing¿Was Thomas Watson Right After All?" Data
Engineering, 2008. ICDE 2008. IEEE 24th International Conference on, pp. 8-8, 2008.

[9] F. Sullivan, "I Wandered Lonely as a Cloud," Computing in Science & Engineering, vol. 10,
pp. 88-88, 2008.

[10] I. Foster, C. Kesselman, J. M. Nick and S. Tuecke. (2002, June 22, 2002). The physiology
of the grid: An open grid services architecture for distributed systems integration.

[11] H. Liu and D. Orban, "GridBatch: Cloud Computing for Large-Scale Data-Intensive Batch
Applications," Cluster Computing and the Grid, 2008. CCGRID '08. 8th IEEE International
Symposium on, pp. 295-305, 2008.

[12] C. Moretti, J. Bulosan, D. Thain and P. J. Flynn, "All-pairs: An abstraction for data-
intensive cloud computing," Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pp. 1-11, 2008.

98

 98

[13] P. Lorincz, "Evolution of enterprise systems," in Logistics and Industrial Informatics, 2007.
LINDI 2007. International Symposium on, pp. 75-80.

[14] G. C. Fox and D. Gannon, "Special Issue: Workflow in Grid Systems: Editorials," Concurr.
Comput. : Pract. Exper., vol. 18, pp. 1009-1019, 2006.

[15] Fangpeng Dong, Selim G. Akl, "Scheduling Algorithms for Grid Computing: State of the
Art and Open Problems," Technical Report NO. 2006-504, Queen's University, Canada, 2006.

[16] F. Dong and S. G. Akl, "Two-Phase Computation and Data Scheduling Algorithms for
Workflows in the Grid," Icpp, vol. 0, pp. 66, 2007.

[17] D. Fernandez-Baca, "Allocating Modules to Processors in a Distributed System," IEEE
Trans. Softw. Eng., vol. 15, pp. 1427-1436, 1989.

[18] Soo Hwan Yang, "Enter the grid introducing Oracle 10g," Grid Economics and Business
Models, 2004. GECON 2004. 1st IEEE International Workshop on, pp. 157-172, 2004.

[19] K. Gor, D. Ra, S. Ali, L. Alves, N. Arurkar, I. Gupta, A. Chakrabarti, A. Sharma and S.
Sengupta, "Scalable enterprise level workflow and infrastructure management in a grid
computing environment," in CCGRID '05: Proceedings of the Fifth IEEE International
Symposium on Cluster Computing and the Grid (CCGrid'05) - Volume 2, 2005, pp. 661-667.

[20] S. Graupner, "Management middleware for enterprise grids," Cluster Computing and the
Grid, 2006. CCGRID 06. Sixth IEEE International Symposium on, vol. 1, pp. 8 pp., 2006.

[21] S. Graupner, "Policy-based resource topology design for enterprise grids," Cluster
Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium on, vol. 1, pp.
390-397 Vol. 1, 2005.

[22] T. Boden, "The Grid Enterprise Structuring the Agile Business of the Future," BT
Technology Journal, vol. 22, pp. 107-117, 2004.

[23] A. P. A. van Moorsel, "Grid, Management and Self-Management," The Computer Journal,
vol. 48, pp. 325-332, January 1. 2005.

[24] C. H. Crawford, G. P. Bate, L. Cherbakov, K. Holley and C. Tsocanos, "Toward an on
demand service-oriented architecture," IBM Syst J, vol. 44, pp. 81-107, 2005.

[25] I. M. Llorente, "A Grid Infrastructure for Utility Computing," Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2006. WETICE '06. 15th IEEE International
Workshops on, pp. 163-168, 2006.

[26] D. A. Menasce, "A framework for resource allocation in grid computing," Modeling,
Analysis, and Simulation of Computer and Telecommunications Systems, 2004. (MASCOTS
2004). Proceedings. the IEEE Computer Society's 12th Annual International Symposium on, pp.
259-267, 2004.

99

 99

[27] S. Elnikety, E. Nahum, J. Tracey and W. Zwaenepoel, "A method for transparent admission
control and request scheduling in e-commerce web sites," in WWW '04: Proceedings of the 13th
International Conference on World Wide Web, 2004, pp. 276-286.

[28] B. Urgaonkar and A. Chandra, "Dynamic provisioning of multi-tier internet applications," in
ICAC '05: Proceedings of the Second International Conference on Automatic Computing, 2005,
pp. 217-228.

[29] A. Afzal, "QoS-Constrained Stochastic Workflow Scheduling in Enterprise and Scientific
Grids," Grid Computing, 7th IEEE/ACM International Conference on, pp. 1-8, 2006.

[30] Patel, Y. Darlington, J., "A novel stochastic algorithm for scheduling QoS-constrained
workflows in a web service-oriented grid," in Web Intelligence and International Agent
Technology Workshops, 2006. WI-IAT 2006 Workshops. 2006 IEEE/WIC/ACM International
Conference on, pp. 437-442.

[31] S. J. Vaughan-Nichols, "New Approach to Virtualization Is a Lightweight," Computer, vol.
39, pp. 12-14, 2006.

[32] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and
A. Warfield, "Xen and the art of virtualization," in SOSP '03: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, 2003, pp. 164-177.

[33] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant and K. Salem,
"Adaptive control of virtualized resources in utility computing environments," SIGOPS Oper.
Syst. Rev., vol. 41, pp. 289-302, 2007.

[34] J. Rolia, A. Andrzejak and M. F. Arlitt, "Automating enterprise application placement in
resource utilities," in DSOM, 2003, pp. 118-129 ee =
{http://sprngernk.metapress.om/openur.asp?genre=arte{\&}ssn=0302-
9743{\&}oume=2867{\&}spage=118.

[35] A. Schrijver, Theory of Linear and Integer Programming. New York, NY, USA: John
Wiley \& Sons, Inc, 1986,

[36] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA, USA: MIT Press, 1994,

[37] D. Gmach, "Capacity Management and Demand Prediction for Next Generation Data
Centers," Web Services, 2007. ICWS 2007. IEEE International Conference on, pp. 43-50, 2007.

[38] J. Rolia, J. Pruyne, X. Zhu and M. F. Arlitt, "Grids for enterprise applications," in JSSPP,
2003, pp. 129-147 ee = {http://sprngernk.metapress.om/openur.asp?genre=arte{\&}ssn=0302-
9743{\&}oume=2862{\&}spage=129.

[39] S. Singhal, "Quartermaster - a resource utility system," Integrated Network Management,
2005. IM 2005. 2005 9th IFIP/IEEE International Symposium on, pp. 265-278, 2005.

100

 100

[40] J. P. And, "Quartermaster: Grid Services for Data Center Resource Reservation,"

[41] N. Oldham, K. Verma, A. Sheth and F. Hakimpour, "Semantic WS-agreement partner
selection," in WWW '06: Proceedings of the 15th International Conference on World Wide Web,
2006, pp. 697-706.

[42] A. K. L. Wong and A. M. Goscinski, "Using an enterprise grid for execution of MPI parallel
applications - A case study," in PVM/MPI, 2006, pp. 194-201 ee =
{http://d.do.org/10.1007/11846802_31.

[43] Jia Hu, "Organizing Dynamic Multi-Level Workflows on Multi-Layer Grids for Developing
e-Business Portals," Web Intelligence, 2004. WI 2004. Proceedings. IEEE/WIC/ACM
International Conference on, pp. 777-778, 2004.

[44] I. Foster, "Globus toolkit version 4: Software for service-oriented systems," in IFIP
International Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779,
2005, pp. 2-13.

[45] A. A. Chien, "Architecture of the Entropia distributed computing system," Parallel and
Distributed Processing Symposium. , Proceedings International, IPDPS 2002, Abstracts and
CD-ROM, pp. 55-59, 2002.

[46] G. Fedak, "XtremWeb: a generic global computing system," Cluster Computing and the
Grid, 2001. Proceedings. First IEEE/ACM International Symposium on, pp. 582-587, 2001.

[47] D. P. Anderson, "BOINC: a system for public-resource computing and storage," Grid
Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on, pp. 4-10, 2004.

[48] D. Kondo, M. Taufer, C. L. Brooks, H. Casanova and A. A. Chien, "Characterizing and
evaluating desktop grids: an empirical study," Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International, pp. 26, 2004.

[49] P. Domingues, "DGSchedSim: a trace-driven simulator to evaluate scheduling algorithms
for desktop grid environments," Parallel, Distributed, and Network-Based Processing, 2006.
PDP 2006. 14th Euromicro International Conference on, pp. 8 pp., 2006.

[50] I. T. Foster and A. Iamnitchi, "On death, taxes, and the convergence of peer-to-peer and grid
computing," in IPTPS, 2003, pp. 118-128 ee =
{http://sprngernk.metapress.om/openur.asp?genre=arte{\&}ssn=0302-
9743{\&}oume=2735{\&}spage=118.

[51] E. Korpela, "SETI@home-massively distributed computing for SETI," Computing in
Science & Engineering, vol. 3, pp. 78-83, 2001.

[52] R. Buyya, D. Abramson and J. Giddy, "A Case for Economy Grid Architecture for Service
Oriented Grid Computing," Ipdps, vol. 02, pp. 20083a, 2001.

101

 101

[53] P. Uppuluri, "P2P grid: service oriented framework for distributed resource management,"
Services Computing, 2005 IEEE International Conference on, vol. 1, pp. 347-350 vol.1, 2005.

[54] A. Luther, R. Buyya, R. Ranjan and S. Venugopal, "Alchemi: A .NET-based enterprise grid
computing system," in International Conference on Internet Computing, 2005, pp. 269-278.

[55] A. Luther, R. Buyya, R. Ranjan and S. Venugopal, "Alchemi: A .NET-based Grid
Computing Framework and its Integration into Global Grids," CoRR, vol. cs.DC/0402017, 2004.

[56] Jaesun Han, "Scheduling proxy: enabling adaptive-grained scheduling for global computing
system," Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on, pp.
415-420, 2004.

[57] SungJin Choi, "Volunteer availability based fault tolerant scheduling mechanism in desktop
grid computing environment," Network Computing and Applications, 2004. (NCA 2004).
Proceedings. Third IEEE International Symposium on, pp. 366-371, 2004.

[58] C. Anglano, "Fault-aware scheduling for Bag-of-Tasks applications on Desktop Grids,"
Grid Computing, 7th IEEE/ACM International Conference on, pp. 56-63, 2006.

[59] C. Anglano, "Improving the Performance of Fault-Aware Scheduling Policies for Desktop
Grids (Be Lazy, Be Cool)," Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2007. WETICE 2007. 16th IEEE International Workshops on, pp. 235-240, 2007.

[60] HongSoo Kim, "Agent-Based Autonomous Scheduling Mechanism Using Availability in
Desktop Grid Systems," Computing, 2006. CIC '06. 15th International Conference on, pp. 174-
179, 2006.

[61] A. Chakravarti, "Application-specific scheduling for the organic grid," Cluster Computing,
2004 IEEE International Conference on, pp. 483, 2004.

[62] Baohua Wei, "Scheduling independent tasks sharing large data distributed with BitTorrent,"
Grid Computing, 2005. the 6th IEEE/ACM International Workshop on, pp. 8 pp., 2005.

[63] J. A. Pouwelse, P. Garbacki, D. H. J. Epema and H. J. Sips, "The bittorrent P2P file-sharing
system: Measurements and analysis," in IPTPS, 2005, pp. 205-216 ee =
{http://d.do.org/10.1007/11558989_19.

[64] D. Kondo, "Resource Management for Rapid Application Turnaround on Enterprise
Desktop Grids," Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference, pp.
17-17, 2004.

[65] E. Deelman, "GriPhyN and LIGO, building a virtual data Grid for gravitational wave
scientists," High Performance Distributed Computing, 2002. HPDC-11 2002. Proceedings. 11th
IEEE International Symposium on, pp. 225-234, 2002.

[66] M. A. Lewis, "Sleuthing out gravitational waves," Spectrum, IEEE, vol. 32, pp. 57-61,
1995.

102

 102

[67] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H. Hege, G. Lanfermann, A. Merzky, T.
Radke, E. Seidel and J. Shalf, "Cactus Tools for Grid Applications," Cluster Computing, vol. 4,
pp. 179-188, 2001.

[68] I. Foster and D. Gannon, "The Open Grid Services Architecture Platform," 2003.

[69] H. Stockinger, "Defining the grid: a snapshot on the current view," The Journal of
Supercomputing, vol. 42, pp. 3-17 ee = {http://d.do.org/10.1007/s11227-006-0037-9, 2007.

[70] J. Yu and R. Buyya, "A Taxonomy of Workflow Management Systems for Grid
Computing," Apr. 2005.

[71] D. Thain, T. Tannenbaum and M. Livny, "Distributed computing in practice: the Condor
experience." Concurrency - Practice and Experience, vol. 17, pp. 323-356, 2005.

[72] Condor Team. Dagman (directed acyclic graph manager).

[73] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.
Berriman, J. Good, A. Laity, J. C. Jacob and D. S. Katz, "Pegasus: A framework for mapping
complex scientific workflows onto distributed systems," Sci. Program., vol. 13, pp. 219-237,
2005.

[74] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover,
M. R. Pocock, A. Wipat and P. Li, "Taverna: a tool for the composition and enactment of
bioinformatics workflows," Bioinformatics, vol. 20, pp. 3045-3054, November 22. 2004.

[75] R. D. Stevens, A. J. Robinson and C. A. Goble, "myGrid: personalised bioinformatics on the
information grid," Bioinformatics, vol. 19, pp. i302-304, July 3. 2003.

[76] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K.
Kennedy, C. Kesselman, J. MellorCrumme, D. Reed, L. Torczon and R. Wolski, "The GrADS
Project: Software Support for High-Level Grid Application Development," Int. J. High Perform.
Comput. Appl., vol. 15, pp. 327-344, 2001.

[77] J. Cao, S. A. Jarvis and S. Saini, "GridFlow: Workflow management for grid computing,"
C\&C Research Laboratories and NEC Europe Ltd., 2003.

[78] R. Buyya, "The Gridbus toolkit for service oriented grid and utility computing: an overview
and status report," Grid Economics and Business Models, 2004. GECON 2004. 1st IEEE
International Workshop on, pp. 19-66, 2004.

[79] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui, H. Truong,
A. Villazon and M. Wieczorek, "ASKALON: A grid application development and computing
environment," in GRID '05: Proceedings of the 6th IEEE/ACM International Workshop on Grid
Computing, 2005, pp. 122-131.

[80] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte and S. Weerawarana,
"Business Process Execution Language for Web Services (BPEL4WS 1.0)," At Www, vol. 106,

103

 103

[81] F. Leymann and others, "Web Services Flow Language (WSFL 1.0)," 2001.

[82] S. Thatte, "XLANG: Web Services for Business Process Design," 2001.

[83] T. Fahringer, "Specification of grid workflow applications with AGWL: an Abstract Grid
Workflow Language," Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE
International Symposium on, vol. 2, pp. 676-685 Vol. 2, 2005.

[84] S. A. McIlraith, "Bringing semantics to Web services," Intelligent Systems, vol. 18, pp. 90-
93, 2003.

[85] S. Krishnan, P. Wagstrom and G. von Laszewski, "GSFL: A Workflow Framework for Grid
Services," Preprint ANL/MCS-P980-0802, Argonne National Laboratory, August, 2002.

[86] D. Dyachuk, R. Deters, "Improving Performance of Composite Web Services International
Conference on," Service-Oriented Computing and Applications, 2007. SOCA '07. IEEE, pp.
147-154, 19-20 June. 2007.

[87] D. Dyachuk, R. Deters, "Service level agreement aware workflow scheduling," in Services
Computing, 2007. SCC 2007. IEEE International Conference on, 2007, pp. 715-716.

[88] D. Dyachuk, R. Deters, "Using SLA context to ensure quality of service for composite
services," in Pervasive Services, IEEE International Conference on, 2007, pp. 64-67.

[89] Erradi, A. Maheshwari, P., "wsBus: QoS-aware middleware for reliable web services
interactions," in E-Technology, e-Commerce and e-Service, 2005. EEE '05. Proceedings. the
2005 IEEE International Conference on, 2005, pp. 634-639.

[90] P. Siddhartha, R. Ganesan, S. Sengupta, "Smartware - A management infrastructure for web
services," in Proceedings of the 1st Workshop on Web Services: Modeling, Architecture and
Infrastructure, 2003, pp. 42-49.

[91] T. Phan, W. Li, "Heuristics-based scheduling of composite web service workloads," in
Proceedings of the 1st Workshop on Middleware for Service Oriented Computing (MW4SOC
2006), 2006, pp. 30-35.

[92] G. B. Chafle, S. Chandra, V. Mann and M. G. Nanda, "Decentralized orchestration of
composite web services," in WWW Alt. '04: Proceedings of the 13th International World Wide
Web Conference on Alternate Track Papers \& Posters, 2004, pp. 134-143.

[93] S. Zhang, Y. Zong, Z. Ding and J. Liu, "Workflow-oriented grid service composition and
scheduling," in ITCC '05: Proceedings of the International Conference on Information
Technology: Coding and Computing (ITCC'05) - Volume II, 2005, pp. 214-219.

[94] A. L. Rosenberg, "On scheduling mesh-structured computations for Internet-based
computing," Transactions on Computers, vol. 53, pp. 1176-1186, 2004.

104

 104

[95] A. L. Rosenberg, "Guidelines for scheduling some common computation-dags for Internet-
based computing," Transactions on Computers, vol. 54, pp. 428-438, 2005.

[96] G. Malewicz, "On Scheduling Complex Dags for Internet-Based Computing," Parallel and
Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International, pp. 66-66,
2005.

[97] Y. Kwok and I. Ahmad, "Static scheduling algorithms for allocating directed task graphs to
multiprocessors," ACM Comput. Surv., vol. 31, pp. 406-471, 1999.

[98] A. Su, F. Berman and H. Casanova, "On the feasibility of running entity-level simulations
on grid platforms," Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International
Workshop on, pp. 312-319, 2004.

	Scenario
	Opportunity
	Problem
	Research Questions
	Enterprise Grid Computing
	Summary

	Desktop Grid Computing
	Summary

	Scientific Grid Computing
	Summary

	Workflow Description Languages
	Summary

	Composite Web Services
	Summary

	Theoretical Work
	Summary

	Conclusions
	Task Readiness
	Size
	Depth
	Breadth
	Arrival Time
	Scheduling
	Simulation Methodology
	Cloud Modeling
	Services
	Workflows
	Scheduler

	Measurements
	Scheduling Policies
	Objectives
	Workflow Prioritization
	Workflow and Cloud configuration
	Results
	Summary

	Service Partitioning
	Workflow and Cloud configuration
	Results
	System Throughput and Heuristics
	Workflow performance & Heuristics

	Summary

	Deadlines
	Workflow and Cloud Configuration
	Results
	Summary

	Research Results
	Workflow Prioritization
	Service Partitioning
	Deadlines

	Future Work
	Conclusions

