54 research outputs found

    Field weakening and sensorless control solutions for synchronous machines applied to electric vehicles.

    Get PDF
    184 p.La polución es uno de los mayores problemas en los países industrializados. Por ello, la electrificación del transporte por carretera está en pleno auge, favoreciendo la investigación y el desarrollo industrial. El desarrollo de sistemas de propulsión eficientes, fiables, compactos y económicos juega un papel fundamental para la introducción del vehículo eléctrico en el mercado.Las máquinas síncronas de imanes permanentes son, a día de hoy la tecnología más empleada en vehículos eléctricos e híbridos por sus características. Sin embargo, al depender del uso de tierras raras, se están investigando alternativas a este tipo de máquina, tales como las máquinas de reluctancia síncrona asistidas por imanes. Para este tipo de máquinas síncronas es necesario desarrollar estrategias de control eficientes y robustas. Las desviaciones de parámetros son comunes en estas máquinas debido a la saturación magnética y a otra serie de factores, tales como tolerancias de fabricación, dependencias en función de la temperatura de operación o envejecimiento. Las técnicas de control convencionales, especialmente las estrategias de debilitamiento de campo dependen, en general, del conocimiento previo de dichos parámetros. Si no son lo suficientemente robustos, pueden producir problemas de control en las regiones de debilitamiento de campo y debilitamiento de campo profundo. En este sentido, esta tesis presenta dos nuevas estrategias de control de debilitamiento de campo híbridas basadas en LUTs y reguladores VCT.Por otro lado, otro requisito indispensable para la industria de la automoción es la detección de faltas y la tolerancia a fallos. En este sentido, se presenta una nueva estrategia de control sensorless basada en una estructura PLL/HFI híbrida que permite al vehículo continuar operando de forma pseudo-óptima ante roturas en el sensor de posición y velocidad de la máquina eléctrica. En esta tesis, ambas propuestas se validan experimentalmente en un sistema de propulsión real para vehículo eléctrico que cuenta con una máquina de reluctancia síncrona asistidas por imanes de 51 kW

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Sensorless Passive Control Algorithms for Medium to High Power Synchronous Motor Drives

    Get PDF
    This study is focused on the definition of sensorless algorithms for Surface-Mounted Permanent Magnet Synchronous Motors (SM-PMSM) and Electrically Excited Synchronous Motors (EESM). Even if these types of motors are rather different from a constructive point of view, they have some common issues regarding sensorless drives. Indeed, SM-PMSMs, which are usually used for low-medium power applications, have a low rotor anisotropy, therefore it is complicated to use sensorless active methods (which are based on high-frequency voltage injection), due to the low signal to noise ratio. On the other hand, active methods on high-power EESM have the drawback of high torque ripple. For these reasons, both for SM-PMSM and EESM, it is interesting to define and use sensorless passive algorithms (i.e., based on observers and estimators). The drawback of such algorithms is that their performance deteriorates significantly in the low-speed region. The aim of this thesis is to define a robust sensorless passive algorithm that could work in a wide speed region and that could start the motor from standstill even with a high load torque. The initial objective of the work is to find, among the various algorithms proposed in the technical literature, the most promising one. For this purpose, four different algorithms are selected. They are chosen considering the most recent articles presented in the technical literature on high reputable journals. Since many improvements are proposed in the literature for the different algorithms, the most recent ones are candidates for being the ones with higher performance. Even if the experimental tests of the four different algorithms are shown in the literature, it is difficult to evaluate a priori which offers the best performance. As a matter of facts, for each algorithm different tests are carried out (e.g., different speed and torque profiles). In addition to that, motor sizing and features are different. Moreover, the test bench characteristics can significantly affect sensorless performance. As an example, inverter features and non-linearities (e.g., switching frequency, dead times, parasitic capacitance) and current measures (e.g., noise, linearity, bias) play a key role in the estimation of rotor position. The added value of this thesis is to perform a fair comparison of the four algorithms, performing the same tests with the same test bench. Additional tests are performed on the most performing algorithm. Even if this sensorless technique is already proposed in the technical literature, a methodology for observer gain tuning is not shown, which is proposed, instead, in this thesis. Moreover, the algorithm is enhanced by adding a novel management of direct axis current, which ensures the stability during fast transient from medium-high speed to low speed. The algorithm is tested with different test benches in order to verify the control effectiveness in various operating conditions. As a matter of facts, it is tested at first in the University of Genoa PETRA Lab on two different test benches. The first test bench is composed of two coupled motors, in which the braking motor could realize different torque profiles (linear torque, quadratic torque and constant torque), whereas in the second test bench the motor is coupled with an air compressor, which is a demanding load since high and irregular torque is applied at standstill. After the test at the University of Genoa, the algorithm is implemented in Phase Motion Control and Physis drive and tested on a six-meter diameter fan. Regarding the EESMs, for these type of motor is necessary to estimate the stator flux amplitude and angle. Indeed, the stator angle is usually used to perform the Park transformations in the FOC scheme and the stator flux amplitude is used to control the excitation current. In this study, the RFO is adapted for estimating the stator flux of an EESM. Regarding the control for EESM, it is tested on a simulative model for high-power motors provided by NIDEC ASI and tested on a small-scale test bench at the University of Genoa

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Generalized Sensorless and Advanced Control of Synchronous Reluctance Machines

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Sensorless position estimation in fault-tolerant permanent magnet AC motor drives with redundancy.

    Get PDF
    Safety critical applications are heavily dependent on fault-tolerant motor drives being capable of continuing to operate satisfactorily under faults. This research utilizes a fault-tolerant PMAC motor drive with redundancy involving dual drives to provide parallel redundancy where each drive has electrically, magnetically, thermally and physically independent phases to improve its fault-tolerant capabilities. PMAC motor drives can offer high power and torque densities which are essential in high performance applications, for example, more-electric airplanes. In this thesis, two sensorless algorithms are proposed to estimate the rotor position in a fault-tolerant three-phase surface-mounted sinusoidal PMAC motor drive with redundancy under normal and faulted operating conditions. The key aims are to improve the reliability by eliminating the use of a position sensor which is one of major sources of failures, as well as by offering fault-tolerant position estimation. The algorithms utilize measurements of the winding currents and phase voltages, to compute flux linkage increments without integration, hence producing the predicted position values. Estimation errors due measurements are compensated for by a modified phase-locked loop technique which forces the predicted positions to track the flux linkage increments, finally generating the rotor position estimate. The fault-tolerant three-phase sensorless position estimation method utilizes the measured data from the three phase windings in each drive, consequently obtaining a total of two position estimates. However, the fault-tolerant two-phase sensorless position estimation method uses measurements from pairs of phases and produces three position estimates for each drive. Therefore, six position estimates are available in the dual drive system. In normal operation, all of these position estimates can be averaged to achieve a final rotor angle estimate in both schemes. Under faulted operating conditions, on the other hand, a final position estimate should be achieved by averaging position estimates obtained with measurements from healthy phases since unacceptable estimation errors can be created by making use of measured values from phases with failures. In order to validate the effectiveness of the proposed fault-tolerant sensorless position estimation schemes, the algorithms were tested using both simulated data and offline measured data from an experimental fault-tolerant PMAC motor drive system. In the healthy condition, both techniques presented good performance with acceptable accuracies under low and high steady-state speeds, starting from standstill and step load changes. In addition, they had robustness against parameter variations and measurement errors, as well as the ability to recover quickly from large incorrect initial position information. Under faulted operating conditions such as sensor failures, however, the two-phase sensorless method was more reliable than the threephase sensorless method since it could operate even with a faulty phase.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 201

    A Discrete-Time Direct-Torque Control for Direct-Drive PMSG-Based Wind Energy Conversion Systems

    Get PDF
    This paper proposes a novel flux space vector-based direct-torque control (DTC) scheme for permanent magnet synchronous generators (PMSGs) used in variable-speed direct drive wind energy conversion systems (WECSs). The discrete time control law, which is derived from the perspective of flux space vectors and load angle, predicts the desired stator flux vector for the next time-step with the torque and stator flux information only. The space-vector modulation (SVM) is then employed to generate the reference voltage vector, leading to a fixed switching frequency as well as lower flux and torque ripples when compared to the conventional DTC. Compared with other SVM-based DTC methods in the literature, the proposed DTC scheme eliminates the use of PI regulators and is less dependent on machine parameters, e.g., stator inductances and permanent magnet flux linkage, while the main advantages of the DTC, e.g., fast dynamic response and no need of coordinate transform, are preserved. The proposed DTC scheme is applicable for both nonsalient-pole and salient-pole PMSGs. The overall control scheme is simple to implement and is robust to parameter uncertainties and variations of the PMSGs. The effectiveness of the proposed discrete-time DTC scheme is verified by simulation and experimental results on a 180 W salient-pole PMSG and a 2.4-kW nonsalient-pole PMSG used in variable-speed direct-drive WECSs

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering
    corecore