894 research outputs found

    A DC Transformer

    Get PDF
    A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission

    A DC Transformer Project

    Get PDF
    Demonstrate a DC transformer; a new electro-mechanical component with potentially high power applications

    DC Transformer and DC Josephson(-like) Effects in Quantum Hall Bilayers

    Full text link
    In the early days of superconductivity, Ivar Giaver discovered that it was possible to make a novel DC transformer by using one superconductor to drag vortices through another. An analogous effect was predicted to exist in quantum Hall bilayers and has recently been discovered experimentally by Eisenstein's group at Caltech. Similarly, new experiments from the Caltech group have demonstrated the existence of a Josephson-like `supercurrent' branch for electrons coherently tunnelling between the two layers.Comment: To Appear in Proceedings of the Nobel Symposium on Quantum Coherence, Goteborg, Sweden, December, 2001 (Physica Scripta) Revision: references update

    A low noise switching converter-regulator for main power control in a space power system

    Get PDF
    Variable ratio dc transformer regulator used to process main vehicle power from solar array battery power system in radio astronomy explorer spacecraf

    Design and analysis of a novel multi-input multi-output high voltage DC transformer model

    Get PDF
    a novel Multi-Input Multi-Output (MIMO) step-up DC transformer for applications in high voltage renewable energy sources is designed and presente

    Analysis and validation of a multiple output series resonant converter

    Get PDF
    In this paper a novel bidirectional multiple port dc/dc transformer topology is presented. The novel concept for dc/dc transformer is based on the Series Resonant Converter (SRC) topology operated at its resonant frequency point. This allows for higher switching frequency to be adopted and enables high efficiency/high power density operation. The feasibility of the proposed concept is verified on a 300W, 700 kHz three port prototype with 390V input voltage and 48V and 12V output voltages. A peak overall efficiency of 93% is measured at full load. A very good load and cross regulation characteristic of the converter is observed in the whole load range, from full load to open circuit. The sensitivity analysis of the resonant capacitance is also performed showing very slight deterioration in the converter performances when a resonant capacitor is changed ±30% of its nominal value

    Bidirectional multiple port dc/dc transformer based on a series resonant converter

    Full text link
    In this paper a novel bidirectional multiple port dc/dc transformer topology is presented. The novel concept for dc/dc transformer is based on the Series Resonant Converter (SRC)topology operated at its resonant frequency point. This allows for higher switching frequency to be adopted and enables high efficiency/high power density operation. The feasibility of the proposed concept is verified on a 300W, 700 kHz three port prototype with 390V input voltage and 48V and 12V output voltages. A peak overall efficiency of 93% is measured at full load. A very good load and cross regulation characteristic of the converter is observed in the whole load range, from full load to open circuit. The sensitivity analysis of the resonant capacitance is also performed showing very slight deterioration in the converter performances when a resonant capacitor is changed ±30% of its nominal value

    Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC-DC transformers

    Get PDF
    Conventional dual active bridge topologies provide galvanic isolation and soft-switching over a reasonable operating range without dedicated resonant circuits. However, scaling the two-level dual active bridge to higher dc voltage levels is impeded by several challenges among which the high dv/dt stress on the coupling transformer insulation. Gating and thermal characteristics of series switch arrays add to the limitations. To avoid the use of standard bulky modular multilevel bridges, this paper analyzes an alternative modulation technique where staircase approximated trapezoidal voltage waveforms are produced; thus alleviating developed dv/dt stresses. Modular design is realized by the utilization of half-bridge chopper cells. Therefore, the analyzed converter is a modular multi-level converter operated in a new mode with no common-mode dc arm currents as well as reduced capacitor size, hence reduced cell footprint. Suitable switching patterns are developed and various design and operation aspects are studied. Soft switching characteristics will be shown to be comparable to those of the two-level dual active bridge. Experimental results from a scaled test rig validate the presented concept

    Advances in Switched-Mode Power Conversion Part II

    Get PDF
    A number of important practical extensions to the basic Ćuk converter are presented. They include dc isolation, multiple-output power sources, and a physical realization of the sought for hypothetical dc-to-dc transformer, a device which converts from pure dc (no voltage or current ripple) at one terminal, to pure dc (at a different voltage) at the other terminal. The application of the circuit in a highly efficient amplifier for the servo control of a dc motor or other loads is also presented

    A new zero-ripple switching dc-to-dc converter and integrated magnetics

    Get PDF
    A new switching dc-to-dc converter is synthesized which consists of the least number of storage elements (inductive and capacitive) and switches, and yet truly emulates the ideally desired dc-to-dc transformer having both input and output currents as pure dc quantities with no ripple. This result was facilitated by implementation of a new concept termed integrated magnetics, which leads in some special switching structures to the integration of otherwise independent and separate magnetic components (inductors and transformers) into a single magnetic circuit
    • …
    corecore