brought to you by I CORE

A DC Transformer Project

Center Innovation Fund: KSC CIF Program Space Technology Mission Directorate (STMD)

National Aeronautics and Space Administration

ABSTRACT

Demonstrate a DC transformer; a new electro-mechanical component with potentially high power applications.

Space Power & Energy Storage TA03 (Primary) Launch Propulsion Systems TA01 (Secondary)

Demo & Test

ANTICIPATED BENEFITS

Development

To NASA funded missions:

At Start: 1

Applied Research

3

NASA's Return on Investment: This is a revolutionary advance. No dc transformer has ever been demonstrated, so this will not only yield a new device and new capability, but will highlight NASA's innovation capability and lead to new insights within electromagnetism.

To NASA unfunded & planned missions:

Dc to dc converters exists, but these are low power devices consisting of ...

Read more on the last page.

DETAILED DESCRIPTION

Three different concepts were tested with the intent of demonstrating a true dc transformer, i.e. an electrical device into which a given dc voltage and current can be applied and which will generate a different voltage and current, effectively changing the impedance of a power supply.

MANAGEMENT

Program Executive:
John Falker
Program Manager:
Nancy Zeitlin
Project Manager:
Nancy Zeitlin
Principal Investigator:

Robert Youngquist

TECHNOLOGY DETAILS

A DC Transformer

TECHNOLOGY DESCRIPTION

Three different concepts were tested with the intent of demonstrating a true dc transformer, i.e. an electrical device into which a given dc voltage and current can be applied and which will generate a different voltage and current, effectively changing the impedance of a power supply.

This technology is categorized as a hardware component or part for other applications

- Technology Area
 - TA03 Space Power & Energy Storage (Primary)
 - TA01 Launch Propulsion Systems (Secondary)
 - TA13 Ground & Launch Systems Processing (Additional)

CAPABILITIES PROVIDED

After 200 years of development it is rare for any fundamental advance to occur in the field of electro-magnetism, yet analysis has shown that the construction of a dc transformer should be possible. No one has ever demonstrated a dc transformer, so this would be significant accomplishment. Also, power companies need better methods of shifting the impedance of dc power systems.

This device may become a commercially available entity, not unlike ac transformers are now. This advance will affect a wide variety of fields, especially in green technologies where dc power is routinely generated, stored, and utilized.

IMAGE GALLERY

A small scale device was constructed to demonstrate the d-dc transformer concept

TECHPORT PROJECT LIBRARY REFERENCES

CONFERENCE PAPERS

A DC Transformer; IEEE Transactions on Power Electronics manuscript: (Vol. 29, Issue 1, January 2014, pp. 42-44)

ANTICIPATED BENEFITS

To NASA unfunded & planned missions: (CONT'D)

semiconductor switches. The proposed work develops a true dc transformer that can be scaled up to very high power levels.

To the commercial space industry:

This device may become a commercially available entity, not unlike ac transformers are now. A manuscript was published in the Januray 2014 issue of IEEE Transactions on Power Electronics, titled "A DC Transformer" (VOL. 29, NO. 1); the letter presents an electromechanical component that transforms dc power, allowing dc voltages or currents to be stepped up or down.