8 research outputs found

    David & Goliath Oblivious Affine Function Evaluation - Asymptotically Optimal Building Blocks for Universally Composable Two-Party Computation from a Single Untrusted Stateful Tamper-Proof Hardware Token

    Get PDF
    In a seminal work, Katz (Eurocrypt 2007) showed that parties being able to issue tamper-proof hardware can implement universally composable secure computation without a trusted setup. Our contribution to the line of research initiated by Katz is a construction for general, information-theoretically secure, universally composable two-party computation based on a single stateful tamper-proof token. We provide protocols for multiple one-time memories, multiple commitments in both directions, and also bidirectional oblivious transfer. From this, general secure two-party computation (and even one-time programs) can be implemented by known techniques. Moreover, our protocols have asymptotically optimal communication complexity. The central part of our work is a construction for oblivious affine function evaluation (OAFE), which can be seen as a generalization of the oblivious transfer primitive: Parametrized by a finite field F and a dimension k, the OAFE primitive allows a designated sender to choose an affine function f:F->F^k, such that hidden from the sender a designated receiver can learn f(x) for exactly one input x in F of his choice. All our abovementioned results build upon this primitive and it may also be of particular interest for the construction of garbled arithmetic circuits

    Complete Primitives for Information-Theoretically Secure Two-Party Computation

    Get PDF
    This thesis contributes two results to the research area of secure two-party computation. The first result is a full combinatorial characterization of all cryptogates that are powerful enough to be used for implementation of arbitrary secure computations. The second result shows that any secure two-party computation can be based on a single reusable tamper-proof hardware token, although the receiver does not trust the token issuer

    The Cryptographic Strength of Tamper-Proof Hardware

    Get PDF
    Tamper-proof hardware has found its way into our everyday life in various forms, be it SIM cards, credit cards or passports. Usually, a cryptographic key is embedded in these hardware tokens that allows the execution of simple cryptographic operations, such as encryption or digital signing. The inherent security guarantees of tamper-proof hardware, however, allow more complex and diverse applications

    Two-Round Oblivious Linear Evaluation from Learning with Errors

    Get PDF
    Oblivious Linear Evaluation (OLE) is the arithmetic analogue of the well-know oblivious transfer primitive. It allows a sender, holding an affine function f(x)=a+bxf(x)=a+bx over a finite field or ring, to let a receiver learn f(w)f(w) for a ww of the receiver\u27s choice. In terms of security, the sender remains oblivious of the receiver\u27s input ww, whereas the receiver learns nothing beyond f(w)f(w) about ff. In recent years, OLE has emerged as an essential building block to construct efficient, reusable and maliciously-secure two-party computation. In this work, we present efficient two-round protocols for OLE over large fields based on the Learning with Errors (LWE) assumption, providing a full arithmetic generalization of the oblivious transfer protocol of Peikert, Vaikuntanathan and Waters (CRYPTO 2008). At the technical core of our work is a novel extraction technique which allows to determine if a non-trivial multiple of some vector is close to a qq-ary lattice

    Maliciously Secure Oblivious Linear Function Evaluation with Constant Overhead

    Get PDF
    BUG REPORT: In early 2021 we were made aware of a bug in Lemma 9.1 by Carmit Hazay, Muthu Venkitasubramaniam, Laasya Bangalore, and Rishabh Bhadauria. The bug does not have an easy fix and we are currently exploring whether a different proof can be found. Until then the results of this paper should not be considered proven and in particular the protocols should not be considered secure. We will later either update the e-print version with a new proof or withdraw the paper. ORIGINAL ABSTRACT: In this work we consider the problem of oblivious linear function evaluation (OLE). OLE is a special case of oblivious polynomial evaluation (OPE) and deals with the oblivious evaluation of a linear function f(x)=ax+bf(x)=ax+b. This problem is non-trivial in the sense that the sender chooses a,ba,b and the receiver xx, but the receiver may only learn f(x)f(x). We present a highly efficient and UC-secure construction of OLE in the OT-hybrid model that requires only O(1)O(1) OTs per OLE. The construction is based on noisy encodings introduced by Naor and Pinkas (STOC\u2799). Our main technical contribution solves a problem left open in their work, namely we show in a generic way how to achieve full simulation-based security from noisy encodings. All previous constructions using noisy encodings achieve only passive security. Our result requires novel techniques that might be of independent interest. Using our highly efficient OLE as a black box, we obtain a direct construction of an OPE protocol that simultaneously achieves UC-security and requires only O(d)O(d) OTs, where dd is the degree of the polynomial that shall be evaluated

    Secure computation under network and physical attacks

    Get PDF
    2011 - 2012This thesis proposes several protocols for achieving secure com- putation under concurrent and physical attacks. Secure computation allows many parties to compute a joint function of their inputs, while keeping the privacy of their input preserved. It is required that the pri- vacy one party's input is preserved even if other parties participating in the protocol collude or deviate from the protocol. In this thesis we focus on concurrent and physical attacks, where adversarial parties try to break the privacy of honest parties by ex- ploiting the network connection or physical weaknesses of the honest parties' machine. In the rst part of the thesis we discuss how to construct proto- cols that are Universally Composable (UC for short) based on physical setup assumptions. We explore the use of Physically Uncloneable Func- tions (PUFs) as setup assumption for achieving UC-secure computa- tions. PUF are physical noisy source of randomness. The use of PUFs in the UC-framework has been proposed already in [14]. However, this work assumes that all PUFs in the system are trusted. This means that, each party has to trust the PUFs generated by the other parties. In this thesis we focus on reducing the trust involved in the use of such PUFs and we introduce the Malicious PUFs model in which only PUFs generated by honest parties are assumed to be trusted. Thus the secu- rity of each party relies on its own PUF only and holds regardless of the goodness of the PUFs generated/used by the adversary. We are able to show that, under this more realistic assumption, one can achieve UC- secure computation, under computational assumptions. Moreover, we show how to achieve unconditional UC-secure commitments with (ma- licious) PUFs and with stateless tamper-proof hardware tokens. We discuss our contribution on this matter in Part I. These results are contained in papers [80] and [28]. In the second part of the thesis we focus on the concurrent setting, and we investigate on protocols achieving round optimality and black- box access to a cryptographic primitive. We study two fundamental functionalities: commitment scheme and zero knowledge, and we focus on some of the round-optimal constructions and lower bounds con- cerning both functionalities. We nd that such constructions present subtle issues. Hence, we provide new protocols that actually achieve the security guarantee promised by previous results. Concerning physical attacks, we consider adversaries able to re- set the machine of the honest party. In a reset attack a machine is forced to run a protocol several times using the same randomness. In this thesis we provide the rst construction of a witness indistinguish- able argument system that is simultaneous resettable and argument of knowledge. We discuss about this contribution in Part III, which is the content of the paper. [edited by author]XI n.s

    Cryptographic Protocols from Physical Assumptions

    Get PDF
    Moderne Kryptographie erlaubt nicht nur, personenbezogene Daten im Internet zu schützen oder sich für bestimmte Dienste zu authentifizieren, sondern ermöglicht auch das Auswerten einer Funktion auf geheimen Eingaben mehrerer Parteien, ohne dass dabei etwas über diese Eingaben gelernt werden kann (mit der Ausnahme von Informationen, die aus der Ausgabe und eigenen Eingaben effizient abgeleitet werden können). Kryptographische Protokolle dieser Art werden sichere Mehrparteienberechnung genannt und eignen sich für ein breites Anwendungsspektrum, wie z.B. geheime Abstimmungen und Auktionen. Um die Sicherheit solcher Protokolle zu beweisen, werden Annahmen benötigt, die oft komplexitätstheoretischer Natur sind, beispielsweise, dass es schwierig ist, hinreichend große Zahlen zu faktorisieren. Sicherheitsannahmen, die auf physikalischen Prinzipien basieren, bieten im Gegensatz zu komplexitätstheoretischen Annahmen jedoch einige Vorteile: die Protokolle sind meist konzeptionell einfacher, die Sicherheit ist unabhängig von den Berechnungskapazitäten des Angreifers, und die Funktionsweise und Sicherheit ist oft für den Menschen leichter nachvollziehbar. (Zum Beispiel forderte das Bundesverfassungsgericht: „Beim Einsatz elektronischer Wahlgeräte müssen die wesentlichen Schritte der Wahlhandlung und der Ergebnisermittlung vom Bürger zuverlässig und ohne besondere Sachkenntnis überprüft werden können.“ (BVerfG, Urteil des Zweiten Senats vom 03. März 2009)). Beispiele für solche Annahmen sind physikalisch getrennte oder unkorrumpierbare Hardware-Komponenten (vgl. Broadnax et al., 2018), Write-Only-Geräte für Logging, oder frei zu rubbelnde Felder, wie man sie von PIN-Briefen kennt. Auch die aus der Quantentheorie folgende Nicht-Duplizierbarkeit von Quantenzuständen ist eine physikalische Sicherheitsannahme, die z.B. verwendet wird, um nicht-klonbares „Quantengeld“ zu realisieren. In der vorliegenden Dissertation geht es neben Protokollen, die die Sicherheit und Isolation bestimmter einfacher Hardware-Komponenten als Vertrauensanker verwenden, im Besonderen um kryptographischen Protokolle für die sichere Mehrparteienberechnung, die mit Hilfe physikalischer Spielkarten durchgeführt werden. Die Sicherheitsannahme besteht darin, dass die Karten ununterscheidbare Rückseiten haben und, dass bestimmte Mischoperationen sicher durchgeführt werden können. Eine Anwendung dieser Protokolle liegt also in der Veranschaulichung von Kryptographie und in der Ermöglichung sicherer Mehrparteienberechnungen, die gänzlich ohne Computer ausgeführt werden können. Ein Ziel in diesem Bereich der Kryptographie ist es, Protokolle anzugeben, die möglichst wenige Karten benötigen – und sie als optimal in diesem Sinne zu beweisen. Abhängig von Anforderungen an das Laufzeitverhalten (endliche vs. lediglich im Erwartungswert endliche Laufzeit) und an die Praktikabilität der eingesetzten Mischoperationen, ergeben sich unterschiedliche untere Schranken für die mindestens benötigte Kartenanzahl. Im Rahmen der Arbeit wird für jede Kombination dieser Anforderungen ein UND-Protokoll – ein logisches UND zweier in Karten codierter Bits; dieses ist zusammen mit der Negation und dem Kopieren von Bits hinreichend für die Realisierung allgemeiner Schaltkreise – konstruiert oder in der Literatur identifiziert, das mit der minimalen Anzahl an Karten auskommt, und dies auch als Karten-minimal bewiesen. Insgesamt ist UND mit vier (für erwartet endliche Laufzeit (Koch, Walzer und Härtel, 2015; Koch, 2018)), fünf (für praktikable Mischoperationen oder endliche Laufzeit (Koch, Walzer und Härtel, 2015; Koch, 2018)) oder sechs Karten (für endliche Laufzeit und gleichzeitig praktikable Mischoperationen (Kastner et al., 2017)) möglich und optimal. Für die notwendigen Struktureinsichten wurden so-genannte „Zustandsdiagramme“ mit zugehörigen Kalkülregeln entwickelt, die eine graphenbasierte Darstellung aller möglichen Protokolldurchläufe darstellen und an denen Korrektheit und Sicherheit der Protokolle direkt ablesbar sind (Koch, Walzer und Härtel, 2015; Kastner et al., 2017). Dieser Kalkül hat seitdem eine breite Verwendung in der bereichsrelevanten Literatur gefunden. (Beweise für untere Schranken bzgl. der Kartenanzahl werden durch den Kalkül zu Beweisen, die zeigen, dass bestimmte Protokollzustände in einer bestimmten kombinatorischen Graphenstruktur nicht erreichbar sind.) Mit Hilfe des Kalküls wurden Begriffe der Spielkartenkryptographie als C-Programm formalisiert und (unter bestimmten Einschränkungen) mit einem „Software Bounded Model Checking“-Ansatz die Längenminimalität eines kartenminimalen UND-Protokolls bewiesen (Koch, Schrempp und Kirsten, 2019). Darüber hinaus werden konzeptionell einfache Protokolle für den Fall einer sicheren Mehrparteienberechnung angegeben, bei der sogar zusätzlich die zu berechnende Funktion geheim bleiben soll (Koch und Walzer, 2018), und zwar für jedes der folgenden Berechnungsmodelle: (universelle) Schaltkreise, binäre Entscheidungsdiagramme, Turingmaschinen und RAM-Maschinen. Es wird zudem untersucht, wie Karten-basierte Protokolle so ausgeführt werden können, dass die einzige Interaktion darin besteht, dass andere Parteien die korrekte Ausführung überwachen. Dies ermöglicht eine (schwach interaktive) Programm-Obfuszierung, bei der eine Partei ein durch Karten codiertes Programm auf eigenen Eingaben ausführen kann, ohne etwas über dessen interne Funktionsweise zu lernen, das über das Ein-/Ausgabeverhalten hinaus geht. Dies ist ohne derartige physikalische Annahmen i.A. nicht möglich. Zusätzlich wird eine Sicherheit gegen Angreifer, die auch vom Protokoll abweichen dürfen, formalisiert und es wird eine Methode angegeben um unter möglichst schwachen Sicherheitsannahmen ein passiv sicheres Protokoll mechanisch in ein aktiv sicheres zu transformieren (Koch und Walzer, 2017). Eine weitere, in der Dissertation untersuchte physikalische Sicherheitsannahme, ist die Annahme primitiver, unkorrumpierbarer Hardware-Bausteine, wie z.B. einen TAN-Generator. Dies ermöglicht z.B. eine sichere Authentifikation des menschlichen Nutzers über ein korrumpiertes Terminal, ohne dass der Nutzer selbst kryptographische Berechnungen durchführen muss (z.B. große Primzahlen zu multiplizieren). Dies wird am Beispiel des Geldabhebens an einem korrumpierten Geldautomaten mit Hilfe eines als sicher angenommenen zweiten Geräts (Achenbach et al., 2019) und mit möglichst schwachen Anforderungen an die vorhandenen Kommunikationskanäle gelöst. Da das angegebene Protokoll auch sicher ist, wenn es beliebig mit anderen gleichzeitig laufenden Protokollen ausgeführt wird (also sogenannte Universelle Komponierbarkeit aufweist), es modular entworfen wurde, und die Sicherheitsannahme glaubwürdig ist, ist die Funktionsweise für den Menschen transparent und nachvollziehbar. Insgesamt bildet die Arbeit durch die verschiedenen Karten-basierten Protokolle, Kalküle und systematisierten Beweise für untere Schranken bzgl. der Kartenanzahl, sowie durch Ergebnisse zur sicheren Verwendung eines nicht-vertrauenswürdigen Terminals, und einer Einordnung dieser in eine systematische Darstellung der verschiedenen, in der Kryptographie verwendeten physikalischen Annahmen, einen wesentlichen Beitrag zur physikalisch-basierten Kryptographie

    Secure Computation Protocols for Privacy-Preserving Machine Learning

    Get PDF
    Machine Learning (ML) profitiert erheblich von der Verfügbarkeit großer Mengen an Trainingsdaten, sowohl im Bezug auf die Anzahl an Datenpunkten, als auch auf die Anzahl an Features pro Datenpunkt. Es ist allerdings oft weder möglich, noch gewollt, mehr Daten unter zentraler Kontrolle zu aggregieren. Multi-Party-Computation (MPC)-Protokolle stellen eine Lösung dieses Dilemmas in Aussicht, indem sie es mehreren Parteien erlauben, ML-Modelle auf der Gesamtheit ihrer Daten zu trainieren, ohne die Eingabedaten preiszugeben. Generische MPC-Ansätze bringen allerdings erheblichen Mehraufwand in der Kommunikations- und Laufzeitkomplexität mit sich, wodurch sie sich nur beschränkt für den Einsatz in der Praxis eignen. Das Ziel dieser Arbeit ist es, Privatsphäreerhaltendes Machine Learning mittels MPC praxistauglich zu machen. Zuerst fokussieren wir uns auf zwei Anwendungen, lineare Regression und Klassifikation von Dokumenten. Hier zeigen wir, dass sich der Kommunikations- und Rechenaufwand erheblich reduzieren lässt, indem die aufwändigsten Teile der Berechnung durch Sub-Protokolle ersetzt werden, welche auf die Zusammensetzung der Parteien, die Verteilung der Daten, und die Zahlendarstellung zugeschnitten sind. Insbesondere das Ausnutzen dünnbesetzter Datenrepräsentationen kann die Effizienz der Protokolle deutlich verbessern. Diese Beobachtung verallgemeinern wir anschließend durch die Entwicklung einer Datenstruktur für solch dünnbesetzte Daten, sowie dazugehöriger Zugriffsprotokolle. Aufbauend auf dieser Datenstruktur implementieren wir verschiedene Operationen der Linearen Algebra, welche in einer Vielzahl von Anwendungen genutzt werden. Insgesamt zeigt die vorliegende Arbeit, dass MPC ein vielversprechendes Werkzeug auf dem Weg zu Privatsphäre-erhaltendem Machine Learning ist, und die von uns entwickelten Protokolle stellen einen wesentlichen Schritt in diese Richtung dar.Machine learning (ML) greatly benefits from the availability of large amounts of training data, both in terms of the number of samples, and the number of features per sample. However, aggregating more data under centralized control is not always possible, nor desirable, due to security and privacy concerns, regulation, or competition. Secure multi-party computation (MPC) protocols promise a solution to this dilemma, allowing multiple parties to train ML models on their joint datasets while provably preserving the confidentiality of the inputs. However, generic approaches to MPC result in large computation and communication overheads, which limits the applicability in practice. The goal of this thesis is to make privacy-preserving machine learning with secure computation practical. First, we focus on two high-level applications, linear regression and document classification. We show that communication and computation overhead can be greatly reduced by identifying the costliest parts of the computation, and replacing them with sub-protocols that are tailored to the number and arrangement of parties, the data distribution, and the number representation used. One of our main findings is that exploiting sparsity in the data representation enables considerable efficiency improvements. We go on to generalize this observation, and implement a low-level data structure for sparse data, with corresponding secure access protocols. On top of this data structure, we develop several linear algebra algorithms that can be used in a wide range of applications. Finally, we turn to improving a cryptographic primitive named vector-OLE, for which we propose a novel protocol that helps speed up a wide range of secure computation tasks, within private machine learning and beyond. Overall, our work shows that MPC indeed offers a promising avenue towards practical privacy-preserving machine learning, and the protocols we developed constitute a substantial step in that direction
    corecore