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Abstract

In a seminal work, Katz (Eurocrypt 2007) showed that parties being able to issue tamper-
proof hardware can implement universally composable secure computation without a trusted
setup. Our contribution to the line of research initiated by Katz is a construction for general,
information-theoretically secure, universally composable two-party computation based on a sin-
gle stateful tamper-proof token. We provide protocols for multiple one-time memories, multiple
commitments in both directions, and also bidirectional oblivious transfer. From this, general
secure two-party computation (and even one-time programs) can be implemented by known
techniques. Moreover, our protocols have asymptotically optimal communication complexity.

The central part of our work is a construction for oblivious affine function evaluation (OAFE),
which can be seen as a generalization of the oblivious transfer primitive: Parametrized by a finite
field F and a dimension k, the OAFE primitive allows a designated sender to choose an affine
function f : F→ F

k, such that hidden from the sender a designated receiver can learn f(x) for
exactly one input x ∈ F of his choice. All our abovementioned results build upon this primitive
and it may also be of particular interest for the construction of garbled arithmetic circuits.

Keywords: non-interactive secure computation, universal composability, tamper-proof hard-
ware, information-theoretic security, oblivious transfer
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1 Introduction

Tamper-proof hardware tokens allow information-theoretically secure protocols that are universally
composable [Can01], they can be employed for protocols in the globalized UC framework [HMQU05,
CDPW07], and they even allow for one-time programs, i.e. circuits that can be evaluated only
once [GKR08]. However, almost all known protocols employing tamper-proof hardware are either
indirect, i.e. the secure hardware is used to implement commitments or zero-knowledge proofs and
additional computational assumptions must be used to obtain general secure two-party computation
[Kat07, CGS08, DNW08, MS08, DNW09], or a large number of devices must be used [GKR08,
GIS+10]. However, issuing multiple independent tamper-proof devices requires much stronger
isolation assumptions. Not only the communication between the devices and the issuer must be
prevented, but also the many devices must be mutually isolated. This is especially difficult as the
devices are not necessarily trusted—e.g., see [BKMN09] for the difficulty of isolating two devices
in one location.

We present the first construction for universally composable, information-theoretically secure
two-party computation (and even one-time programs) using only a single (untrusted) tamper-proof
device that can keep a state. We also provide some impossibility results, which highlight optimality
of our work in several respects. A preliminary version of our work appeared in [DKMQ11].

1.1 Related work

The idea of secure computation based on separation assumptions was introduced in [BOGKW88]
to construct multi-prover interactive proof systems. In particular, [BOGKW88] proposes an un-
conditionally secure protocol for Rabin-OT [Rab81] between two provers and a verifier. Even
though this result is not explicitly stated in the context of tamper-proof hardware1 and is proven
secure in a standalone, synchronous model, we suppose that an amplified variant of the protocol of
[BOGKW88] can be proven UC-secure.

The idea of explicitly using tamper-proof hardware for cryptographic purposes was introduced
by [GO96], where it was shown that tamper-proof hardware can be used for the purpose of software-
protection. The interest in secure hardware and separation assumptions was renewed, when it was
realized by [Kat07] that universally secure multi-party computation can be based on tamper-proof
hardware tokens without additional setup assumptions. However, the tamper-proof hardware must
suffice strong separation conditions, even though a more recent result showed that the assumptions
about the physical separation can be relaxed to some extent [DNW08, DNW09].

Generally, the work on secure multi-party computation with tamper-proof hardware assump-
tions can be divided in works dealing with either stateful or stateless hardware-tokens. In [Kat07]
a scenario is considered where all parties can create and issue stateful tamper-proof hardware
tokens. Using additional number-theoretic assumptions, [Kat07] implements a reusable commit-
ment functionality in this scenario. Subsequently, [MS08] improved upon [Kat07] by constructing
information-theoretically secure commitments in an asymmetric scenario, where only one out of two
parties is able to issue stateful tamper-proof hardware tokens. Another improvement upon [Kat07]
was by [CGS08] with stateless tokens, but still bidirectional token exchange and use of enhanced
trapdoor permutations (eTDP). [HMQU05] use (stateless) signature cards, issued by a trusted au-
thority, to achieve universal composability with respect to global setup assumptions [CDPW07].

1The authors of [BOGKW88] mention that the provers in their protocol might be implemented as bank-cards.
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In [FPS+11] it is shown how set intersection can be computed securely using a single untrusted
tamper-proof hardware token and additional computational assumptions.

[GKR08] show that using a minimalistic stateful tamper-proof hardware assumption called
one-time memory (OTM), a new cryptographic primitive called one-time program (OTP) can be
implemented, i.e. programs that can be evaluated exactly once. An OTM can be seen as a non-
interactive version of the

(
2
1

)
-string-OT functionality: The OTM sender stores two l-bit strings on

the token and sends it to the receiver party, who can arbitrarily later choose to learn one (and only
one) out of the two stored values (q.v. Figure 1).

Functionality FOTM

Parametrized by a string length l. The variable state is initialized by state ← waiting.

Creation:

• Upon receiving input (s0, s1) from Goliath, verify that state = waiting and s0, s1 ∈ {0, 1}l; else
ignore that input. Next, update state ← sent, record (s0, s1) and send (sent) to the adversary.

• Upon receiving a message (Delivery) from the adversary, verify that state = sent; else ignore that
input. Next, update state ← delivered and send (ready) to David.

Query:

• Upon receiving input (x) from David, verify that state = delivered and x ∈ {0, 1}; else ignore that
input. Next, update state ← queried and output (sx) to David.

When a party is corrupted, the adversary is granted unrestricted access to the channel between FOTM and
the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 1: The ideal/hybrid functionality modeling a single one-time memory (OTM). Following
[MS08], we call the token issuer “Goliath” and the receiver “David”; see also Section 2.3.1.

More recently, [Kol10] implemented string-OT with stateless tamper-proof tokens, but achieved
only covert security [AL07]. A unified treatment of tamper-proof hardware assumptions is proposed
by [GIS+10]. Important in the context of our work, they show that in a mutually mistrusting
setting, trusted OTPs can be implemented statistically secure from a polynomial number of OTMs.
In [GIMS10], statistically secure commitments and statistical zero-knowledge are implemented on
top of a single stateless tamper-proof token. Furthermore, if tokens can be encapsulated into other
tokens, general statistically secure multi-party computation is possible in this setting. [GIMS10] also
show that unconditionally secure OT cannot be realized from stateless tamper-proof hardware alone.
Finally, the latest result in this research field is by [CKS+14], that combine techniques of [GIS+10]
and a previous version of our work [DKMQ11], resulting in a computationally secure, constant-
round protocol for OT with unlimited token reusability. They only need stateless tokens and show
black-box simulatability. However, this comes at the cost of bidirectional token exchange and the
assumption that collision resistant hashfunctions (CRHF) and unique signatures or, equivalently,
verifiable random functions (VRF) exist.

Except for [BOGKW88], all of the above schemes based on untrusted tamper-proof hardware
either use additional complexity assumptions to achieve secure two-party computation [HMQU05,
Kat07, MS08, GKR08, DNW08, DNW09, Kol10, CKS+14] or a large number of hardware tokens
must be issued [GKR08, GIS+10].
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1.2 Our contribution

In this paper we show that general, information-theoretically secure, universally composable two-
party computation is possible in a setting where a single untrusted stateful tamper-proof hardware
token is issued. The main challenge we have to deal with is to prevent a maliciously programmed
token from encoding previous inputs in subsequent outputs. Note that using a stateful token is
optimal in the sense that information-theoretically secure OT cannot be realized from stateless
tokens, even if one allows bidirectional token exchange at arbitrary times in an interactive protocol
[GIMS10]. Our protocols allow only limited token reuse, which we show to be unavoidable. However,
all our constructions can be transformed into computationally secure solutions with unlimited token
reusability. For this transformation the existence of a pseudorandom number generator (PRNG) is
required, but only the token receiver needs to be computationally bounded.

As an abstraction for the primitives that can be implemented in our setting, we introduce
a new primitive called sequential one-time OAFE (seq-ot-OAFE), where the acronym “OAFE”
stands for oblivious affine function evaluation. Basically, seq-ot-OAFE allows the sender to pick
some affine functions f1, . . . , fn and the receiver can evaluate each fi on exactly one input xi of
his choice. However, similar to the OTM functionality the sender is not notified when the receiver
chooses xi and learns fi(xi). We refer to Section 2.4 for a formal description of the seq-ot-OAFE
functionality and its exact relation to OTMs and OT. Our implementation of seq-ot-OAFE consists
of an interactive setup phase (including transmission of the token), which is independent of the
parties’ inputs. Then, secure computation of fi(xi) requires one message from the sender to the
receiver and one token query by the receiver. The number n of such secure evaluations is just
limited by the amount of randomness stored on the token and the amount of randomness sent
by the receiver during the setup phase. Unbounded reusability can be achieved by implementing
a PRNG on the token (assuming a computationally bounded receiver) and allowing occasional
random messages from the receiver to the sender. We also show that for a truly non-interactive
solution it is necessary and sufficient that the sender issues two mutually isolated tokens.

Since the OT functionality can be written as the secure evaluation of an affine function, our
results for general, statistically secure, universally composable two-party computation follow by the
completeness of OT [Kil88, IPS08]. However, applying the straightforward reduction of string-OT
to our seq-ot-OAFE protocol results in an OT construction with quadratic size of the messages.
Therefore, we provide an alternative reduction, which yields linear communication complexity and
thus an optimal construction for string-OT. This optimality and the option for unbounded token
reuse are both improvements upon [DKMQ11], whose constructions and security proof rely on an
a priori bound for the number of token queries even in the computationally bounded setting and
whose protocols have quadratic communication complexity.

We also provide a commitment protocol with optimal communication complexity based on our
seq-ot-OAFE construction. In the following, we briefly discuss and sum up the features of our
protocols for OTMs, commitments, and string-OT.

OTMs: We propose an information-theoretically secure construction for an arbitrary polynomial
number of OTM functionalities from a single tamper-proof token. The receiver can query
these OTMs only in a predefined order, but this can be considered an advantage, since the
OTP construction of [GIS+10] still works, whereas the out-of-order attacks dealt with in
[GIS+10] are ruled out trivially. However, for implementation of a large number of OTMs we
need that our token stores a comparably large amount of data and is capable of finite field
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arithmetics. Now, if these OTMs are used to implement an OTP, one might wonder why
not to implement the OTP directly on the token. There are at least three good reasons to
implement an OTP via OTMs. Firstly, the token can be transferred a long time before the
sender chooses which OTP to send. Secondly, via OTMs one can implement trusted OTPs
[GIS+10], i.e. sender and receiver agree on a circuit to be evaluated and only their inputs
for this circuit are kept secret. The crucial security feature of a trusted OTP is that even
a corrupted sender cannot change the circuit. Thirdly, since our token only needs to store
random values, we can compress its size using black-box access to a PRNG.

In particular, our OTM construction has the following features:

• many OTMs (arbitrary polynomial) by a single token; upper bound fixed at initialization
• implemented OTM instances only queriable in predefined order
• optimal round complexity: two rounds using one token or one round using two tokens

(plus transfer of the token(s))
• optimal communication complexity (linear in number and size of implemented OTMs)
• information-theoretic security (but token program can be compressed by PRNG)

Commitments: Our commitment construction has the following features:

• bidirectional and reusable string-commitment functionality from a single token
• token program independent of parties’ inputs (thus can be fixed by sender in advance)
• unlimited reusability at the cost of a minimal complexity assumption (PRNG)
• multiple commitments with O(1) rounds by one token or non-interactively by two tokens
• optimal communication complexity (linear in number and size of commitments)

To the best of our knowledge, except for [MS08] all other constructions based on tamper-
proof hardware have higher communication complexity than ours and either use stronger
complexity assumptions or have ω(1) rounds. However, the construction of [MS08] is only
unidirectional (from the token issuer to the receiver). For the opposite direction they only
provide an approach that becomes inherently insecure, if composed concurrently with other
instances of itself using the same token. They state it as an open problem to realize multiple
commitments from the token receiver to the token sender, which is now solved by our work.

String-OT: Our OT protocol enjoys exactly the same features as our commitment protocol.
Therefore, we omit an explicit itemization. Instead, by Figure 2 we compare our OT protocol
with prior results in the literature.

At this point, it is important to mention that optimal communication complexity for only
computationally secure OT is no great achievement at all. The string length of any compu-
tationally secure OT protocol can be polynomially extended by standard techniques, what
accordingly improves its efficiency: The sender just uses the given OT protocol for transmis-
sion of two random PRNG seeds and announces the actual OT inputs one-time pad encrypted
with the respective pseudorandomness. By this simple trick and some rescaling of the security
parameter, one can transform any OT protocol with polynomial communication complexity
into a protocol with linear (and thus optimal) communication complexity. However, we stress
that nevertheless we present the first information-theoretically secure construction for multi-
ple OT with optimal communication complexity based on reusable tamper-proof hardware.
Moreover, note that an analogous approach for extending the string length of commitments
or OTMs would destroy composability. We discuss this in further detail in Section 4.6.
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stateless tokens stateful tokens (simulator needs to rewind)
[CGS08] [GIS+10] [CKS+14] [GIS+10] [DKMQ11] this work

tokens 2 (bidirect.) Θ(k) 2 (bidirect.) Θ(k) 1 1 1
rounds Θ(k) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
bits sent ? Ω(k2) Ω(k2) Θ(k2) Θ(k2) Θ(k) Θ(k)
assumptions eTDP CRHF CRHF,VRF none none none PRNG
reusability unbounded none unbounded none bounded bounded unbounded

Figure 2: UC-secure k-bit string-OT based on tamper-proof tokens; table partly borrowed from
[CKS+14]. According to [CKS+14], the CRHF-based protocols can instead be based on one-way
functions (equivalent to PRNGs), using Θ(k/ log k) rounds, and the VRF assumption in [CKS+14]
can be traded for bounded token reusability. For [CGS08] an explicit estimation of the communi-
cation complexity is omitted, since they use the heavy machinery of general zero-knowledge proofs,
signatures, etc., and their communication complexity depends on the actual implementation.

All our constructions also have very low computation complexity. Per implemented k-bit
OTM/Commitment/OT all parties and the tamper-proof token have to perform O(1) finite field
operations (only additions and multiplications) with field size 2k. Additionally, the protocol vari-
ants with unlimited token reusability require that the token issuer and the token each generates
Θ(k) bits of pseudorandomness per OTM/Commitment/OT instance.

1.3 Outline of this paper

The rest of this paper is organized as follows. In Section 2 we introduce some notations (Sec-
tion 2.1), give a short overview of the notion of security that we use (Section 2.2), describe how
our tamper-proof hardware assumption is defined in that framework (Section 2.3), and introduce
our new primitive (Section 2.4), which serves as the basic building block for all other constructions.
In Section 3 we show that one can implement our new primitive UC-securely from the aforemen-
tioned tamper-proof hardware assumption. In Section 4 we discuss some variants and unobvious
applications of our construction. At the end of Section 4, in Section 4.6, we also briefly discuss
why an only computationally secure OT protocol with optimal communication complexity is not
a noteworthy result, whereas the opposite is true for commitments and OTMs. In Section 5 we
argue for some impossibility results that highlight optimality of our work in several respects, give
a conclusion and suggest directions for improvements and future research.

2 Preliminaries

2.1 Notations

General stuff (finite fields, naturals and power sets): By Fq we denote the finite field of
size q. The set of all naturals including zero is denoted by N, without zero it is denoted by
N>0. The power set of any set S is denoted by P(S).

Outer products: Given any field F and k, l ∈ N>0, we identify vectors in Fk by (k×1)-matrices,
so that for all x ∈ Fk and y ∈ F1×l the matrix product xy ∈ Fk×l is well-defined.

Complementary matrices: Given any field F, some k, l ∈ N>0 with k < l and any two matrices
C ∈ F(l−k)×l, G ∈ Fk×l, we say that G is complementary to C, if the matrix M ∈ Fl×l gen-
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erated by writing G on top of C has maximal rank in the sense that rank(M) = rank(C) + k.
Note that, given any C ∈ F(l−k)×l, G ∈ Fk×l, x ∈ Fl, y ∈ Fk with G complementary to C,
we can always find some x′ ∈ Fl, such that Cx′ = Cx and Gx′ = y.

Random variables and uniform distribution: Throughout all formal proofs we will mostly
denote random variables by bold face characters, e.g. x. However, for ease of presentation
and better readability, we will sometimes refrain from this general convention and just write
them like non-random values, e.g. x. Let x

r← X denote that x is uniformly random over X.

Probabilities, expected values and entropy: We denote the probability of an event E by P[E ].
The expected value of a random variable x is denoted by E(x), its Shannon entropy is
denoted by H1(x) = −

∑
αP[x = α] · log2P[x = α], and its collision entropy is denoted by

H2(x) = − log2

(∑
α

(
P[x = α]

)2)
.

Statistical distance: We denote the statistical distance of two given random variables x,y by
∆(x,y), using the following standard notion of statistical distance:

∆(x,y) = 1
2

∑
α

∣∣P[x = α]−P[y = α]
∣∣

Correlation of random variables: We define the following measure for the correlation of ran-
dom variables. Given any two random variables x,y that may depend on each other, we set
ι(x,y) := ∆

(
(x,y), (x̃, ỹ)

)
with x̃ and ỹ denoting independent versions of x and y respec-

tively. Note that ι(x,y) = 0 if and only if x and y are statistically independent. Further note
that there always exists an event E , such that P[E ] = 1 − ι(x,y), and conditioned to E the
random variables x and y are statistically independent.

2.2 Framework & notion of security

We state and prove our results in the Universal-Composability (UC) framework of [Can01]. In this
framework, security is defined by comparison of an ideal model and a real model. The protocol of
interest is running in the latter, where an adversary A coordinates the behavior of all corrupted
parties. In the ideal model, which is secure by definition, an ideal functionality F implements the
desired protocol task and a simulator S tries to mimic the actions of A. An environment Z is
plugged either to the ideal or the real model and has to guess, which model it is actually plugged
to. A protocol Π is a universally composable (UC-secure) implementation of an ideal functionality
F , if for every adversary A there exists a simulator S, such that for all environments Z the entire
view of Z in the real model (with Π and A) is statistically close to its view in the ideal model (with
F and S). In our case the adversarial entities A,S and the environment Z are computationally
unbounded and a hybrid functionality F stateful

wrap models our tamper-proof hardware assumption (q.v.
Section 2.3). Note that for convenience and better readability we use the notation of [Can01] a bit
sloppy. E.g., throughout this paper we omit explicit notation of party and session IDs.

2.3 Modeling tamper-proof hardware

2.3.1 The hybrid functionality F stateful
wrap

Our formulation of general stateful tamper-proof hardware resembles the meanwhile standard def-
initions of [Kat07, MS08]. Following [MS08], we call the token issuer “Goliath” and the receiver
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“David”. This naming is also motivated by the fact that all computational versions of our protocols
only need David’s computing power to be polynomially bounded in the security parameter; Goliath
(and even the token) may be arbitrary powerful.

To model tamper-proof hardware, we employ the F stateful
wrap wrapper functionality (q.v. Figure 3).

Goliath provides as input a Turing machine M to F stateful
wrap . David can then query F stateful

wrap on

arbitrary input words w, whereupon F stateful
wrap runsM on input w, sends the output thatM produced

to David and stores the new state of M. Every time David sends a new query w′ to F stateful
wrap , it

resumes simulatingM with its most recent state, sends the output to David and updates the stored
state of M.

Functionality F stateful
wrap

The variable state is initialized by state ← wait.

Creation:

• Upon receiving a message (Create,M, b) from Goliath, where M is the program of a deterministic
interactive Turing machine and b ∈ N, verify that state = wait; else ignore that input. Next,
initialize a simulated version of M, store b, set state ← sent and send (created) to the adversary.

• Upon receiving a message (Delivery) from the adversary, verify that state = sent; else ignore that
input. Next, set state ← execute and send (ready) to David.

Execution:

• Upon receiving a message (Run, w) from David, where w is an input word, verify that state = execute;
else ignore that input. Next, write w on the input tape of the simulated machine M and carry on
running M for at most b steps, starting from its most recent state. When M halts (or b steps have
passed) without generating output, send a special symbol ⊥ to David; else send the output of M.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F stateful
wrap

and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 3: The wrapper functionality by which we model stateful tamper-proof hardware sent from
Goliath to David. Note that delivery of the token in the creation phase is scheduled by the adversary,
whereas afterwards all communication between David and the token is immediate.

This captures the following properties one expects from tamper-proof hardware. On the one
hand, Goliath is unable to revoke M once he has sent it to David. On the other hand, David can
runM on inputs of his choice, but the program code and state ofM are out of reach for him, due
to the token’s tamper-proofness. Note that M does not need a trusted source of randomness, as
it can be provided with a sufficiently long hard-coded random tape. Thus, w.l.o.g. we can restrict
M to be deterministic.

For formal reasons we require that Goliath not only specifies the program code of M, but also
an explicit runtime bound b ∈ N. This just ensures that even a corrupted Goliath cannot make
F stateful

wrap run perpetually. As we will state and prove all our results without any computational
assumptions regarding the token, a corrupted Goliath may choose b arbitrarily large. However,
when Goliath is honest, we will only need that the number of computing steps performed by the
token is polynomial in the security parameter. We will henceforth implicitly assume that an honest
Goliath always adjusts the parameter b accordingly.
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2.3.2 Real world meaning of our hardware assumption and proof techniques

All our constructions can be proven UC-secure. However, the respective simulator for a corrupted
Goliath needs to rewind the token and thus has to know the token code. At first glance, it might
seem a rather strong assumption that a corrupted token manufacturer always knows the internal
program code of his tokens. How can such a party be prevented from just passing on a token
received during another protocol from some uncorrupted token issuer?

We argue that tokens can be bound to the corresponding issuer IDs by not too unrealistic
assumptions. The conceptually simplest (but a bit overoptimistic) way are standardized and un-
forgeable token cases, branded with the respective issuer ID, and that cannot be removed without
destroying the token completely. However, we can go with a bit less rigorous assumptions. We
just need that undetectable token encapsulation is infeasible (e.g., since the token’s weight and size
would be altered) and that every honestly programmed token initially outputs its manufacturer’s
ID. Then, only tokens of corrupted manufacturers can be successfully passed on. Since w.l.o.g. all
corrupted parties collude, now every token issuer automatically knows the internal program code
of all his issued and/or passed on tokens. Infeasibility of token encapsulation is also needed by
[HMQU05, Kat07, MS08, GKR08].

We also argue that using a stateful token does not necessarily mean a categorical disadvantage
compared to protocols based on stateless tokens. In the literature one can find the opposite point
of view, usually motivated by resetting attacks. These attacks only affect stateful approaches,
whereas stateless approaches stay secure. By a resetting attack a corrupted token receiver tries to
rewind the token (e.g. by cutting off the power supply) and then run it with new input. Such an
attack, if successful, would break security of all our protocols. However, as a countermeasure the
tamper-proof token could delete its secrets or just switch to a special “dead state” when a resetting
attempt is detected. For the technical realization we suggest, e.g., that the state information is
stored as a code word of an error correcting code and the token does not work unless the stored state
information is an error-free, non-trivial code word. Anyway, we consider a thorough investigation
of this issue an interesting direction for future research.

2.4 Sequential one-time OAFE and its relation to OTMs and OT

All our constructions are based on the oblivious affine function evaluation (OAFE) primitive, which
is parametrized by a field size q and a dimension k, allows the sender to choose an affine function
parametrized by two vectors a, b ∈ Fkq and the receiver to choose a preimage x ∈ Fq, and outputs

the Fkq -vector y := ax+ b to the receiver. The sender’s output is empty. To make the parameters

explicit, we write Fkq -OAFE. As one can see quite easily, F2-OAFE and OT can be reduced to
each other without any overhead (q.v. Figure 4). Note that the reductions in Figure 4 also work
perfectly for Fk2-OAFE and k-bit string-OT respectively.

OT

OAFE from OT

s0b
s1a+ b

c x

sc ax+ b

OAFE

OT from OAFE

as0 ⊕ s1
bs0

x c

ax+ b sc

Figure 4: Reductions between bit-OT and F2-OAFE; protocols borrowed from [WW06].
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We implement a variant of OAFE that we call “sequential one-time OAFE”, or “seq-ot-OAFE”
for short. By one-time OAFE we mean a primitive that works analogously to an OTM. The sender
creates a token parametrized by a, b ∈ Fkq and sends it to the receiver. Arbitrarily later the receiver
may once input some x ∈ Fq of his choice into the token, whereupon the token outputs y := ax+ b
and then terminates. Sequential one-time OAFE lets the sender send up to a polynomial number
of single one-time OAFE tokens, but the receiver may only query them in the same order as they
were sent. However, when the receiver has queried some of the tokens he already received, this does
not vitiate the sender’s ability to send some additional tokens, which in turn can be queried by the
receiver afterwards, and so on. For a formal definition of the ideal seq-ot-OAFE functionality see
Figure 5.

Functionality F seq−ot
OAFE

Parametrized by a finite vector space Fk
q and some runtime bound n that is polynomially bounded in the

security parameter λ := k log q. The counters jcreated, jsent, jqueried are all initialized with 0.

Send phases:

• Upon receiving input (a, b, i) from Goliath, verify that a, b ∈ Fk
q and i = jcreated + 1 ≤ n; else ignore

that input. Next, update jcreated ← i, record (a, b, i) and send (created, i) to the adversary.

• Upon receiving a message (Delivery, i) from the adversary, verify that i = jsent + 1 ≤ jcreated; else
ignore that message. Next, update jsent ← i and send (ready, i) to David.

Choice phases:

• Upon receiving input (x, i) from David, verify that x ∈ Fq and i = jqueried + 1 ≤ jsent; else ignore
that input. Next, update jqueried ← i and for the recorded tuple (a, b, i) compute y ← ax + b and
output (y, i) to David.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F seq−ot
OAFE

and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 5: The ideal functionality for sequential one-time OAFE (seq-ot-OAFE). Note that send
and choice phases can be executed in mixed order with the only restriction that the i-th send phase
must precede the i-th choice phase. Further note that David’s notifications about Goliath’s inputs
in the send phases are scheduled by the adversary, whereas all messages in the choice phases are
delivered immediately.

Note that the reduction protocols in Figure 4 can be adapted canonically to transform k-bit
string-OTMs into Fk2-OAFE tokens and vice versa. Hence, using the seq-ot-OAFE functionality, a
polynomial number of OTMs can be implemented very efficiently, but the receiver can query the
single OTM tokens only in the same order as they were sent. However, the construction of [GIS+10]
for trusted OTPs from OTMs still works, as there an honest receiver queries all OTM tokens in
a fixed order anyway. Interestingly, the technical challenges dealt with in [GIS+10] arise from the
fact that a malicious receiver might query the OTMs out of order. Moreover, the restriction to
sequential access can be exploited to securely notify the sender that the receiver has already queried
some OTM token. Therefor, every other OTM token is issued with purely random input from the
sender and the receiver just announces his corresponding input-output tuple. A corrupted receiver
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that tries to adversarially delay his OTM queries is caught cheating with overwhelming probability,
as he has only a negligible chance to correctly guess the next check announcement. Thus, we can
implement a polynomial number of OT instances that are perfectly secure against the OT sender
and statistically secure against the OT receiver. Still, the receiver can query the single OT instances
only in the same order as they were sent, but in fact this is already premised in most protocols that
build on OT. Noting that OT and OAFE can be stored and reversed [Bea95, WW06, Wul07], we
conclude that in the seq-ot-OAFE hybrid model OT can be implemented in both ways (from the
token sender to the token receiver and vice versa).

Finally, a remark is in place. Even though seq-ot-OAFE can be used to implement several
OTPs, the sequential nature of seq-ot-OAFE demands that those OTPs can only be executed in a
predefined order. If one wishes to implement several OTPs that can be evaluated in random order,
as many seq-ot-OAFE functionalities have to be issued. This seems an unavoidable limitation, as
long as only one tamper-proof token is used. We discuss this in further detail in Section 5.5.

3 Sequential one-time OAFE from one tamper-proof token

3.1 Protocol construction

We want to implement seq-ot-OAFE, using only a single tamper-proof hardware token, which is not
trusted by the receiver. As mentioned earlier, we call the token issuer “Goliath” and the receiver
“David”. The starting point for our construction is a trivial but insecure OAFE protocol with
randomized sender inputs:

• Goliath chooses 2n random token parameters r1, s1, . . . , rn, sn
r← F

k
q , programs the token

with corresponding affine functions such that David’s i-th token query xi will be answered
with wi := rixi + si, and sends the token to David.

• Arbitrarily later, David can query the token with his actual OAFE input and learn the
corresponding output.

It is pretty obvious that a malicious David cannot cheat other than changing his inputs x1, . . . , xn,
which is legitimate. If, however, Goliath is corrupted, then there are two main problems. Firstly,
token outputs could depend on any previous inputs. Secondly, there is no guarantee that each
token output is indeed an affine function of the corresponding input. Though, the latter is only an
issue if q > 2, as every function f : F2 → F

k
2 is affine: f(x) =

(
f(0)+f(1)

)
·x+f(0) for all x ∈ F2.

Our approach to solve these problems is letting Goliath announce some random linear hash
values of the token’s function parameters, which are then used by David for consistency checks.
Hence, a malicious behaving of the token becomes detectable at the price of partly leaking secret
information to David:

• Goliath chooses the i-th token parameters now from a larger2 space, namely ri, si
r← F

4k
q .

Apart from the enlarged dimension nothing changes, i.e., the token still maps xi 7→ rixi + si.

• Upon receiving the token, David announces a random check matrix C
r← F

3k×4k
q .

2We need to enlarge the dimension by a factor of 4 for technical reasons. We are not aware of any potential
weakness of the protocol for any constant factor 1 + α with α > 0, but our proof techniques work only for α > 2. In
particular, the probability p′ in the proof of Lemma 16 is not negligible if α ≤ 2.
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• Goliath in turn announces r̃i := Cri and s̃i := Csi.

• When David queries the token the i-th time, say he inputs xi ∈ Fq and receives some output
wi ∈ F4k

q , he checks whether Cwi = r̃ixi + s̃i. If the check is not passed, David has caught
Goliath cheating.

This way, we can implement some kind of “weak” OAFE, where the receiver additionally learns
some linear projection of the sender’s inputs, but by announcing (r̃i, s̃i) Goliath has committed
the token to affine behavior. Otherwise, if David’s consistency check would be passed although the
current token output wi is not just an affine function of the latest input xi, then the token could
as well form collisions for the universal hash function C, of which it is oblivious. Moreover, we
can nullify David’s additional knowledge about (ri, si) by multiplication with a matrix G ∈ Fk×4k

q

that is complementary to C (cf. Section 2.1). When David just outputs Gwi, we have implemented
OAFE with random input (Gri, Gsi) from Goliath and arbitrarily selectable input xi from David.
Finally, Goliath can derandomize his input to arbitrarily selectable (ai, bi) ∈ Fkq×Fkq by announcing

ãi := ai−Gri and b̃i := bi−Gsi. David then just has to replace his output by yi := Gwi+ ãixi+ b̃i.
However, there is still a security hole left, as the token in round i might act honestly only on

some specific input set Xi ( Fq or even only on some specific type of input history. Now, when
David’s inputs match this adversarially chosen specification, he will produce regular output; else
an abort is caused with overwhelming probability (i.e. David produces default output). Such a
behavior cannot be simulated in the ideal model, unless the simulator gathers some information
about David’s input. Thus, David must keep his real input xi secret from the token (and as well
from Goliath, of course). However, David’s input must be reconstructible from the joint view of
Goliath and the token, as otherwise a corrupted David could evaluate the affine function specified
by Goliath’s input (ai, bi) on more than one input xi. Our way out of this dilemma is a linear secret
sharing scheme, by which David shares his input xi between Goliath and the token. The complete
protocol now basically proceeds as follows:

• Goliath initializes the token with uniformly random parameters ri
r← F

4k
q and Si

r← F
4k×k
q .

• Upon receiving the token, David announces a random check matrix C
r← F

3k×4k
q and a random

share hi
r← F

k
q \{0}. David and Goliath also agree on some G ∈ Fk×4k

q complementary to C.

• Goliath announces the check information r̃i := Cri and S̃i := CSi and the derandomization
information ãi := ai −Gri and b̃i := bi −GSihi, where (ai, bi) ∈ Fkq×Fkq is his OAFE input.

• David picks a random share zi
r← {z̃ ∈ F1×k

q | z̃hi = xi}, where xi ∈ Fq is his OAFE input.
He inputs zi into the token, whereupon the token has to compute and output Wi := rizi+Si.
If CWi = r̃izi + S̃i, David computes and outputs yi := GWihi + ãixi + b̃i; else he aborts (or
outputs some default value).

Now, neither Goliath nor the token can gather non-negligible information about David’s OAFE
input xi. Given any set of token inputs Zi ⊆ F1×k

q adversarially chosen in advance, the hyperplanes

{z̃ ∈ F1×k
q | z̃hi = x}x∈Fq will partition Zi into q subsets of roughly equal size, since hi is chosen

independently of Zi. In other words, if the token behaves dishonestly on some input set Zi ( F1×k
q ,

then the abort probability is practically independent of David’s input xi.
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A formal description of the full protocol Πseq−ot
OAFE is given in Figure 6. We want to point out

that in the formal protocol description we purposely do not exactly specify how the parameters
k and q depend on the security parameter λ. We just demand that k · log q ≥ λ. E.g., one can
choose k to increase linearly in λ and q to be constant, or k constant and q exponential in λ. The
former parameter choice results in the same message lengths (quadratic in λ) as in [DKMQ11],
but with parameters chosen the latter way our protocol Πseq−ot

OAFE has only linear and thus optimal
communication complexity. We will exploit that in our asymptotically optimal constructions of
OTMs, commitments, and string-OT.

Protocol Πseq−ot
OAFE

Parametrized by a finite vector space Fk
q and some runtime bound n that is polynomially bounded in the

security parameter λ := k log q. The setup phase is executed right at the start of the first send phase.

Setup phase:

i. Goliath chooses n random vectors r1, . . . , rn
r← F

4k
q and n random matrices S1, . . . , Sn

r← F
4k×k
q ,

creates a token T with parameters (r1, S1), . . . , (rn, Sn), and sends T to David via F stateful
wrap . The

token also contains a counter j′queried and Goliath maintains a counter jcreated, both initialized with 0.

ii. Having received T , David chooses n random vectors h1, . . . , hn
r← F

k
q \{0} and a random matrix

C
r← F

3k×4k
q , computes some G ∈ Fk×4k

q complementary to C, and sends (C,G, h1, . . . , hn) to
Goliath. Furthermore, David initializes two counters jqueried, jsent ← 0 and an initial flag f0 ← >.

iii. If Goliath finds G not complementary to C, he aborts the protocol.

Send phases:

1. Upon input (ai, bi, i) from the environment, Goliath verifies that ai, bi ∈ Fk
q and i = jcreated + 1 ≤ n;

else he ignores that input. Next, Goliath updates jcreated ← i, computes r̃i ← Cri and S̃i ← CSi and
ãi ← ai −Gri and b̃i ← bi −GSihi, and sends (r̃i, S̃i, ãi, b̃i, i) to David.

2. If i = jsent + 1 ≤ n, David updates jsent ← i and outputs (ready, i); else he ignores that message.

Choice phases:

3. Upon input (xi, i) from the environment, David verifies that xi ∈ Fq and i = jqueried+1 ≤ jsent; else he

ignores that input. Next, he updates jqueried ← i, chooses a random vector zi
r← {z̃ ∈ F1×k

q | z̃hi = xi}
and inputs (zi, i) into the token T .

4. The token verifies that zi ∈ F1×k
q and i = j′queried + 1 ≤ n; else it ignores that input. Next, the token

updates j′queried ← i, computes Wi ← rizi + Si and outputs Wi to David.

5. David verifies that fi−1 = > and CWi = r̃izi+S̃i; ifWi /∈ F4k×k
q , it is treated as an encoding of the all-

zero matrix in F4k×k
q . If the check is passed, David sets fi ← > and computes yi ← GWihi+ãixi+ b̃i;

otherwise he sets fi ← ⊥ and yi ← 0 (∈ Fk
q ). Then he outputs (yi, i).

Figure 6: A protocol for sequential one-time OAFE, using one tamper-proof token. Note that
several send and choice phases can be executed in mixed order with the only restriction that an
honest David will not enter the i-th choice phase before the i-th send phase has been completed.
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3.2 Limitations for the OAFE parameters k and q

As mentioned above, there is some freedom of choice how the parameters k and q in our protocol
Πseq−ot

OAFE depend on the security parameter λ. In particular, we need for our security proof that
k · log q ≥ λ and k ≥ 5. The latter condition, however, is an artifact from our proof techniques
and probably not tight. If k = 1, the protocol is not UC-secure against a corrupted sender (see
Remark 1 below), but for 2 ≤ k ≤ 4 we are not aware of any potential attack (provided that
q is sufficiently large). Still, F seq−ot

OAFE with k < 5 can be implemented from F seq−ot
OAFE with k = 5

straightforwardly and the reduction protocol itself has only linear overhead. Thus, the asymptotic
optimality of our construction with k = 5 does directly carry over to the case that k < 5.

Remark 1. Our protocol Πseq−ot
OAFE is not UC-secure against a corrupted Goliath, if k = 1.

Proof. The problem with k = 1 basically arises from the fact that in this case Goliath’s shares hi of
David’s inputs xi are invertible field elements. Consider a maliciously programmed token that stops
functioning after the first choice phase if z1 ∈ Z for some adversarially chosen Z ⊆ Fq, e.g. with
|Z| = q

2 , and otherwise just follows the protocol. Since Goliath knows Z and learns h1 during the
protocol, he also knows exactly on which inputs x1 the token breaks, namely if x1h

−1
1 ∈ Z. In other

words, it depends on x1 if David’s outputs y2, . . . , yn are all-zero or not. This is not simulatable
in the ideal model, because the simulator gets absolutely no information about the uncorrupted
David’s inputs.

3.3 Correctness of our construction

In a totally uncorrupted setting, simulation is straightforward. Since the simulator always is notified
when the ideal Goliath receives input from the environment and the simulator also may arbitrarily
delay the ideal David’s corresponding ready-message, he can perfectly simulate any scheduling of
the messages in the send phase. In turn, the choice phase cannot be influenced by the real model
adversary and therefore can be simulated trivially. Furthermore, whenever in the real model David
outputs some (yi, i), it holds that yi = aixi + bi, as one can verify as follows:

yi = G (rizi + Si)︸ ︷︷ ︸
=Wi

hi + (ai −Gri)︸ ︷︷ ︸
=ãi

xi + bi −GSihi︸ ︷︷ ︸
=b̃i

= Gri (zihi − xi)︸ ︷︷ ︸
=0

+aixi + bi

Also note that in a totally uncorrupted setting David’s consistency checks are always passed.

3.4 Security against a corrupted receiver

We show now security against a corrupted David. Basically, there are only two things he can do:
follow the protocol honestly or query the token prematurely. We will refer to the former as the
regular case and to the latter as the irregular case. A bit more formally, regarding some specific
i ∈ {1, . . . , n} we speak of the regular case if David inputs (zi, i) into the token after receiving
(r̃i, S̃i, ãi, b̃i, i) from Goliath, and we speak of the irregular case if David inputs (zi, i) into the
token before receiving (r̃i, S̃i, ãi, b̃i, i) from Goliath. Note that, although David is corrupted, his
messages to Goliath and his token queries still have to be well-formed, as otherwise they are just
ignored. Hence, (C,G, hi) and zi are still well-defined and can be extracted from Goliath’s and the
token’s view respectively. It turns out that due to the randomness of (ri, Si) every value seen by
David, namely r̃i, S̃i, ãi, b̃i,Wi, is in both cases just uniformly random subject to the sole condition
that in the end the correct result yi can be computed. We formalize this by the next lemma.
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Lemma 2. In our protocol Πseq−ot
OAFE , if Goliath is honest, then in the regular case (i.e., David inputs

(zi, i) into the token after receiving (r̃i, S̃i, ãi, b̃i, i) from Goliath) r̃i, S̃i, ãi, b̃i are just uniformly
random over CF4k

q , CF
4k×4k
q ,Fkq ,F

k
q , and the token output Wi is a uniformly random solution of

the following linear equation system:

CWi = r̃izi + S̃i

GWihi + ãizihi + b̃i = aizihi + bi

In the irregular case (i.e., David inputs (zi, i) into the token before receiving (r̃i, S̃i, ãi, b̃i, i) from
Goliath) the token output Wi is just uniformly random over F4k×4k

q , and r̃i, S̃i, ãi, b̃i are a uniformly

random solution of the abovementioned linear equation system. In particular, we have that ãi
r← F

k
q

and b̃i = (aizihi + bi)− (GWihi + ãizihi).

Proof. We start off with the regular case, i.e. David first receives (r̃i, S̃i, ãi, b̃i, i) from Goliath and
later on inputs (zi, i) into the token. In this case, Goliath just announces some r̃i, S̃i, ãi, b̃i uniformly
at random (with support of r̃i and S̃i depending on C). The relation between (r̃i, S̃i, ãi, b̃i) and
Goliath’s OAFE input is perfectly blinded by the randomness (ri, Si) stored on the token. It
remains to show that the token output Wi is uniformly random subject to the condition that
CWi = r̃izi + S̃i and GWihi + ãizihi + b̃i = aizihi + bi. However, we can imagine that right before
the computation of Wi the token’s stored randomness Si is uniformly resampled subject to the
condition that CSi = S̃i and GSihi = bi − b̃i. This clearly does not change David’s view at all. In
other words, we can replace Si by Si + S′, where S′ is uniformly random subject to the condition
that CS′ = 0 and GS′h = 0. Thereby, Wi is also replaced by Wi+S′ and hence becomes uniformly
random subject to the sole condition that CWi and GWihi are not changed. This means that Wi is
uniformly random subject to the condition that CWi = r̃izi+ S̃i and GWihi = (ai− ãi)zihi+bi− b̃i.
This concludes our proof for the regular case.

Now we consider the irregular case, i.e. the corrupted David inputs (zi, i) into the token before
receiving (r̃i, S̃i, ãi, b̃i, i) from Goliath. In this case, the token’s outputWi obviously is just uniformly
random. It remains to show that the honest Goliath’s announcement of (r̃i, S̃i, ãi, b̃i) is uniformly
random subject to the condition that CWi = r̃izi+S̃i and GWihi+ãizihi+b̃i = aizihi+bi. However,
we can imagine that right before the computation of (r̃i, S̃i, ãi, b̃i) the stored randomness (ri, Si) in
Goliath’s memory is uniformly resampled subject to the condition that rizi+Si = Wi. This clearly
does not change David’s view at all. In other words, we can replace (ri, Si) by (ri + r′, Si − r′zi)
with r′

r← F
4k
q . Thereby, (r̃i, S̃i) is replaced by (r̃i + Cr′, S̃i − Cr′zi) and (ãi, b̃i) is replaced by

(ãi −Gr′, b̃i +Gr′zihi). The former means that (r̃i, S̃i) becomes uniformly random subject to the
sole condition that CWi = r̃izi + S̃i, and the latter means that (ãi, b̃i) becomes uniformly random
subject to the sole condition that GWihi + ãizihi + b̃i = aizihi + bi. Note that (r̃i, S̃i) and (ãi, b̃i)
are statistically independent, since G is complementary to C. This concludes our proof for the
irregular case.

This lemma leads to a straightforward simulator construction in the UC framework. When the
corrupted David queries the token after he already got the derandomization information (ãi, b̃i)
from Goliath in the corresponding send phase, the simulator can revise the token’s output Wi

so that the check CWi
?
= r̃izi + S̃i is still passed, but GWi now matches a protocol run in the

real model: When the token is to output Wi, the simulator has already seen both shares zi, hi
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that are needed to extract David’s input xi. The simulator can then query the ideal functionality
F seq−ot

OAFE on this input xi, thus receiving yi, and then revise Wi by some W ′ so that CW ′ = CWi

and yi = GW ′hi + ãixi + b̃i. Note that existence of such a W ′ is always guaranteed, since G is
complementary to C (i.e. especially G has full rank) and h 6= 0.

When the corrupted David queries the token before he got the derandomization information
(ãi, b̃i) from Goliath in the corresponding send phase, the simulator can revise Goliath’s announce-
ment of the derandomization information so that it matches a protocol run in the real model:
When Goliath is to announce the derandomization information (ãi, b̃i), the simulator has already
seen both shares zi, hi that are needed to extract David’s input xi. The simulator can then query
the ideal functionality F seq−ot

OAFE on this input xi, thus receiving yi, and then just revise b̃i so that

yi = GWihi + ãixi + b̃i.

Simulator SDavid(A)

• Set up an honest Goliath-machine G; also set up simulated versions of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted David). Wire the simulated ma-
chines A,G,F stateful

wrap to each other and A to the environment right the way they would be wired in

the real model with protocol Πseq−ot
OAFE (q.v. Figure 6 in Section 3.1).

• Upon receiving a message (created, i) from the ideal functionality F seq−ot
OAFE , reply with (Delivery, i).

Then, upon receiving (ready, i) on behalf of the corrupted David, choose some random vectors

ai, bi
r← F

k
q and let G start the i-th send phase with input (ai, bi, i).

• Whenever G is to send some (r̃i, S̃i, ãi, b̃i, i) to the corrupted David in Step 1 of Πseq−ot
OAFE , extract the

current state j of j′queried from the view of the simulated F stateful
wrap . If j ≥ i, replace b̃i in the message

(r̃i, S̃i, ãi, b̃i, i) by b̃′, which is computed as follows; apart from that just carry on with simulation of
the unmodified protocol.

0. Extract G, hi from the view of G and zi,Wi from the view of the simulated F stateful
wrap .

1. Compute xi ← zihi and (on behalf of the corrupted David) send (xi, i) to the ideal functionality
F seq−ot

OAFE ; let (yi, i) denote the respective answer from F seq−ot
OAFE .

2. Set b̃′ ← yi −GWihi − ãixi.

• Whenever the token is to output some matrix W to the corrupted David in Step 4 of Πseq−ot
OAFE , extract

the current state i of j′queried from the view of the simulated F stateful
wrap . If G has already sent some

message (r̃i, S̃i, ãi, b̃i, i) to the corrupted David in Step 1 of Πseq−ot
OAFE , replace the token’s output by

W ′, which is computed as follows; apart from that just carry on with simulation of the unmodified
protocol.

0. Extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view of G and zi from the view of the simulated F stateful
wrap .

1. Compute xi ← zihi and (on behalf of the corrupted David) send (xi, i) to the ideal functionality
F seq−ot

OAFE ; let (yi, i) denote the respective answer from F seq−ot
OAFE .

2. Choose randomly W ′
r←
{
W̃ ∈ F4k×k

q

∣∣ CW̃ = r̃izi + S̃i ∧ GW̃hi + ãixi + b̃i = yi
}

.

Figure 7: The simulator program SDavid(A), given an adversary A that corrupts David.

A formal description of this simulator is given in Figure 7. We conclude this section with the
corresponding security theorem.
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Theorem 3. Let some arbitrary environment Z be given and some adversary A that corrupts
David. Then the view of Z in the ideal model with ideal functionality F seq−ot

OAFE and simulator

SDavid(A) is identically distributed to the view of Z in the real model with protocol Πseq−ot
OAFE and

adversary A.

Proof. This directly follows by Lemma 2.

3.5 Security against a corrupted sender

Before we give our simulator construction for a corrupted Goliath (q.v. Section 3.5.5), we first take
a closer look at the problems we have to deal with, and introduce the respective solution tools
(Sections 3.5.1-3.5.4).

3.5.1 Independence of the token view

We start our security considerations with showing that an honest David’s token inputs z1, . . . , zn
are statistically indistinguishable from uniform randomness. This is necessary for security, since
otherwise David’s OAFE inputs x1, . . . , xn would be non-negligibly correlated with the token view
and a malicious token’s behavior in the n-th choice phase could depend on x1, . . . , xn−1.

W.l.o.g., we can assume that David’s random tape is chosen after all other random tapes, i.e.
we can consider everything to be deterministic except for David’s random choice of h1, . . . , hn and
z1, . . . , zn. However, as we are aiming for universal composability, we must take into account that
David’s i-th OAFE input xi might depend on everything that Goliath learned so far. In particular,
Goliath knows h1, . . . , hn and there might have leaked some little information about z1, . . . , zi−1

during past choice phases. Therefore, we have to model David’s i-th OAFE input xi as a function
value xi(h1, . . . , hn, z1, . . . , zi−1).

Lemma 4. Let Fq be some arbitrary field of size q ≥ 2 and let k, n ∈ N>0. Let U := F
1×k
q and

H := F
k
q \{0}. Further, for i = 1, . . . , n let any mapping xi : Hn × U i−1 → Fq be given. Finally,

for i = 1, . . . , n we define the following random variables:

hi
r← H zi

r←
{
z ∈ U

∣∣ zhi = xi(h1, . . . ,hn, z1, . . . , zi−1)
}

ui
r← U

Then it holds that ∆
(
(z1, . . . , zn), (u1, . . . ,un)

)
< 1

2

√
exp
(
n · q2−k

)
− 1.

Proof. We show this by estimation techniques borrowed from a proof for the Leftover Hash Lemma
[AB09, proof of Lemma 21.26]. Let ~z ∈ RUn denote the probability vector of (z1, . . . , zn) and let
~u ∈ RUn denote the probability vector of (u1, . . . ,un). Note that ~z − ~u is orthogonal to ~u:

〈~z − ~u | ~u〉 = 〈~z | ~u〉 − 〈~u | ~u〉 = ‖~z‖1
|Un| −

‖~u‖1
|Un| = 1

|Un| −
1
|Un| = 0

Let the 2n-tuple of random variables (h′1, . . . ,h
′
n, z
′
1, . . . , z

′
n) be identically distributed as its un-

primed counterpart (h1, . . . ,hn, z1, . . . , zn). The following equation system has exactly qk−2 differ-
ent solutions z ∈ U if hi and h′i are linearly independent, and at most qk−1 solutions otherwise:

zhi = xi(h1, . . . ,hn, z1, . . . , zi−1)

zh′i = xi(h
′
1, . . . ,h

′
n, z
′
1, . . . , z

′
i−1)
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Using the auxiliary random variable m := #
{
i ∈ {1, . . . , n}

∣∣ hi and h′i are linearly independent
}

,
we can thus estimate:

P
[
(z1, . . . , zn) = (z′1, . . . , z

′
n)
∣∣ m = m

]
≤
(

qk−2

qk−1 · qk−1

)m
·
(

qk−1

qk−1 · qk−1

)n−m
Further, we have that P[m = m] =

(
n
m

)
·
(
|H|−(q−1)
|H|

)m
·
(
q−1
|H|

)n−m
by construction. It follows:

‖~z‖22 = P
[
(z1, . . . , zn) = (z′1, . . . , z

′
n)
]

=

n∑
m=0

P[m = m] ·P
[
(z1, . . . , zn) = (z′1, . . . , z

′
n)
∣∣ m = m

]
≤

n∑
m=0

(
n

m

)
·
(
|H| − (q − 1)

|H|

)m
·
(
q − 1

|H|

)n−m
·
(

qk−2

qk−1 · qk−1

)m
·
(

qk−1

qk−1 · qk−1

)n−m
=
(

1 + (q−1)2

|H|

)n
· q−nk

Using the Pythagorean Theorem, we can now estimate:

‖~z − ~u‖22 = ‖~z‖22 − ‖~u‖22 ≤
(

1 + (q−1)2

|H|

)n
· q−nk − q−nk

Since ‖~v‖1 ≤
√
m · ‖~v‖2 for all m ∈ N, ~v ∈ Rm, this yields:

∆
(
(z1, . . . , zn), (u1, . . . ,un)

)
= 1

2‖~z − ~u‖1 ≤
1
2

√
|Un| · ‖~z − ~u‖2 ≤ 1

2

√(
1 + (q−1)2

|H|

)n
− 1

To conclude our proof, we further estimate:(
1 + (q−1)2

|H|

)n
= exp

(
n · ln

(
1 + (q−1)2

|H|

))
< exp

(
n·(q−1)2

|H|

)
< exp

(
n · q2−k

)
We will use this lemma not directly but for showing that the token functionality in the (m+ 1)-

th choice phase can be considered to be independent of C and hm+1, . . . , hn. So in the following
corollary, the random variable R can be thought of as David’s random choice of (C, hm+1, . . . , hn).

Corollary 5. Let Fq be some arbitrary field of size q ≥ 2 and let k,m ∈ N>0. Let U := F
1×k
q

and H := F
k
q \{0}. Further, let R be some arbitrary random variable with finite support R. For

i = 1, . . . ,m let any mapping xi : R × Hm × U i−1 → Fq be given. Finally, for i = 1, . . . ,m we
define the following random variables:

hi
r← H zi

r←
{
z ∈ U

∣∣ zhi = xi(R,h1, . . . ,hm, z1, . . . , zi−1)
}

Then it holds that ι
(
R, (z1, . . . , zm)

)
<
√

exp
(
mq2−k

)
− 1.

Proof. By the Triangle Inequality (and the definition of ι, q.v. Section 2.1), we already have that
ι
(
R, (z1, . . . , zm)

)
≤ 2 · ∆

(
(R, z1, . . . , zm), (R,u1, . . . ,um)

)
for any random variables u1, . . . ,um

that are statistically independent from R. Hence, our corollary directly follows by Lemma 4.
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After all, note that independence between the token view and David’s OAFE inputs x1, . . . , xn
is only a starting point for our security proof. E.g., we have not used so far David’s consistency

check CWi
?
= r̃izi + S̃i in the final step of the choice phases. Lemma 4 and Corollary 5 would still

hold true without this consistency check, but the protocol would become susceptible to attacks
where the token encodes zi−1 into Wi. Now, if this information about zi−1 is unveiled to Goliath,
e.g. through the unveil message in a commitment protocol (q.v. Protocol Πbackward

COM in Figure 25),
he can reconstruct David’s secret OAFE input xi−1, although the token still learns nothing but
uniform randomness. Thus, what we have shown so far can only be one core argument amongst
several others.

3.5.2 Committing the token to affine behavior

In Section 3.1 we argued that David’s check CWi
?
= r̃izi + S̃i enforces affine behavior of the token,

since otherwise the token could form collisions for the universal hash function C. However, this is
only half the truth. In fact, with τi : F1×k

q → F
4k×k
q denoting the token functionality in the i-th

choice phase, for each possible token input z ∈ F1×k
q there are always exactly q4k different parameter

tuples (r, S) ∈ F4k
q × F4k×k

q , such that τi(z) = rz + S. In particular, for all z ∈ F1×k
q , r ∈ F4k

q we
can complement r to a matching parameter tuple by S := τi(z)− rz. In total, there might exist up
to q5k different parameter tuples belonging to any image of τi and we must somehow rule out that
there are too many collisions of the form (Cr,CS) = (Cr′, CS′) with distinct (r, S), (r′, S′).

Since the space of potential parameter tuples is that large, pure counting arguments (e.g. by
considering the random matrix C as a 2-universal hash function) cannot be sufficient as long as the
special structure of our problem is ignored: For example, consider the hypothetical case that every
parameter tuple (r, S) has to be taken into account where each column of S equals r. Although
this yields only q4k different parameter tuples, we would always have that equivalence classes of
qk different parameter tuples do collide. However, this is exactly the size of the preimage space
of τi. Thereby we just cannot rule out that τi is non-affine on every Z ⊆ F1×k

q with |Z| > 1, but

enough parameter tuples collide so that C · τi is affine on the complete input space F1×k
q . Note

also that this problem cannot be circumvent by enlarging the token input space to F1×αk
q for some

α > 1, since in that case we can still argue analogously with the condition |Z| > 1 replaced by
|Z| > q(α−1)k.

So, we explicitly have to exploit that the space of affine mappings F1×k
q → F

4k×k
q has some

specific structure. In fact, we only need the random matrix C to have some rank-preserving property
when operating on the image space of τi. Given this (and a not too large overall abort probability
in the current choice phase), we can show that τi is affine on all token inputs that do not cause an
abort.

Lemma 6. Let Fq be some finite field of size q ≥ 2 and let l,m, k ∈ N>0. Let τ : F1×k
q → F

m×k
q be

some arbitrary mapping and let C ∈ Fl×mq , r̃ ∈ Flq, S̃ ∈ Fl×kq , V :=
{
v ∈ F1×k

q

∣∣ C ·τ(v) = r̃ ·v+S̃
}

,
such that |V | > q and for all v, v′ ∈ V the following implications hold true:

rank
(
τ(v)− τ(v′)

)
> 0 ⇒ rank

(
C · τ(v)− C · τ(v′)

)
> 0

rank
(
τ(v)− τ(v′)

)
> 1 ⇒ rank

(
C · τ(v)− C · τ(v′)

)
> 1

Then there exists a unique tuple (r, S) ∈ Fmq ×Fm×kq , such that τ(v) = r · v + S for all v ∈ V .

Further, for this unique tuple it holds that (Cr,CS) = (r̃, S̃).
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Proof. We just need to show existence of (r, S); everything else follows straightforwardly. Moreover,
if r̃ = 0, the proof is trivial. In this case, since by assumption τ(v) = τ(v′) for all v, v′ ∈ V with
C · τ(v) = C · τ(v′), we have that τ is constant on the entire input set V . So, w.l.o.g. let r̃ 6= 0.

First of all, we now observe for all v, v′ ∈ V that rank(τ(v) − τ(v′)) ≤ 1, since else by the
rank-preserving properties of C we had the contradiction that 1 < rank

(
C · τ(v) − C · τ(v′)

)
=

rank
(
r̃ · (v − v′)

)
≤ 1. Thereby, for all v, v′ ∈ V we find some r ∈ Fmq , v̄ ∈ F1×n

q , such that
τ(v)− τ(v′) = r · v̄. Moreover, we can always choose v̄ := v − v′, since r̃ · (v − v′) = Cr · v̄ and we
assumed that r̃ 6= 0. Thus we have:

∀ v, v′ ∈ V ∃ r ∈ Fmq : τ(v)− τ(v′) = r · (v − v′)

We will show now that r in fact is independent of v, v′. More precisely, we will show that for
arbitrary v, v′, v′′ ∈ V with linearly independent v− v′, v′− v′′ there always exists an r ∈ Fmq , such
that τ(v)− τ(v′) = r · (v − v′) and τ(v′)− τ(v′′) = r · (v′ − v′′). It is sufficient to consider the case
of linearly independent v − v′, v′ − v′′, since |V | > q by assumption and hence the affine span of V
must have dimension 2 or higher; therefore for all v, v′, v′′ ∈ V with linearly dependent v−v′, v′−v′′
there exists some v̂ ∈ V , such that v− v′, v′− v̂ are linearly independent and also are v̂− v′, v′− v′′.
So, let any v, v′, v′′ ∈ V , r, r′ ∈ Fmq be given with linearly independent v − v′, v′ − v′′ and:

τ(v)− τ(v′) = r · (v − v′)
τ(v′)− τ(v′′) = r′ · (v′ − v′′)

Thereby follows:

rank
(
r · (v − v′) + r′ · (v′ − v′′)

)
= rank

(
τ(v)− τ(v′′)

)
≤ 1

Since v − v′, v′ − v′′ are linearly independent, this yields that r, r′ must be linearly dependent.
Hence, on the one hand we find some r̂ ∈ Fmq and α, α′ ∈ Fq, such that r = αr̂ and r′ = α′r̂. On
the other hand, since v, v′ ∈ V , we also have:

r̃ · (v − v′) = C ·
(
τ(v)− τ(v′)

)
= Cr · (v − v′)

Since v − v′ 6= 0, this yields that Cr = r̃ and analogously it must hold that Cr′ = r̃. Thus we
have that αCr̂ = α′Cr̂ = r̃. Since we assumed that r̃ 6= 0, we can conclude that α = α′ and hence
r = r′.

So, once we have shown that r is unique, we can finally pick some arbitrary ṽ ∈ V and set
S := τ(ṽ)− r · ṽ, whereby for every ṽ′ ∈M it follows:

τ(ṽ′) =
(
τ(ṽ′)− τ(ṽ)

)
+ τ(ṽ) =

(
r · (ṽ′ − ṽ)

)
+
(
r · ṽ + S

)
= r · ṽ′ + S

To make this lemma applicable, yet we need to show that with overwhelming probability the
random matrix C has the required rank-preserving properties. As a formal preparation we state
our next technical lemma, where the matrix setW should be thought of as all possible token output
differences τi(z) − τi(z′) and l := 3k and m := 4k. Thereby, since |W| < |image(τi)|2 ≤ q2k and
thus qr−l|W| < qr−k, we get that the random matrix C has the required rank-preserving properties
with overwhelming probability. For convenience, we state this lemma only for the case that the
random matrix C is statistically independent from the token functionality τi (and W respectively).
However, the error introduced by this assumption can be estimated by ι(C, τi), and then Corollary 5
does apply.
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Lemma 7. Let Fq be some finite field of size q ≥ 2 and let l,m, k, r ∈ N>0 with r ≤ min(l,m, k).

Then for arbitrary W ⊆ Fm×kq and C
r← F

l×m
q it holds:

P
[
∃W ∈ W : rank(W ) ≥ r > rank(CW )

]
< qr−l|W|

Proof. We first estimate the number of matrices in Fl×rq that have full rank r. Given i ∈ {1, . . . , r}
and any matrix C ∈ Fl×iq with full rank i, there exist exactly ql− qi columns in Flq (only the linear
combinations of the columns of C are excluded) by which we can extend C to a matrix of dimension
l×(i+ 1) and rank i+ 1. By induction on i follows:

#
{
C ∈ Fl×rq

∣∣ rank(C) = r
}

=

r−1∏
i=0

ql − qi

Since the term
∏r−1
i=0 q

l − qi is a bit unhandy, we estimate it from below:

r−1∏
i=0

ql − qi = qlr
r−1∏
i=0

1− qi−l ≥ qlr

(
1−

r−1∑
i=0

qi−l

)
= qlr

(
1− qr − 1

ql(q − 1)

)
> qlr

(
1− qr−l

)
Now, let W ∈ Fm×kq be some arbitrary matrix with r̄ := rank(W ) ≥ r. Further let B̄ ∈ Fr̄×kq ,

such that B̄ only consists of linearly independent rows of W ; i.e. especially B̄ has full rank r̄. Let
B ∈ Fm×kq , such that the first r̄ rows of B are B̄ and the rest of B is all-zero. Note that we can
find an invertible matrix M ∈ Fm×mq , such that W = MB. Hence we can estimate:

#
{
C ∈ Fl×mq

∣∣ rank(CW ) < r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CW ) ≥ r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CMB) ≥ r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CB) ≥ r
}

= qlm −#
{
C ∈ Fl×r̄q

∣∣ rank(CB̄) ≥ r
}
· ql(m−r̄)

= qlm −#
{
C ∈ Fl×r̄q

∣∣ rank(C) ≥ r
}
· ql(m−r̄)

≤ qlm −#
{
C ∈ Fl×rq

∣∣ rank(C) = r
}
· ql(m−r)

< qlm − qlm
(

1− qr−l
)

= qlm+r−l

Thereby, for arbitrary W ∈ Fm×nq and C
r← F

l×m
q we can conclude:

P
[
rank(W ) ≥ r > rank(CW )

]
< qr−l

The assertion of our lemma now follows by the Union Bound.

Basically, in each choice phase of our protocol Πseq−ot
OAFE (with honest receiver David) we have

now with overwhelming probability one of the following two cases:
• Either #

{
z ∈ F1×k

q

∣∣ C · τi(z) = r̃iz + S̃i
}
≤ q, i.e. only few token inputs pass David’s

consistency check and thus the protocol is aborted with overwhelming probability,
• or there exist some r ∈ F4k

q , S ∈ F4k×k
q , such that τi(z) = rz + S for all z ∈ F1×k

q with

C · τi(z) = r̃iz+ S̃i, i.e. the token functionality is affine on all inputs that pass the consistency
check.
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3.5.3 Uniqueness of affine approximations of the token functionality

By our technical tools developed so far, we already have that the token functionality in each choice
phase is piecewise affine, and the protocol is aborted if the affine pieces are too small. However,
for our formal security proof we will need that the larger affine pieces yield an almost disjoint
decomposition of the preimage space in the sense that only few inputs belong to more than one
of these larger affine pieces. Otherwise, the simulator for a corrupted Goliath could fail with
noticeable probability to extract the correct affine function parameters (ai, bi). This motivates our
next lemma.

Lemma 8. Let Fq be some finite field of size q ≥ 2, let ε > 0 and let k, l ∈ N>0, such that
qk ≥ 21/ε. Further, let τ : F1×k

q → F
l×k
q be an arbitrary mapping and let V ′ denote the set of all

v ∈ F1×k
q for that exist more than one tuple (r, S) ∈ Flq×Fl×kq with the following property:

τ(v) = rv + S and #
{
ṽ ∈ F1×k

q

∣∣ τ(ṽ) = rṽ + S
}
≥ q(2/3+ε)k

Then we have that |V ′| < q2k/3.

Proof. We call a mapping γ : F1×k
q → F

l×k
q a straight line, if there exist r ∈ Fkq and S ∈ Fl×kq , such

that γ(v) = rv+S for all v ∈ F1×k
q . Given two straight lines γ, γ′, we call v ∈ F1×k

q an intersection
of γ and γ′, if γ(v) = γ′(v). Given a straight line γ, we say that γ intersects with τ for m times,
if τ(v) = γ(v) for exactly m different v ∈ F1×k

q . Note that two straight lines are identical, iff they
have two or more common intersections.

Now, let Γ denote the set of all straight lines that intersect with τ for at least q(2/3+ε)k times.
Thus, V ′ is a subset of all intersections of distinct straight lines γ, γ′ ∈ Γ. However, as two distinct
straight lines may have no more than one common intersection, m straight lines have always less
than m2 intersections in total. Thus, if |V ′| ≥ q2k/3, there would be more than qk/3 straight lines in
Γ, i.e. we could find some Γ′ ⊆ Γ with |Γ′| = dqk/3e. However, this leads to a contradiction, as one
can see as follows. Each of the straight lines in Γ′ has less than qk/3 intersections with all the other
straight lines in Γ′, what leaves more than q(2/3+ε)k − qk/3 intersections with τ that are not shared
with other straight lines in Γ′. Hence, overall τ must have more than

⌈
qk/3

⌉
·
(
q(2/3+ε)k − qk/3

)
of such non-shared intersections with straight lines in Γ′, i.e.

∣∣τ(F1×k
q )

∣∣ > q(1+ε)k − q2k/3. Since

qεk ≥ 2 by assumption and thus q(1+ε)k − q2k/3 ≥ qk
(
2− q−k/3

)
> qk, this is impossible.

3.5.4 Utilizing the Leftover Hash Lemma

We introduce now our final tool, a fairly technical partitioning argument, which will be needed to
show that the abort behavior in the real model is indistinguishable from the abort behavior in the
ideal model. Before we take a closer look at the technical details, we briefly recap the involved
elements of our protocol Πseq−ot

OAFE (q.v. Section 3.1):

• First of all, by programming the token the adversary commits to a disjoint decomposition
of the i-th round token input space F1×k

q , in the sense that each part of this decomposition
corresponds to another affine token behavior in a later round.

• Next, the honest David announces a 2-universal hash function hi
r← F

k
q \{0}.
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• Then, Goliath announces some check information corresponding to one part of the disjoint
decomposition he committed to. The protocol will be aborted, iff David’s i-th token input zi
is not an element of this part.

• Finally, David gets his i-th OAFE input xi ∈ Fq from the environment, inputs a share

zi
r←
{
z̃ ∈ F1×k

q

∣∣ z̃hi = xi
}

into the token, and aborts the protocol if the token output does
not match Goliath’s check information.

On the one hand, since the environment w.l.o.g. knows how the corrupted Goliath programmed
the token and what check information he announced, the environment can exactly determine the
abort probability in the real model. On the other hand, since the simulator does not know the
ideal David’s OAFE input xi, the abort probability in the ideal model is independent of xi. Thus,
we have to show that the abort probability in the real model also is not noticeably correlated with
xi. A bit more formally, the security proof basically boils down to the following problem, where
A(h) can be seen as the set of token inputs in the current stage that will not yield an abort:

• There are two adversarially chosen mappings, x : Fkq \{0} → Fq and A : Fkq \{0} → P(F1×k
q )

(with P(F1×k
q ) denoting the power set of F1×k

q ), such that for all h, h′ ∈ Fkq\{0} the following
implication holds true:

A(h) 6= A(h′) ⇒ A(h) ∩A(h′) = ∅

• There are the following three random variables:

h
r← F

k
q \{0} z

r←
{
z̃ ∈ F1×k

q

∣∣ z̃h = x(h)
}

u
r← F

1×k
q

• We have to show that ∆
(
(z∈A(h),h), (u∈A(h),h)

)
is negligible, where z∈A(h) denotes a

predicate that is true iff z is an element of A(h), and analogously for u∈A(h).

We address this problem by showing that h partitions A(h) into parts of roughly equal size. Our
starting point is the Leftover Hash Lemma, which we first recap for the sake of self-containedness
(Lemma 9). If x(h) and A(h) were independent of h, the Leftover Hash Lemma would already
suffice to straightforwardly solve our problem. However, our problem is more complex and there
seems no apparent way to directly apply the Leftover Hash Lemma. Nonetheless, we can utilize
the Leftover Hash Lemma to get an estimation for the case that only A(h) is independent of h;
q.v. Lemma 10. Finally, this estimation is used to develop our technical partitioning argument
(Corollary 11).

Lemma 9 (Leftover Hash Lemma [BBR88, ILL89]). Let G be a 2-universal class of functions
X → Y and let g

r← G, i.e. for any distinct x, x′ ∈ X it holds that P
[
g(x) = g(x′)

]
≤ 1
|Y| . Further

let x ∈ X be some random variable with collision entropy H2(x). Then, if x and g are independent,
for the statistical distance between

(
g(x),g

)
and uniform randomness (u,g), i.e. u

r← Y, it holds:

∆
(
(g(x),g), (u,g)

)
≤ 1

2

√
2−H2(x) · |Y|
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Proof. We adapt the proof from [AB09, proof of Lemma 21.26]. Let (g′,x′) be identically dis-
tributed as its unprimed counterpart (g,x). Thereby, when we treat the distribution of

(
g(x),g

)
as a probability vector ~p ∈ RY×G , we get:

‖~p‖22 = P
[
(g(x),g) = (g′(x′),g′)

]
= P[g = g′] ·P

[
g(x) = g′(x′)

∣∣g = g′
]

= P[g = g′] ·P
[
g(x) = g(x′)

]
= P[g = g′] ·

(
P[x = x′] +P[x 6= x′] ·P

[
g(x) = g(x′)

∣∣x 6= x′
])

≤ P[g = g′] ·
(
P[x = x′] +P

[
g(x) = g(x′)

∣∣x 6= x′
])

= |G|−1 ·
(

2−H2(x) +P
[
g(x) = g(x′)

∣∣x 6= x′
])

≤ |G|−1 ·
(

2−H2(x) + |Y|−1
)

Now, let ~u ∈ RY×G denote the probability vector corresponding to the uniform distribution over
Y×G. Note that ~p− ~u is orthogonal to ~u:

〈~p− ~u | ~u〉 = 〈~p | ~u〉 − 〈~u | ~u〉 = ‖~p‖1
|Y×G| −

‖~u‖1
|Y×G| = 1

|Y×G| −
1

|Y×G| = 0

By the Pythagorean Theorem follows:

‖~p− ~u‖22 = ‖~p‖22 − ‖~u‖
2
2 ≤ |G|−1 ·

(
2−H2(x) + |Y|−1

)
− |Y×G|−1 = |G|−1 · 2−H2(x)

Finally, since ‖~v‖1 ≤
√
m · ‖~v‖2 for all m ∈ N, ~v ∈ Rm, we can conclude:

∆
(
(g(x),g), (u,g)

)
= 1

2‖~p− ~u‖1 ≤
1
2

√
|Y×G| · ‖~p− ~u‖2 ≤

1
2

√
2−H2(x) · |Y|

Lemma 10. Let Fq be some finite field of size q ≥ 2 and let k ∈ N>0. For each α ∈ Fq, h ∈ Fkq
let Zα(h) :=

{
z ∈ F1×k

q

∣∣ zh = α
}

. Further, let x : H → Fq be some arbitrary mapping. Then, for

h
r← H := Fkq \{0} and arbitrary A ⊆ F1×k

q it holds:

E

∣∣∣∣∣A ∩ Zx(h)(h)
∣∣− 1

q

∣∣A∣∣∣∣∣ ≤ √
q · |A|

Proof. W.l.o.g., A 6= ∅. Let a
r← A and u

r← Fq. On the one hand, since P[ah = a′h] =

P[(a− a′)h = 0] = qk−1−1
qk−1

< 1
|Fq | for all distinct a, a′ ∈ A, we can estimate the statistical distance

∆
(
(ah,h), (u,h)

)
by the Leftover Hash Lemma (Lemma 9) as follows:

∆
(
(ah,h), (u,h)

)
≤ 1

2

√
2−H2(a) · |Fq| = 1

2

√
q
|A|

On the other hand, we have:

∆
(
(ah,h), (u,h)

)
= 1

2

∑
α∈Fq , h∈H

∣∣P[ah = α ∧ h = h]−P[u = α ∧ h = h]
∣∣

= 1
2

∑
α∈Fq , h∈H

P[h = h] ·
∣∣P[ah = α]−P[u = α]

∣∣
= 1

2

∑
α∈Fq , h∈H

P[h = h] ·
∣∣∣ |A∩Zα(h)|

|A| − 1
q

∣∣∣
≥ 1

2

∑
h∈H

P[h = h] ·
∣∣∣ |A∩Zx(h)(h)|

|A| − 1
q

∣∣∣
= 1

2 E

∣∣∣ |A∩Zx(h)(h)|
|A| − 1

q

∣∣∣
23



By the linearity of expected values follows:

E

∣∣∣∣∣A ∩ Zx(h)(h)
∣∣− 1

q

∣∣A∣∣∣∣∣ ≤ 2 |A| ·∆
(
(ah,h), (u,h)

)
≤

√
q · |A|

Corollary 11. Let Fq be some finite field of size q ≥ 2 and let k ∈ N>0. Let H := F
k
q \{0} and

let R,Q be some arbitrary finite sets. Moreover, let some mapping A : R×Q → P(F1×k
q ) be given,

such that for all ν, ν ′ ∈ R, t ∈ Q the following implication holds true:

A(ν, t) 6= A(ν ′, t) ⇒ A(ν, t) ∩A(ν ′, t) = ∅

For each (α, h) ∈ Fq×H let Zα(h) :=
{
z ∈ F1×k

q

∣∣ zh = α
}

. Finally, let h
r← H. Then for every

random variable t ∈ Q and arbitrary γ ∈ R>0 it holds:

P

[
∃α ∈ Fq, ν ∈ R :

∣∣∣∣∣A(ν, t) ∩ Zα(h)
∣∣− 1

q

∣∣A(ν, t)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2
+ ι(h, t)

Proof. It obviously suffices to give a proof for the case that t and h are statistically independent,
i.e. ι(h, t) = 0. Now, as t and h are independent, we may just assume that w.l.o.g. P[t = t] = 1
for some worst case constant t ∈ Q. However, once we have fixed t, we can consider α and ν as
function values of h, which we denote by α(h) and νh respectively. Thereby, for each h ∈ H we
can define the equivalence class [h] :=

{
h′ ∈ H

∣∣ A(νh′ , t) = A(νh, t)
}

. Further, let H̄ ⊆ H denote
a representative system for these equivalence classes, i.e.

∣∣H̄ ∩ [h]
∣∣ = 1 for all h ∈ H. Let some

arbitrary γ ∈ R>0 be given. By construction we have:

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
≤
∑
h∈H̄

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
Note that we can discard all summands with

∣∣A(νh, t)
∣∣< γ on the right side, since for any X ⊆ F1×k

q ,

α ∈ Fq, h ∈ H it trivially holds that
∣∣|X∩Zα(h)|− 1

q |X|
∣∣ < |X|. With Ĥ :=

{
h ∈ H̄

∣∣ γ < |A(νh, t)|
}

we get:

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
≤
∑
h∈Ĥ

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
However, since E(x) ≥ γ ·P[x ≥ γ] for every random variable x ∈ R, we can estimate by Lemma 10
for all ν ∈ Q:

P

[∣∣∣∣∣A(ν, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(ν, t)
∣∣∣∣∣ ≥ γ] ≤ 1

γ

√
q ·
∣∣A(ν, t)

∣∣
It follows:

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
≤ 1

γ

∑
h∈Ĥ

√
q ·
∣∣A(νh, t)

∣∣
Moreover, as a simple corollary of Jensen’s Inequality it holds:

∑
h∈Ĥ

√∣∣A(νh, t)
∣∣ ≤ √

|Ĥ| ·
∑

h∈Ĥ

∣∣A(νh, t)
∣∣
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Simulator SGoliath(A)

• Set up an honest David-machine D; also set up a simulated version of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted Goliath). Wire the simulated
machines A,D,F stateful

wrap to each other and A to the environment right the way they would be wired

in the real model with protocol Πseq−ot
OAFE (q.v. Figure 6 in Section 3.1). Further, initialize f0 ← >.

• Whenever D outputs (ready, i), extract a snapshot T ′ of T (including its current internal state)
from the view of the simulated F stateful

wrap and extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view of D. Then
run the following extraction program:

1. Pick a random vector ui
r← F

1×k
q and input (ui, i) into the token T ; let Wi denote the token’s

output (w.l.o.g. Wi ∈ F4k×k
q ). If fi−1 = ⊥ or CWi 6= r̃iui + S̃i, set fi ← ⊥ and go to Step 4 of

this extraction program; else just set fi ← >.

2. Pick a random vector vi
r← F

1×k
q and input (vi, i) into a copy of T ′; let W ′ denote the token’s

output (w.l.o.g. W ′ ∈ F4k×k
q ). Retry this step until CW ′ = r̃ivi + S̃i or qk iterations have past;

in the latter case give up, i.e. send a special message (?, i) to the environment and terminate.
If afterwards ui = vi or any row of the matrix Wi −W ′ is linearly independent of ui − vi, also
give up.

3. Compute the unique vector ri ∈ F4k
q , such that Wi−W ′ = ri(ui− vi), and set Si ←Wi− riui.

Then compute ai ← ãi +Gri and bi ← b̃i +GSihi.

4. If fi = >, send (ai, bi, i) on behalf of the corrupted Goliath to the ideal functionality F seq−ot
OAFE ;

else send (0, 0, i).

Finally, upon receiving (created, i) from the ideal functionality F seq−ot
OAFE , reply with (Delivery, i).

Figure 8: The simulator program SGoliath(A), given an adversary A that corrupts the sender party.

Since by construction
{
A(νh, t)

}
h∈Ĥ is a disjoint decomposition of some subset of F1×k

q , we can
further estimate: ∑

h∈Ĥ

∣∣A(νh, t)
∣∣ ≤ ∣∣F1×k

q

∣∣ = qk

Further note that by construction |Ĥ| < 1
γ · q

k. Putting things together, we have shown:

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
<

qk+1/2

γ3/2

3.5.5 The simulator for a corrupted Goliath

In each choice phase, the simulator for a corrupted Goliath has to extract the correct affine function
parameters (ai, bi) ∈ Fkq×Fkq and send them to the ideal functionality F seq−ot

OAFE (q.v. Figure 5 in
Section 2.4). Note that the simulator has no influence on the choice phases (he even is not activated
at all), as long as David is not corrupted.

Our simulator for a corrupted Goliath is given in Figure 8. The high-level picture how this
simulator works is as follows. The send phases are simulated straightforwardly: Z just interacts
with a simulated version of the complete real model. When the i-th send phase is over, the
simulator must extract a valid Goliath input (ai, bi, i), i.e. the simulator needs a description of the
token functionality for the i-th choice phase. Therefor, the simulator first checks whether the token
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acts honestly on random input. If the token’s output appears faulty, the simulator henceforth gives
default input (0, 0, i) to the ideal functionality; otherwise he rewinds the token to the beginning of
the i-th choice phase and inputs other vectors vi ∈ F1×k

q until he can extract an affine function that
describes the token behavior in this phase. Once having extracted this affine description of the token
functionality, the simulator can easily compute the unique Goliath input (ai, bi, i) corresponding
to this token functionality and the messages of the i-th send phase. Note that the running time
of SGoliath(A) is not a priori polynomially bounded in the security parameter λ := k log q, but
there may be up to qk simulated token queries in Step 2 of the simulator’s extraction program.
However, the expected number of iterations in that step is constant. We also refer to Section 5.4
for a discussion why this seems unavoidable.

Lemma 12. Let some arbitrary environment Z be given and some adversary A that corrupts
Goliath. Then the expected running time of the simulator SGoliath(A) is polynomially bounded in
the running time of A and the corresponding token T . In particular, for each simulated send phase
the expected number of iterations performed in Step 2 of the simulator’s extraction program (q.v.
Figure 8) is constant.

Proof. When the simulator enters his extraction program, we can express by a variable p the
probability that he picks some ui passing the check in Step 1. Then, in each iteration of Step 2
with probability 1 − p he will pick some vi that does not pass the check. Hence, if the simulator
would not give up after qk iterations but try on infinitely, we had the following probability that
exactly t iterations are performed:

1− p for t = 0

p2 · (1− p)t−1 for t > 0

This yields the following upper bound for the expected number of iterations:

p2 ·
∑∞

t=1
t · (1− p)t−1

Note that w.l.o.g. p > 0, as otherwise Step 2 of the extraction program is not entered at all.
However, if p > 0, we can use the formula for the expectation of a geometric distribution:

p ·
∑∞

t=1
t · (1− p)t−1 = 1

p i.e. p2 ·
∑∞

t=1
t · (1− p)t−1 = 1

3.5.6 A sequence of hybrid games

We prove indistinguishability between the ideal model and the real model by a hybrid argument.
In particular, we will show that for l = 1, . . . , n no environment can distinguish non-negligibly
between some hybrid games Gamel−1 and Gamel, where Game0 and Gamen are indistinguishable
from the ideal and real model respectively. Each hybrid game Gamel works like an ideal model
with ideal functionality F ′ and (non-efficient) simulator S ′l(A). The functionality F ′ resembles the
ideal functionality F seq−ot

OAFE , but the simulator learns the ideal David’s inputs and may overwrite
the corresponding outputs of F ′. For a formal description see Figure 9. Each simulator S ′l(A)
overwrites the first l outputs, so that they exactly equal the first l David outputs in the real
model. The remaining n− l outputs are computed from an extracted affine description of the token
functionality, very similar to the ideal model. For a formal description of the simulators S ′l(A) see
Figure 10.
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Functionality F ′

Parametrized by a finite vector space Fk
q and some runtime bound n that is polynomially bounded in the

security parameter λ := k log q. The counters jcreated, jsent, jqueried are all initialized with 0.

Send phases:

• Upon receiving input (a, b, i) from Goliath, verify that a, b ∈ Fk
q and i = jcreated + 1 ≤ n; else ignore

that input. Next, update jcreated ← i and send (created, i) to the simulator.

• Upon receiving a message (Delivery, i) from the simulator, verify that i = jsent + 1 ≤ jcreated; else
ignore that message. Next, update jsent ← i and send (ready, i) to David.

Choice phases:

• Upon receiving input (x, i) from David, verify that x ∈ Fq and i = jqueried +1 ≤ jsent; else ignore that
input. Next, update jqueried ← i, send (queried, x, i) to the simulator and wait for the simulator’s
next message. Then, upon receiving (Reply, y, i) from the simulator, output (y, i) to David.

When a party is corrupted, the simulator is granted unrestricted access to the channel between F ′ and the
corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 9: The ideal functionality for the hybrid games Game0, . . . ,Gamen. The difference to the
ideal functionality F stateful

wrap (q.v. Figure 5) is that in the choice phases the simulator learns David’s
input x and may overwrite the respective output y. The inputs a, b in the send phase are just
meaningless.

Corollary 13. Given any adversary A that corrupts Goliath, our hybrid game Game0 with simu-
lator S ′0(A) is statistically indistinguishable from the ideal model with simulator SGoliath(A), and
our hybrid game Gamen with simulator S ′n(A) is perfectly indistinguishable from the real model with
adversary A.

Proof. We have perfect indistinguishability between Gamen and the real model just by construction.
It is also straightforward to see that Game0 is perfectly indistinguishable from the ideal model
conditioned to the event that the simulator SGoliath(A) does not reach the iteration bound qk in
Step 2 of his extraction program. However, by Lemma 12 this iteration bound is only reached with
negligible probability and thus Game0 is statistically indistinguishable from the ideal model.

3.5.7 Transformation of successive hybrid games into an indistinguishability game

For our security proof we have to show that from the environment’s view any successive hybrid
games Gamel−1,Gamel, parametrized with the finite vector space Fkq and runtime bound n, are
statistically indistinguishable. Our approach is to transform these hybrid games into an indistin-
guishability game Γ0(Fq, n, l), so that every environment Z that can distinguish Gamel−1 from
Gamel corresponds to a player that wins in Γ0(Fq, n, l) with some non-negligible advantage. This
approach allows us to successively modify the obtained indistinguishability game Γ0(Fq, n, l), so
that it becomes feasible to derive a maximum winning probability from which we can then infer a
negligible upper bound for the statistical distance between Z’s views in Gamel−1 and Gamel. The
intuition behind this sequence of indistinguishability games can be sketched as follows.
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Simulator S ′l(A)

• Set up an honest David-machine D; also set up a simulated version of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted Goliath). Wire the simulated
machines A,D,F stateful

wrap to each other and A to the environment right the way they would be wired
in the real model. Further, initialize f0 ← >.

• Whenever D outputs (ready, i), choose any a, b ∈ Fk
q and send (a, b, i) on behalf of the corrupted

Goliath to the functionality F ′. Then, upon receiving (created, i) from F ′, reply with (Delivery, i).

• Upon receiving (queried, xi, i) from the functionality F ′, extract the token function τi of the current
choice phase from the view of the simulated F stateful

wrap , in the sense that on input (ṽ, i) the token T
currently would output τi(ṽ). If τi(ṽ) /∈ F4k×k

q for some ṽ ∈ F1×k
q , treat this as an encoding of the

all-zero matrix; thus w.l.o.g. τi : F1×k
q → F

4k×k
q . Further, extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view

of D. Then, if i > l, run the following extraction program:

1. Pick randomly ui
r← F

1×k
q and input (ui, i) into the token T , thus progressing its internal state.

2. If fi−1 = > and C · τi(ui) = r̃iui + S̃i, set fi ← >; otherwise set fi ← ⊥.

3. If fi = >, pick a random vector vi
r←
{
ṽ ∈ F1×k

q

∣∣ C · τi(ṽ) = r̃iṽ + S̃i

}
. Then, if vi = ui

or any row of the matrix τi(ui) − τi(vi) is linearly independent of ui − vi, send (?, i) to the
environment and terminate; else compute yi ← (ãi + Gri)xi + b̃i + GSihi, where ri ∈ F4k

q is
the unique vector with τi(ui)− τi(vi) = ri · (ui − vi), and Si := τi(ui)− riui.
If fi = ⊥, just set yi ← 0 (such that yi ∈ Fk

q ).

4. Send (Reply, yi, i) to F ′.

If i ≤ l, just run the following program instead:

1. Pick a random vector zi
r← {z̃ ∈ F1×k

q | z̃hi = xi} and input (zi, i) into the token T , thus
progressing its internal state.

2. If fi−1 = > and C · τi(zi) = r̃izi + S̃i, set fi ← >; otherwise set fi ← ⊥.

3. If fi = >, compute yi ← G · τi(zi) · hi + ãixi + b̃i.

If fi = ⊥, just set yi ← 0 (such that yi ∈ Fk
q ).

4. Send (Reply, yi, i) to F ′.

Figure 10: The simulator program S ′l(A) for the hybrid game Gamel, given an adversary A that
corrupts Goliath. The hybrid games Gamen and Game0 are indistinguishable from the real model
with adversary A and the ideal model with simulator SGoliath(A) respectively.

Γ0(Fq, n, l): This is just a straightforward reformulation of what the environment Z sees in the
hybrid games Gamel−1 and Gamel respectively.

Γ1(Fq, n, l): We make the player a bit stronger by giving him more direct access to the internal
game state.

Γ2(Fq, n, l, ε): We exploit that the token is somehow committed to affine behavior (cf. Section 3.5.2).
This allows us to unify the way, David’s outputs are computed in the hybrid real part and
the hybrid ideal part: Basically, David’s outputs in the hybrid real part are now also com-
puted from an extracted affine approximation of the token functionality. The additional game
parameter ε is introduced for technical reasons; it will be needed later to apply Lemma 8.
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Game Γ0(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q\{0}.

The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H, a random matrix C

r← F
3k×4k
q and some

G ∈ Fk×4k
q complementary to C.

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , l − d:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , ãi, b̃i ∈ Fk
q and xi ∈ Fq.

(b) Let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, chosen secretly.

(c) If C · τj(w1, . . . , wj) 6= r̃jwj + S̃j for any j ≤ i, the player K learns yi := 0 ∈ Fk
q .

Otherwise, K learns yi := G · τi(w1, . . . , wi) · hi + ãixi + b̃i.

5. For i = l − d+ 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , ãi, b̃i ∈ Fk
q and xi ∈ Fq.

(b) Let wi := ui
r← U , chosen secretly.

(c) If C · τj(w1, . . . , wj) 6= r̃jwj + S̃j for any j ≤ i, the player K learns yi := 0 ∈ Fk
q .

Otherwise, a random vector vi
r←
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i

}
is chosen

secretly. Then, if vi = wi or any row of the matrix τi(w1, . . . , wi) − τi(w1, . . . , wi−1, vi) is
linearly independent of wi − vi, the player K receives a special message (?, i) and the game is
aborted in the sense that Step 6 follows next; else K learns yi := (ãi + Gri)xi + b̃i + GSihi,
where ri ∈ F4k

q is the unique vector with τi(w1, . . . , wi)− τi(w1, . . . , wi−1, vi) = r(wi− vi), and
Si := τi(w1, . . . , wi)− riwi.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 11: Definition of a stand-alone indistinguishability game that captures the difference be-
tween the hybrid games Gamel−1 and Gamel. The player’s view in the indistinguishability game
Γ0(Fkq , n, l) corresponds straightforwardly to the environment’s view in the hybrid game Gamel−d,

where d is the secret challenge bit from Step 3 of Γ0(Fkq , n, l). Thus, the statistical distance between

the environment’s view in Gamel−1 and its view in Gamel is upper bounded by 2δ, where 1
2 + δ is

the maximum winning probability in the indistinguishability game Γ0(Fkq , n, l).

Γ3(Fq, n, l, ε): We replace the simulator’s abort message (?, i), q.v. Step 2 in Figure 8. This corre-
sponds to a simulator modification, so that he may not give up any more, but instead switches
to the mode where David henceforth produces default (all-zero) output.

Γ4(Fq, n, l, ε): We exploit that the token functionality for most inputs can be approximated by no
more than one affine function (cf. Section 3.5.3). This allows us to consider the extracted affine
function parameters as token outputs rather than approximations of the token functionality.

Γ5(Fq, n, l): We no longer only consider the extracted affine function parameters as token outputs;
now they are.
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Γ6(Fq, n, l): We make the player stronger. We let him learn the first l−1 token inputs and let him
choose the last n − l token inputs. Thus only the stage l, which is the only stage in which
Gamel−1 differs from Gamel, stays out of control of the player.

Γ7(Fq, n, l): We just exploit that several variables have become obsolete, and get rid of them.

Γ8(Fq, n, l): We get rid of the challenge matrix C. The player must now exactly forecast token
outputs rather than only linear projections.

Γ9(Fq, n, l): We make it explicit that w.l.o.g. the player follows a deterministic strategy, solely
depending on what he learns during the game run. This is the final version of our indistin-
guishability game.

We give now a detailed description of our indistinguishability game (Figure 11) and its relation to
Gamel−1 and Gamel (Lemma 14). Then we successively transform it and show how this affects the
winning probability.

Lemma 14. Let 1
2 +δ be the maximal winning probability in the game Γ0(Fkq , n, l). Then the statis-

tical distance between the environment’s view in Gamel−1 and its view in Gamel, both parametrized
with the finite vector space Fkq and runtime bound n, is upper bounded by 2δ.

Proof. The proof is absolutely straightforward. Basically, we just have to show how the player K
in Γ0(Fkq , n, l) can perfectly emulate the hybrid game Gamel−d for an environment Z, where d is
the secret challenge bit that K finally tries to guess. Our player K just works as follows:

• Setup a simulated version of the given environment Z and the complete hybrid game Gamel.

• As soon as in the game Gamel the token T is fixed, specify the mappings τ1, . . . , τn such
that the token functionality in the i-th choice phase on input history (w1, 1), . . . , (wi−1, i− 1)
implements the function (wi, i) 7→ τi(w1, . . . , wi). This is Step 1 of Γ0(Fkq , n, l).

• Always overwrite the simulated David’s random choices of C,G, h1, . . . , hn by the respective
values learned in Step 2 of Γ0(Fkq , n, l).

• Whenever some r̃i, S̃i, ãi, b̃i are to be chosen in Step 4a or Step 5a of Γ0(Fkq , n, l), just take
the respective values from the simulated David’s view. Analogously take xi from the view of
the simulated functionality F ′.

• Whenever the simulated functionality F ′ outputs some (yi, i), overwrite yi by the respective
value learned in Step 4c or Step 5c of Γ0(Fkq , n, l) respectively.

• Upon receiving a special message (?, i), just forward it to the simulated environment Z and
stop the simulated hybrid game.

It is straightforward to see that this way the player K perfectly emulates a view of Z in the hybrid
game Gamel−d; this is just how we constructed the game Γ0(Fkq , n, l).

Now, let the random variable viewZ denote this emulated view of Z, and let the random
variable d denote the secret challenge bit that K tries to guess in Step 6 of Γ0(Fkq , n, l). Since by

assumption the player K wins the game Γ0(Fkq , n, l) at most with probability 1
2 + δ, it must hold

for every predicate P that P
[
P (viewZ) = 0 ∧ d = 0

]
+ P

[
P (viewZ) = 1 ∧ d = 1

]
≤ 1

2 + δ.
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Furthermore, note that there does exist a predicate P such that we can write the statistical distance
dist l between the views of Z in Gamel−1 and Gamel as follows:

dist l =

=P[P (view of Z in Gamel−1)=1]︷ ︸︸ ︷
P
[
P (viewZ) = 1

∣∣ d = 1
]
−

=P[P (view of Z in Gamel)=1]︷ ︸︸ ︷
P
[
P (viewZ) = 1

∣∣ d = 0
]

Thus we can conclude:

dist l = P
[
P (viewZ) = 1

∣∣ d = 1
]︸ ︷︷ ︸

=2·P[P (viewZ)=1∧d=1]

−
(

1−P
[
P (viewZ) = 0

∣∣ d = 0
]︸ ︷︷ ︸

=2·P[P (viewZ)=0∧d=0]

)
≤ 2δ

Game Γ1(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q\{0}.

The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , l − d:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) Let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, chosen secretly.

(c) If C · τi(w1, . . . , wi) 6= r̃iwi + S̃i, the player K receives a special message (⊥, i) and the game is
aborted in the sense that Step 6 follows next.

Otherwise, the player K learns τi(w1, . . . , wi) · hi.

5. For i = l − d+ 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) Let wi := ui
r← U , chosen secretly.

(c) If C · τi(w1, . . . , wi) 6= r̃iwi + S̃i, the player K receives a special message (⊥, i) and the game is
aborted in the sense that Step 6 follows next.

Otherwise, a random vector vi
r←
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ+ S̃i

}
is chosen secretly.

Then, if vi = wi or any row of the matrix τi(w1, . . . , wi) − τi(w1, . . . , wi−1, vi) is linearly
independent of wi − vi, the player K receives a special message (?, i) and the game is aborted
in the sense that Step 6 follows next; else K learns rixi + Sihi, where ri ∈ F4k

q is the unique
vector with τi(w1, . . . , wi)− τi(w1, . . . , wi−1, vi) = r(wi − vi), and Si := τi(w1, . . . , wi)− riwi.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 12: First transformation of our stand-alone indistinguishability game. There are two differ-
ences to the game Γ0(Fkq , n, l). Firstly, where Γ0(Fkq , n, l) in Step 4c or Step 5c switched to a mode
such that the player K henceforth only receives all-zero outputs, now K is notified about that by a
special message (⊥, i) and the game is aborted. Secondly, K now directly learns τi(w1, . . . , wi) · hi
in Step 4c and rixi + Sihi in Step 5c instead of the corresponding image of ϑ 7→ Gϑ + ãixi + b̃i.
These game modifications just make K strictly stronger and G, (ã1, b̃1), . . . , (ãn, b̃n) obsolete.
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Game Γ2(Fk
q , n, l, ε)

Parametrized by a finite vector space Fk
q , some n, l ∈ N>0 with l ≤ n, and ε ∈ R>0 such that q(2/3+ε)k ≥ q.

Let U := F1×k
q and H := Fk

q \{0}. The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.

(c) If C · τi(w1, . . . , wi) 6= r̃iwi + S̃i, the player K receives a special message (⊥, i) and the game is
aborted in the sense that Step 5 follows next.

(d) In the following cases the player K receives a special message (?, i) and the game is aborted in
the sense that Step 5 follows next:

i. C ·τi(w1, . . . , wi) = r̃iwi+ S̃i and #
{
ṽ ∈ U

∣∣ C ·τi(w1, . . . , wi−1, ṽ) = r̃iṽ+ S̃i

}
≤ q(2/3+ε)k.

ii. There exist some W,W ′ ∈ τi(w1, . . . , wi−1,U), such that rank(CW − CW ′) ≤ 1 and
rank(W −W ′) > rank(CW − CW ′).

Otherwise, K learns rixi + Sihi, where (ri, Si) ∈ F4k
q ×F4k×k

q is the unique tuple such that

τi(w1, . . . , wi−1, v) = riv + Si for all v ∈
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i

}
.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 13: Second transformation of our stand-alone indistinguishability game. The difference to
the game Γ1(Fkq , n, l) is the now uniform way to compute outputs for K. Note that the tuple (ri, Si)
in Step 4d is well-defined by Lemma 6.

Lemma 15. The maximum winning probability in the game Γ0(Fkq , n, l) is upper bounded by the

maximum winning probability in the game Γ1(Fkq , n, l).

Proof. This holds trivially, since the player in Γ1(Fkq , n, l) is strictly stronger than in Γ0(Fkq , n, l).

Lemma 16. The probability that the game Γ2(Fkq , n, l, ε) is aborted in Step 4d, is upper bounded
by:

n ·
(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1

Proof. Let some arbitrary player K be given and let the random variables C,w1, . . . ,wn represent
the same-named values in the game Γ2(Fkq , n, l, ε). It is straightforward to see that for each stage

i ∈ {1, . . . , n} the case 4(d)i occurs at most with probability p := q(2/3+ε)k/qk−1. Further, for
each stage i ∈ {1, . . . , n} we have by Lemma 7 that the case 4(d)ii occurs at most with probability
p′ := (q1−3k + q2−3k) · |U|2, if C and (w1, . . . ,wi−1) are statistically independent. Thus, by the
Union Bound we can estimate the overall probability that the game Γ2(Fkq , n, l, ε) is aborted in
Step 4d by n · (p+ p′) + ι

(
C, (w1, . . . ,wn)

)
. Estimating ι

(
C, (w1, . . . ,wn)

)
by Corollary 5 yields:

n · (p+ p′) + ι
(
C, (w1, . . . ,wn)

)
< n ·

(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1
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Game Γ3(Fk
q , n, l, ε)

Parametrized by a finite vector space Fk
q , some n, l ∈ N>0 with l ≤ n, and ε ∈ R>0 such that q(2/3+ε)k ≥ q.

Let U := F1×k
q and H := Fk

q \{0}. The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.

(c) In the following cases the player K receives a special message (⊥, i) and the game is aborted in
the sense that Step 5 follows next:

i. It holds that C · τi(w1, . . . , wi) 6= r̃iwi + S̃i.
ii. It holds that #

{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i

}
≤ q(2/3+ε)k.

iii. There exist some W,W ′ ∈ τi(w1, . . . , wi−1,U), such that rank(CW − CW ′) ≤ 1 and
rank(W −W ′) > rank(CW − CW ′).

Otherwise, K learns rixi + Sihi, where (ri, Si) ∈ F4k
q ×F4k×k

q is the unique tuple such that

τi(w1, . . . , wi−1, v) = riv + Si for all v ∈
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i

}
.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 14: Third transformation of our stand-alone indistinguishability game. The only difference
to the game Γ2(Fkq , n, l, ε) is that the abort message (?, i) was replaced by (⊥, i).

Lemma 17. The statistical distance between K’s view in the game Γ1(Fkq , n, l) and K’s view in the

game Γ2(Fkq , n, l, ε) is upper bounded by:

n ·
(
q−(2/3+ε)k + q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1

Proof. Let some arbitrary player K for the game Γ2(Fkq , n, l, ε) be given. Note that the only

difference to the game Γ1(Fkq , n, l) is the computation of K’s output in Step 4d, which is now the
same for i ≤ l − d and i > l − d. Since by Lemma 16 we already have an estimation for the abort
probability in Step 4d, it suffices to consider the case that K actually learns rixi+Sihi. If i ≤ l−d,
we can just argue that rixi + Sihi = (riwi + Si)hi = τi(w1, . . . , wi) · hi by construction, and thus
the player K receives exactly the same as he would have received in Step 4c of Γ1(Fkq , n, l). For
i > l − d, we exploit the following facts:

• If the game is not aborted afore, in Step 4d of Γ2(Fkq , n, l, ε) the player K learns rixi + Sihi,

where (ri, Si) ∈ F4k
q ×F4k×k

q is the unique tuple such that τi(w1, . . . , wi−1, v) = riv + Si for

all v ∈
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}

.

• Thus, for every v ∈
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}

either v = wi, or ri is
the unique vector with τi(w1, . . . , wi) − τi(w1, . . . , wi−1, vi) = r(wi − vi) and it holds that
Si = τi(w1, . . . , wi)− riwi.
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Game Γ4(Fk
q , n, l, ε)

Parametrized by a finite vector space Fk
q , some n, l ∈ N>0 with l ≤ n, and ε ∈ R>0 such that q(2/3+ε)k ≥ q.

Let U := F1×k
q and H := Fk

q \{0}. The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.

(c) If there exists a unique tuple (ri, Si) ∈ F4k
q ×F4k×k

q such that τi(w1, . . . , wi) = riwi + Si and

#
{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = riṽ + Si

}
> q(2/3+ε)k, and for this unique tuple it holds that

(Cri, CSi) = (r̃i, S̃i), then K learns rixi + Sihi.

Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that Step 5
follows next.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 15: Fourth transformation of our stand-alone indistinguishability game. The only difference
to Γ3(Fkq , n, l, ε) is the way the tuple (ri, Si) is computed in Step 4c.

• Moreover, since #
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}
> q(2/3+ε)k for non-aborted

stages, a uniformly random v may equal wi with probability less than q−(2/3+ε)k.

Putting these three observations together, we can conclude that with probability higher than
q−(2/3+ε)k in Step 5c of Γ1(Fkq , n, l) the same tuple (ri, Si) and hence the same output rixi + Sihi
would be generated as in Step 4d of Γ2(Fkq , n, l, ε). Thus, conditioned to the event that Γ2(Fkq , n, l, ε)

is not aborted in Step 4d, the statistical distance between K’s view in Γ2(Fkq , n, l, ε) and K’s view

in Γ1(Fkq , n, l) is upper bounded by n · q−(2/3+ε)k. Finally, we just have to add the estimation
from Lemma 16 to get the claimed upper bound for the statistical distance between K’s view in
Γ1(Fkq , n, l) and K’s view in Γ2(Fkq , n, l, ε) without any conditions.

Corollary 18. The statistical distance between K’s view in the game Γ2(Fkq , n, l, ε) and K’s view

in the game Γ3(Fkq , n, l, ε) is upper bounded by:

n ·
(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1

Proof. The only difference between Γ2(Fkq , n, l, ε) and Γ2(Fkq , n, l, ε) is that the abort message (?, i)

in Step 4d of Γ2(Fkq , n, l, ε) was replaced by (⊥, i). Thus, the statistical distance between K’s

respective views is just the probability that the game Γ2(Fkq , n, l, ε) is aborted in Step 4d. We
already estimated this abort probability by the claimed term in Lemma 16.
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Game Γ5(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q\{0}.

The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τ̃i : U i → F
4k×(1+k)
q ∪ {⊥}.

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.

(c) If C · τ̃i(w1, . . . , wi) = (r̃i, S̃i), then K learns (ri, Si) := τ̃i(w1, . . . , wi).

Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that Step 5
follows next.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 16: Fifth transformation of our stand-alone indistinguishability game. There are two differ-
ences to the game Γ4(Fkq , n, l, ε), which just make the player K strictly stronger. Firstly, the player
K directly learns (ri, Si) instead of only rixi+Sihi in Step 4c. Secondly, the tuple (ri, Si) in Step 4c
is no longer generated deterministically from τi and w1, . . . , wi by the game, but the player K may
specify an arbitrary mapping τ̃i instead that directly generates (ri, Si) from w1, . . . , wi.

Lemma 19. The statistical distance between K’s view in the game Γ3(Fkq , n, l, ε) and K’s view in

the game Γ4(Fkq , n, l, ε) is upper bounded by n · q1−k/3, if qk ≥ 21/ε.

Proof. The only difference between Γ4(Fkq , n, l, ε) and Γ3(Fkq , n, l, ε) is in the computation of the
tuple (ri, Si). It is straightforward to verify (see also Lemma 6) that by construction in Step 4c
of Γ3(Fkq , n, l, ε) it always holds: Either the game is aborted, or τi(w1, . . . , wi) = riwi + Si and

#
{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = riṽ+ Si
}
> q(2/3+ε)k and (Cri, CSi) = (r̃i, S̃i). Thus, we just have

to estimate the probability that there exists some other tuple (r′, S′) ∈ (F4k
q ×F4k×k

q )\{(ri, Si)}
with τi(w1, . . . , wi) = r′wi + S′ and #

{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = r′ṽ + S′
}
> q(2/3+ε)k. Now

given that qk ≥ 21/ε, we have by Lemma 8 that only for less than q2k/3 different choices of wi there
may exist such a second tuple (r′, S′). For each stage i ∈ {1, . . . , n}, since wi is chosen uniformly
random with support size qk−1 or larger, we can hence upper bound the probability that such a
second tuple (r′, S′) exists by q2k/3/qk−1. Thus, our lemma follows by the Union bound.

Lemma 20. The maximum winning probability in the game Γ4(Fkq , n, l, ε) is upper bounded by the

maximum winning probability in the game Γ5(Fkq , n, l).

Proof. This holds trivially, since the player in Γ5(Fkq , n, l) is strictly stronger than in Γ4(Fkq , n, l, ε).
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Game Γ6(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q\{0}.

The player K is computationally unbounded.

1. (a) For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U i → F
4k×(1+k)
q ∪ {⊥}.

(b) For each i ∈ {l + 1, . . . , n} the player K chooses some ui ∈ U .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. For i = 1, . . . , l − 1: The player K chooses some xi ∈ Fq and learns wi := zi
r← {z̃ ∈ U | z̃hi = xi}.

4. (a) A challenge bit d
r← {0, 1} is chosen secretly, and K chooses some r̃l ∈ F3k

q , S̃l ∈ F3k×k
q , xl ∈ Fq.

(b) If d = 0, let wl := zl
r← {z̃ ∈ U | z̃hl = xl}, else let wl := ul

r← U , chosen secretly.

(c) If C · τ̃l(w1, . . . , wl) = (r̃l, S̃l), then K learns (rl, Sl) := τ̃l(w1, . . . , wl).

Otherwise, K receives a special message (⊥, l) and the game is aborted in the sense that Step 6
follows next.

5. For i = l + 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q . Let wi := ui.

(b) If C · τ̃i(w1, . . . , wi) = (r̃i, S̃i), then K learns (ri, Si) := τ̃i(w1, . . . , wi).

Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that Step 6
follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 17: Sixth transformation of our stand-alone indistinguishability game. There are two dif-
ferences to the game Γ5(Fkq , n, l), which just make the player K strictly stronger. Firstly, the last
n− l “token inputs” wl+1, . . . , wn are no longer chosen uniformly at random, but the player K may
choose them at the start of the game in Step 1b. Secondly, in the first l−1 stages the game may no
longer be aborted, and the player K directly learns wi instead of only τ̃i(w1, . . . , wi), which makes
the mappings τ̃1, . . . , τ̃l−1 obsolete.

Lemma 21. The maximum winning probability in the game Γ5(Fkq , n, l) is upper bounded by the

maximum winning probability in the game Γ6(Fkq , n, l).

Proof. This holds trivially, since the player in Γ6(Fkq , n, l) is strictly stronger than in Γ5(Fkq , n, l).

Lemma 22. The games Γ6(Fkq , n, l) and Γ7(Fkq , n, l) have the same maximum winning probability.

Proof. This holds trivially, since the changes from Γ6(Fkq , n, l) to Γ7(Fkq , n, l) are just cosmetic.
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Game Γ7(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q\{0}.

The player K is computationally unbounded.

1. For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U l → F
4k×(1+k)
q ∪ {⊥}.

2. The player K learns l random vectors h1, . . . , hl
r← H and a random matrix C

r← F
3k×4k
q .

3. For i = 1, . . . , l − 1: The player K chooses some xi ∈ Fq and learns wi := zi
r← {z̃ ∈ U | z̃hi = xi}.

4. (a) A challenge bit d
r← {0, 1} is chosen secretly, and K chooses some xl ∈ Fq.

(b) If d = 0, let wl := zl
r← {z̃ ∈ U | z̃hl = xl}, else let wl := ul

r← U , chosen secretly.

5. For i = l, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q .

(b) If C · τ̃i(w1, . . . , wl) = (r̃i, S̃i), then K learns (ri, Si) := τ̃i(w1, . . . , wl).

Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that Step 6
follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 18: Seventh transformation of our stand-alone indistinguishability game. This is just a
“cleaned” version of Γ6(Fkq , n, l). Firstly, instead of letting the player K choose the last n − l
“token inputs” wl+1, . . . , wn at the start of the game explicitly, they are now implicitly hard-coded.
Secondly, the meanwhile obsolete random vectors hl+1, . . . , hn are omitted. Thirdly, we moved K’s
choice of (r̃l, S̃l) and the subsequent output generation from Step 4 to Step 5.

Lemma 23. The maximum winning probability in the game Γ7(Fkq , n, l) and the maximum winning

probability in the game Γ8(Fkq , n, l) differ at most by:

n · q1−k +
√

exp
(
n · q2−k

)
− 1

Proof. Let some arbitrary player K be given and let the random variables C,w1, . . . ,wl denote the
same-named values in the game Γ7(Fkq , n, l). First of all, we just arbitrarily fix the random coins

of K and hence get some fixed mappings τ̃l, . . . , τ̃n : U l → F
4k×(1+k)
q ∪{⊥} in Step 1 of Γ7(Fkq , n, l).

Now note that, if CM 6= CM ′ for all distinct M,M ′ ∈ τ̃i(w1, . . . ,wl−1,U), then τ̃i(w1, . . . ,wl) is
completely determined by

(
C,w1, . . . ,wl−1,C · τ̃i(w1, . . . ,wl)

)
and the specification of τ̃i. Thus,

conditioned to the event that CM 6= CM ′ for all distinct M,M ′ ∈ τ̃i(w1, . . . ,wl−1,U) for all
i ∈ {l, . . . , n} in both games Γ7(Fkq , n, l) and Γ8(Fkq , n, l), we can straightforwardly transform a

player for Γ7(Fkq , n, l) into a player for Γ8(Fkq , n, l) with exactly the same winning probability.

In other words, the maximum winning probability in the game Γ7(Fkq , n, l) may differ from the

maximum winning probability in the game Γ8(Fkq , n, l) at most by the probability that CM = CM ′

for some distinct M,M ′ ∈ τ̃i(w1, . . . ,wl−1,U) with i ∈ {l, . . . , n}. However, by Lemma 7 and the

Union Bound we can estimate this probability by (n − l + 1) · q1−3k ·
∣∣U∣∣2 + ι

(
C, (w1, . . . ,wl−1)

)
.

Further, by Corollary 5 we have that ι
(
C, (w1, . . . ,wl−1)

)
<
√

exp
(
(l − 1)q2−k

)
− 1. Together this

yields the claimed estimation.
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Game Γ8(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q\{0}.

The player K is computationally unbounded.

1. For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U l → F
4k×(1+k)
q ∪ {⊥}.

2. The player K learns l random vectors h1, . . . , hl
r← H and a random matrix C

r← F
3k×4k
q .

3. For i = 1, . . . , l − 1: The player K chooses some xi ∈ Fq and learns wi := zi
r← {z̃ ∈ U | z̃hi = xi}.

4. (a) A challenge bit d
r← {0, 1} is chosen secretly, and K chooses some xl ∈ Fq.

(b) If d = 0, let wl := zl
r← {z̃ ∈ U | z̃hi = xi}, else let wl := ul

r← U , chosen secretly.

5. For i = l, . . . , n:

(a) The player K chooses some ri ∈ F4k
q , Si ∈ F4k×k

q .

(b) If τ̃i(w1, . . . , wl) = (ri, Si), then K is notified about that by a special message (>, i).
Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that Step 6
follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 19: Eighth transformation of our stand-alone indistinguishability game. The only difference
to Γ7(Fq, n, l) is that in Step 5b the player K now must exactly forecast τ̃i(w1, . . . , wl) rather than
only the linear projection C · τ̃i(w1, . . . , wl).

Lemma 24. The games Γ8(Fkq , n, l) and Γ9(Fkq , n, l) have the same maximum winning probability.

Proof. This holds trivially, since w.l.o.g. we only need to consider deterministic players.

Lemma 25. The maximum winning probability in the game Γ9(Fkq , n, l) is upper bounded by:

1
2 + n ·

(
2q(4−k)/3 + q ·

√
exp
(
n · q2−k

)
− 1

)
Proof. W.l.o.g. we consider a deterministic player K, i.e. the mappings τ̃i, xi, σ̃i are all fixed. Let
the random variables h1, . . . ,hn, z1, . . . , zl−1,w,d represent the same-named random values in the
game Γ9(Fkq , n), i.e. it holds:

d
r← {0, 1} h1, . . . ,hl

r← H zi
r←
{
z ∈ U

∣∣ zhi = xi(h1, . . . ,hl, z1, . . . , zi−1)
}

For convenience we set:

H := (h1, . . . ,hl) H′ := (h1, . . . ,hl−1) T := (z1, . . . , zl−1,w) T′ := (z1, . . . , zl−1)

Further, let the random variable m ∈ {l − 1, . . . , n} represent the index of the latest stage where
the game is not aborted; i.e. τ̃i(T) = σ̃i(H,T′) for all i ∈ {l, . . . ,m}, and τ̃m+1(T) 6= σ̃m+1(H,T′)
if not m = n. Note that K’s complete view can be deterministically reconstructed from (H,T′,m)
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Game Γ9(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q\{0}.

The player K is computationally unbounded.

1. (a) For each i ∈ {1, . . . , l} the player K specifies some mapping xi : Hl × U i−1 → Fq.

(b) For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U l → F
4k×(1+k)
q ∪ {⊥}.

(c) For each i ∈ {l, . . . , n} the player K specifies some mapping σ̃i : Hl × U l−1 → F
4k×(1+k)
q .

2. The player K learns l random vectors h1, . . . , hl
r← H.

3. For i = 1, . . . , l − 1: The player K learns zi
r←
{
z̃ ∈ U

∣∣ z̃hi = xi(h1, . . . , hl, z1, . . . , zi−1)
}

.

4. (a) A challenge bit d
r← {0, 1} is chosen secretly.

(b) If d = 0, let w
r←
{
z̃ ∈ U

∣∣ z̃hl = xl(h1, . . . , hn, z1, . . . , zl−1)
}

, else let w
r← U , chosen secretly.

5. For i = l, . . . , n: If τ̃i(z1, . . . , zl−1, w) = σ̃i(h1, . . . , hl, z1, . . . , zl−1), then K is notified about that by
a special message (>, i); else K receives a special message (⊥, i) and the game is aborted in the sense
that Step 6 follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 20: Final transformation of our stand-alone indistinguishability game. The difference to the
game Γ8(Fkq , n, l) is that the player K must specify in Step 1 how all his future choices will depend
on the information gathered so far, and the meanwhile obsolete random matrix C is omitted.

and K’s program code. Thus, with the random variable d̃ ∈ {0, 1} representing K’s final guess, we
have:

P
[
d̃ = d

]
= P

[
d̃ = 0

∣∣d = 0
]
·P
[
d = 0

]
+P

[
d̃ = 1

∣∣d = 1
]
·P
[
d = 1

]
= 1

2

(
P
[
d̃ = 0

∣∣d = 0
]

+P
[
d̃ = 1

∣∣d = 1
])

= 1
2

(
P
[
d̃ = 0

∣∣d = 0
]

+ 1−P
[
d̃ = 0

∣∣d = 1
])

≤ 1
2 + 1

2

∣∣∣P[d̃ = 0
∣∣d = 0

]
−P

[
d̃ = 0

∣∣d = 1
]∣∣∣

≤ 1
2 + 1

2

∑
H,T ′,m

∣∣∣P[(H,T′,m) = (H,T ′,m)
∣∣d = 0

]
−P

[
(H,T′,m) = (H,T ′,m)

∣∣d = 1
]∣∣∣ (1)

Now, for H ∈ Hl, T ′ ∈ U l−1, m ∈ {l − 1, . . . , n} we define the following sets:

Am(H,T ′) :=
{
ṽ ∈ U

∣∣ ∀ j ∈ {l, . . . ,m} : τ̃j(T
′, ṽ) = σ̃j(H,T

′)
}

Ām(H,T ′) := Am\Am+1 with the convention that An+1(H,T ′) = ∅

The intuition behind this is that Am(H,T′) consists of all token inputs for stage l, such that the
game is not aborted before stage m. Accordingly, Ām(H,T′) consists of all token inputs for stage
l, such that stage m is the latest non-aborted stage. In other words, it holds:

Am(H,T ′) =
{
w ∈ U

∣∣ (H,T′,w) = (H,T ′, w) ⇒ m ≥ m
}

Ām(H,T ′) =
{
w ∈ U

∣∣ (H,T′,w) = (H,T ′, w) ⇒ m = m
}
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Further, for all h ∈ H, α ∈ Fq we define:

Zα(h) := {z̃ ∈ U | zh = α}

Note that w
r← Zxl(H,T′)(hl) if d = 0, and w

r← U if d = 1. Hence, given H := (h1, . . . , hl) ∈ Hl,
T ′ ∈ U l−1, m ∈ {l − 1, . . . , n}, we can compute:∣∣∣P[m = m

∣∣ (d,H,T′) = (0, H, T ′)
]
− P

[
m = m

∣∣ (d,H,T′) = (1, H, T ′)
]∣∣∣

=
∣∣∣P[w ∈ Ām(H,T ′)

∣∣ (d,H,T′) = (0, H, T ′)
]
− P

[
w ∈ Ām(H,T ′)

∣∣ (d,H,T′) = (1, H, T ′)
]∣∣∣

=

∣∣∣∣∣
∣∣Zxl(H,T ′)(hl) ∩ Ām(H,T ′)

∣∣∣∣Zxl(H,T ′)(hl)∣∣ −
∣∣Ām(H,T ′)

∣∣∣∣U|
∣∣∣∣∣

= q1−k ·
∣∣∣∣∣Zxl(H,T ′)(hl) ∩ Ām(H,T ′)

∣∣− 1
q

∣∣Ām(H,T ′)
∣∣∣∣∣

Plugging this into (1), we get:

P[d̃ = d] ≤ 1
2 + q1−k

2

n∑
m=l−1

E

∣∣∣∣∣Zxl(H,T′)(hl) ∩ Ām(H,T′)
∣∣− 1

q

∣∣Ām(H,T′)
∣∣∣∣∣

Now we exploit that
∣∣Ām(H,T ′)

∣∣ =
∣∣Am(H,T ′)\Am−1(H,T ′)

∣∣ =
∣∣Am(H,T ′)

∣∣ − ∣∣Am−1(H,T ′)
∣∣ by

construction and analogously
∣∣Z ∩ Ām(H,T ′)

∣∣ =
∣∣Z ∩ Am(H,T ′)

∣∣ − ∣∣Z ∩ Am−1(H,T ′)
∣∣ for every

Z ⊆ U . Using this and the Triangle Inequality, we can derive:

P[d̃ = d] ≤ 1
2 + q1−k

n+1∑
m=l−1

E

∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣

I.e., we just lost the factor 1
2 in front of the big sum and in return could replace each Ām by Am.

Moreover, since always Al−1(H,T′) = F
1×k
q and An+1(H,T′) = ∅ by definition, the first and last

summand of the expression above are always zero and can be discarded; i.e. it holds:

P[d̃ = d] ≤ 1
2 + q1−k

n∑
m=l

E

∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣ (2)

Now we exploit that
{
Am(H,T ′)

}
H∈Hl can be considered as a disjoint decomposition of some subset

of F1×k
q , since by construction we have:

Am(H1, T
′) 6= Am(H2, T

′) ⇒ Am(H1, T
′) ∩Am(H2, T

′) = ∅

Thus, for arbitrary γ ∈ R>0 by Corollary 11 follows:

P

[
∃α ∈ Fq, H ∈ Hl :

∣∣∣∣∣Zα(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2
+ ι(hl,T

′)

We instantiate α in this inequality by xl(H,T′) and H by H, which yields:

P

[∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2
+ ι(hl,T

′)
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Since E(x) =
∫∞

0 P[x > γ] dγ for every real-valued random variable x ∈ R≥0, this directly implies:

E

∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣ ≤ ∫ qk

0
min

{
1, q

k+1/2

γ3/2

}
+ ι(hl,T

′) dγ

= q(2k+1)/3 +

∫ qk

q(2k+1)/3

qk+1/2

γ3/2
dγ + qk · ι(hl,T′) = 2q(2k+1)/3 − q(k+1)/2 + qk · ι(hl,T′)

Moreover, by Corollary 5 we have that ι(hl,T
′) <

√
exp
(
(l − 1)q2−k

)
− 1. Using (2), we conclude:

P[d̃ = d] < 1
2 + q1−k · (n− l + 1) ·

(
2q(2k+1)/3 − q(k+1)/2 + qk ·

√
exp
(
(l − 1) · q2−k

)
− 1

)
< 1

2 + n ·
(

2q(4−k)/3 + q ·
√

exp
(
n · q2−k

)
− 1

)
3.5.8 Concluding the security proof

We can now finally conclude our security proof by just putting things together. We first sum up
what we know so far about successive hybrid games; then we conclude this whole section with our
final security theorem.

Corollary 26. For any l ∈ {1, . . . , n}, the hybrid games Gamel−1 and Gamel are statistically
indistinguishable, if k ≥ 5. More particular, the statistical distance between the environment’s
respective views is negligible in the security parameter λ := k log q, if only k ≥ 5.

Proof. For i = 0, . . . , 9, let δi denote the player’s advantage in the respective indistinguishability
game; i.e. the maximum winning probability in the game Γi(F

k
q , n, l), or Γi(F

k
q , n, l, ε) respectively,

is 1
2 + δi. By Lemma 14, the statistical distance between the environment’s views in Gamel−1 and

Gamel is upper bounded by 2δ0. Furthermore, given any ε ∈ R>0 with q(2/3+ε)k ≥ q, it holds:

δ0 ≤ δ1 by Lemma 15

δ1 ≤ δ2 + n ·
(
q−(2/3+ε)k + q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1 by Lemma 17

δ2 ≤ δ3 + n ·
(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1 by Corollary 18

δ3 ≤ δ4 + n · q1−k/3, if qk ≥ 21/ε by Lemma 19

δ4 ≤ δ5 by Lemma 20

δ5 ≤ δ6 by Lemma 21

δ6 = δ7 by Lemma 22

δ7 ≤ δ8 + n · q1−k +
√

exp
(
n · q2−k

)
− 1 by Lemma 23

δ8 = δ9 by Lemma 24

δ9 ≤ n ·
(

2q(4−k)/3 + q ·
√

exp
(
n · q2−k

)
− 1

)
by Lemma 25

Now, let ε := 1
12 and let k ≥ 5, which especially yields that q(2/3+ε)k ≥ q and allows us to estimate:

q−(2/3+ε)k, q1−(1/3−ε)k, q1−k, q2−k, q1−(1/3−ε)k, q1−k/3, q(4−k)/3 ≤ q−k/5
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Further let qk ≥ n25/3. This, together with k ≥ 5, allows us to estimate:

q ·
√

exp
(
n · q2−k

)
− 1 ≤ q ·

√
exp
(
q2−22k/25

)
− 1 < q ·

√
4q2−22k/25 = 2q2−11k/25 ≤ 2q−k/5

Putting things together, we have shown that the statistical distance between the environment’s
views in the hybrid games Gamel−1 and Gamel is upper bounded by (13n+ 3) · exp(−λ/5), where
λ := k log q is the security parameter and we need that exp(λ) ≥ max

(
212, n25/3

)
.

Theorem 27. Let some arbitrary environment Z be given and some adversary A that corrupts
Goliath. Then the view of Z in the ideal model with ideal functionality F seq−ot

OAFE and simulator
SGoliath(A) is statistically indistinguishable (with security parameter λ := k log q) from the view of
Z in the real model with protocol Πseq−ot

OAFE and adversary A, if only k ≥ 5.

Proof. By Corollary 26 we have that the statistical distance between the environment’s views in
successive hybrid games Gamel−1,Gamel is negligible in the security parameter λ, if only k ≥ 5. By
the Union Bound, we can conclude that the statistical distance between the environment’s views
in Game0 and Gamen may be at most by a factor n bigger, and hence is still negligible. Finally, by
Corollary 13 we have that Game0 is statistical indistinguishable from the ideal model, and Gamen
is perfectly indistinguishable from the real model. Thus, the ideal ideal model and the real model
must be statistical indistinguishable.

4 Applications and variants of our construction

We present now how the claimed optimal constructions for multiple OTMs, Commitments, and OT
do work. The respective constructions are all UC-secure. At the end of this section, in Section 4.6,
we also discuss how the communication complexity of computationally secure OT protocols can be
amortized by standard techniques and why this does not work for commitments or OTMs.

4.1 Unidirectional OT and OTMs with optimal communication complexity

As discussed in Section 2.4, one can reduce k-bit string-OT and Fk2-OAFE to each other without any
overhead. However, our construction for seq-ot-OAFE has communication complexity Θ(k2 log q)
per implemented instance of Fkq -OAFE. I.e., by the aforementioned reduction approach we would
end up with a quadratic communication complexity, as it happened in [DKMQ11]. In contrast, if
k is constant and q grows exponentially in the security parameter, we have only a communication
complexity of O(log q) for each implemented instance of Fkq -OAFE, which obviously is optimal.

Therefore, it is desirable to implement l-bit string-OT by a constant number of Fd
2l

-OAFE instances
with constant dimension d. We present such a reduction protocol in Figure 21; our construction
needs only a single instance of F2

2l
-OAFE and the protocol idea is as follows. The F2

2l
-OAFE

primitive allows the sender to specify two affine functions f0, f1 : F2l → F2l , such that the receiver
can evaluate both functions only once and only simultaneously on the same input. Thus, if the
sender announces his OT-inputs s0 and s1 encrypted with f0(0) and f1(1) respectively, then the
receiver can learn at most one of the values needed for decryption of s0 and s1. One can even go
without transmitting any ciphertexts: The sender just has to choose f0, f1, such that f0(0) = s0

and f1(1) = s1, whereas f0(1) and f1(0) are completely random.
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a, b
r← F

2
2l

m0 := s0 ⊕ (e0 · b)
m1 := s1 ⊕

(
e1 · (a+ b)

) m0,m1

with {e0, e1} being
any public basis of
the linear space F1×2

2l

F
2
2l -OAFE

a

b

c

ac+ b y

l-bit string-OT

s0

s1

c

mc ⊕ (ec · y) sc

Figure 21: Reduction of l-bit string-OT to F2
2l

-OAFE. Note that the transmission of m0 and m1 is
not essential; instead the sender can just choose (a, b) subject to the condition that e0 · b = s0 and
e1 · (a+ b) = s1.

The protocol in Figure 21 is perfectly UC-secure and works also for implementation of sequen-
tially queriable OTM tokens from seq-ot-OAFE. Thus, in the outcome we have a construction for
sequentially queriable log(q)-bit OTM tokens, using only Θ(log q) bits of communication per im-
plemented OTM token, which is obviously optimal. To the best of our knowledge, our approach is
the first to implement statistically secure OT (or OTMs respectively) with optimal communication
complexity, while based only on untrusted tamper-proof hardware.

Note that our protocols with linear communication complexity also have very low computation
complexity. Per implemented log(q)-bit string-OT (or log(q)-bit OTM respectively) every party
(and in particular the exchanged token) has only to perform O(1) finite field operations with field
size q, which is considerably faster than, e.g., something based on modular exponentiation.

4.2 Achieving optimal communication complexity for bidirectional OT

We have shown above how one can implement unidirectional string-OT (from the token issuer
to the token receiver) with optimal communication complexity, using our protocol Πseq−ot

OAFE as a
building block. Implementing string-OT in the other direction with still optimal communication
complexity turns out a bit more challenging. The starting point for our construction is the protocol
in Figure 22 for reversing the direction of a given Fq-OAFE primitive. Note that this protocol is

Fq-OAFE
x

Fq
r→ r

a

ax+ r z

m := z + b

reversed Fq-OAFE

x a

b

m− ry

Figure 22: Basic approach for reversing the direction of a given Fq-OAFE primitive; protocol taken
from [WW06]. Note that this protocol is not UC-secure, unless input of a into the underlying
Fq-OAFE instance is enforced before the receiver outputs y; otherwise a corrupted sender can
maliciously delay his choice of a (and b).
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Fq-OAFE
random αi

random βi

x

αix+ βi γi

for i ∈ {1, . . . , 5}

H
r← F

2×5
q

α′ := a−H · (α1, . . . , α5)T

β′ := b−H · (β1, . . . , β5)T

F
2
q-OAFE

xa

b

α′x+ β′ +H · (γ1, . . . , γ5)T y

Figure 23: UC-secure implementation of F2
q-OAFE from five instances of Fq-OAFE; protocol taken

from [DKMQ12]. Additional measures must be taken so that H is not announced before the receiver
has provided some input to all five underlying Fq-OAFE instances in the dashed box; otherwise
the protocol is inherently insecure, as shown in [DKMQ12, Lemma 1].

not UC-secure, since a corrupted sender can cause the receiver to output some y before a and b
are fixed: The corrupted sender can just send a random m ∈ Fq and arbitrarily later input some
a ∈ Fq of his choice into the underlying Fq-OAFE instance (and then compute b := m− z). This
breaches UC-security, since an ideal version of the reversed Fq-OAFE primitive would not send y to
the receiver before the sender’s inputs a and b are fixed. However, in our case this problem can be
solved very easily: Since our protocol Πseq−ot

OAFE implements sequentially queriable OAFE instances,
it suffices to use every other OAFE instance for a check announcement, i.e. both parties just input
randomness and the receiver has to announce his input-output tuple.

However, the approach in Figure 22 does not work for Fkq -OAFE with k > 1, and we need F2
q-

OAFE for our aimed at OT protocol. Thus, a construction for Fkq -OAFE from some instances of
Fq-OAFE would come in very handy. In [DKMQ12] one can find such a construction and a security
proof for the case that k log q increases polynomially in the security parameter. For the sake of
self-containedness we recap in Figure 23 the approach of [DKMQ12] with k = 2. By combining this
with the protocol for reversed OAFE (Figure 22) and some optimization in the number of Fq-OAFE
instances used for check announcements, we end up with the protocol depicted in Figure 24.

By plugging the protocol of Figure 24 on top of Πseq−ot
OAFE , we get sequentially queriable F2

q-OAFE
from the token receiver to the token sender with an overall communication complexity of O(log q)
per implemented F2

q-OAFE instance. So, we can finally apply the construction from Section 4.1 to
get string-OT with optimal communication complexity also in the direction from the token receiver
to the token issuer.

4.3 Efficient protocol for string-commitments in both directions

Based on our approach for bidirectional OT, one can also construct a bidirectional and reusable
commitment functionality from one tamper-proof token. However, the generic reduction via OT
has suboptimal communication complexity, which can be circumvent by a direct reduction to
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Fq-OAFE
x

Fq
r→ γi

αi
r← Fq

αix+ γi βi

for i ∈ {1, . . . , 5}

Fq-OAFE
0

Fq
r→ ρ

0

ρ

ρ

H
r← F

2×5
q

α′ := a−H · (α1, . . . , α5)T

β′ := b+H · (β1, . . . , β5)T

reversed F2
q-OAFE

x a

b

α′x+ β′ −H · (γ1, . . . , γ5)Ty

Figure 24: Combined protocol for UC-secure reversed F2
q-OAFE from six sequentially queriable

instances of Fq-OAFE. Note that the receiver must not output y unless ρ was announced correctly
by the sender.

F2l-OAFE, where l is the commitment length. The simple idea is as follows. If Goliath wants
to commit to some s ∈ F2l , he randomly picks b

r← F2l , David picks x
r← F2l , and via OAFE David

learns y := sx+ b. Due to the blinding by b, this reveals no information about s to David. Goliath
can unveil the commitment just by sending (s, b). If he wants to equivocate the commitment, he
needs to find some (s′, b′) 6= (s, b) with s′x+ b′ = sx+ b, which is equivalent to guessing x correctly
and thus may happen at most with probability 2−l.

If David wants to commit to some s ∈ F2l , he just uses s as his OAFE input and Goliath chooses
random inputs a, b

r← F2l . I.e., David learns y := as+ b. To unveil, David sends (s, y) to Goliath.
If he wants to equivocate the commitment, he needs to find some (s′, y′) 6= (s, y) with as′ + b = y′,
which is equivalent to guessing (a, b) correctly. Since y contains only l bits of information about
(a, b), this may happen at most with probability 2−l. However, note that if this approach is based
on F seq−ot

OAFE rather than some interactive OAFE implementation, additional measures must be taken
to enforce that David actually queries the token in the commit phase. This can be done, exploiting
the sequential nature of F seq−ot

OAFE : the next OAFE instance is just used with random inputs and
David has to announce his corresponding input-output tuple. See Figure 25 for the formal details.

Furthermore note that Step 2 of the protocol Πbackward
COM , if based on Πseq−ot

OAFE , can be made non-
interactive, so that the commit phase consists only of a single massage from David to Goliath. The
reason is that in the send phase of Πseq−ot

OAFE Goliath only sends some check information (r̃i, S̃i) and

derandomization information (ãi, b̃i). The former can be moved to the setup phase, because it is
independent of the parties’ inputs, and the latter can just be omitted, because Goliath’s OAFE
inputs are uniformly random anyway.
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Protocol Πforward
COM (Goliath is the committing/unveiling party)

Parametrized by a string length l, which also serves as security parameter, and some runtime bound n
that is polynomially bounded in l. All parties have access to a hybrid functionality F seq−ot

OAFE parametrized
by the finite vector space F1

2l and with runtime bound n. Bit strings of length l and elements of F2l are
identified with each other. The counter j, held by Goliath, is initialized with 0.

Commit phases:

1. Upon input (Commit, si, i) from the environment, Goliath verifies that si ∈ {0, 1}l and i = j+ 1 ≤ n;

else he ignores that input. Next, Goliath updates j ← i, chooses some random bi
r← F2l and sends

(si, bi, i) to F seq−ot
OAFE .

2. David, upon receiving the message (ready, i) from F seq−ot
OAFE , picks some random xi

r← F2l . He sends

(xi, i) to F seq−ot
OAFE , receives some (yi, i) and outputs (committed, i).

Unveil phases:

3. Upon input (Unveil, i) from the environment, Goliath verifies that i ≤ j; else he ignores that input.
Next, Goliath sends (si, bi, i) to David.

4. David verifies that sixi + bi = yi. If the check is passed, he outputs (si, i); otherwise he outputs
(⊥, i).

Protocol Πbackward
COM (David is the committing/unveiling party)

Parametrized by a string length l, which also serves as security parameter, and some runtime bound n
that is polynomially bounded in l. All parties have access to a hybrid functionality F seq−ot

OAFE parametrized
by the finite vector space F1

2l and with runtime bound 2n. Bit strings of length l and elements of F2l are
identified with each other. The counter j, held by David, is initialized with 0.

Commit phases:

1. Upon input (Commit, si, i) from the environment, David verifies that si ∈ {0, 1}l and i = j + 1 ≤ n;
else he ignores that input. Next, David updates j ← i and sends (i) to Goliath.

2. Goliath randomly picks ai, bi, ci, di
r← F2l and sends (ai, bi, 2i− 1) and (ci, di, 2i) to F seq−ot

OAFE .

3. David, after receiving the messages (ready, 2i − 1) and (ready, 2i) from F seq−ot
OAFE , sends (si, 2i − 1)

and (0, 2i) to F seq−ot
OAFE . He receives some (yi, 2i− 1) and (ri, 2i) and announces (ri, i) to Goliath.

4. Goliath outputs (committed, i).

Unveil phases:

5. Upon input (Unveil, i) from the environment, David verifies that i ≤ j; else he ignores that input.
Next, David sends (si, yi, i) to Goliath.

6. Goliath verifies that ri = di and yi = aisi+bi. If both checks are passed, he outputs (si, i); otherwise
he outputs (⊥, i).

Figure 25: Asymptotically optimal protocols for UC-secure string-commitments in the seq-ot-OAFE
hybrid model. Since the F seq−ot

OAFE primitive is only invoked in the commit phases, the same instance

of F seq−ot
OAFE can be used for both protocols simultaneously; the parties just have to keep track of

which data belongs to which protocol.

46



4.4 Computational solution for unlimited reusability of a memory-limited token

Our protocol Πseq−ot
OAFE guarantees perfect security against a corrupted David (cf. Section 3.4). How-

ever, to achieve this, the token needs to be able to store Θ(nk2 log q) bits of information. This
contradicts the idea of a tamper-proof hardware token being a small and simple device. In [MS08]
it was noted, that if David is computationally bounded, then the functions stored on the token
could be chosen to be pseudorandom [GGM86, HILL99]. The same is true for our construction.
It suffices that the token stores a succinct seed of length Θ(k log q) for a pseudorandom number
generator F . Upon input (zi, i) the token can compute the next pseudorandom value (ri, Si) = F (i)
and output Wi = rizi + Si.

Moreover, in such a setting we can achieve unbounded token reusability at the price of occasional
random messages from David to Goliath. More specifically, we do not need our protocol Πseq−ot

OAFE and

the ideal functionality F seq−ot
OAFE to be parametrized by an explicit runtime bound n any more, but

David has to send fresh random shares hi to Goliath once the shares from the initialization phase
have been used up. Our security proofs are still valid. Perfect security against a corrupted David is
traded for computational security but otherwise directly carries over to the modified construction.
Statistical security against a corrupted Goliath is just maintained, because David’s computational
boundedness implies still a polynomial upper bound for the number of token queries and a corrupted
Goliath only becomes weaker if he learns his shares h1, . . . , hn of David’s inputs x1, . . . , xn not all
at once at the beginning of the protocol.

4.5 Truly non-interactive solution with two tokens

Our approach still needs David to send some message to Goliath, and in the computational variant
with unlimited token reusability this even has to happen repeatedly. We will show in Section 5.2
that one cannot implement F seq−ot

OAFE from a single instance of F stateful
wrap without any further interaction

between sender and receiver. However, there is a generic non-interactive protocol for F seq−ot
OAFE , if

two instances of F stateful
wrap are in place, i.e. Goliath issues two tamper-proof tokens and David can

trust that they are mutually isolated. Then, the second token can play Goliath’s role in our
protocol Πseq−ot

OAFE with random inputs ai and bi. As Goliath knows the second token’s random coins,
derandomization of his inputs can be done as follows: If Goliath wants to replace the random input
tuple (ai, bi) by some arbitrarily chosen (a′i, b

′
i), he just sends (a′i− ai, b′i− bi, i) to David, who then

has to replace his output yi by y′i := yi + (a′i − ai)xi + (b′i − bi).
Note that based on the two-token protocol that implements F seq−ot

OAFE with random Goliath inputs,
Step 2 of Πbackward

COM (q.v. Figure 25) can also be made truly non-interactive, as Goliath does not need
to derandomize any of his inputs. All other protocols become non-interactive straightforwardly.

4.6 A note on optimal communication complexity

The string length of any computationally secure OT protocol can be polynomially extended by
standard techniques (cf. protocol Πenlarge

OT in Figure 26). It is straightforward to show UC-security
of this approach. Hence, optimal communication complexity of the computational versions of
our OT solution is not a noteworthy result. However, applying an analogous transformation to
commitments or OTMs would destroy UC-security (see Remark 28 below) and we are not aware
of any universally composable amortization techniques for these primitives that do not come along
with additional setup assumptions.
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Protocol Πenlarge
OT

Parametrized by two security parameters k and l with k > l, a hybrid functionality FOT for l-bit string-OT
and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

1. Upon input (s0, s1) from the environment, the sender verifies that s0, s1 ∈ {0, 1}k; else that input is

ignored. Next, the sender chooses two random seeds s̃0, s̃1
r← {0, 1}l and inputs (s̃0, s̃1) into FOT.

2. Upon input x from the environment, the receiver verifies that x ∈ {0, 1}; else that input is ignored.
Next, the receiver inputs x into FOT, thus receiving s̃x.

3. The sender, after being notified that the receiver also did provide some input to FOT, announces
r0 := s0 ⊕ F (s̃0) and r1 := s1 ⊕ F (s̃1).

4. The receiver computes and outputs sx = rx ⊕ F (s̃x).

Protocol Πenlarge
COM

Parametrized by two security parameters k and l with k > l, a hybrid functionality FCOM for l-bit string-
commitment and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

Commit phase:

1. Upon input (Commit, c) from the environment, the sender verifies that c ∈ {0, 1}k; else that input

is ignored. Next, the sender chooses some random s̃
r← {0, 1}l, commits to s via FCOM and sends

r := c⊕ F (s̃) to the receiver.

2. The receiver outputs (committed).

Unveil phase:

3. Upon input (Unveil) from the environment, the sender unveils s̃.

4. If the unveil is successful, the receiver computes and outputs r ⊕ F (s̃); otherwise it outputs ⊥.

Protocol Πenlarge
OTM

Parametrized by two security parameters k and l with k > l, a hybrid functionality FOTM for l-bit OTM
and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

Creation:

1. Upon input (s0, s1) from the environment, the sender verifies that s0, s1 ∈ {0, 1}k; else that input is

ignored. Next, the sender chooses two random seeds s̃0, s̃1
r← {0, 1}l, sends (s̃0, s̃1) via FOTM to the

receiver and announces r0 := s0 ⊕ F (s̃0) and r1 := s1 ⊕ F (s̃1).

2. The receiver outputs (ready).

Query:

3. Upon input x from the environment, the receiver verifies that x ∈ {0, 1}; else that input is ignored.
Next, the receiver inputs x into FOTM, thus receiving s̃x, and computes and outputs sx = rx⊕F (s̃x).

Figure 26: Straightforward approaches for enlarging the string length of some given OT, commit-
ment or OTM functionality, using a PRNG. The protocol Πenlarge

OT is UC-secure, but Πenlarge
COM and

Πenlarge
OTM are not (q.v. Remark 28).
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Remark 28. The protocols Πenlarge
COM and Πenlarge

OTM in Figure 26 are not UC-secure.

Proof. We just show that Πenlarge
COM is not UC-secure. For Πenlarge

OTM one can argue analogously. Con-
sider a passively corrupted receiver that just hands over every message to the environment. For
the real model, this means that in the commit phase the environment learns some k-bit string
r and in the unveil phase it learns a seed s ∈ {0, 1}l, such that r ⊕ F (s) is the honest sender’s
input c. Now, if the environment chooses the honest sender’s input c ∈ {0, 1}k uniformly at ran-
dom, this is not simulatable in the ideal model. The simulator has to choose r before he learns
c. Thus, using a simple counting argument, the probability that there exists any seed s ∈ {0, 1}l
with r⊕F (s) = c can be upper bounded by 2l−k. In other words, the simulation fails at least with
probability 1− 2l−k.

5 No-go arguments & conclusion

In this section we conclude our work by a short summery of what we achieved so far, what further
improvement opportunities are left open, and which drawbacks of our work seem unavoidable (or
at least hard to circumvent). We start with the negative aspects; they highlight that our results
are quite close to optimal. Though, we give rather intuitive arguments than full formal proofs.

5.1 Impossibility of unlimited token reuse without computational assumptions

Our first negative result is that tokens with a limited amount of entropy can only be used to
implement a limited number of statistically secure OTs. To show this we will only consider passively
secure protocols and show stronger statements. Namely, given a token that can store ` bits of
randomness, we cannot hope to instantiate more than `/2 bit-OTs between David and Goliath
using this token. For passive security this is optimal. Given that the token behaves honestly, we
can implement bit-OT from Goliath to David by using the token as a selective decrypter : Goliath
one-time-pad encrypts his OT-inputs, sends them to David, and David can ask the token for one
of the keys and decrypt his output. The correctness and privacy properties of this protocol follow
immediately.

Now, for our impossibility argumentation assume we were given k bit-OTs between Goliath
and David. In the semi-honest setting, implementing k-bit string-OT is then trivial: David just
inputs the same choice-bit into each bit-OT. We thus only need to show that there is no protocol
Π that implements a single k-bit string-OT using a token with at most ` bits of randomness, where
k is significantly larger than `/2. With the above said, we can also conclude that there exists no
protocol realizing k bit-OTs using a token with significantly less than 2k bits of randomness.

Assume we were given a correct and statistically receiver-private protocol Π that implements
k-bit string-OT in the F stateful

wrap -hybrid model, where the sender of the OT is also the sender of
the token. We first provide an extractor Extc(τ, σ) which computes the most likely David output,
given David’s choice bit c, a transcript τ of all messages between David and Goliath, and the token
random tape σ. Notice that τ only contains the messages sent and received by David, not his
complete view. Our extractor does the following. It iterates through all possible random tapes r
for David, of which there are at most 2poly(k), since we require an honest David to be efficient. For
each such random tape r, Extc(τ, σ) checks if r is consistent with the message transcrip τ and the
token random tape σ. More precisely, Extc(τ, σ) simulates David with input c and random tape r,
and a token with random tape σ. For each message m sent by this simulated David to Goliath,
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Extc(τ, σ) checks whether m appears in the transcript τ at the appropriate position. If for any
message m this is not the case, the random tape r is discarded. If m is identical to the message
in τ , then Extc(τ, σ) answers the message by the simulated David with the next message of Goliath
in τ . In the end, the simulated David will produce an output s. Extc(τ, σ) stores these David
outputs in a list. After all possible random tapes r are iterated, Extc(τ, σ) checks which output s
appears most frequently in the list of David outputs and then outputs this s. By the correctness
property of Π it must hold with overwhelming probability that Extc(τ, σ) = sc, where σ and τ are
generated by a real run of Π with Goliath input (s0, s1), David input c, and fresh random tapes for
both of them.

However, it must also hold with overwhelming probability that Ext1−c(τ, σ) = s1−c, as otherwise
an unbounded Goliath could simply compute

(
Ext0(τ, σ),Ext1(τ, σ)

)
, compare it with (s0, s1) and

thereby learn David’s choice bit c. Thus, for real runs of Π it holds with overwhelming probability
that (s0, s1) =

(
Ext0(τ, σ),Ext1(τ, σ)

)
, regardless of Goliath’s input distribution. In other words,

the Shannon entropy H1(s0, s1 | τ, σ) =: ν is always negligible.
Now we turn to show that a transcript τ alone may contain only negligible information about

Goliath’s input (s0, s1). This will conclude our argumentation, since together with the negligibility
of H1(s0, s1 | τ, σ) it will yield that σ may have only negligibly less entropy than (s0, s1). Assume
that Π is also statistically sender-private and consider protocol runs with uniformly random Goliath
input (s0, s1). If we set c = 0, it must hold that H1(s1 | τ, s0) ≥ k−µ for some negligible µ, because
of the sender-privacy property of Π. Especially, it must hold in this case that H1(s1 | τ) ≥ k − µ.
Analogously, in the case of c = 1 it must hold that H1(s0 | τ) ≥ H1(s0 | τ, s1) ≥ k − µ′ for some
negligible µ′. However, as an unbounded Goliath can compute H1(s0 | τ = τ̃) and H1(s1 | τ = τ̃)
for any actually observed message transcript τ̃ , it must just hold that H1(s0 | τ) and H1(s1 | τ) are
negligibly close to k in either case; otherwise Goliath could distinguish both cases and the receiver-
privacy of Π would be broken. Say H1(s0 | τ) ≥ k−µ′′ and H1(s1 | τ) ≥ k−µ′′′ in both cases. Thus,
if c = 0, we can estimate:

H1(s0, s1 | τ) = H1(s1 | τ, s0) +H1(s0 | τ) ≥ (k − µ) + (k − µ′′) = 2k − (µ+ µ′′)

Analogously, if c = 1, we can estimate:

H1(s0, s1 | τ) = H1(s0 | τ, s1) +H1(s1 | τ) ≥ (k − µ′) + (k − µ′′′) = 2k − (µ′ + µ′′′)

Hence, we find some negligible ν ′, such that H1(s0, s1 | τ) ≥ 2k − ν ′ for any distribution of David’s
input c. Remember that we assumed Goliath’s input (s0, s1) to be uniformly random. Since
H1(s0, s1 | τ, σ) = H1(s0, s1, σ | τ)−H1(σ | τ) ≥ H1(s0, s1 | τ)−H1(σ), we can conclude:

` = H1(σ) ≥ H1(s0, s1 | τ)−H1(s0, s1 | τ, σ) ≥ 2k − ν ′ − ν

I.e., since ν and ν ′ are negligible, there cannot exist a correct and statistically secure protocol
Π that implements k-bit string-OT using a token with at most ` bits of randomness, where k is
significantly larger than `/2.

5.2 Lower bounds for the rounds of interaction between David and Goliath

Our protocol Πseq−ot
OAFE needs two rounds of interaction between David and Goliath after the token is

transmitted. We show now that this is a tight lower bound, even if one wishes to implement only
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two OT instances (or two sequentially queriable OTMs) from one token. Our proof also holds with
respect to computational assumptions, as long as David is subject to the same restrictions as the
token. If just the token has to run in polynomial time but David is computationally unbounded,
there might exist UC-secure protocols for F seq−ot

OAFE from F stateful
wrap relative to some computational

assumption.
Similar to the impossibility result of [CF01], we first assume existence of a UC-protocol and

then turn the simulator for a corrupted David into an unsimulatable attack by Goliath. However,
first of all note that any protocol with only one round of interaction after the token transmission
can be turned into a protocol without any interaction after the token transmission: If Goliath sends
a message after the token transmission, he can as well implement the message on the token, and if
David sends a message after the token transmission, it can just be omitted, because it does not affect
any further computation. So, we only have to consider the case that after the token transmission
there is no more communication between David and Goliath. By UC-security against a corrupted
David, we have that David’s inputs can be extracted from his communication with Goliath and the
token. Since all communication between David and Goliath takes place before transmission of the
token, a malicious Goliath can store a complete transcript of that communication on the token.
But now, the token can use the simulator program for a corrupted David to compute David’s inputs
from the stored transcript and its communication with David. This allows a malicious token to
encode David’s first input into the second output, which is not simulatable in the ideal model.

5.3 Lower bounds for David’s communication overhead

Even our refined construction for l-bit string-OT (q.v. Section 4.1) needs that David inputs Θ(l)
bits into the token. One could wonder, if it is possible to implement multiple instances of OT from
reusable tamper-proof tokens, such that for each implemented instance of OT the communication
complexity for David is constant. We argue that this seems very improbable. The main argument
is that a corrupted Goliath can correctly guess David’s token inputs for the first OT instances with
some constant probability. Thus, he can maliciously create the tokens, so that they immediately
shut down if David’s first token inputs do not match Goliath’s guess. Thereby, when Goliath learns
that the protocol was not aborted, he can reconstruct David’s first OT input. Such a protocol
cannot be UC-secure, since in the ideal model the abort probability may not depend on Davids
inputs. Moreover, the whole argumentation still seems valid, even if we allow that David inputs
polylogarithmically many bits per OT into the tokens.

5.4 Impossibility of polynomially bounded simulation runtime

The running time of our simulator SGoliath(A) for a corrupted sender is not a priori polynomially
bounded (cf. Section 3.5). Instead, we have only a polynomial bound for the expected running time
(q.v. Lemma 12). The same problem occurred in [MS08] and they stated it as an open problem to
find a protocol with strict polynomial-time simulation. We argue that such a protocol seems very
hard to find, unless computational assumptions are used.

Since information-theoretically secure OT cannot be realized from stateless tokens, as shown
by [GIMS10], it suffices to consider stateful solutions. However, simulatability is only possible if a
corrupted sender’s inputs can be extracted from his messages sent to the receiver and the program
code of the token(s). The straightforward approach of extraction is to rewind the token, but as
the token may act honestly only on some fraction of inputs, the simulator will have to rewind the
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token repeatedly. In particular, a corrupted token issuer can choose some arbitrary probability
p, such that the token acts honestly only with this probability p. Unless p is negligible, this will
necessitate a simulator that can rewind the token for about 1

p times. Since p may be effectively
chosen by the adversary (and thus by the environment) during runtime, strict polynomial-time
simulation with repeated token rewinding seems impossible. Moreover, we are not aware of any
information-theoretic approach (i.e. without computational assumptions) that would allow us to
avoid repeated token rewinding.

5.5 Impossibility of random access solutions

Via our protocol Πseq−ot
OAFE one can implement sequentially queriable OTM tokens from a single piece

of untrusted tamper-proof hardware (cf. Section 3.1 and Section 2.4). We discuss now, why it seems
impossible to implement multiple OTMs that the token receiver can access in arbitrary order. The
main argument is that a corrupted token issuer can try to let the token work only for the first OTM
query and then shut down. This is not simulatable in the ideal model, since the simulator does not
learn which OTM is queried first—the decision which OTM to query first even might be made not
until the interactive part of the protocol is over.

In particular, the attack idea is as follows. Given any hypothetical protocol for random access
OTMs from a single token, let b denote a lower bound of token queries that are needed for the first
OTM access and let B denote an upper bound. W.l.o.g., b and B are polynomially bounded in the
security parameter. The corrupted token issuer randomly picks j

r← {b, . . . , B} and programs the
token such that it shuts down after the j-th query. Now, with probability 1

B−b+1 the receiver will
be able to access only the very OTM that is queried first. Note that this probability is independent
of the access order to the implemented OTMs. Further note that by this attack it cannot happen
that the OTM accessed first is malformed and any other is not. For the simulator this means
an unsolvable dilemma. With non-negligible probability, all but one of the sent OTMs must be
malformed and the non-malformed OTM must always be the one that is accessed first.

5.6 Conclusion & improvement opportunities

In this paper, we showed that exchange of a single untrusted tamper-proof hardware token is suffi-
cient for general, universally composable, information-theoretically secure two-party computation.
Our approach is the first to implement several widely used primitives (namely string-commitments,
string-OT and sequentially queriable OTMs) at optimal rates. Moreover, our constructions have
very low computation complexity. As a drawback, our information-theoretically secure protocols
have only limited token reusability, but can be transformed straightforwardly into computationally
secure protocols with unlimited token reusability. The computational assumption needed is the
weakest standard assumption in cryptography, namely the existence of a pseudorandom number
generator, and beyond that we only need the receiver party to be computationally bounded. After
all, we consider our work a substantial gain towards practical secure two-party computation, but
still want to point out some issues that in our view need some further improvement.

Smaller constants for better practicability. Even though we achieve asymptotically optimal
communication complexity, there are some nasty constants left that might make our protocols
somewhat slow in practice. In particular, for every l-bit string-OT (or l-bit OTM respectively)
the token has to compute and output an F20×5

2l
-matrix, i.e. we have a blow-up factor of 100. This
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enormous factor results from two technical artifacts. Firstly, we were only able to prove that our
protocol Πseq−ot

OAFE securely realizes Fkq -OAFE, if k ≥ 5 (cf. Section 3.5.8). In contrast, we only
need F2

2l
-OAFE for our optimal l-bit string-OT protocol (cf. Section 4.1) and are not aware of any

potential attack against Πseq−ot
OAFE with k = 2. Secondly, for technical reasons we need that David

chooses a check matrix C of dimension 3k×4k in Step ii of the setup phase (q.v. Figure 6) and later
computes a check value CWi from the i-th token output Wi, i.e. we especially need that Wi has

dimension 4k×k. However, we are not aware of any potential attack, if only C ∈ Fαk×(1+α)k
q with

constant α > 0. Now, if we choose α = 1
2 and k = 2, this means that David chooses a check matrix

C of dimension 1×3 and the token just needs to compute and output F3×2
2l

-matrices. In other
words, we believe that the blow-up factor can be reduced from 100 to 6 just by more sophisticated
proof techniques and a slight modification of the protocol.

Less interaction. Our protocol Πseq−ot
OAFE is non-interactive in the sense that there is no message

from David to Goliath after the setup phase. However, this approach comes along with two draw-
backs. Firstly, the message from David to Goliath in the setup phase is quite large. Secondly,
David either needs to know an upper bound for the number of upcoming send phases, what clearly
rules out unlimited token reusability, or we must allow that David occasionally sends some fresh
randomness to Goliath. As a solution for both drawbacks we suggest that David just sends a ran-
dom seed of a PRNG. We believe (but were not able to prove) that this does not breach security,
as long as Goliath and the token are computationally bounded.

More realistic hardware assumptions. For security of our protocol Πseq−ot
OAFE against a cor-

rupted Goliath we need that the tamper-proof token in David’s hands and the token issuer Goliath
are perfectly isolated from each other. This assumption is questionable, since one cannot prevent
Goliath from placing a very powerful communication device near David’s lab. At least, this will
enable Goliath to send some messages to the token. However, we hold the view that the token’s
transmitting power can be reliably bounded by its weight and size, so that it cannot send any
messages back to Goliath. Still, even a unidirectional channel from Goliath to the token suffices to
break our protocols.

Therefore, we propose a two-token solution (namely that of Section 4.5), where one token just
plays Goliath’s role of the original protocol. As long as neither token can send any message, the
tokens are mutually isolated and everything seems well except for one subtle issue: Goliath can
change the behavior of the tokens during runtime and thus change his OAFE inputs without being
noticed. However, this may be considered unavoidable in real world applications, since a very
similar attack could also be mounted if adversarially issued tokens contain clocks.

Closing the gap between primitives and general secure two-party computation. By our
approach we implement OT (and OTMs respectively) via some quite general Fkq -OAFE functional-

ity. However, Fkq -OAFE is strictly stronger than OT in the sense that in general many OT instances

and a quite sophisticated protocol are needed to implement Fkq -OAFE, whereas l-bit string-OT can

be implemented rather straightforwardly from a single instance of Fl2-OAFE or F2
2l

-OAFE (cf.
Section 2.4 and Section 4.1 respectively). This raises the question, whether one could base general
secure two-party computation directly on Fkq -OAFE rather than OT, e.g. via (garbled) arithmetic
circuits [Cle91, CFIK03, AIK11], and thereby possibly reduce the computational overhead. More
generally, one could also try to implement other sorts of functions directly on the tamper-proof
hardware.
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[DKMQ12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Statistically secure
linear-rate dimension extension for oblivious affine function evaluation. In Adam
Smith, editor, Information Theoretic Security, Proceedings of ICITS 2012, volume
7412 of Lecture Notes in Computer Science, pages 111–128. Springer, 2012.

[DNW08] Ivan Damg̊ard, Jesper Buus Nielsen, and Daniel Wichs. Isolated proofs of knowledge
and isolated zero knowledge. In Nigel P. Smart, editor, Advances in Cryptology, Pro-
ceedings of EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 509–526. Springer, 2008.

[DNW09] Ivan Damg̊ard, Jesper Buus Nielsen, and Daniel Wichs. Universally composable
multiparty computation with partially isolated parties. In Omer Reingold, editor,
Theory of Cryptography, Proceedings of TCC 2009, volume 5444 of Lecture Notes in
Computer Science, pages 315–331. Springer, 2009.

[FPS+11] Marc Fischlin, Benny Pinkas, Ahmad-Reza Sadeghi, Thomas Schneider, and Ivan
Visconti. Secure set intersection with untrusted hardware tokens. In Proceedings
of the 11th international conference on Topics in cryptology: CT-RSA 2011, CT-
RSA’11, pages 1–16, Berlin, Heidelberg, 2011. Springer-Verlag.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[GIMS10] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive lock-
ing, zero-knowledge PCPs, and unconditional cryptography. In Tal Rabin, editor,
Advances in Cryptology, Proceedings of CRYPTO 2010, volume 6223 of Lecture Notes
in Computer Science, pages 173–190. Springer, 2010.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio,
editor, Theory of Cryptography, Proceedings of TCC 2010, volume 5978 of Lecture
Notes in Computer Science, pages 308–326. Springer, 2010.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In David Wagner, editor, Advances in Cryptology, Proceedings of CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 39–56. Springer, 2008.

55



[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivi-
ous rams. J. ACM, 43(3):431–473, 1996.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

[HMQU05] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Universally composable
zero-knowledge arguments and commitments from signature cards. In Proceedings of
the 5th Central European Conference on Cryptology MoraviaCrypt 2005, 2005.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstract). In Proceedings of STOC 1989, pages
12–24. ACM, 1989.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on obliv-
ious transfer - efficiently. In David Wagner, editor, Advances in Cryptology, Proceed-
ings of CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages
572–591. Springer, 2008.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In Moni Naor, editor, Advances in Cryptology, Proceedings of EURO-
CRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 115–128.
Springer, 2007.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of STOC
1988, pages 20–31. ACM, 1988.

[Kol10] Vladimir Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In Daniele Micciancio, editor, Theory of Cryptography, Proceedings
of TCC 2010, volume 5978 of Lecture Notes in Computer Science, pages 327–342.
Springer, 2010.

[MS08] Tal Moran and Gil Segev. David and Goliath commitments: UC computation for
asymmetric parties using tamper-proof hardware. In Nigel P. Smart, editor, Advances
in Cryptology, Proceedings of EUROCRYPT 2008, volume 4965 of Lecture Notes in
Computer Science, pages 527–544. Springer, 2008.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical report,
Aiken Computation Laboratory, Harvard University, 1981.

[Wul07] Jürg Wullschleger. Oblivious-transfer amplification. In Moni Naor, editor, Advances
in Cryptology, Proceedings of EUROCRYPT 2007, volume 4515 of Lecture Notes in
Computer Science, pages 555–572. Springer, 2007.

[WW06] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In Serge Vau-
denay, editor, Advances in Cryptology, Proceedings of EUROCRYPT 2006, volume
4004 of Lecture Notes in Computer Science, pages 222–232. Springer, 2006.

56


	Introduction
	Related work
	Our contribution
	Outline of this paper

	Preliminaries
	Notations
	Framework & notion of security
	Modeling tamper-proof hardware
	The hybrid functionality Fstatefulwrap
	Real world meaning of our hardware assumption and proof techniques

	Sequential one-time OAFE and its relation to OTMs and OT

	Sequential one-time OAFE from one tamper-proof token
	Protocol construction
	Limitations for the OAFE parameters k and q
	Correctness of our construction
	Security against a corrupted receiver
	Security against a corrupted sender
	Independence of the token view
	Committing the token to affine behavior
	Uniqueness of affine approximations of the token functionality
	Utilizing the Leftover Hash Lemma
	The simulator for a corrupted Goliath
	A sequence of hybrid games
	Transformation of successive hybrid games into an indistinguishability game
	Concluding the security proof


	Applications and variants of our construction
	Unidirectional OT and OTMs with optimal communication complexity
	Achieving optimal communication complexity for bidirectional OT
	Efficient protocol for string-commitments in both directions
	Computational solution for unlimited reusability of a memory-limited token
	Truly non-interactive solution with two tokens
	A note on optimal communication complexity

	No-go arguments & conclusion
	Impossibility of unlimited token reuse without computational assumptions
	Lower bounds for the rounds of interaction between David and Goliath
	Lower bounds for David's communication overhead
	Impossibility of polynomially bounded simulation runtime
	Impossibility of random access solutions
	Conclusion & improvement opportunities

	References

