Secure Computation Protocols for
Privacy-Preserving Machine Learning

Dissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultit
der Humboldt-Universitiat zu Berlin

von
Phillipp Schoppmann

Prasidentin der Humboldt-Universitiat zu Berlin
Prof. Dr.-Ing. Dr. Sabine Kunst

Dekan der Mathematisch-Naturwissenschaftlichen Fakultit
Prof. Dr. Elmar Kulke

Gutachter: 1. Prof. Dr. Bjorn Scheuermann
2. Dr. Adria Gascon

3. Prof. Dr. Peter Scholl

Tag der miindlichen Priifung: 27. August 2021






SECURE COMPUTATION PROTOCOLS FOR
PRIVACY-PRESERVING MACHINE LEARNING

PHILLIPP SCHOPPMANN



Phillipp Schoppmann: Secure Computation Protocols for Privacy-Preserving
Machine Learning

This work is licensed under a Creative
Commons “Attribution-ShareAlike 4.0 In- @ ® @
ternational” license.



https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

ABSTRACT

Machine learning (ML) greatly benefits from the availability of large
amounts of training data, both in terms of the number of samples, and
the number of features per sample. However, aggregating more data
under centralized control is not always possible, nor desirable, due
to security and privacy concerns, regulation, or competition. Secure
multi-party computation (MPC) protocols promise a solution to this
dilemma, allowing multiple parties to train ML models on their joint
datasets while provably preserving the confidentiality of the inputs.
However, generic approaches to MPC result in large computation and
communication overheads, which limits the applicability in practice.

The goal of this thesis is to make privacy-preserving machine learn-
ing with secure computation practical. First, we focus on two high-level
applications, linear regression and document classification. We show
that communication and computation overhead can be greatly reduced
by identifying the costliest parts of the computation, and replacing
them with sub-protocols that are tailored to the number and arrange-
ment of parties, the data distribution, and the number representation
used. One of our main findings is that exploiting sparsity in the data
representation enables considerable efficiency improvements. We go
on to generalize this observation, and implement a low-level data
structure for sparse data, with corresponding secure access protocols.
On top of this data structure, we develop several linear algebra al-
gorithms that can be used in a wide range of applications. Finally,
we turn to improving a cryptographic primitive named vector-OLE,
for which we propose a novel protocol that helps speed up a wide
range of secure computation tasks, within private machine learning
and beyond.

Overall, our work shows that MPC indeed offers a promising av-
enue towards practical privacy-preserving machine learning, and the
protocols we developed constitute a substantial step in that direction.



ZUSAMMENFASSUNG

Machine Learning (ML) profitiert erheblich von der Verfiigbarkeit
grofier Mengen an Trainingsdaten, sowohl im Bezug auf die Anzahl
an Datenpunkten, als auch auf die Anzahl an Features pro Datenpunkt.
Es ist allerdings oft weder moglich, noch gewollt, mehr Daten unter
zentraler Kontrolle zu aggregieren. Griinde dafiir konnen Bedenken
beziiglich Sicherheit, Datenschutz, Privatsphédre, oder Konkurrenz sein,
sowie gesetzliche Einschrankungen. Multi-Party-Computation (MPC)-
Protokolle stellen eine Losung dieses Dilemmas in Aussicht, indem sie
es mehreren Parteien erlauben, ML-Modelle auf der Gesamtheit ihrer
Daten zu trainieren, ohne die Eingabedaten preiszugeben. Generische
MPC-Ansitze bringen allerdings erheblichen Mehraufwand in der
Kommunikations- und Laufzeitkomplexitdt mit sich, wodurch sie sich
nur beschrénkt fiir den Einsatz in der Praxis eignen.

Das Ziel dieser Arbeit ist es, Privatsphédreerhaltendes Machine Lear-
ning mittels MPC praxistauglich zu machen. Zuerst fokussieren wir
uns auf zwei Anwendungen, lineare Regression und Klassifikation
von Dokumenten. Hier zeigen wir, dass sich der Kommunikations-
und Rechenaufwand erheblich reduzieren lasst, indem die aufwéan-
digsten Teile der Berechnung durch Sub-Protokolle ersetzt werden,
welche auf die Zusammensetzung der Parteien, die Verteilung der Da-
ten, und die Zahlendarstellung zugeschnitten sind. Insbesondere das
Ausnutzen diinnbesetzter Datenreprédsentationen kann die Effizienz
der Protokolle deutlich verbessern. Diese Beobachtung verallgemei-
nern wir anschlieffend durch die Entwicklung einer Datenstruktur fiir
solch diinnbesetzte Daten, sowie dazugehoriger Zugriffsprotokolle.
Aufbauend auf dieser Datenstruktur implementieren wir verschie-
dene Operationen der Linearen Algebra, welche in einer Vielzahl
von Anwendungen genutzt werden. Zuletzt wenden wir uns einem
kryptographischen Primitiven namens Vector-OLE zu. Hierfiir ent-
wickeln wir ein neues Protokoll, welches es ermoglicht, viele andere
MPC-Protokolle fiir sicheres Machine Learning und dartiiber hinaus
zu beschleunigen.

Insgesamt zeigt die vorliegende Arbeit, dass MPC ein vielverspre-
chendes Werkzeug auf dem Weg zu Privatsphire-erhaltendem Machi-
ne Learning ist, und die von uns entwickelten Protokolle stellen einen
wesentlichen Schritt in diese Richtung dar.



ACKNOWLEDGMENTS

This thesis would not have been possible if not for the many people
who have helped, supported, and positively influenced me for several
years. First, I want to thank my advisor Bjorn Scheuermann for pro-
viding the support I needed to successfully pursue my PhD, while at
the same time giving me the freedom to follow my research interests
wherever they would lead me. This allowed me to collaborate with
researchers around the world, while spending most of my time in the
beautiful city of Berlin.

My thanks also go to Adria Gascén, my main coauthor and for-
mer MSc advisor. His curiosity and contagious enthusiasm for open
problems—interdisciplinary ones in particular—have inspired me
throughout my research career, and will certainly continue to do so.
Adria not only introduced me to the field of multi-party computation,
but also to most of my collaborators, who rank among the best in their
respective fields.

I would like to thank several of my coauthors in particular: Mariana
Raykova for her help in understanding even the most complex cryp-
tographic protocols; Borja Balle for his deep knowledge of numerics,
probability theory, and machine learning, for his help with setting
up experiments, and for adding a mathematician’s perspective to our
joint works; Benny Pinkas for his never-ending supply of great ideas
and his clear way of communicating them; Kevin Yeo for his thorough
and ruthless code reviews, which improved the quality of my code by
orders of magnitude; and Peter Rindal for rightfully questioning my
beliefs about compiler optimization and improving the running times
of my code by orders of magnitude.

At HU Berlin, I had the pleasure to work in a great team with sev-
eral talented colleagues over the years: Sabine Becker, Samuel Brack,
Stefan Dietzel, Holger Doebler, Martin Florian, Wladislaw Gusew,
Sven Hager, Sebastian Henningsen, Olga Kondrateva, Roman Nau-
mann, Leonie Reichert, Siegmar Sommer, Hagen Sparka, Kashyap
Thimmaraju, Steffen Tschirpke, Florian Tschorsch, and Frank Winkler.
Thank you for your feedback in several practice talk sessions, for great
discussions during lunch and coffee breaks, for first-level Arch Linux
support, for maintaining our state-of-the-art computing infrastructure,
and for general administrative support. I would additionally like to
thank my two student assistants, Hendrik Borchert and Lennart Vo-
gelsang, for their help preparing publications and posters, running
experiments, reviewing code, and fruitful discussions. Special thanks
also go to Samuel Brack, Jan Brehmer, and Jonas Marasus for giving
me lots of valuable feedback on earlier versions of this dissertation.

vil



Something that I have come to really value over the years is the
academic community around privacy, security, and cryptography.
Venues such as PETS, TPMPC, and CCS weren’t just ways to publish
and publicize my work. They also proved essential for the exchange
of ideas, for identifying opportunities to collaborate, for last-minute
paper sprints, but also for having a great time together outside of
work, whether on a hike in Minnesota or on a pub crawl in Tel Aviv.
Thank you all for reviewing my papers, listening to my talks, asking
questions, inviting me to program committees, and overall for being a
great community.

Finally, I want to thank my family for always being there for me,
even as my visits became rarer and shorter: my parents Stefan and
Katharina, my siblings Florian and Felicia, and especially my wife
Lilly, who continued to support me through stressful deadline times,
while at home or abroad, during multiple public lockdowns, and
through life in general for the past seven years and more.



CONTENTS

1

INTRODUCTION 1
1.1 Contributions 3
1.1.1 Linear Regression 3

1.1.2 Document Similarity and Classification
1.1.3 Sparse Linear Algebra 5
1.1.4 Distributed Vector OLE 5

BACKGROUND 7

2.1 Privacy-Preserving Machine Learning 7
2.2 Secure Multi-Party Computation 8

2.3 Composition and Secret Sharing 9

2.4 Oblivious Transfer 10

2.5 Garbled Circuits 11
SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA
3.1 Overview 15
3.1.1  Chapter Contributions 15
3.2 Related Work 16
3.3 Background on Linear Regression 17
3.4 Protocol Description 18
3.4.1 Aggregation Phase 19
3.4.2 Solving Phase 22
3.4.3 Secure Linear Regression 23
3.5 Number Representation 27
3.5.1 Fixed-Point Arithmetic 28
3.5.2 Accuracy of Inner Product 29
3.5.3 Data Standardization and Scaling 30
3.6 Solving Linear Systems 31
3.6.1 Conjugate Gradient Descent 32
3.7 Experimental Results 35
3.7.1 Implementation and Setup 35
3.7.2 Solving Phase = 36
3.7.3 Aggregation Phase 37
3.7.4 Experiments on Real Datasets 39
3.8 Beyond Semi-Honest Security 41
3.8.1 The Verification Phase 42
3.9 Discussion 43
Chapter Appendix 45
3.A Further Experimental Results 45
SECURE AND SCALABLE DOCUMENT SIMILARITY 49
4.1 Overview 49
4.1.1  Chapter Contributions 50
4.2 Related Work 51

15



X | CONTENTS

4.3 Background: TF-IDF Features 52

4.4 Sparse Inner Products and Document Similarity 53
4.4.1  Sparsity in Real-World Data 54
4.4.2 Notation 55
4.4.3 Secure Sparse Inner Products 55
4.4.4 Secure Correlated Permutations 56
4.4.5 From Inner Products to Sparse Matrix Multipli-

cation 57

4.5 Private Feature Extraction 61
4.5.1 Multi-Party Computational Differential Privacy
4.5.2 Differentially Private IDF Computation =~ 62
4.5.3 Implementing Private IDFs in MPC 64
4.5.4 Utility Analysis 66

4.6 Secure Document Classification 67
4.6.1  Security with Differentially Private Leakage 68
4.6.2  Secure k-NN Classification 69

4.7 Experiments 71
4.7.1  Running Time 72
4.7.2  Secure Document Classification 73
4.8 Discussion 77
5 THE ROOM FRAMEWORK FOR SPARSE LINEAR ALGEBRA 79
5.1 Overview 79

5.1.1  Chapter Contributions 8o
5.2 Background and Setup 81
5.3 Basic Primitive: ROOM 84
5.3.1 Existing Primitives 84
5.3.2 Instantiations of ROOM 85
5.4 ROOM for Secure Sparse Linear Algebra 90
5.4.1 Gather and Scatter 90
5.4.2 Sparse Matrix-Vector Multiplication 93
5.5 Applications 97
5.5.1 Similarity Computation and k-Nearest Neigh-
bors 97
5.5.2 Naive Bayes Classification 98
5.5.3 Logistic Regression Training 98
5.6 Implementation of our Framework 100
5.7 Experimental Evaluation 101
5.7.1  ROOM Micro-Benchmarks 101
5.7.2 Datasets 103
5.7.3 k-Nearest Neighbors 103
5.7.4 Logistic Regression Training 104
5.8 Discussion 106
6 EFFICIENT DISTRIBUTED VECTOR OLE GENERATION 109
6.1 Overview 109
6.1.1 Chapter Contributions 110
6.2 Preliminaries 112



CONTENTS |

6.2.1 m-out-of-n Oblivious Transfer 112
6.2.2 Cuckoo Hashing 113
6.2.3 Function Secret Sharing 114
6.2.4 Vector OLE 115
6.2.5 LPN Assumption 116
6.2.6 Definitions, Functionalities, and Secure Two-
Party Protocols 117
6.3 (n—1)-out-of-n Random OT 117
6.4 Known-Index SPFSS 121
6.5 Known-Indices MPFSS via Cuckoo Hashing 124
6.5.1  Batching Known-Index SPFSS 125
6.6 Distributed Vector-OLE from MPFSS 129
6.7 Applications 132
6.7.1 Secure Linear algebra 133
6.7.2  Oblivious Polynomial Evaluation 134
6.7.3 Partially Private Distributed ORAM 135
6.8 Experimental Evaluation 136
6.8.1 Implementation and Setup 136
6.8.2 Parameter Selection 136
6.8.3 Results 137
6.9 Discussion 139
Chapter Appendix 141
6.A Security Proofs 141
6.A.1 (n—1)-out-of-n-ROT 141
6.A.2 Known-Index SPFSS 144
6.A.3 Known-Indices MPFSS 146

7 CONCLUSION 151

xi



LIST OF FIGURES

Figure 2.1
Figure 3.1

Figure 3.2
Figure 3.3
Figure 3.7
Figure 4.1
Figure 4.2

Figure 4.3

Figure 4.4
Figure 4.5

Figure 4.6
Figure 4.7
Figure 5.1
Figure 5.3
Figure 5.4
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.11
Figure 6.1
Figure 6.2

Figure 6.4

Figure 6.5

Figure 6.6

Ideal functionality for oblivious transfer (OT). 11
MPC protocol protocol and architecture for lin-

ear regression. 25

Comparison of textbook CGD and our fixed-
point CGD. 33

Comparison between different methods for solv-

ing linear systems. 38
Circuit sizes for different linear system solvers. 45
Secure sparse matrix multiplication protocol. 59

Our differentially private IDF computation func-
tionality FPP-IDF, 65

Example run of our MPC protocol for the ex-
ponential mechanism. 66

k-NN classification with two servers. 70
Running times of our protocols from Sections 4.4
and 4.5. 72

Running times of our private k-NN classifica-
tion protocol. 73

k-NN accuracy vs. training size experiments. 75
Components of the ROOM framework. 81
k-NN classification with a single server. 97
Two-party logistic regression. 99

Running times of Circuit-ROOM and Poly-ROOM
in the LAN setting. 102

Relative comparison of Circuit-ROOM and Poly-
ROOM. 102

Running time of k-NN classification. 104
Running time of naive Bayes classification. 105
Running time of logistic regresssion training on
synthetic data. 107

Example of the GGM tree generated by the
sender and partially learnt by the receiver. 122
Simple hashing and cuckoo hashing for map-
ping indices to buckets in MPFSS. 125
Comparison of our single-point FSS variant
with the implementation of Doerner and She-
lat. 137

Computation and communication costs of our
VOLE implementation. 138

Computation and communication costs of our
VOLE implementation with bootstrapping. 139



LIST OF TABLES |

LIST OF TABLES

Table 2.2
Table 3.4

Table 3.5
Table 3.6
Table 3.8
Table 3.9
Table 5.2

Table 5.5
Table 5.10

Table 6.3

Garbled truth table of an OR gate. 12
Running times of OT-based and TI-based ag-
gregation protocols. 39

Specifications of UCI datasets considered in our
evaluation. 41

Results of the evaluation of our linear regres-
sion system on UCI datasets. 41
Computation time of the aggregation phase
using OT-based inner products. 46
Computation time of the aggregation phase
using TI-based inner products. 47
Asymptotic costs of initializations and execu-
tion of ROOM instantiations. 85

Datasets used in the experiments. 101
Comparison of our protocols with SecureML
for logistic regression training. 106
Vector-OLE parameters used in our evalua-
tion. 137

xitt






1 INTRODUCTION

The availability of vast amounts of data has been a major factor to the
success of machine learning (ML) in the past two decades, and has
enabled several advances in fields such as artificial intelligence, natural
language processing, and computer vision. A common observation
is that the quality of machine learning models largely depends on
the amount of training data available—both in terms of the number
of samples and the number of features present in the dataset. At the
same time, traditional machine learning algorithms rely on centralized
access to the training data; computation can be distributed to several
machines in practice, but these are still controlled by a single entity.
As a result, both private companies and public sector organizations
have been focusing on collecting large amounts of user data, in the
hope that it might be useful in the future.

Collecting more data to improve machine learning is not always
possible, or desirable, though. Around the world, several laws have
been put in place to limit or regulate how organizations can collect
and store user data. Examples include the EU’s General Data Pro-
tection Regulation (GDPR), or the California Consumer Privacy Act
(CCPA). Furthermore, privacy and data protection concerns aside,
organizations can be hesitant to share data with each other, out of
fear of disclosing trade secrets or giving up on a competitive advan-
tage. These observations lead to the following dilemma: On one hand,
machine learners would like to train their models on more data to
improve accuracy. On the other hand, aggregating more data under
centralized control is often undesirable or outright infeasible.

A possible solution to this dilemma is provided by the cryptographic
field of multi-party computation (MPC). Originally introduced in the
1980s by Yao [Yao86] and Goldreich, Micali, and Wigderson [GMW87],
MPC allows two or more parties to jointly compute a function on
private inputs, revealing only the result, but nothing beyond that.
General-purpose MPC compilers [MNPSo4; DPSZ12; DSZ15; ZE15;
Biis+18] allow developers to describe functionalities as source code
in a centralized fashion, which then automatically get compiled to
provably secure MPC protocols.

Like machine learning, MPC has made significant progress since
its inception, bringing it closer to practicality. For example, the amor-
tized computation time of the fundamental cryptographic primitive
oblivious transfer (OT) was considerably reduced by the introduc-
tion of OT extension [IKNPo3], which replaces expensive public-key
operations with cheap, hardware-assisted private-key operations. Im-



2

| INTRODUCTION

provements of other cryptographic primitives such as homomorphic
encryption (HE) [Genog; FV12; BGV14] likewise translated into im-
provements of MPC protocols relying on these. Generic MPC protocols
similarly have seen several improvements. Notable example include
the free XOR [KSo8] and half-gates [ZRE15] optimizations to Yao’s two-
party garbled circuit protocol, new efficient instantiations [BLO16]
of its multi-party variant [BMR9go], as well as the multi-party SPDZ
protocol [DPSZ12] and its enhancements [KOS16; KPR18]. Finally,
optimizing MPC compilers have been proposed [Dem+15; Biis+18],
which aim to minimize the communication and computation costs
when compiling high-level functionality descriptions to generated
MPC protocols.

Even with all these improvements in place, however, it seems un-
likely that general-purpose MPC alone leads to practical protocols for
private machine learning. A major obstacle is the communication over-
head introduced by generic MPC protocols. For example, computing
a single 32-bit integer multiplication of secret-shared numbers using
the ABY framework [DSZ15] requires over 1 KiB of communication.
Clearly, this does not scale to the billions of multiplications needed in
many machine learning settings.

An alternative approach to generic MPC protocols are application-
specific, hand-written protocols. For some concrete MPC applications,
such as private set intersection (PSI), such custom protocols have con-
sistently outperformed generic approaches [KKRT16; PSZ18; Ion+20;
PRTY20; CM20]. However, unlike PSI, machine learning consists of
many different functionalities with a variety of settings and data dis-
tributions. Developing, optimizing, and proving security of separate
MPC protocols for each of these is a tedious task that requires expert
knowledge. Therefore, smaller organizations might not be able to
afford developing custom protocols for their private machine learning
needs.

In this thesis, we propose a hybrid approach that conceptually lies
between the two extremes outlined above. Concretely, we observe that
many ML algorithms can be split up into multiple distinct phases.
If we can ensure that intermediate results do not reveal any addi-
tional information, we can split up secure computation protocols in
a similar way. Secret sharing and other cryptographic tools can be
used to achieve such secure protocol compositions, which allows us
to develop custom MPC protocols for the most expensive parts of the
computation, while using generic MPC for the rest. This way, we can
tailor our protocols to the setting (e.g., number and arrangement of
parties) and the data (e. g., its distribution and encoding). Finally, this
modular approach allows us to reuse protocols for common function-
alities, such as inner products and other linear algebra operations,
across different ML tasks.



1.1 CONTRIBUTIONS |

We start in Chapters 3 and 4 by taking a look at two prominent
ML use cases, namely regression and classification. One of our main
observations here is that significant speedups can be obtained by ex-
ploiting sparsity inherent in the data representation. In Chapter 5,
we generalize this observation, developing data structures and corre-
sponding secure access protocols for sparse data. On top of these, we
then develop multiple sparse linear algebra protocols, and show that
these can speed up various ML applications on sparse data. Finally, in
Chapter 6, we design and implement a protocol for vector oblivious
linear evaluation (vector OLE or VOLE), a low-level cryptographic
primitive that is equivalent to a secure scalar-vector multiplication
and that can be used as a building block in several MPC applications.
The implementations of all of the protocols developed in this thesis
have been published under open-source licenses.

1.1 CONTRIBUTIONS

1.1.1 Linear Regression

In Chapter 3, we look at the problem of securely computing a linear
regression model on vertically partitioned data. Linear regression tries
to approximate the relationship between a set of independent vari-
ables and a dependent variable by a linear function. More formally,
if we express our training dataset as a matrix X € R"*“, where rows
correspond to n data points (i. e., samples), and columns correspond to
d independent variables (i. e., features), then linear regression aims to
find a vector 6 such that X0 approximates the vector for the dependent
variable y. One advantage of linear regression is the fact that it can
be reduced to solving a system of linear equations A6 = b, where
A = 1XTX + AI and b = 1XTy. This approach is also called ridge
regression with regularization parameter A. In prior work, Nikolaenko
et al. [Nik+13b] observed that the computation of the solution 6 in
MPC can be split up into two phases, by first computing secret-shares
of A and b, and then solving the secret-shared linear system in a
second phase.

In the horizontally-partitioned setting of Nikolaenko et al. [Nik+13b],
additive shares of of X'X can be computed locally, since X'X =
Yito x] x;, and each row x; is owned by a single party. For vertically
partitioned input data, i.e., when the columns of X are owned by dif-
ferent parties, this does not work any more. However, we observe that
each element of XX can be computed as the inner product of two
columns of X. Thus, we can reduce the multi-party computation of A
to multiple parallel two-party computations.

In the second phase, Nikolaenko et al. [Nik+13b] solve the linear
system using Cholesky decomposition in a two-party computation be-

3



T This is commonly
referred to as the
two-server model.

4

| INTRODUCTION

tween two additional, non-colluding servers®. While this approach
theoretically returns the exact solution in time O(d?), the accuracy is
limited in practice by the errors introduced by the fixed-point encod-
ing used for real numbers. Our approach instead relies on the iterative
conjugate gradient descent (CGD). While this algorithm also needs time
O(d®) to converge in theory, we observe that the precision limit due to
fixed-point encoding is reached far earlier. Thus, we can save running
time by stopping CGD after fewer iterations.

Overall, our work in Chapter 3 shows that exploiting the partition-
ing scheme of the data, as well as its fixed-point encoding, leads to
substantial speedups in practice, while maintaining the accuracy of
previous work.

1.1.2 Document Similarity and Classification

Parametric models such as linear regression require the training data
to be structured as a fixed set of independent variables, or features.
However, real-world data (such as text documents) is often unstruc-
tured and doesn’t come with an immediate feature representation.
Furthermore, parametric models need to be re-trained whenever the
dataset changes, limiting their flexibility in some settings.

In Chapter 4, we develop solutions to these issues in a secure com-
putation setting. Concretely, we design and implement MPC protocols
for securely extracting numerical features from text documents, and
for computing the similarities between document vectors. We then
apply these to the k-nearest neighbors (k-NN) classification algorithm.
As a similarity-based, non-parametric algorithm, k-NN doesn’t involve
a training phase, but instead treats the entire dataset as the model,
which allows it to handle cases where the database often changes.

For feature extraction, we use term frequency—inverse document fre-
quency (TF-IDF) features, one of the most common representations
used for text data. Here, a first challenge is the fact that the inverse
document frequency (IDF) depends on the entire dataset. Our solu-
tion involves pre-computing differentially private IDF values using an
MPC protocol, and releasing these private IDF values to all parties.
Intuitively, differential privacy (DP) [DMNS16; DR14] guarantees that
these values don’t contain much information about any individual
document in the dataset. Revealing private IDF values has two advan-
tages: First, it allows parties to compute their document vectors locally,
thus allowing them to extend the database with new documents. Sec-
ond, TF-IDF vectors are very sparse, so they only have few non-zero
values.

We exploit this sparsity in our similarity computation, where our
goal is to compute additive shares of the cosine similarity of two
TE-IDF vectors. By first securely removing zero values from the input
vectors, we considerably reduce the time needed for a secure similarity



computation. Furthermore, our protocol allows batching multiple
similarity computations, which works particularly well on natural
language texts due to the distribution of words encountered there.

Composing our feature extraction and scoring protocols with a
generic MPC for top-k selection yields an end-to-end k-NN classifi-
cation protocol that provides a notion of security that is a hybrid of
differential privacy and MPC: Our protocol first reveals differentially
private IDF values, which are subsequently used together with the
raw data as inputs to an MPC protocol that reveals the classification
result. We formalize this notion of security with differentially private
leakage, and prove security of our protocol in this model.

1.1.3 Sparse Linear Algebra

In Chapter 5, we generalize the ideas from our sparse inner product
protocol introduced in chapter 4, taking a more principled approach
to secure linear algebra on sparse data. Our motivation is the fact
that sparsity patterns can vary a lot across different applications. For
example, only one of the vectors might be sparse, while the other
is dense, and different protocols might be optimal in each case. In
the more general case of matrix—vector multiplication, different spar-
sity patterns of the matrix can result in even more possible protocol
variants.

To address these different flavors of sparsity, we first define a
read-only oblivious map (ROOM) data structure and corresponding
secure computation protocols for storing and accessing sparse data.
We present multiple instantiations of this primitive with different
trade-offs. Then, using ROOM as a building block, we propose pro-
tocols for basic linear algebra operations such as Gather, Scatter, and
multiple variants of sparse matrix multiplication. Finally, we use these
to build secure protocols for logistic regression, naive Bayes, and k-NN
classification.

The resulting framework is flexible enough to allow users to freely
combine ROOM instantiations and linear algebra protocols into high-
level applications. The architecture is inspired by the sparse BLAS
standard [DHPoz], which similarly allows users to manipulate sparse
matrices and vectors in the centralized setting, independent of the
underlying storage format. As a result, future improvements or new
constructions of our ROOM primitive will directly benefit the higher-
level linear algebra and application protocols.

1.1.4 Distributed Vector OLE

As our fourth and final contribution, we take a look at a low-level
cryptographic primitive, namely oblivious linear evaluation (OLE) over
vectors, or vector OLE (VOLE). The vector OLE functionality allows



6

| INTRODUCTION

two parties to compute additive shares of a vector-scalar product
over some ring R. More formally, given two vectors u,v € R" from
Party 1, and a scalar x € R from Party 2, it returns the vector w =
ux + v to Party 2. Apart from secure linear algebra with long vectors,
VOLE has numerous applications in cryptography, including oblivious
polynomial evaluation, private set intersection, and oblivious RAM.

Boyle et al. [BCGI18] observe that a VOLE protocol can be con-
structed from its random variant, where u, v, and x are pseudorandom.
They further present a theoretical construction for such a pseudoran-
dom VOLE generation protocol that has sub-linear communication in
the size n of the output vectors. On a high level, their protocol works
as follows: Given a short random correlation ¢ = ax + b € R¥ and a
public random matrix C € R¥*", they compute u = aC + u. Here, u
is a sparse error vector with a small number of non-zero elements at
random indexes. Under the learning parity with noise (LPN) assumption,
u computed this way is pseudorandom as long as a and u stay secret.
Now v and w can be computed as v = bC —v; and w = ¢C + vy,
where v1, 1, are secret-shares of u. The remaining question is how
to secret-share p with communication sub-linear in n. Here, Boyle
et al. propose to use a multi-point function secret sharing (MPFSS)
scheme that combines distributed point functions [Gl14; DS17] and
combinatorial batch codes [PSWog].

In Chapter 6, we improve their construction in several ways. First,
we observe that a weaker variant of MPFSS is sufficient to compute
shares of u, since one of the parties knows the non-zero positions of u
in the clear. We call this variant known-index MPFSS, and present an
efficient construction for it. The fact that one party knows the non-zero
indices of p also allows us to use cheaper probabilistic batching based
on cuckoo hashing [PRo4], which has been used in a similar fashion
in the context of private information retrieval [ACLS18]. Overall, our
improvements enable the first implementation of a distributed VOLE
generator over general fields with sub-linear communication, and we
show that it outperforms the state-of-the-art approach for n > 213.
Our known-index MPEFSS construction can further be used to reduce
the communication overhead of certain types of sparse matrix-vector
multiplication presented in Chapter 5.



2

In this chapter we begin by specifying our setting and privacy goals.
We then go on to introduce notation and terminology common to
all of our contributions, the most important being the definition of
security used in multi-party computation protocols. We also review
established MPC techniques such as secret sharing, oblivious transfer,
and garbled circuits, which we will use in our protocols.

BACKGROUND

2.1 PRIVACY-PRESERVING MACHINE LEARNING

Given the popularity of machine learning as the method of choice
for solving various challenges, it is unsurprising that a lot of work
has been done towards understanding and improving the privacy
guarantees of machine learning algorithms. However, as there are
several possible settings’, threat models, and formalizations of privacy,
not all of these approaches are comparable.

In this thesis, we focus on the setting where multiple mutually
distrustful parties want to train or evaluate a machine learning model
on their joint datasets via a distributed protocol. This setting assumes
that all parties know how to connect to each other, what computa-
tion should be performed, and general facts about the input data
(e.g., its partitioning across the parties). Unlike cross-device federated
learning [Kai+19], we do not assume a central server coordinating
communication between the computing parties, and we don’t handle
dropouts. While important for any practical deployment of privacy-
preserving ML, we also don’t cover preprocessing steps such as secure
record linkage [Laz+18; Sta+20].

In terms of privacy, one can distinguish between what can be learned
about the inputs by each subset of parties through the distributed
computation itself (input privacy), and what can be inferred from
the computation result (output privacy) [Cra+19]. We focus on the
former, and we therefore see attacks such as model inversion or re-
identification as beyond the scope of this thesis. However, we note that
input and output privacy are not mutually exclusive®. For example,
differential privacy (DP) [DMNS16; DR14], a standard approach to
output privacy, can be generalized to distributed settings [Dwo+06;
BNOo08; Che+19; BBGN19], and combining these results with ours
can yield protocols that provide both privacy goals simultaneously. In
the next section, we formalize our notion of privacy via multi-party
computation.

* For an overview of
possible settings in
distributed ML, see
Craddock et al.
[Cra+19] and
Kairouz et al.
[Kai+19].

2 One example of a
protocol that
provides both input
privacy (via MPC)
and output privacy
(via DP) is given in
Section 4.5.2.



8

| BACKGROUND

2.2 SECURE MULTI-PARTY COMPUTATION

The goal of multi-party computation (MPC) is to enable two or more
data holders to compute a function on the union of their data sets,
without giving any party access to the joint dataset. All the parties
should learn is their respective part of the output of the computed
function, but nothing beyond that. While this goal may be easy to
understand intuitively, its formalization is a bit more involved, since
it is not immediately clear how to measure the amount of information
that can be learned beyond a certain function output, in particular if
we assume a computationally-bounded adversary. This is what the
simulation paradigm [Golog; Lin17] aims to solve.

The idea is as follows: Assume there is an ideal functionality that
takes the inputs from all parties and returns to them their respective
outputs, without revealing anything else. Clearly, if such an ideal
functionality existed, it would be secure by definition. In the real
protocol execution, however, the parties receive more than only their
outputs, since they have to exchange messages with each other, and
these messages might contain more information than the final output.
So in order to prove that a certain protocol is secure, we need to
prove that this view of each party on the protocol execution does not
reveal anything that cannot already be learned from the output of
the ideal functionality. This can be done by constructing a simulator
that computes a simulated view for each party from the inputs and
outputs of the ideal functionality alone. If this simulated view in the
ideal, secure-by-definition setting can’t be distinguished from the real
view of the protocol execution, then anything that an adversary could
learn by analyzing its view on the real protocol execution, could also
be learned in the ideal world by using the simulator. It follows that the
real protocol doesn’t reveal any information beyond what is learned
from the ideal functionality. The following definition formalizes this
notion of simulation-based security. It was adapted from Goldreich
[Golog, Definition 7.5.1], and has previously appeared in the same
form in [SVGB20].

Definition 2.1 (Security against semi-honest adversaries). For any
number of parties n > 2, a probabilistic n-party functionality is a func-
tion F : ({0,1}*)" — ({0,1}*)". Let Fi(x1,...,xn) denote the i-th ele-
ment of F(x1,...,%n). For each party i € [n], F; takes all parties” inputs
% = (x1,...,x,) and returns the output F;(%) to Party i. Let I1 be a
protocol for computing F. Let output'!(%) denote the combined output of
I1. Additionally, each party has a view on the protocol execution that is
denoted by view!' (%) and contains Party i’s inputs, internal random state,
and all received messages. For any subset of parties I = {iy,...,i;} C [n],
let x; = (xi,...,%;), F1(x) = (F;(%),..., F;,(%)), and view]' (%) :=
(I, viewg(f), . ,vlewg(f)).



2.3 COMPOSITION AND SECRET SHARING \

Now, a simulator S is a probabilistic polynomial-time algorithm that takes
as arguments the set I, the inputs x;,,...,x;, of all parties in I, and their
outputs from the functionality, i.e. Fi(x). Using these, S simulates a view
for the parties in 1. If such a simulator exists, and for each I satisfies

{(S(Lx, Fi(x)), F(9)) }xq{m}*)n <

N 1/ -
X),output (X } 2.1
{tew (@), ouput ()} )
then we say that 11 privately computes F, or I computes F with
security against semi-honest adversaries.

Here, = denotes computational indistinguishability as defined by Gol-
dreich [Golog4] and Lindell [Lin17]. In the two-party case, we write
Si(xi, F(x1,x2)) instead of S({i}, (x;), F(x1,x2)) to denote the simu-
lator for the view of Party i € {1,2}.

Most of the protocols we present throughout this thesis provide
security according to the above simulation-based definition3, and we
provide the ideal functionalities in addition to formal protocol de-
scriptions. We will focus on semi-honest or passive adversaries, meaning
that all parties are assumed to follow the protocol faithfully, but at
the same time they try to learn as much as possible from the protocol
execution. A stronger adversary model, featuring malicious or active
adversaries, also allows the parties to deviate from the protocol de-
scription in arbitrary ways. While there exist generic approaches to
transform passively secure protocols to actively secure ones [IPSo8;
LOP11], as well as general-purpose MPC frameworks with active se-
curity [DPSZ12; WMK16; Kel20], these still come with a considerable
performance penalty. Still, in some cases we extend our protocols to
offer some additional protection against malicious adversaries.

2.3 COMPOSITION AND SECRET SHARING

A desirable property of secure computation protocols is that they can
be composed into higher-level protocols, while maintaining their secu-
rity properties. In particular, we would like the higher-level protocol
to be secure independently of how the sub-protocol is implemented,
as long as it securely computes the required functionality. This can be
achieved using composition theorems, as for example given by Canetti
[Canoo]. To that end, a hybrid model is introduced that lies between
the ideal model and the real world that we described in the previous
section. This hybrid model is the same as the real world execution
of the composed protocol, except that each call to a sub-protocol is
replaced by an evaluation of its ideal functionality instead. Modular
composition now ensures that if we can prove security of the com-
posed protocol in this hybrid model, and if each of the sub-protocols

9

3 A notable exception
is our k-NN protocol
in Section 4.6, where
we allow the ideal
functionality to have
an additional, but
quantifiable, privacy
leakage.



4 The main difference
between Theorem 2.2
and Canetti’s
Corollary 7 is that
we only care about
the full-threshold
case, 1. e., we require
protocols to be secure
even when only a
single party is

honest.

10

| BACKGROUND

securely implements its functionality, then the composed protocol is
secure in the real world as well.

We formally state this composition property in the following the-
orem. It was adapted* from Canetti [Canoo, Theorem 5 and Corrol-
lary 7], where we refer the reader for a full description of the model
and the proof.

Theorem 2.2 (Modular composition). Let m,n € IN, and let F1,..., Fu
and G be n-party functionalities. Let I1 be an n-party protocol that privately
computes G in the (F, ..., Fm)-hybrid model where no more than one ideal
evaluation call is made at each round. Let p1, . . ., om be n-party protocols such
that p; privately computes F;, and let I1°1Pn denote protocol 11 with each
call to F; replaced by an execution of p;. Then I1°1Pm privately computes G.

Composition simplifies the development of secure computation
protocols by allowing the protocol and proofs to take place in the
hybrid model. However, to prove security in the hybrid model, we
still have to make sure that the outputs of the ideal functionalities of
sub-protocols don’t reveal too much information. Secret sharing solves
this issue by making sure that outputs of sub-protocols appear random
to each proper subset of parties. Only by aggregating all shares, the
secret value can be recovered. Thus, a common approach to MPC
is to divide the computation into multiple parts, and design secure
protocols with secret-shared inputs and outputs for each of these parts.
Our protocols will also follow this approach, using additive secret
sharing. For a value x and any number of shares n € IN, we write
[x] to indicate that a value x is additively secret-shared, and [x]; to
denote the i-th share, i.e., Y/ ;[x]; = x. In some cases, when there is
exactly one share given to each party, we alternatively write [x]p to
denote the share given to party P.

2.4 OBLIVIOUS TRANSFER

As with many secure computation protocols, oblivious transfer (OT)
is a fundamental building block underlying most of the constructions
presented in this thesis. Introduced by Rabin [Rab81], it has been
shown to be sufficient to instantiate general-purpose MPC [GMW87],
and many general-purpose MPC protocols [Ya086; IPSo8; KOS16] rely
on it. Figure 2.1 depicts the ideal functionality for OT. The sender
inputs two messages, mg and m;. The receiver learns exactly one of
those messages, depending on a choice bit b, while the sender learns
nothing.

While there exist instantiations of OT with both passive and active
security [NPo1; CO15], they require expensive public-key operations,
limiting their direct applicability in practice. Fortunately, the computa-
tional overhead can be reduced with OT extension protocols [IKNPos3;



2.5 GARBLED CIRCUITS |

Sender Receiver

b

m(), ml —> fOT

—)Tf’lb

Figure 2.1: The ideal functionality for oblivious transfer (OT). The sender
inputs two messages 1, m1, while the receiver inputs a bit b €
{0,1} and receives the message that corresponds to b, m;,.

KOS15; ALSZ17], which allow extending a small number of base
OTs using cheap private-key operations. Other optimizations such
as correlated and random OT extension [ALSZ17; Yan+20] provide fur-
ther speedups when the messages are correlated, or when inputs are
randomly generated by the functionality instead of chosen by the
parties. These improvements have made OT widespread throughout
MPC implementations. Our protocols in Chapters 3-6 make use of OT
extension both directly, and indirectly through general-purpose MPC
such as garbled circuits.

2.5  GARBLED CIRCUITS

As a general-purpose MPC protocol, garbled circuits provide a way to
transform any polynomial-time functionality—described by a boolean
circuit—into a secure two-party computation protocol. Introduced
in the 1980s by Yao [Yao86], they have seen several improvements
over the years, including free XOR [KS08], half-gates [ZRE15], and, very
recently, stacked garbling [HK20]. Compared to MPC protocols based on
secret-sharing, such as GMW [GMW87] and SPDZ [DPSZ12], garbled
circuits have the advantage that the number of communication rounds
is constant, i.e., it does not scale with the circuit depth. This has
made garbled circuits a popular basis for various MPC frameworks
over the years [MNPSo4; ZE15; DSZ15;, WMK16]. In the following,
we will describe the high-level view of the basic protocol, without
any optimizations. For a full formal treatment and a security proof,
see Lindell and Pinkas [LPog].

The garbled circuit protocol is executed between two parties, a
Garbler and an Evaluator. The Garbler encrypts (garbles) the input
circuit gate by gate, before sending it over to the Evaluator. The
Evaluator then evaluates the garbled circuit using a set of input wire
keys obtained from the Garbler via oblivious transfer. Garbling ensures
that the circuit cannot be evaluated on any other inputs, and at the
same time hides the Garbler’s input values from the Evaluator.

1"



12

w1 wy w3 Garbled truth table

o 0 0 Eyo (Exg (k3))
o 1 1 Eyo (B (K3))
10 1 Ek% (Ekg (k3))
111 Eq (Eg (k3))

Table 2.2: Garbled truth table of an OR gate. Each row corresponds to a
valid combination of input and output values. The fourth column
is computed by the Garbler and sent to the Evaluator in randomly
shuffled order.

CIRCUIT GARBLING. Recall that the public functionality is described
by a boolean circuit, i. e., a collection of boolean gates and wires con-
necting them. For each wire w; of a gate, the Garbler generates two
random wire keys kY, k!, where one represents 0, and the other repre-
sents 1. Now the goal is for the Evaluator to learn exactly one key
at each gate, which is the key representing the gate’s output bit. For
example, given input wire keys ki and k9 of an OR gate, the Evaluator
should learn ki, which corresponds to a 1-bit on the output wire ws.
This is achieved by means of a garbled truth table, where each valid
combination of input-output keys forms a row of the table.

Let (G, E, D) be a private-key encryption scheme with key genera-
tion k < G(1"), encryption ct + Ex(pt), and decryption pt < Dy(ct).
We require that Di(ct) only returns a valid plaintext if ct was in fact
encrypted using k. See Lindell and Pinkas [LPog, Section 3.1] for for-
mal security requirements and constructions of suitable encryption
schemes. The Garbler now encrypts the output wire keys of each
wire with a combination of input wire keys that is valid under the
gate’s truth table. In the example above, output wire key ki would
be encrypted with input wire keys ki and k9. The full garbled truth
table together with the corresponding wire values is given in Table 2.2.
For each gate in the input circuit, a garbled truth table is computed
in the above fashion, and then shuffled randomly to ensure that no
information can be learned from the order of the rows. The resulting
tables are then sent to the Evaluator.

CIRCUIT EVALUATION. Evaluation of the garbled circuit is again
performed gate-by-gate. Given the wire keys of the input wires of a
gate, the Evaluator can decrypt exactly one row of the gate’s garbled
truth table. The decryption will yield the gate’s output wire key, which
serves as input to the next gate.

Before evaluation, the Evaluator needs to obtain the keys corre-
sponding to the circuit’s input wires. There are two cases. If the value
on an input wire is known to the Garbler (i. e, it is part of the Garbler’s
input, or public), then the corresponding wire key can be just sent to



2.5 GARBLED CIRCUITS |

the Evaluator along with the garbled circuit. The more challenging
case is when the input value is only known to the Evaluator. In this
case, only one of the two possible keys should be obtained by the
Evaluator, but the Garbler shouldn’t know which one. This is solved
using oblivious transfer, where the Garbler acts as the sender and
inputs the two wire keys, and the Evaluator acts as the receiver and
inputs the wire value.

Revealing the outputs is again straight-forward. For values that
should be learned by the Evaluator, the Garbler reveals the mapping
of output wire keys to values. For values that should be learned by
the Garbler, the Evaluator sends over the output keys.

Our protocols in Chapters 3-5 all have generic MPC phases that are
implemented using garbled circuits. The frameworks we use [ZE15;
WMK16] abstract away from raw circuit inputs, and provide higher-
level interfaces such as integer and floating point computation, and
oblivious data structures such as ORAM [Zah+16; DS17]. We refer the
reader to these publications for details on the implementations and
the optimizations used.

13






3 SECURE LINEAR REGRESSION
ON HIGH-DIMENSIONAL DATA

The contents of this
3.1 OVERVIEW chapter have

previously appeared
Linear regression is a fundamental machine learning task that fits a in Proceedings on

. . . . . . Privacy Enhancing

linear curve over a set of high-dimensional data points. It is most com- Technologies
monly used to predict a dependent variable y given a set of independent 2017.4 [Gas+17].
variables (or features) x1, ..., x4, using a training dataset (x(l),y(l))i el
An obstacle arises when the training data is vertically partitioned, i.e.,
when different features of the training dataset are owned by different
parties. As an example, consider a study to predict medical conditions
given data related to socioeconomic background. While databases
holding medical, judicial, and tax records linkable by common unique
identifiers (e. g., social security numbers) exist, they are often held by
different institutions. Aggregating these to build a higher-dimensional
dataset might be useful from a medical perspective, but is undesirable
for regulatory and privacy reasons. Our goal is to enable such analy-
ses of vertically partitioned data without the need for a trusted third
party or any exposure of sensitive data, using special-purpose MPC
protocols.

An important property of linear regression is that it can be cast as an
optimization problem whose solution admits a closed-form expression.
Formally, linear regression can be reduced to solving a system of linear
equations of the form A0 = b. Interestingly, solving systems of linear
equations is a basic building block of many other machine learning
algorithms [Mur12]. Thus, secure MPC solutions for solving linear
systems can also be used to develop other privacy-preserving data
analysis algorithms.

3.1.1  Chapter Contributions

In this chapter, we propose a solution for securely computing a lin-
ear regression model from a vertically-partitioned dataset distributed
among an arbitrary number of parties. Our protocols are the result
of securely composing a protocol for privately computing the coeffi-
cients of the system of equations A6 = b from distributed datasets
(aggregation phase), and a protocol for securely solving linear systems
(solving phase). Our main contributions are as follows:

e Scalable MPC protocols for linear regression on vertically parti-
tioned datasets (Section 3.4). We design, analyze, and evaluate
two hybrid MPC protocols allowing for different trade-offs be-

15



16

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

tween running time and the availability of external parties that
facilitate the computation.

o A fast solver for high-dimensional linear systems suitable for
MPC (Section 3.6). Our solver relies on a new Conjugate Gradient
Descent (CGD) algorithm that scales better, both in terms of
running time and accuracy, than the best previous MPC-based
alternative.

e We conduct an extensive evaluation of our system on real data
from the UCI repository [DG17] (Section 3.7.4). The results show
that our system can produce solutions with accuracy comparable
to those obtained by standard tools without privacy constraints.

Our work is also the first to undertake a formal analysis of the effect
different number representations have on the accuracy of privacy-
preserving regression protocols. We further propose a thorough data
pre-processing pipeline to mitigate accuracy loss (Section 3.5).

As previous work we build upon [Nik+13b], we work in the two-
server model that assumes the existence of two non-colluding parties
to facilitate the computation. While the basic versions of our protocols
are secure against semi-honest adversaries in this model, in Section 3.8
we discuss extensions beyond semi-honest security. More precisely,
we extend our solving phase with a verification phase that provides
stronger security guarantees even if one of the additional parties is
actively corrupted, and observe that it introduces minimal overhead
over the semi-honest solution.

3.2 RELATED WORK

Questions of privacy-preserving data mining and private computa-
tion of machine learning algorithms have been considered in several
works [LPo2; DAo1a; KLSRog4; YV]o6], providing theoretical protocols
without implementations or practical evaluations of their efficiency.
Early implementations of privacy-preserving linear regression proto-
cols [DHCog4; SKLRo4] either don’t use formal threat models, or leak
additional information beyond the result of the computation.

Hall et al. [HFN11] were the first to propose a protocol for linear
regression with formally defined security guarantees. However, due to
the dependence on expensive homomorphic encryption, the resulting
system does not scale well to large datasets.

Another implementation of linear regression is given by Bogdanov
et al. [BKLS18]. They compare multiple methods for solving regression
problems, including standard Conjugate Gradient Descent. However,
they work in a threat model with three computing parties and a hon-
est majority among those. Although they allow for more than three
input parties, this means that they cannot handle the two-party case.



3.3 BACKGROUND ON LINEAR REGRESSION \

Furthermore, their evaluation is limited to problems with at most 10
features.

Nikolaenko et al.’s work [Nik+13b] on secure computation for linear
regression is the one most similar to ours. In particular, their approach
also considers a protocol split into aggregation and solving phases
implemented using multiple MPC primitives. However, Nikolaenko
et al. only consider the horizontally-partitioned setting while we focus
on the more challenging case of vertically-partitioned datasets. Our
implementation of the solving phase using CGD improves the results
obtained using Nikolaenko et al.’s secure Cholesky decomposition in
terms of both speed and accuracy for datasets with more than 100
features (experiments in [Nik+13b] were limited to datasets with at
most 20 features). Furthermore, our CGD algorithm can also be used
directly to improve other MPC protocols requiring a secure linear
system solver [HEN11; GLN12].

Vertically-partitioned databases have been also studied from the per-
spective of privacy-preserving querying of statistical databases [DNo4].
This work falls under the paradigm of differential privacy [DR14;
DMNS16], where the goal is to mitigate the privacy risks incurred by
revealing to an attacker the model computed by a machine learning
algorithm. Our work in this chapter addresses an orthogonal concern,
namely that of preserving privacy during the computation the model.
Combining MPC and differential privacy is an interesting problem,
however, and we will present one possible approach in Chapter 4.

3.3 BACKGROUND ON LINEAR REGRESSION

Linear regression is a fundamental building block of many machine
learning algorithms. It produces a model given a training set of sample
data points by fitting a linear curve through them. Formally, a linear
model is a real-valued function on d-dimensional vectors of the form
x + (6,x), where x € R? is the input vector, 8 € R? is the vector of
parameters specifying the model, and (6, x) = Z;izl tjx; is the inner
product between 0 and x. The term linear comes from the fact that the
output predicted by the function (6, x) is a linear combination of the
features represented in x.

The learning algorithm has access to a training set of samples rep-
resenting the input-output relation the model should try to replicate.
These are denoted as (x(l),y(l)), o, (x(”),y(”)) with x() = (xgl), o,
xb(il)) € R* and y\) € R for i € [n].

A standard approach to learn the parameters of a linear model is to
solve the ridge regression optimization:

n . .
argmin% Z(y(l) — (B,x(l)>)2 + All0))? (3.1)
0 i—1

17



18

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

Here, A||6]|? is known as a ridge (or Tikhonov) regularization term
weighted by the regularization parameter A > 0. When A = 0, this
optimization finds the parameter vector 8 minimizing the mean squared
error between the predictions made by the model on the training
examples x() and the desired outputs y!). The ridge penalty is used
to prevent the model from overfitting when the amount of training
data is too small.

The optimization problem (3.1) is convex and its solution admits a
closed-form expression. A way to derive this solution is to reformulate
the optimization problem by writing X € R"*? for the matrix with n

. . . . AT
rows corresponding to the different d-dimensional row vectors x(?)

so that X(i,j) = x]@, and y € R" for a column vector with n entries
corresponding to the training labels y(!). With this notation, (3.1) is
equivalent to

o1
argmm;”y — X9||2 + )\HGH2 .
0

Now, by taking the gradient of this objective function and equating it
to zero one can see that the optimization (3.1) reduces to solving this
system of linear equations:

1+ 1
<nX X+/\I> 0= nX y (3.2)

where I represents the d x d identity matrix.

Therefore, ridge regression reduces to solving a system of linear
equations of the form Af = b, where the coefficients A = %XTX +
Al and b = 21Xy only depend on the training data (X,y). Since
the coefficient matrix A is positive definite by construction ridge
regression can be solved using one of the many known algorithms for
solving positive definite linear systems.

3.4 PROTOCOL DESCRIPTION

We consider the problem of solving a ridge regression problem when
the training data (X € R"*4,y € R") is distributed vertically (by
columns) among several parties. As in previous work on privacy-
preserving ridge regression [HFN11; Nik+13b], we assume that the
regularization parameter A is public to all the parties, and hence the
implementation of a secure data analysis pipeline including hyper-
parameter tuning (e.g., cross-validation) is beyond the scope of this
chapter. Furthermore, we also make the assumption in the vertically
partitioned case that the correspondence between the rows in the
datasets owned by different parties is known a priori. This assumption
is easy to enforce in databases with unique identifiers for each record,
given that efficient private set intersection protocols exist. The more



3-4 PROTOCOL DESCRIPTION \

complex task of privacy-preserving entity resolution is beyond the
scope of this chapter.

As discussed in Section 3.3, solving a ridge regression problem
reduces to the solution of a positive definite linear system. A super-
ficial inspection of Equation (3.2) shows that this can be seen as two
sequential tasks: (i) compute the matrix A = 1XTX + AT and the
vector b = %XTy, and (ii) solve the system A@ = b. In the distributed
privacy-preserving setting, task (i) above corresponds to an aggrega-
tion phase where data held by different parties has to be combined.
In contrast, we refer to (ii) as the solving phase, where the system of
linear equations resulting from the aggregation is solved and all the
parties obtain the solution in some form. It is important to note that in
practice, ridge regression is used on problems with n > d, and that,
while the input of the aggregation phase is of the order of n x d, the
solving phase has input size independent of 7, i.e., of the order of d.
This demonstrates the importance of having an efficient aggregation
phase.

As mentioned in the introduction, the scenario where (X, y) is par-
titioned horizontally among the parties was studied by Nikolaenko
et al. [Nik+13b]. With this partitioning, the computation of A and b
can be cast as an addition of matrices computed locally by the parties.
More concretely, in that case one can write A = Y ; A; + AI with
A; = x0x®"/n, and similarly b = Y, = b; with b; = xy) /n,
The absence of the need for secure multiplication is crucial from a
secure computation perspective, and guided the design of the protocol
of Nikolaenko et al. [Nik+13b], as non-linear operations are expen-
sive in secure computation. In contrast, the setting where the data is
vertically partitioned requires secure computation of inner products
on vectors owned by different parties. In the following section, we
analyze the exact requirements for this setting, and propose secure
computation protocols to overcome this challenge.

3-4.1  Aggregation Phase

For clarity of presentation, we first describe the two-party case, where
X is vertically partitioned among two parties P; and P; as X; and X,
and y is held by one of the parties, say P,. As described above, the
goal of this phase is to have the parties hold additive shares of (A,b).
With this notation, the functionality f of the aggregation phase can be
described as follows:

f(X1,X2,y) = ((A— Az, b —b),(Az,b2)),

where (A — Ay, b — by) and (Ay, by) are the outputs received by the
first and the second party respectively.

Our protocol implements f in a secure way. Let us now have a
closer look at what needs to be computed. For simplicity, assume that

19



20

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

each party holds a block of contiguous features. Then, the following
equations show how the content of the output matrix depends on the
inputs of the two parties.

: :[}q] o

oxe[8
XIX, XIX,

Observe that the upper left part of the matrix M = X" X depends only
on the input of party P; and the lower right part depends only on
the input of party P>. Hence, the corresponding entries of M can be
computed locally by P1, while P, simply has to set her shares of those
entries to 0. On the other hand, for entries m;; of M such that features
i and j are held by distinct parties, the parties need to compute an
inner product between a column vector from X; and a column vector
from Xj. To do so, we rely on a secure inner product protocol which
we present next (Section 3.4.1.1). We note also that because the two
off-diagonal blocks of M are transpositions of each other, computing
only one of these blocks is enough to get an additive share of M.

In the multi-party case, similarly to the two-party case, the vertical
partitioning of the database implies that each party holds a subset of
the columns of X and a corresponding subset of the rows of X. Since
each value in A is an inner product between a row vector of X' and a
column vector of X, this means that each value in A depends on the
inputs of at most two parties. Thus, also in the multi-party case, the
aggregation phase for vertically-partitioned datasets can be reduced
to secure two-party computation of inner products. At the end of the
aggregation phase, the parties will obtain A in a form where each
entry is either known to one party or is shared between some pair of
input parties.

3.4.1.1  Secure Inner Product

In this section, we present protocols for two parties P and P, holding
vectors x and y, respectively, to securely compute the inner product of
their vectors and obtain additive shares of the result. As mentioned
before, we use a fixed-point encoding for real numbers (see Section
3.5 for details). Thus, our numbers can be represented as elements of
a finite field Z;, and hence the functionality we need can be described
as

fxy) = (r(xy)—r) (33)

where x,y € Zj, r is a random element of Z;, and each party gets
one of the components of the output. There are several techniques



3-4 PROTOCOL DESCRIPTION \

Protocol 1: Secure inner products from OT.
Parties: Pq, P».
Inputs: P, : x € Z[’}; Py :y € Z], where q = 2b,
Outputs: Py : 51 € Zy; P2 : 55 € Z; such that s + 52 = (x, ).

(1) foreach i € [n] do
Let y; ; be the j-th bit of the binary decomposition of y;.
foreach j € [b] do
The parties run a 1-out-of-2-correlated OT protocol,
where the P, acts as the sender and obtains

m., ml. = m?]. + x; -2/, and P, acts as the receiver and
Yij

i,j’ "f

obtains m; ;-

(2) Py computes its share as s; = Z —m?..

L]
ie[n],je(b]

(3) P2 computes its share as s, = E mly i
i€[n),je(b]

that can be used for this task as, essentially, it corresponds to secure
multiplication.

Generally, MPC techniques represent the implemented functionality
either as arithmetic circuits (e.g., SPDZ [DPSZ12], TinyOT [NNOB12])
or as Boolean circuits (e.g., Yao’s protocol [Yao86], GMW [GMW87]).
While the former makes it possible to represent arithmetic operations
very efficiently, the latter is better for performing bit-level operations.
A second important property of MPC protocols is round complexity.
Most notably, some techniques such as Yao’s garbled circuits have
a constant number of rounds, while for others (e.g., SPDZ, TinyOT,
GMW), the number of rounds increases with the multiplicative depth
of the circuit being evaluated (for Boolean circuits, this is the AND-
depth). Note that the functionality in Equation (3.3) only consists of
additions and multiplications. Furthermore, all multiplications can be
done in parallel. Thus, a representation as an arithmetic circuit with
constant multiplicative depth is the natural choice.

We propose two protocols for the functionality in Equation (3.3).
The first (Protocol 1) is based on oblivious transer (OT, see Section 2.4).
It was originally proposed by Gilboa [Gilgg], and is used in different
MPC contexts [KOS16; DSZ15]. The protocol uses OT to compute
additive shares of the product of two numbers in a binary field, which
can be trivially extended to securely compute the inner product of two
vectors. Correctness of Protocol 1 can be verified by observing that

21



22

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

51—1-52—2 I’I’l —|—Zmy”

i€[n],jelb] i€[n],j[b]
2 m1]+m 4 (x; ])'yi,]'
i€[n],j[b]
—Yx Y2y,
i€[n] j€[b]
= Z Xi-Yi = X, Y >
ie[n]

Security follows from the fact that all received messages are gen-
erated randomly by the OT functionality, and so the shares as sums
of pseudorandom values are also pseudorandom. From an efficiency
perspective, observe that all OTs in Step (1) of Protocol 1 can be done
in parallel, using a single correlated OT extension [ALSZ17].

Our second secure inner product protocol (Protocol 2) uses only
symmetric key operations and is much more efficient than the pre-
vious one. It builds upon techniques based on precomputation of
multiplicative triples [Beag1], as the secret sharing techniques men-
tioned above, and relies on an initializer that aids in the computation.
Our protocol can also be seen as a modification of the construction
presented by Du and Attalah [DAo1b] where the trusted initializer
does not keep a share of the result.

In both our protocols, we exploit the facts that, in our case, (i) the
input vectors are each completely owned by one of the parties, and
not shared among them, (ii) only two-party computations are needed,
(ii) we are concerned about semi-honest security at this point. These
observations lead to simpler protocols than general MPC protocols
based on secret sharing.

In Section 3.7.3 we present an evaluation of our two protocols for
secure inner product, in the context of our implementation of the
aggregation phase for secure linear regression.

3.4.2 Solving Phase

After the aggregation phase, the parties hold additive shares of a
square, symmetric, positive definite matrix A and a vector b, and the
task is to securely solve A0 = b.

In line with previous work [Nik+13b; HFN11], and in order to
achieve constant round-complexity, we choose Yao’s garbled circuits
for our solving phase, and introduce two additional non-colluding
parties. These aid in the computation without learning neither the
result, nor anything about the parties” input. In fact, our architecture
relying on two external parties can be seen as a way of reducing
a multi-party problem to a two-party problem, and had been used
before by Nikolaenko et al. [Nik+13b] and Naor, Pinkas, and Sumner



Protocol 2: Secure inner product with a trusted initializer.

Parties: Pq, P,, and trusted initializer TIL.
Inputs: P, : x € Zf;; Py:y e Zg.
Outputs: Py : 51 € Z,; Py : 55 € Z; such that s; + 5, = (x,y).

(1) TI generates random vectors a,b € ZZ and a random number
r € Zy, and sets z = (a,b) — r. It sends (a,r) to Py, and (b, z)
to Pz.

(2) P1sends x + a to P,.

(3) P2 sends y — b to Py.

(4) P1 computes its output share as s; = (x,y —b) —r.

(

5) P2 computes its output share as s, = (x + a,b) — z.

[NPSg99]. Analogously to the presentation in [Nik+13b], we call our
additional roles Crypto Service Provider (CSP) and evaluator. For
clarity, from now on, we will call our parties data providers. The CSP
is in charge of generating a garbled circuit for solving A8 = b, while
the evaluator will do the evaluation. In contrast to Nikolaenko et al.
[Nik+13b], the evaluator does not necessarily learn the solution of the
system in our protocol. The solving phase is described in Protocol 3.

Note that the CSP and the evaluator are only required to be non-
colluding and hence, for Protocol 3, their roles could be taken by
some of the data providers. In particular, for the case with two data
providers, no additional parties are needed. We discuss security con-
siderations of the solving phase protocol in the next section, where we
present our complete protocol for secure linear regression.

Finally, let us note that we have not specified the details of the
circuit C yet. It is important to remark that, after having designed
a fast aggregation phase, the bottleneck of our protocol in terms of
running time will now be in the solving phase. Hence, the concrete
algorithm for solving Af = b is a crucial element for the scalability of
our protocol for secure linear regression. In Sections 3.5 and 3.6 we
discuss desirable properties of a good algorithm for solving systems of
linear equations tailored for MPC, and propose a Conjugate Gradient
Descent algorithm. Finally, let us mention that, as we will see in
Section 3.6, the circuit C has high degree. As mentioned in the previous
section this motivates the choice of GCs as underlying MPC technique.
An extensive evaluation of MPC techniques for the task of linear
system solving is left for further work.

3.4.3 Secure Linear Regression

Our main protocol is depicted in Figure 3.1. In this case, the composi-
tion between the aggregation and solving phases is implemented in

23



Protocol 3: Solving phase of our linear regression protocol.

Parties: Data providers P; ..., P,, CSP, and evaluator.

Inputs: P; : share (A;, b;) of an equation A6 = b.

Output: The data providers learn a solution of A8 = b.

(1) The CSP generates a garbled circuit C for a functionality
f((A1,b1),...,(Ay, by)) that reconstructs and solves A0 = b
and sends it to the evaluator.

(2) Each data provider P; runs oblivious transfers with the CSP to
obtain garbled values (A;, b;) for (A;,b;) in C and forwards
them to the evaluator.

(3) The evaluator evaluates C and shares @ with the data providers.

(4) The CSP sends the decryption mappings for the data providers
to obtain 0 from 6.

steps (d) and (e) by means of oblivious transfers between the CSP and
the data providers. Here, the roles of trusted initializer and CSP in
the aggregation and solving phases are taken by a single additional
non-colluding party, while the role of the evaluator could be taken by
one of the data providers.

In the two-party case, the roles of the CSP and the evaluator can be
taken by the data providers, and the composition of the two phases is
straightforward, while the role of trusted initializer in the aggregation
phase is taken by an additional non-colluding party that aids in the
computation.

A variant of our protocol described above implements the aggre-
gation phase using the protocol based on OT (Section 3.4.1.1). In this
way, we remove the need for an external non-colluding party. We will
consider the performance of this variant in the experimental evalu-
ation, and revisit it when we consider extensions of our protocol to
withstand malicious adversaries.

Up to this point we have focused on design and correctness aspects
of our protocols, without discussing their security guarantees. We
undertake that task in the following section.

3-4.3-1  Security Against Semi-Honest Adversaries

Our work is in the semi-honest — also known as honest-but-curious —
threat model. Security in this model does not provide privacy, correct-
ness, or even fairness guarantees if a party deviates from the protocol.
However, the semi-honest setting is appropriate for distributed ma-
chine learning applications where parties are generally trusted, but
should be prevented from sharing their data in the clear for legal
reasons, or the computation is run in a controlled environment. These
conditions are reasonably easy to meet in scenarions where the parties



3-4 PROTOCOL DESCRIPTION \

) .5 s

27 (d)
e ©
. ©

- - - Aggregation phase

|

|

|

|

1

|

i —Evaluator
|

| o
|

|

|

,,,,, ! Solving phase

Figure 3.1: The multi-party protocol: (a, b) The data providers compute
additive shares of A8 = b, by doing local precomputations and
executing several instances of Protocol 2. (c) The CSP generates a
garbled circuit C for a functionality that reconstructs and solves
A0 = b and sends it to the evaluator. (d) Each data provider P;
obtains garbled values for their shares using OT and forwards
them to the evaluator. (e) The evaluator evaluates C and shares
the garbling of the result § with the data providers. Finally, The
CSP sends the decryption mappings for the data providers to
obtain 0 from 6.

are corporations or government agencies. In this section we formally
argue the correctness of our protocol in the semi-honest threat model,
and in Section 3.8 we discuss an extension to guarantee correctness of
the result.

Similarly to how we presented our protocols, we argue security of
our linear regression protocol with a modular approach, by proving
the security of the protocol based on the security of its subprotocols.

Let us therefore first argue security of our protocols for the inner
product functionality. For the OT-based protocol (Protocol 1) we refer
the reader to Gilboa [Gilgg] and Demmler, Schneider, and Zohner
[DSZ15]. We state the correctness and security of the protocol based
on a trusted initializer in the following lemma.

Lemma 3.1. Assuming the trusted initializer (TI) does not collude with ei-
ther Py or Py, Protocol 2 computes the functionality f(x,y) = (r, (x,y) —r)
with security against semi-honest adversaries, where (x,y) and (r, (x,y) — 1)
are the inputs and outputs of the parties.

Proof. Correctness can be easily verified from the definition of the
resulting shares. To prove security, we construct simulators S; and S,
which simulate the views of the two parties.

&1 generates a view for P; given x and P;’s output in the ideal
functionality, denoted s]. The message from the TI is simulated as
(a’, (x,b") — s7), while the message from P, is simulated as b’, where
a’,b’ € U(Z}). The resulting view has the same distribution as P1’s
view in the real protocol execution.

25



26

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

Similarly, S, generates a view for P; given y and s as follows: the
message from the TI is simulated as (b, (a’/,b’) — s3), while the mes-
sage from P is simulated as a’, where a’, b’ € U(Zg). These messages
have the same distribution as P;’s view in the real execution, which
completes the proof. O

The security of our main protocol depicted in Figure 3.1 is stated
in the following theorem. Informally, the theorem states that, as long
as the participants do not deviate from the protocol, and the external
parties CSP/TI and evaluator) are non-colluding, none of the parties
learn anything from the inputs of the data providers that cannot be
deduced from the result of the computation, namely the regression
parameter 6. Moreover, recall that the external parties do not obtain 6.

Theorem 3.2 (Security). Let Il be a secure two-party computation protocol
for the inner product functionality defined in Section 3.4.1.1 with security
against semi-honest adversaries, and 11, be a two-party computation protocol
based on garbled circuits with semi-honest security. The construction in
Figure 3.1 is a secure computation protocol that provides security against
semi-honest adversaries, in the setting where the CSP/TI and the evaluator
collude with neither the data providers nor each other.

Proof. We need to show simulation security against a semi-honest
non-colluding adversary that controls the CSP, a semi-honest non-
colluding adversary that controls the evaluator, and a semi-honest
adversary that controls a subset of the input parties.

The security of the inner product protocol Il; implies that there
exist simulators Sp, and Sp, which can simulate the view of each of
the two parties in the execution of the protocol. The security of the
two party computation protocol based on garbled circuits IT, implies
the existence of simulators Simga, and Sime,, which work as follows.
Simgar, simulates the view of the garbling party, which consists of the
execution of the OT protocols as a sender. Sime,, simulated the view
of the evaluator which consists of the garbled circuit itself as well at
the view in the execution of the OT protocols as a receiver. We will
use these simulators in our proof.

Semi-honest CSP. The view of the CSP in the secure computation
protocol consists only of the messages exchanged in the garbled circuit
computation where it has no input, and the messages exchanged in
the OT executions with the data providers. Both can be simulated
using Simggp.

Semi-honest evaluator. Similarly to the case of the CSP, the view of
the evaluator in the execution of the protocol consists of the messages
exchanged in the execution of the garbled circuit evaluation where
it has no inputs. Therefore, we can use the simulator Sime,, that can
simulate its view.



3-5 NUMBER REPRESENTATION \

Semi-honest Input Parties. The view of an adversary who controls
a subset of the input parties in Protocol 3 consists of the messages
exchanged in the executions of the inner product protocol in the
aggregation phase with other input parties not controlled by the
adversary, the messages in the OT executions with the CSP in the
solving phase together with mappings for the output garbled labels as
well as the garbled output the parties receive from the Evaluator. We
can use the simulators Sp, and Sp, to obtain the view of the adversary
in the aggregation phase. Additionally, we can use Simg,, for I
to simulate the view of the adversary in the OT executions. Given
the value 6 of the output solution, which the parties will receive, the
simulator Simg, can also generate mappings for the output garbled
labels to real values and a set of garbled labels for the output that
open to 6. This completes the proof. ]

The above security argument can be easily adapted to the case
where the evaluator is one of the data providers, as long as CSP/TI
does not collude with any other party.

We can further extend the security guarantees of our protocol, to
the setting where the roles of the CSP and the evaluator are executed
by two of the parties, as long as these two parties are semi-honest
and non-colluding with each other. In this scenario, we use the OT-
based protocol for the aggregation phase, as it does not require a
trusted initializer (which was instantiated by the CSP). The security
guarantees for this variant in which no external parties are required, are
stated in the next theorem.

Theorem 3.3 (Security without external parties). Let I1 be an instantia-
tion of the protocol described in Figure 3.1 where the roles of CSP and the
evaluator are implemented by two distinct input providers, and the aggrega-
tion phase is instantiated with the OT-based inner product protocol. Then,
I provides security against semi-honest adversaries in the setting where the
CSP and the evaluator do not collude.

In Section 3.7 we provide an experimental evaluation of the protocols
of the two theorems above where we quantify the speed-up obtained
by relying on an offline phase performed by a non-colluding external
party acting as trusted initializer.

3.5 NUMBER REPRESENTATION

Implementing secure MPC protocols to work with numerical data
poses a number of challenges. In our case, the most significant of
those challenges is choosing an encoding for numerical data provid-
ing a good trade-off between efficiency and accuracy. The IEEE 754
floating-point representation is the standard choice used by virtually
every numerical computation software because of its high accuracy

27

The accuracy
analysis in this
section was
performed by
co-author Borja
Balle.



28

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

and numerical stability when working with numbers across a wide
range of orders of magnitude. However, efficient implementations of
IEEE 754-compliant secure MPC protocols are a subject of on-going
research [Dem+15; PS15], with the current state-of-the-art yielding 32
bit floating-point multiplication circuits running in time comparable
to computers from the 1960’s [Wei61]. Unfortunately, these implemen-
tations do not yet scale to the throughput required for data analysis
tasks involving large datasets, and forces us to rely on fixed-point en-
codings like previous work in this area [HFN11; Nik+13b; CDNN15].
The rest of this section presents the details of the particular fixed-point
encoding used by our system, with a particular emphasis on its effect
on the accuracy of the protocol. We further introduce data normaliza-
tion and scaling steps that play an important role in the context of
linear regression.

3.5.1 Fixed-Point Arithmetic

Our use of fixed-point encodings follows closely previous works
on secure linear regression [HEN11; Nik+13b; CDNN15]. However,
unlike these, we provide a formal analysis of the errors such encodings
introduce when used to simulate operations on real numbers.

In a fixed-point signed binary encoding scheme each number is
represented using a fixed number of bits b. These bits are subse-
quently split into three parts: one sign bit, by bits for the fractional
part, and b; bits for the integral part, with the obvious constraint
b = b; + by + 1. For each possible value of by and b; one gets an
encoding capable of representing all the numbers in the interval
[—20 4 27bp=1 obitl _ Z_bf_l] with accuracy 27 In general, arith-
metic operations with fixed-point numbers can be implemented using
signed integer arithmetic, though special care is required to deal with
operations that might result in overflow. We point the reader to [ELo4]
for an in-depth discussion of fixed-point arithmetic.

In order to implement Protocol 2 we need to simulate fixed-point
arithmetic over a finite ring Z,; whose elements can be represented
using b bits. Thus, the encoding used by our protocols involves two
steps: mapping reals into integers, and mapping integers to integers
modulo g with g = 2°. We introduce encoding and decoding maps for
each of these two steps, as summarized in the following diagram:

P P
R=Z=27Z, .
s P

The map encoding reals into integers is given by ¢s(r) = [r/J],
where the parameter § = 2%/ controls the encoding precision and [/]
returns the rounding of a real number to the closest integer (with ties
favouring the largest integer). In particular, J is the smallest number
that can be represented by our encoding ¢s. The integer decoding



3-5 NUMBER REPRESENTATION \

mapping is given by ¢s(z) = zJ. Next we recall several well-known
facts [ELo4] about the error introduced by operating under a fixed-
point encoding with finite precision . For any reals 7,7’ € R we have
the following:

1 |r—@s(ps(r))] <9,
2. |(r+1") = ¢s(¢ps(r) + ps(r"))] < 29,
3. (r1") = @z (s (r) s (') < (|r] 4 17'])6 + 82

Note the last fact involves a decoding with precision 62 to account for
the increase in the number of fractional bits required to represent the
product of two fixed-point numbers.

Encoding reals in a bounded interval [—M, M] with ¢; yields in-
tegers in the range [-M/d] < ¢s(r) < [M/J]. This interval contains
K = 2M/é + 1 integers. Thus, it is possible to map this interval injec-
tively into any ring Z, of integers modulo g with g > K. We obtain
such injection by defining the encoding map ¢,(z) =z mod g, which
for integers in the range —q/2 < z < q/2 yields ¢4(z) = zif z > 0
and ¢4(z) = q+ z for z < 0. The corresponding decoding map is given
by ¢g(u) =uif 0 <u <q/2and ¢g(u) =u—qforqg/2 <u <g-1
Although ¢, is a ring homomorphism mapping operations in Z into
operations in Z;, decoding from Z, to Z after operating on encoded
integers might not yield the desired result due to overflows. To avoid
such overflows one must check that the result falls in the interval
where the coding ¢, is the inverse of @,. In particular, the following
properties only hold for integers z,z’ such that |z|, |z/| < g/2:

1 qlq(2)) =z,
2. |z+2'| < q/2implies z 42" = ¢,(@4(z) + ¢4(2)),

3. |z- 2| < q/2implies z - 2 = §4(¢q(2) - 9q(2'))-

3.5.2 Accuracy of Inner Product

The properties of the encodings described in the previous section can
be used to provide a bound on the accuracy of the result of Protocol 2.
At the end of the protocol, both parties have an additive share of
of (x,y) for some integer vectors x,y € ZZ. Therefore, we want to
show that when the input vectors x, y provided by the parties are
fixed-point encodings of some real vectors u,v € R", then the result
of the inner product over Z; can be decoded into a real number
approximating (u, v). We note that the comparison here is against real
arithmetic, while in the experimental section we will be comparing
against floating-point arithmetic, which can represent real arithmetic
to high degrees of accuracy across a much larger range of numbers
[Knugy].

29



30

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

According to the previous section, there are two sources of error
when working with fixed-point encoded real numbers: the systematic
error induced by working with finite precision (which can be miti-
gated by increasing by), and the occasional error that occurs when the
numbers in Z,; overflow (which can be mitigated by increasing b;). To
control the overflow error we assume that # and v are n-dimensional
real vectors with entries bounded by R, |u;|, |v;] < R for i € [n], and
x = @y(¢ps(u)) and y = ¢4(¢s(v)) are encodings of those vectors with
precision .

Theorem 3.4 ([Wil88, Ch. 3]). If g > 2nR?/6?, then:
(11, 0) = §sz(§g({x,)))| < 2R3+ nd* .

Proof. In the first place we observe that any number occurring in
the computation of the inner product (¢s(u), ps(v)) of the integer
encodings of u and v is bounded by nR?/ 2. Therefore, the condition
on g ensures there are no overflows in the computation in Z; and
we have (¢5(u), ps(v)) = §4((x,y)). Now we use the formulas for the
error of sum and product of integer encodings from previous section
to show that

(1, 0) — Ps2 ({ps(u), ¢5(v)))|
— Ps2 <Z¢5 ) Ps Uz))‘

<Z\”Uz b2 (s (ui)Ps (0i))]

< n(ZR(S +6%),

where the first inequality follows by the triangle inequality and linear-
ity of the decoding map ¢;. O

We note that the assumption of a bound R on the entries of the
vectors u# and v is not very stringent: if both parties agree on a common
bound R, or there is a publicly known R, then the vectors can be
normalized locally by each party before the execution of the protocol.
Thus, in practice it is convenient to normalize the real vectors u and
v such that their entries are bounded by C//n for some constant
C > 0. In this case, the bounds above can be used to show that if
one requires the final inner product to have error at most ¢, this can
be achieved by taking § = ¢/2Cy/n and q = 8C?n/¢?. Using these
expressions we see that an encoding with b = O(log(n/¢)) bits is
enough to achieve accuracy ¢ when performing n-dimensional inner
products with fixed-point encoded reals.

3.5.3 Data Standardization and Scaling

The statistical theory behind ridge regression generally assumes that
the covariates in the columns of X are normally distributed with zero



mean and unit variance. In practical applications this is not always
satisfied. However, it is a common practice to standardize each column
of the training data to have zero mean and unit variance. This column-
wise procedure is implemented as part of the local pre-processing
done by each party in our linear regression protocol. We use X to
denote the data matrix obtained after standardization.

The importance of proper data scaling to prevent overflows in the
aggregation phase is the key message from Theorem 3.4 (Section 3.5.2).
Additionally, a critical phenomenon occurring in the solving phase
is the degradation in the quality of the solution when the encoding
is fixed and the dimension of the linear system grows. To alleviate
the effect of the dimension on the accuracy of the solving phase, our
pre-processing re-scales every entry in X and y by ﬁ. We note that
these scalings can be performed locally by the parties holding each
respective column.

The standardization and scaling steps described above imply that
our protocols effectively solve the linear system

1 o714 1 o1
<ndX X—I—AI)G_MZX v .
This scaling has no effect on the linear regression problem being solved
beyond changing the scale of the regularization parameter. On the
other hand, the standardization step needs to be reversed if one wants
to make predictions on test data following the same distribution as
the original training data. This task corresponds to a simple linear
computation that can be efficiently implemented in MPC, both in the
case where the model 0 is disclosed to the parties and the case where
it is kept shared among the parties and the prediction task using 6 is
itself implemented in a secure way using MPC.

36 SOLVING LINEAR SYSTEMS

As discussed in Section 3.4.2, the solving phase of our protocol in-
volves solving positive definite linear systems of the form A8 = b in a
garbled circuits protocol. A wide variety of solutions to this problem
can be found in the numerical analysis literature, though not all of
them are suitable for MPC. For example, any variant of Gaussian
elimination involving data-dependent pivoting can be immediately
ruled out because implementing non-data-oblivious algorithms in-
side garbled circuits produces unnecessary blow-ups in the circuit
size. This limitation has already been recognized by previous works
on private linear regression using garbled circuits and other MPC
techniques [HHFN11; Nik+13b]. In particular, these works consider
two main alternatives: computing the full inverse of A, or solving
the linear system directly using the Cholesky decomposition of A

31



32

Functionality 4: Our variant of the Conjugate Gradient Descent
algorithm, optimized for fixed-point encoded numbers.

Inputs: positive definite system (A, b), number of iterations T.
Output: approximate solution 67 with A6t ~ b.

(1) 8o <=0, g0 = Ao — b, S0 1=/ Po = §o

Hgl
(2) Fort =0...T — 1 repeat:

@ 611 — 0 — (55 ) pr.
(5

i g )
Apt

(b) g1 < gt —

8t+1
lge1lles”

(d) pe+1 < §e1 — (gf{;l) pr-

(©) &1+

as an intermediate step. Although both of these methods have an
asymptotic computational cost of O(d%), in practice Cholesky is faster
and numerically more stable. This justifies the choice of Cholesky
as a procedure for solving linear systems in garbled circuits made
in [Nik+13b]. However, as we show in Section 3.7.2, Cholesky’s cubic
cost in the dimension can become prohibitive when working with
high-dimensional data, in which case one must resort to iterative
approximate algorithms like Conjugate Gradient Descent (CGD).

In the following Section we present a novel CGD algorithm tailored
for working with fixed-point arithmetic and compare it to the classical
CGD algorithm.

3.6.1  Conjugate Gradient Descent

Factorizing the coefficient matrix A in order to make the solution
easier to compute, as in Cholesky’s algorithm, is not the only effi-
cient way to solve a system of linear equations. An entirely different
approach relies on iterative algorithms which construct a monotoni-
cally improving sequence of approximate solutions 6; converging to
the desired solution. The main virtue of iterative algorithms is the
possibility to reduce the cost of solving the system below the cubic
complexity required by exact algorithms at the expense of providing
only an approximate solution. In particular, for linear systems arising
from ridge regression the practical importance of iterative algorithms
is twofold: since intensive computations inside an MPC framework
can be expensive, iterative methods provide a natural way to spend
a fixed computational budget on finding an approximation to the
desired solution by stopping after a fixed number of iterations; and,
since the coefficients of the linear system occurring in ridge regression
are inherently noisy because they are computed from a finite amount



36 SOLVING LINEAR SYSTEMS |

_ — b, =8
~ 10~4 i
1071 b =9
= = —— b;=10
K = 1077 g
;1077 \ — h=11
< £ e
i 10-10 ] i 1010 4 Float
= =
5 5
-5 10—13 4 .g 10713 _
24 R~
=
10716 + 10-16 4 \
\\ ___________________
0 20 40 0 20 40
CGD Iteration t CGD Iteration t

Figure 3.2: Fixed-point CGD Implementations (with 64 bits on a system
of dimension 50). (Left) Textbook CGD [NWgg]. (Right) Our
Fixed-point CGD.

of data, finding an approximate solution whose accuracy is on the
same order of magnitude as the noise in the coefficients is generally
sufficient for optimizing the predictive performance of the model.

When the coefficient matrix of the linear system A0 = b is positive
definite, a popular iterative method is the conjugate gradient descent
(CGD) algorithm. The CGD algorithm can be interpreted as solving the
system by iteratively minimizing the objective || A0 — b||*> with respect
to the parameter vector 8 using the method of conjugate gradients
[NWogg]. However, the numerical stability of CGD is in general worse
than that of Cholesky’s algorithm, making it very sensitive to the
choice of fixed-point encoding. This can be observed in Figure 3.2 (left),
where we plot the behavior of the residual ||A6; — b|| as a function of
t for several settings of the number of number of integer bits b; when
solving a system with d = 50 using 64-bit fixed-point encodings. This
plot shows that CGD is very sensitive to the choice of b;, and even in
the optimal setting (b; = 10) the convergence rate is much slower than
the one achieved by the corresponding floating-point implementation
(dashed black curve).

After a thorough investigation of the behavior of a fixed-point im-
plementation of CGD we concluded that the main problem occurs
when the norm of the conjugate gradients decreases too fast and conse-
quently the step sizes grow at each iteration. This motivates a variant
of CGD, which we call fixed-point CGD (FP-CGD), and whose pseudo-
code is given in Functionality 4. The only difference between standard
CGD and FP-CGD is the use of normalized gradients g = g:/ /gt ||
in the computation of the conjugate search directions p;; in particu-
lar, by taking §; = g: one recovers the classical textbook algorithm.
While CGD has been used in the context of secure computation in
previous work [BKLS18], to the best of our knowledge, we are the first
to describe this modification of CGD.

33



34

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

It is easy to show that CGD and FP-CGD produce exactly the same
sequence of approximate solutions 6; when working in exact arith-
metic. However, normalizing the search directions in FP-CGD makes
the method much more stable with respect to the errors introduced by
fixed-point arithmetic. This is illustrated by Figure 3.2 (right), where
we show the evolution of the residuals for the same system and fixed-
point encodings that we used to test standard CGD. Here, we observe
that we recover the same converge rate as CGD with floating-point
arithmetic while only suffering a loss between 2 and 3 digits of accu-
racy. We will see later in our experiments with real data (Section 3.7.4)
that this loss in accuracy is negligible in real applications, and it is
comparable (or better) than the accuracy provided by a fixed-point
implementation of Cholesky’s method. In terms of computation, we
note that each iteration of FP-CGD is slightly more expensive than
an iteration of standard CGD due to the normalization step, but the
asymptotic cost per iteration is in @(d?) in both cases.

Further justification for the use of FP-CGD instead of other iterative
methods is provided by its favorable theoretical properties. In exact
arithmetic, FP-CGD inherits two important properties from CGD: (i) it
converges to the exact solution of A@ = b in exactly d iterations; and (ii)
it achieves the optimal convergence rate among all first-order methods,
yielding a solution with error at most ¢ after O(\/x(A) log(1/¢)) iter-
ations. Property (i) is important because not all iterative algorithms
for solving linear systems are guaranteed to produce an exact solu-
tion after a finite number of iterations, including standard gradient
descent methods like the ones implemented in [GLN12] using leveled
homomorphic encryption. Furthermore, property (ii) says essentially
that it is not possible to find a first-order method producing more
accurate approximate solutions than CGD, and that only a few iter-
ations of CGD are required to accurately solve linear systems with
small condition number x(A). In principle, these properties might
not be preserved by the fixed-point implementations of CGD and
FP-CGD due to the numerical errors introduced by the finite-precision
arithmetic. In the case of CGD, [Meuo6] shows that when working
with a finite number of bits for the fractional part and an infinite
number of bits for the integer part, several important properties of
the exact version, including the convergence rate, are preserved up to
small order modifications. However, the assumption of infinite bits
for the integer part is not realistic in practice, and the experiments in
Figure 3.2 show that when a fixed number of bits needs to be split
between the integer and fractional part of the representation a crucial
tension arises. FP-CGD is designed to alleviate such tension by making
sure that a minimal number of bits in the integer part suffice to solve
a properly scaled system accurately. We demonstrate this through our
experimental evaluations in Section 3.7, where we also compare the
accuracy and running time of FP-CGD against the method based in



3.7 EXPERIMENTAL RESULTS |

Cholesky decomposition used in [Nik+13b], and study the effect of
the condition number x(A) on both methods.

3.7 EXPERIMENTAL RESULTS

This section presents an extensive empirical evaluation of our pro-
tocols. We start by describing the details about the concrete imple-
mentation of our system and the experimental setup. Then we present
experiments for different implementations of the solving phase using
FP-CGD and Cholesky, comparing them in terms of accuracy and
running time across a wide range of settings. The second set of experi-
ments evaluates two implementations for the aggregation phase: one
based on the inner product protocol relying on a trusted initializer,
and the one based on OT. Finally, we present an evaluation of the
complete system on nine real datasets from the UCI repository with
different algorithms in the solving phase and compare the resulting
predictive performance of the learned model against the performance
obtained in the non-private setting. Overall, our experiments highlight
the importance of using FP-CGD for high-dimensional data, and pro-
vide a guide on how to choose a good fixed-point encoding depending
on the characteristics of the problem.

3.7.1 Implementation and Setup

We implemented our MPC protocols using Obliv-C [ZE15], an exten-
sion of the C programming language for secure computation. Obliv-C
includes an implementation of Yao’s garbled circuit protocol that in-
corporates recent optimizations including free XOR [KSo8], fixed key
block ciphers [BHKR13], and half gates [ZRE15]. Further, it features
efficient implementations of OT extension, including variants such as
correlated OT [ALSZ17].

To support arbitrary precision arithmetic, we rely on a big integer
library [Doe] for multi-party computation as an extension of Obliv-C.
This library composes an arbitrary number of garbled integers to
represent larger integer values in two’s complement binary. It features
standard operations such as comparisons, bit manipulation and shifts,
and arithmetic functions including addition, multiplication, integer
division and modulo computation. All the arithmetic operations are
implemented using common, efficient algorithms for extended pre-
cision arithmetic, such as the Karatsuba-Comba [KO62] method for
multiplication, and Knuth'’s algorithm D [Knug7] for division.

For fixed-point arithmetic, we implement two variants of our proto-
cols. One uses Obliv-C’s native integer types to represent fixed-point
numbers. Since for fixed-point multiplication, the bit width of inter-
mediate values can be large as the sum of the arguments’” bit widths,

35

Our source code is
available at
https://github.
com/schoppmp/
linreg-mpc.

The big integer
library was
developed by
co-author Jack
Doerner.


https://github.com/schoppmp/linreg-mpc
https://github.com/schoppmp/linreg-mpc
https://github.com/schoppmp/linreg-mpc

36

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

this version is limited to 32-bit numbers. Our second fixed-point im-
plementation uses the big integer library described above, allowing to
represent numbers with arbitrary precision. This arrangement incurs
some overhead relative to using Obliv-C’s native types. However, this
overhead is justified in cases where 32-bit arithmetic introduces large
errors. Although in principle, our second implementation allows for
an arbitrary number of bits, we only evaluate it with 64 bit numbers.
As the results in Section 3.7.4 show, this is enough to get accurate
results on real datasets.

For the solving phase, we implemented the Cholesky and FP-CGD
methods described by Nikolaenko et al. [Nik+13b] and Section 3.6,
respectively. Cholesky descomposition requires square root computa-
tion. Nikolaenko et al. use an iterative algorithm for computing square
roots in garbled circuits based on Newton’s method. Our implementa-
tion of Cholesky’s method follows closely their approach and is based
on the pseudo-code given in [Nik+13b].

For the experiments in Sections 3.7.2 and 3.7.3, where each phase
of the protocol is evaluated separately, we use synthetically gener-
ated data. For each setting of d and n, we sample n data points
x() from a standard d-dimensional Gaussian distribution and a d-
dimensional vector of parameters 8* with independent coordinates
sampled uniformly in the interval [0,1]. The training labels are ob-
tained as y) = (8%, x()) +e()), where €(/) is a noise term sampled from
a Gaussian distribution with zero mean and variance ¢ = 0.1. The reg-
ularization parameter in the solving phase is set to A = o?d/n||6*||?,
which is the optimal choice suggested by the statistical theory of ridge
regression [SLo3].

For the experiments with synthetic data using 64 and 32 bit fixed-
point encodings we used 60 and 28 bits for the fractional part, respec-
tively. In the experiments with real data, the split between the frac-
tional and integer part of the fixed-point encoding was optimized in-
dividually for each problem to obtain the best predictive performance.
All experiments were executed using Amazon EC2 C4 instances, each
having 4 CPU cores, 7.5 GiB of RAM and 1 Gbps bandwidth.

3.7.2 Solving Phase

Figure 3.3 (left) compares the running times of the solving phase using
Cholesky and FP-CGD for dimensions ranging from 10 to 500. For
FP-CGD, we give the running time for 5, 10, 15, and 20 iterations.
The top plot corresponds to the 64-bit implementation and the bot-
tom plot to the 32-bit implementation. While Cholesky is faster than
CGD for lower values of d, its cubic dependence on the dimension
makes running a fixed number of iterations of FP-CGD faster as 4 in-
creases. Thus, for high-dimensional data the iterative FP-CGD method
is preferable in terms of computation time. The time spent running



oblivious transfers is also shown, and accounts for a small fraction of
the running time. For example, for the 64-bit implementations with
d = 200, FP-CGD with 15 iterations runs in less than 45 minutes, while
Cholesky takes more than an hour and a half. For d = 500, Cholesky
takes more than 24 hours while FP-CGD with 15 iterations takes less
than 4.5 hours. Similar results reporting circuit size instead of running
time are presented Figure 3.7 in Appendix 3.A.

Next, we compare both algorithms in terms of accuracy of the results.
Here, the error is measured using the Euclidean distance to the optimal
solution, obtained via floating-point computation. Figure 3.3 (middle)
shows how the accuracy of the result is affected by the condition
number of the input matrix A, comparing Cholesky with FP-CGD for
varying numbers of iterations on problems with d = 20. We observed
that FP-CGD achieves the same accuracy as Cholesky in the 64-bit
version, and has even lower error when using only 32 bits. Moreover,
the influence of the input condition number decreases with the number
of iterations. After convergence, the error remains the same for all
tested condition numbers. This advantage over Cholesky increases
with higher d, as is shown in Figure 3.3 (right). For both the 32-bit and
64-bit versions, FP-CGD is more accurate than Cholesky as soon as
d > 50.

3.7.3 Aggregation Phase

Table 3.4 shows a comparison between the running times of the 64-
bit versions of our two aggregation protocols: OT is the protocol
using the OT-based inner product protocol, and T1I is the protocol
that leverages a trusted initializer for the inner product protocol. We
vary the number of records, 1, from 50,000 up to one million, and the
number of features, d, from 20 to 200. As expected, the protocol that
takes advantage of the Trusted Initializer performs significantly better
in all cases. However, since the TI’s resources are the bottleneck in this
setting, the protocol does not scale well to multiple data providers, as
the fraction of the coefficient matrix A that can be computed locally
shrinks as the number of parties increases. The OT-based version, on
the other hand, handles many parties very well, due to the fact that
OTs between different pairs of parties can be performed in parallel.
Timing results our protocols for the aggregation phase for a more
extensive set of configurations can be found in Tables 3.8 and 3.9 of
Appendix 3.A.

As a baseline, we implemented a garbled circuit protocol for per-
forming a single inner product in Obliv-C. The running time for
n = 10° was over 9o minutes. This implies that our protocol out-
performs this naive approach by several orders of magnitude.

37



L
E
=

Error

Error

38 | SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

1d A 5h A
5h 1 1h
1h A 1om 4
10m
m A
m
| ° 105
108 E
15 = 7
100oms { ¢ ! 100ms o
o
10ms Ch 1oms 7
— olesky —— CGD 10 —+— CGD 20 —=&— Cholesky —— CGD 10 —+— CGD 20
imsq —e— CGDs5 —e— CGD 15 e OT ims$1 —e— CGD 35 —e— CGD 15 e OT
10 20 50 100 200 500 10 20 50 100 200 500
d d
-1 ]
10 **“* “W*“Wwwf# 10-14 A
X ﬂtﬂ?m i
o] wmmw‘\ w 2 Y i
107~ A
/‘ g sl P ;
5 1073 * W ”
10-10 4 ‘Vvv LE ‘0 'Y
-ﬂ-—--ﬂ---.- Boon o2 = B 10741
10-13
-5
i B Cholesky ¢ CGD1o e CGD20 10 B Cholesky ¢ CGD1o e CGD 20
107°1 % ccps v CGD1s o] * cops v CGD1s
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Condition Number x Condition Number x
1041 10° 1
106 4
10-2
1078 -
2
1010 4 & 1074 1
10-12 4
-6 ]
10-14 4 {— Cholesky —}:— CGD 10 —} CGD 20 10 % Cholesky —}:— CGD 10 —} CGD 20
—+ caps —+- cGp1s —+ caps —+- cGp1s
-16 -8
10 T T T T 10 T T T T
10 20 50 100 200 500 10 20 50 100 200 500
d d

Figure 3.3: Comparison between different methods for solving linear systems. (Top) Running time

(seconds) of Cholesky and FP-CGD (with 5, 10, 15, and 20 iterations) as a function of
input dimension. (Middle) Accuracy of Cholesky and CGD depending on the condition
number of the input matrix A with d = 20. (Bottom) Accuracy of Cholesky and CGD,
as a function of the input dimensionality d. (Left) Fixed-point numbers with b = 64
bits, with by = 60 in the fractional part. (Right) b = 32,by = 28.



3.7 EXPERIMENTAL RESULTS \

Number of parties

n d 2 3 5
OT TI OoT TI OT TI
50000 20 1m 508 1s 1m 32s 25 1moys 25
50000 100 42m12s 255 34m 395 32s 24m 58s 375
500000 20 18m 18s 158 14m 29s 18s 12m 108 218

500000 100 7ho3ms6s 4m4ys 5h2oms52s  6mois g4hiymo8s  6m58s
1000000 100 - 10mois - 12m42s - 14m48s

1000000 200 - 39m16s - 49m56s - 59m22s

Table 3.4: Comparison of running times between OT-based (left) and TI-
based (right) aggregation protocols using 64 bit numbers. The
running time of the trusted initializer, which is an offline prepro-
cessing phase, is included. The complete results with additional
parameter values can be found in Appendix 3.A.

3.7.4 Experiments on Real Datasets

Although we have discussed the accuracy of our aggregation and
solving protocols independently, we still have to evaluate our protocol
in the task of building a ridge regression model. We evaluate our
secure multi-party ridge regression system on g different regression
problems selected from the UCI repository [DG17]. Each problem
comes with a set of n examples of some dimension d which are
randomly split into training (70%) and test sets (30%). Details about
the names, original references where the dataset appeared, dimensions
and number of examples in each task are given in Table 3.5. The
dimensions of the problems range from 77 to 384, and the number of
training examples ranges from over 200 to almost 3 million.
Examples in the test set are used to evaluate the predictive accuracy
of the learned models in terms of their root mean squared error
(RMSE). The predictive accuracy of the model will depend on the
particular regularization parameter A used in the regression: larger
values prevent overfitting and should be used on small datasets, while
smaller values reduce the bias in the regression and should be used
on large datasets. Hyper-parameter tuning algorithms can use a set of
test examples to evaluate the predictive power obtained with different
regularization parameters and find a near-optimal setting. In principle,
any hyper-parameter tuning algorithm based on solving the regression
multiple times with different regularization parameters could be run
on top of our system at the cost of executing the protocol repeatedly.
This would involve many repeated computations but it is also possible
to design a variation of our protocol to avoid most of these repetitions,
in particular the computation of X"X. We leave this optimization
for future work and concentrate on evaluating our ridge regression
protocol with a fixed regularization A for each problem selected a

39

The results in this
section are based on
experiments
performed by
co-author Borja
Balle.



40

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

priori using the given train and test split. Table 3.5 gives the values
selected for each task in addition to the condition number of the
resulting linear system.

In each case, the features were split evenly between two parties. The
scalings and normalizations described in Section 3.5.3 are performed
locally by each party during the aggregation phase. We use Protocol 2
for the aggregation phase, using a bit width of either 32 or 64 bits.
We compare four implementations for the solving phase: Cholesky
and Fixed-Point CGD, both in their 32 and 64 bits versions. In the
case of CGD, we fixed the number of iterations to 20, regardless of
the dimension or any other feature of the problem. For each task, we
select the number of bits by for the fractional part in order to make
sure we have enough bits b; in the integer part for representing the
largest coefficient appearing in the linear system (A, b). The particular
settings for each problem are also given in Table 3.5.

The results are presented in Table 3.6. We give the total running time
of the protocol and RMSE on the test set for each of the four different
implementations of the solving phase. The RMSE of each algorithm
is compared to the one obtained using an insecure ridge regression
algorithm implemented in Matlab that uses 64-bit floating-point repre-
sentations (given in the column headed Optimal). The percentages in
parentheses next to each RMSE give the relative increase — or in very
few cases, decrease — on the error incurred using the private algorithm.
Remarkably, the differences in accuracy are almost negligible for both
64 bit implementations, while in the 32 bit implementations, CGD is
better than Cholesky except in one task.

In terms of running time, we note that both bit settings observe
the same pattern: Cholesky is faster for small dimensions 4 < 100,
and CGD is faster for large dimensions d > 100. However, even in
the cases where Cholesky is faster, CGD is not far behind (a bit over
3 minutes in the worst case). On the other hand, in the cases where
CGD is faster Cholseky has prohibitive running times, e.g., CGD takes
~4h on the largest problem (d = 384) while Cholesky takes practically
half a day.

Overall, we observe that for except for the last task, Fixed-point
CGD with 32 bits always obtains relative errors below 1% and runs
in less than 45 minutes, thus offering a very competitive solution.
For the last dataset, that has large number of training examples, 64
bits are required to achieve good accuracies, mainly due to the errors
introduced in the aggregation phase when the number of examples
is large and there are not enough bits to represent the intermediate
values of the computation of XX with sufficient precision. A possible
workaround to this problem would require having a different number
of bits in the aggregation and solving phases; we will consider this
optimization in future work.



3.8 BEYOND SEMI-HONEST SECURITY | 41

id Name Reference d n A K(A)  bp(b=32) Dbe(b=64)
1 Student Performance [Cor1g4; CSo8] 30 395 14-1072 55-10° 30 62
2 Auto MPG [Quig3a; Quig3b] 7 398 22-107% 9.0-10! 28 61
3 Communities and Crime [Redog; RBo2] 122 1994 20-107% 1.1-10° 24 53
4 Wine Quality [Cor+ogb; Cor+o9ga] 11 4898 29-.107% 6.8-10 29 60
5 Bike Sharing Dataset [FG13; FG14] 12 17379 82-1077 2.2-10? 28 60
6 Blog Feedback [Buz1y4; Buz12] 280 52397 1.1-107° 1.3-10% 25 54
7 CT slices [Gra+11b; Gra+11a] 384 53500 9.3-107° 1.6-10* 25 51
8 Year Prediction MSD [Ber11; BEWL11] 90 515345 1.1-107° 1.7-10? 26 58
9 Gas sensor array [FH15; FSHM15] 16 4208261 4.1-1077 1.2-10° 26 53

Table 3.5: Specifications of UCI datasets considered in our evaluation. The number of samples n
is split randomly into training (70%) and test sets (30%). For each dataset, the regular-
ization parameter A and the number of fractional bits by were chosen as described in
Section 3.7.1. The condition number « was computed after data standardization and
scaling (Section 3.5.3).

” Optimal FP-CGD (32 bits) Cholesky (32 bits) FP-CGD (64 bits) Cholesky (64 bits)
i
RMSE time RMSE time RMSE time RMSE time RMSE

1 4.65 195 4.65 (-0.0%) 55  4.65 (-0.0%) 1m53s  4.65 (-0.0%) 355  4.65 (-0.0%)
2 3.45 25 3.45 (-0.0%) 0S  3.45 (-0.0%) 135 3.45 (0.0%) 15 3.45 (0.0%)
3 0.14 4m27s  0.14 (0.3%) 4m355  0.14 (-0.0%) 24m24s  0.14 (0.2%) 26m31s  0.14 (-0.0%)
4 0.76 3s  0.76 (-0.0%) os  0.80 (4.2%) 235 0.76 (-0.0%) 4s  0.76 (-0.0%)
5 145.06 4s 145.07 (0.0%) 1S 145.07 (0.0%) 26s  145.06 (0.0%) 4s  145.06 (0.0%)
6 31.89 24mo5s  31.90 (0.0%) 53m24s  32.19 (0.9%) 2ho3m3g9s 31.90 (0.0%) 4hgom23s 31.89 (-0.0%)
7 8.31 44my46s  8.34 (0.4%) 2h13m31s 887 (6.7%) s3hsimsis  8.32(0.1%) 11hg9gmgos  8.31 (-0.0%)
8 9.56 4m16s  9.56 (0.0%) 3m50s  9.56 (0.0%) 16m43s  9.56 (0.0%) 13m28s  9.56 (0.0%)
9 90.33 48s  95.05 (5.2%) 428 95.06 (5.2%) 1mM41s  90.35 (0.0%) 1mmogs  90.35 (0.0%)

Table 3.6: Results of the evaluation of our system on UCI datasets. For each choice of algorithm
and bit width, running time is reported, and the root mean squared error (RMSE) of the
solution obtained by our system and an insecure implementation of ridge regression
using floating point are compared.

38 BEYOND SEMI-HONEST SECURITY

The protocols that we discussed in Section 3.4 guarantee security in an
adversarial setting where all parties, including the data providers, the
CSP, and the evaluator, are semi-honest, and the CSP and the evaluator
do not collude. While security against semi-honest adversaries may
be enough in a federated learning setting as argued in Section 3.4.3.1,
some applications require stronger guarantees.

In this section, we propose an extension of our protocol that allows
the data providers to check the correctness of the result of the second
phase, which is computed by CSP and evaluator. This correctness
check works even if one of these two is malicious, or actively corrupted,
i.e., they may deviate arbitrarily from the protocol description. We
stress, however, that this correctness check is not enough to satisfy the



42

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

definition of security against malicious adversaries as given by Goldre-
ich [Golog]. In particular, a malicious CSP can cause the correctness
check to succeed or fail depending only on one of the parties” private
inputs. This selective failure attack has been discussed thoroughly in
the context of garbled circuits [MFo6; Hua+11].

Our correctness check comes in the form of a third phase, which
we call the verification phase. It is implemented using another small
garbled circuit, which is secure against malicious adversaries. The
general idea of using a tailored, lightweight verification procedure
with high security guarantees to ensure correctness of a protocol with
semi-honest security has been used by Hoogh, Schoenmakers, and
Veeningen [HSV16] for linear programming, Laud and Pettai [LP16]
for sorting, and Nikolaenko et al. [Nik+13b] for ridge regression.

3.8.1  The Verification Phase

First, note that for the aggregation phase, we need to use the inner
product protocol based on OT (Section 3.4.1.1), since we can no longer
assume that the CSP can act as a trusted initializer. Since neither the
CSP nor evaluator take part in this aggregation phase, it needs no
further analysis.

Nikolaenko et al. [Nik+13b] made a perceptive observation that in
the setting of linear regression, the correctness of the result can be
verified simply by checking that the solution 6 of the system A0 = b
indeed minimizes the least squares expression of equation (3.1). This
is done by verifying that 0 evaluates to 0 in the derivative of the least
squares function in equation (3.2), which is much cheaper than com-
puting 8 with malicious security. Concretely, this means checking that
|2(A6 —b)|| = 0. As we are working with finite-precision arithmetic,
the equality check must be approximated as ||2(A6 —b)|| € [—u, u],
for some u chosen by the parties. We assume that the election of u
is done correctly, in the sense that, if the CSP does not deviate from
the protocol, then ||2(A6 — b)|| € [—u, u] holds. If we consider the
infinity norm, then the verification check of a solution 8, corresponds
to checking

Vie[d:v € [—u,u] (3-4)

where v = A8 — b, and A, b are additively shared among the data
providers as (A1,b1),..., (A, bx) as a result of the aggregation phase.
We call this check the verification phase, which is run after the solving
phase. Hence, as mentioned above, we use a semi-honest protocol for
the solving phase, and then run a verification protocol with malicious
security.

In our protocol for the semi-honest case of Figure 3.1, 0 is revealed
to the data providers as a result of the solving phase. Consequently,
an additive share of v in (3.4) can be precomputed locally by the



3.0 DISCUSSION |

parties, and hence securely evaluating (3.4) only requires additions
and comparisons. Using this, we implemented the verification phase
as follows.

1. The data providers generate a uniformly pseudorandom vector
vi1 € Zg and locally compute v;, = A;0 — b; — v; 1. Then, they
send v;; to the CSP and v;, to the evaluator.

2. CSP and evaluator add up their received shares and obtain
v = YX v, and v, = ¥¥ |05, and then run a two-party
garbled circuit protocol with malicious security. In the circuit,
v = v + vy is recovered, and a single bit is returned, indicating
whether (3.4) holds.

3. CSP and evaluator send the result of the verification circuit to
all data providers.

Note that since not both CSP and evaluator cannot be malicious at the
same time, the parties only need to check if both bits they received are
equal to 1.

We implemented and evaluated the garbled circuit with malicious
security for this verification phase, as an extension for our solving
phase, using the EMP framework [WMK16]. As expected, it runs
extremely fast: in our experiments, garbling and execution took less
than 3 seconds for d < 500. This is in contrast with the time needed
for the solving phase for d = 500: 30 minutes, for 10 iterations of CGD
and a bit width of 32 bits (see Figure 3.3, left).

3.0 DISCUSSION

In this chapter, we provided a first example of a secure machine
learning model trained on distributed data. We focused on linear
regression as a task that is widely used in practical applications.
Beyond the settings described in this chapter, our implementation of
secure conjugate gradient descent with fixed-point arithmetic and early
stopping can also be used to deal with non-linear regression problems
based on kernel ridge regression, given MPC protocols for evaluating
kernel functions typically used in machine learning. Moreover, as
mentioned in Section 3.4, an extensive evaluation of MPC techniques
for the task of linear system solving, including our conjugate gradient
descent algorithm, is an interesting continuation of the work presented
here. From a more theoretical perspective, the problem of providing
security guarantees against malicious adversaries for approximate
MPC functionalities poses interesting open challenges both in general
and from the perspective of concrete machine learning tasks.

One assumption implicitly made in this chapter is that the training
dataset is given as a matrix of real numbers. However, in practice,

43



44

| SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

many datasets will not have this clear structure, but instead come
as unstructured documents such as text or images. In this case, the
inputs first need to be converted into a numerical representation by an
appropriate feature extraction phase. In the next chapter, we will shift
our focus to this problem in the context of similarity computations on
text documents.



CHAPTER APPENDIX

3-A FURTHER EXPERIMENTAL RESULTS

1010_
1010_
2z 2z
ks sl
X L s
8 1084 g
12 2]
= E
o o
.5 .=
U 106 0 1004
—&— Cholesky —&— CGD 10 *— CGD 20 —=&— Cholesky —— CGD 10 +— CGD 20
—+— CGD5 —*— CGD 15 —+— CGD5 —*— CGD 15
104 L T T T T T 104 L T T T T T
10 20 50 100 200 500 10 20 50 100 200 500
d d

Figure 3.7: Circuit sizes for 64 bits (left), 32 bits (right) as a function of the input dimensionality 4.
One can see a clear correlation between the circuit size and the execution time shown
in Figure 3.3 (left).

45



46 | SECURE LINEAR REGRESSION ON HIGH-DIMENSIONAL DATA

Number of parties (data providers)

n d 2 3 5
b=64 b=232 b=64 b=232 b=64 b=232
20 245 13s 20s 11 14s 8s
10000 50 2m 208 1m 16s im55s 1mo2s 1m 22s 43s
100 9m 06s 4m 58s 7m 18s 3m55s 5m 13s 2m47s
20 45S 24s 38s 208 29s 155
20000 50 4m 26s 2m 18s 3m 39s 1m 56s 2m 39s 1m21s
100 17m 255 9m 58s 14M 09s 7m 24s 10m 105 5m 14s
20 1m 50S 56s om 32s 475 1m o07s 355
50000 50 10m 47S 5m 27s 8m 58s 4m 37s 6m 31s 3m12s
100 42m12s 21m 258 34m 39s 17m 41S 24m 58s 12m 325
20 3m 40s 1m 508 3mois 1m33s 2m 18s 1moys
100000 50 21m 40s 10M 475 17m 25 9m 06s 13M 055 6m 40s
100 1h2s5m 14s 42m 18s 1hoym 30s 35mo3s 50m 16s 24m12s
20 7m 255 3m 40s 5m57s 3mo4s 4m 46s 2m 18s
200000 50 43m 47s 21m 43S 34m 14s 18m 26s 26m 47s 12m 408
100 2h 52m 08s 1h 25m 06s 2h11m 35s 1h 10m 39s 1h43m 125 49m 23s
20 18m 18s 9m 10s 14m 295 7m 27s 12m 105 5m 52s
500000 50 1h 47m 59s 54m 138 1h 23m 49s 45m 00s 1h 08m 08s 32m14s

100 7ho3m 56s 3h32m 37s 5h 20m 525 2h 53m 54s 4h 17m 08s 2h o4m 53s

Table 3.8: Computation time of the aggregation phase using using the OT-based inner product
protocol, for 2, 3, and 5 data providers and different values of n (number of records)
and d (number of features). Note that unlike the TI-based protocol in Table 3.9, this
algorithm scales well with the number of parties.



3-A FURTHER EXPERIMENTAL RESULTS | 47

Number of parties (data providers)

n d 2 3 5
csp DP Total csp DP Total csp DP Total
20 1s 25 3s 2s 25 35 2s 1s 45
50 75 9s 145 9s 8s 175 118 6s 208
100000 100 278 31S 508 36s 28s 1M 04s 438 218 1m15s
200 1M 46s 1m57s 3m12s 2m22s  1mM44s 4m 10s 2ms50s  ImM1ys 4m 54s
500 10m 528 11m 53s 19mM 14S 14M 408 10m 29S 25m 16s 17m29s  7m37s 30mo02s
20 2s 4s 6s 3s 4s 7s 4s 3s 8s
50 14s 19s 308 18s 175 375 225 13s 42s
200000 100 558 1m 06s 1m47s 1m11s 59s 2m 16s 1m 26s 448 2m 39s
200 3m37s 4m13s 7m 00s 4M44s  3M43S 9m 00s 5m38s 2m43s 10m 325
500 21m 46s 25m 33s 41m 475 20m11S 22m23s 54m 218 34m56s 16mo6s 1hogmoos
20 6s 108 158 8s 9s 18s 108 8s 218
50 36s 48s 1m17s 47s 42s 1m 355 57s 328 1m51s
500000 100 2m17s 2m 518 4m 47s 3mo4s  2m29s 6m o1s 3m42s 1m51s 6m 58s
200 9mMO0S 10m 555 18m 525 12m155 9m33s 24mo8s 14m47s  6m52s 27m 43s
500 56m22s 1hobmg4is 1h53ms2s 1hi4m3ys 57m31s 2h2smsss 1th3omgis 4oms6s 2hsom53s
20 125 20s 318 16s 18s 37s 20s 158 44s
1000000 D0 1mizs 1m 34s 2m 40s 1m3ys  1ma24s 3m21s 1m58s  1mMo4s 3m53s
100  4mM45S 5m 408 10m01s 6mi16s 4m58s 12m 42s 7m31s  3m41s 14m 48s
200 18m49s 21M 445 39m 16s 25moys  18m48s 49m 565 30m28s 13m48s 59m 225

Table 3.9: Computation time of the aggregation phase using the TI-based inner product protocol
with 64 bits, for 2, 3, and 5 data providers and different values of n (number of records)
and d (number of features). For each number of data providers, computation time of the
CSP (left) and the data providers (middle, averaged) is reported, as well as total running
time (right).






4 SECURE AND SCALABLE
DOCUMENT SIMILARITY

4.1 OVERVIEW

In this chapter, we focus on secure similarity computations on text
documents. This is a challenging task for two reasons. First, unlike in
Chapter 3, we cannot assume any more that our data comes in a “nice”
structured form. Instead, we have to perform feature extraction on the
data, in order to turn unstructured text documents into feature vectors
over the real numbers. The second challenge comes from the fact
that common feature representations result in very high-dimensional
vectors. If we performed feature extraction using standard MPC secu-
rity with secret-shared outputs, this would result in extremely poor
scalability for any subsequent computation on the computed features.

Instead we’re going to use a relaxed security notion for MPC, where
the parties are allowed to obtain some information beyond the final
computation result, while provably quantifying and limiting the incurred
privacy leakage. For this, differential privacy (DP) [DR14; DMNS16]
is a natural candidate, and multiple recent works explore variants of
MPC with differentially private leakage [MG18; GRR19; HMFS17]. Proto-
cols under such relaxed definitions may reveal additional information,
as long as that information leakage adheres to DP.

We follow a similar approach, applying MPC with DP leakage to
secure classification of text documents with the k-nearest neighbors
(k-NN) algorithm on a standard term frequency—inverse document fre-
quency (TF-IDF) feature representation. In k-NN, a query document is
assigned a class by taking a majority vote among the k most similar
documents in the training database. Despite its simplicity, k-NN enjoys
remarkable theoretical properties [CD14] and provides competitive
accuracies in a wide range of applications [Efr17]. This power comes at
the price of scalability: due to its non-parametric nature k-NN requires
similarity computations against the whole dataset at prediction time.
It is therefore crucial to reduce the time for each similarity compu-
tation as much as possible. Our main observation is that if we allow
a one-time precomputation of differentially private statistics about
the distributed dataset, we can significantly speed up classification
time by using a novel sparse inner product protocol. We review our
contributions and how they compose to a full k-NN protocol in the
following subsection.

The contents of this
chapter have
previously appeared
in Proceedings on
Privacy Enhancing
Technologies

2020. [SVGB2o].

49



50

| SECURE AND SCALABLE DOCUMENT SIMILARITY

4.1.1  Chapter Contributions

The core of this chapter consists of two contributions: (i) a secure
two-party protocol for sparse inner products, and (ii) a mechanism
for extracting differentially private IDF coefficients from text docu-
ments, and a corresponding two-party implementation. Both protocols
are tailored to exploit inherent sparsity and word frequency prop-
erties commonly found in text data. These are composed to obtain
a three-party protocol for distributed k-NN classification capable of
withstanding arbitrary collusions. All the protocols presented in this
chapter are formally secure in the semi-honest model (Definition 2.1).

SECURE DOCUMENT SIMILARITY FROM SPARSE INNER PRODUCTS
(secTioN 4.4). Our first contribution is a novel protocol for se-
cure sparse inner product. It allows two parties holding private sparse
vectors to compute additive shares of their inner product, while re-
vealing nothing except an upper bound on the number of non-zero
entries. As described in Section 4.4, this can be used to compute sim-
ilarities between sparse representations of text documents. We also
propose a batched version of our protocol to improve the scalability
of computing many inner products in parallel. In Section 4.7.1.1, we
experimentally evaluate the running time of our protocol for a wide
range of parameters, and show that it outperforms its state-of-the-art
dense counterparts by at least one order of magnitude.

DIFFERENTIALLY PRIVATE IDF COEFFICIENTS (SECTION 4.5). Sec-
ondly, we develop a mechanism for extracting inverse document fre-
quency (IDF) coefficients from a distributed database of text docu-
ments, while guaranteeing differential privacy (DP). We show why a
standard approach based on adding Laplace noise to each coefficient
fails at this task, and formally prove privacy and accuracy guarantees
for our custom mechanism. While our proposal is already of interest
in the centralized setting, we further show how to instantiate it for
generic circuit-based MPC, thus achieving multi-Party computational
differential privacy (MPC-DP) [BNOo8]. To that end, we rely on a
method for oblivious sampling without replacement that has, to the
best of our knowledge, not been reported in the academic literature
before. Our experiments (Section 4.7.2.4) showcase the advantage of
having access to privatized data-dependent IDFs over a vanilla data-
independent term frequency (TF) representation, and demonstrate
that the noise introduced by our DP protocol incurs only a small
accuracy loss. Finally, we implement our protocol for the special case
of two parties holding a databases of secret documents and show that
it scales to real-world vocabulary sizes (Section 4.7.1.2).

APPLICATION TO SECURE k-NN (SECTION 4.6). While both of the
above are of independent interest, we show how in combination



4.2 RELATED WORK |

they allow us to implement an efficient k-Nearest Neighbors proto-
col in a three-party setting with two servers and one client. Here,
the two servers each hold a collection of labeled documents, and
the client would like to classify a document against the union of
the servers’” datasets. Our protocol achieves this by combining the
two sub-protocols for IDF precomputation and secure inner products
with a generic MPC phase for top-k selection. Apart from the final
classification, our full protocol releases differentially private statistics
about the dataset (i. e., IDF coefficients) as a one-time precomputation.
We formalize this as differentially private leakage similar to previous
work [GRR19; MG18] and prove security of our protocol in that model.
We emphasize that these differentially private IDF coefficients need
to be computed only once, and can then be reused in any subsequent
classifications.

We implement our k-NN protocol and show that it scales to real-
world dataset sizes. For example, the time needed for a classification
of a query document against a database of 28K documents is less than
40 minutes.

4.2 RELATED WORK

Several recent works have proposed MPC protocols for machine learn-
ing tasks such as linear and logistic regression training [Nik+13b;
MZ17], neural network training [MZ17;, ASKG19] and evaluation
[BNOO0S; LJLA17y; JVC18], matrix factorization [Nik+13a], principal
component analysis [AWCK17], as well as evaluation of decision trees
and naive Bayes classifiers [BPTG15]. However, none of them exploit
the input distribution for efficiency. This is in contrast with compu-
tation in the clear, where dedicated algorithms and data structures
have been developed for different kinds of sparsity patterns. Moreover,
all of these protocols assume that feature extraction has been already
performed. This is reasonable for settings where that step can be com-
puted locally by each party. However, as in the case of TF-IDF, several
powerful feature extraction techniques and normalization steps may
require data held by different parties.

Regarding our more concrete contributions, several secure 2PC
protocols for matrix multiplication have been recently proposed, in-
cluding SecureML [MZ17], GAZELLE [JVC18], and our protocols from
Section 3.4.1. These protocols operate over explicit matrix or vector
representation, and thus are not tailored to exploit sparsity. On the
other hand, combinations of MPC with DP have been proposed be-
fore in the context of limiting leakage of access patterns in secure
computation [MG18], private set intersection [GRR19], and protocols
for private record linkage (see [HMFS17] and references therein). He
et al. [HMFS17] use an indistinguishability-based definition that is

51



52

| SECURE AND SCALABLE DOCUMENT SIMILARITY

limited to deterministic functionalities. In contrast, we define security
with DP leakage in the simulation-based paradigm that is also used
by [MG18; GRR19], but unlike these works we allow the output of
the final computation to depend on the leakage. The advantage of
a simulation-based definition is the fact that it allows for straight-
forward composition, which we use in our security proofs.

Regarding our application in private text analysis, related work can
be found in the context of similar document detection [JMCSo08; Mur+10;
BCG14; BB13]. Another trend of related work is in privacy-preserving
nearest neighbors computation [Ria+16; LSP15; RWLX16; Che+20]. How-
ever, a remarkable difference between these existing works and ours
is in the threat model. In all the contributions mentioned above, either
the computation is delegated to two non-colluding parties — sometimes
referred to as the two-server model in MPC — or only involves two
parties (for example, one server and one client). In contrast, our threat
model allows the database to be distributed among multiple servers
who might collude with each other or the client. We also stress that we
are the first to even consider the feature extraction phase as part of a
distributed k-NN protocol. Previous work starts directly with feature
vectors as inputs and therefore implicitly assumes feature extraction
can be done locally by the parties, which is not the case for TF-IDF.
Thus, the fact that our protocol releases differentially private IDF
values in fact strengthens the privacy guarantees compared to the
previous works mentioned above.

4.3 BACKGROUND: TF-IDF FEATURES

Throughout this chapter, we work on text document data. Before be-
ing able to process this data it is necessary to construct a vectorial
representation for each document. Here, we rely on the term frequency—
inverse document frequency (TF-IDF) feature representation, which is
one of the most common encodings for text data. For example, 83% of
text-based document search and recommendation systems in digital
libraries use TF-IDF [BGLB16].

The TF-IDF feature representation of a text document is defined
with respect to a fixed vocabulary and a database of documents. Let
V be a fixed vocabulary - e.g., V might be all the words in a given
dictionary — and consider a database Z of documents over the common
vocabulary V. Given an arbitrary document x with words in V, its TF-
IDF representation is a |V|-dimensional vector (x) € RY where each
coordinate corresponds to a word v € V. The vth coordinate i (x)(v)
of this vector is the product of two terms: the term frequency (TF)
$i(v, x) = |x|, of v in x (i.e., the number of times v occurs in x) and
the inverse document frequency (IDF) ¢iqs(v, Z) = log((|Z| +1)/(|Z]» +
1)) +1 of v in Z (where |Z|, counts the number of documents in the



4.4 SPARSE INNER PRODUCTS AND DOCUMENT SIMILARITY \

database that contain the word v). By taking the product ¢(x)(v) =
$i(v, x) - Piae(v, Z), the TE-IDF representation ensures that coordinates
corresponding to frequent words in the document are larger (TF term),
while also down-weighting words that are frequent across the dataset
(IDF term) and therefore not representative of a particular document.

Two properties of TE-IDF are particularly relevant to this work. First,
since the TF component is zero for all words that do not appear in a
document, TE-IDF vectors are very sparse. In Section 4.4, we use this
fact to efficiently compute similarity scores between TF-IDF vectors
of documents. Second, observe that the IDF component depends
on the whole dataset, not only the document being encoded. It is
therefore non-trivial to encode a document without access to the
entire database. However, we will see in Section 4.5 that we can
precompute differentially private IDF coefficients, which then can be
safely released to allow parties to locally compute TF-IDF embeddings
of their documents.

4.4 SPARSE INNER PRODUCTS AND DOCUMENT
SIMILARITY

Similarity computation is a common task in the evaluation of non-
parametric models such as k-NN, but also for example in information
retrieval, clustering, and collaborative filtering. Common similarity
metrics include the Euclidean distance, Pearson’s correlation coeffi-
cient, or the cosine similarity. All three of these can be computed in
two-party settings using only secure inner products. Here, we focus
on cosine similarity, which is commonly used for text documents with
TF-IDF features [MRSo08]:
, (a,b)
im0 = al ol

When each of the feature vectors a,b is held by one of the two
parties, the denominator can be computed using a single secure multi-
plication [Beag1; Gilgg], while the numerator requires a secure inner
product. As described in Section 4.3, the feature vectors a and b are
sparse when encoding text documents using TF-IDF. Hence, in this
section, we present a secure two-party protocol for inner products that
is optimized for sparse inputs.

Our protocol takes as input private vectors a and b—each provided
by one party—and compute an additive secret share of their inner
product (a, b). Here, the elements of a and b are taken from Z,, where
g is usually chosen as 27 for some bit width . Rational numbers can be
used by relying on an appropriate fixed-point encoding (See section 3.5
and Mohassel and Zhang [MZ17]). Since in practice, many similarity
scores need to be computed at once, we generalize our protocol and

53



54

| SECURE AND SCALABLE DOCUMENT SIMILARITY

propose a batched version for computing multiple inner products
simultaneously; in this case the goal is to compute AB given private
matrices A and B which are respectively row and column sparse. Since
the single inner product case corresponds to the multiplication of a
one-row by a one-column matrix, for simplicity we sometimes use
matrix notation to denote properties that apply to both the single and
batched inner product case.

As we have seen in Section 3.4.1.1, a secure inner product in the
dense case can be realized in multiple ways. Further optimizations
and alternative approaches based on homomorphic encryption are pre-
sented by Mohassel and Zhang [MZ17], and Juvekar, Vaikuntanathan,
and Chandrakasan [JVC18]. For our generalization to sparse matrix
multiplication (Section 4.4.5) we use the dense protocol of Mohas-
sel and Zhang [MZ17], which is a variant of the protocol from Sec-
tion 3.4.1.1 optimized for the batched setting. While our protocol
neither reveals the non-zero indexes in each party’s inputs, nor their
values, we require an upper bound on the number of non-zeros to
be known. In the next subsection, we will see that such a bound on
the sparsity is naturally a available in many real-world scenarios,
including text classification.

4.4.1 Sparsity in Real-World Data

In the context of data analysis, sparsity is frequently induced by the
feature representation used. For example, the well-known bag-of-word
representations of documents, where a document is represented as a
vector of (possibly normalized) word counts, is sparse. The TF-IDF
representation is a special case of this. Furthermore, in datasets of
genomic variants, individuals are represented as a set of deviations
(index-value pairs) from a common reference. Compared to the 3.2
billion base pairs in the human reference genome, these deviations
only make up a small fraction (~5M sites [The+15]), and so this rep-
resentation is also very sparse. A third example can be found in
recommender systems, where users are represented by the vector of
their rated items, which again amount to a tiny percentage of the total
number of available items.

In all of the above applications, an upper bound on the sparsity is
readily available. For genomics, upper bounds can be derived from
public information about the distribution of variants [The+15]. In
recommender systems, the input comes in the form of a list of (item,
rating) pairs for each user. The length of a list directly translates
to the sparsity of the corresponding vector. We note that existing
recommendation protocols based on secure matrix factorization reveal
the sparsity as the input size [Nik+13a; Nay+15]. Finally, for text
documents, the input length does not directly give the exact sparsity



4.4 SPARSE INNER PRODUCTS AND DOCUMENT SIMILARITY \

(words can be repeated in a document), but it provides an upper
bound on it.

Our protocol can therefore be applied to all of the settings described
here. We now formally describe secret sharing and introduce some
notation, before we present our protocol for sparse inner product in
Section 4.4.3.

4.4.2 Notation

For any sparse vector v, we write Z, to denote the set of indexes where
v is non-zero, and call its cardinality I, := |Z,|. We further denote the
k-th element of this set (using canonical ordering) by (Zy, ).

For a matrix M, we write Col;(M) to denote the i-th column vector
of M, and Row;(M) for the j-th row. In analogy to vectors, we write
I3t = {i | Coly(M) # 0} for the set of indexes corresponding to
non-zero columns of M, likewise for rows.

4.4.3 Secure Sparse Inner Products

We now present our protocol for computing a sparse inner product.
This serves as a stepping stone towards our batched variant, which we
introduce in Section 4.4.5 and which is the one that we use in practice.

Here, we consider two sparse vectors a,b, where a is owned by
Party 1 and b by Party 2. The goal of our protocol is to compute
additive shares ¢y, ¢3, such that ¢ + ¢; = (a,b). To develop intuition,
let us first discuss an insecure solution where the parties reveal to each
other their respective non-zero indexes Z, and Z;. Then each party
can simply compute locally the set of common non-zero indexes and
construct vectors i, b of shorter length |Z, N Z;| containing only the
values of common indexes in some canonical order, such that (&, b) =
(a,b). Then the inner product of @ and b can then be computed using
a standard non-sparse MPC protocol.

While this insecure approach would greatly increase efficiency by
exploiting the sparsity of a and b, it is also clear that it leaks too much,
as Z, and 7, are private. Instead, the solution we propose avoids
this leakage while retaining the efficiency of this insecure solution by
assuming upper bounds on |Z,| and |Z,| are public.

For clarity, we now describe our solution assuming the availability
of a trusted third party. The parties first create vectors 4, b containing
the values at indexes in Z, and Z;, respectively, padded with zeroes
to length I, + . Then, the third party receives @ and b from the
parties, and returns permutations 71; and 7, to Party 1 and Party 2,
respectively, such that (711 (&), 712(b)) = (a, b). Note that padding with
zeroes is crucial so that such permutations exist, as intuitively all they
have to do is make indexes in Z, N Z; end up in the same position in
both permuted vectors, while all others get matched to a zero. Now, if

55



56

Functionality 5: Correlated permutations (F"¢™)

Parties: 1, 2.
Input: Party 1: 7, Party 2: 7,

Public parameters: [y = |Z4|, I, = |Z3|.
Output: Permutations 711 and 7.

(1) Choose a permutation 77 of {1,...,l; + Ir} uniformly at
random.

(2) Compute the function

p:{1,....h} = {1,...,h + L},
7(j) if (71), = (T2),

nt(lp +1i) if no such j exists.

p(i) =

(3) Extend p to a random permutation 7r; of {1,...,11 + 1} by
mapping all elements i > [; to uniformly random unmapped
elements of its codomain.

(4) Output 711 to Party 1 and 71, = 71 to Party 2.

the permutations 7t; are such that they do not reveal anything about a
or b to the parties, this protocol would be secure.

While we relied on a trusted third party for explanatory purposes,
such a third party is not available in practice. Instead, we will now
present a 2PC-sub-protocol that replaces such a party, i. e., it generates
correlated permutations 711, 71, with the required property. We call this
functionality 77*™ and describe it formally in the next section.

4.4.4 Secure Correlated Permutations

Note that we only require the output to each party alone to be a
uniformly random permutation. Thus, F"*™ can generate one of
the permutations randomly, and derive the other from it. A detailed
description of F™ is given in Functionality 5.

By the construction of p in Step (2), it is clear that the condition from
Figure 4.1, that matching indexes get mapped to the same position,
holds for 7r; and 1. We now prove that the outputs to both parties
are indeed random permutations.

Theorem 4.1. For any input sets I, and I, of size Iy and I, and any party
i € {1,2}, m;; = FFe™(Zy,1,) is a uniformly random permutation of
{1,. . h —|—lz}

Proof. If i = 1, then by the definition in Step (2) in Functionality 5,
p is constructed by selecting [; different mappings from a uniformly



4.4 SPARSE INNER PRODUCTS AND DOCUMENT SIMILARITY \

random permutation. Clearly, each of the (I; + »)! / I! possible func-
tions is selected with equal probability. The extension of p in Step (3)
reduces to selecting a uniformly random permutation of I, elements.
Thus, our functionality produces (I1 + Ix)! /! - ! = (1 + I»)! dif-
ferent permutations, each with equal probability. Together with the
observation that there are exactly (I; + I2)! possible permutations of
[l1 + L], the claim follows. If i = 2, the claim follows immediately
from Step (1) and 7, = 7. O

We use Yao's garbled circuit protocol (see Section 2.5) to implement
FPem_ Our circuit design for this functionality is inspired by the
private set intersection (PSI) protocol of Huang, Evans, and Katz
[HEK12], also known as the Sort-Compare-Shuffle approach to PSI.
Essentially, our circuit computes the set Zy N Z, in O((lh + 1) logz(h +
I))—using Batcher’s sorting network [Bat68]—as a Boolean array of
length I; + I, and constructs p and 7r; from it using a permutation
network [Wak68] of size O((l1 + I2) log(l1 +12)). Thus, our protocol for
the FPe™ functionality runs in O((I; + ) log®(l; + 1)), and exploits
efficient implementations of sorting/permutation networks.

Since we operate in the semi-honest model, we can further employ
the following optimizations:

1. Instead of choosing 7 inside the Garbled Circuit, we let Party 2
choose it locally and use it as an input. Note that this is trivially
simulatable since 7T = 71, is Party 2’s output.

2. Similarly, we reveal p to Party 1 and let it perform Step (3) locally.
Again, simulating p it trivial by restricting 71y to {1,...,11 }.

Together with the security of Yao’s protocol in the semi-honest model
[LPo9], security of our implementation of F Perm follows.

An important observation is that the cost of '™ is independent of
the range of the values in the vectors u, v in the overall inner product
protocol. In the next section, we show how this, and previous observa-
tions, extend to matrix multiplications for batched inner products, and
provide formal proofs of correctness and security for our two-party
protocols.

4.4.5 From Inner Products to Sparse Matrix Multiplication

We will now consider computing additively shared matrix products
[C]1 + [C]l2 = AB, where the matrices A and B are owned by Party
1 and 2 respectively. We assume these matrices exhibit the sparsity
patterns corresponding to batched sparse inner products, i.e., A has
many zero columns, and B many zero rows. This is a common sparsity
pattern in machine learning computations, as, for example, TensorFlow
has a dedicated matrix representation for this case, called IndexedSlices
[Aba+16].

57

In Section 5.3.2, we
will present
alternative
constructions that
are more efficient in
many cases.



Protocol 6: Dense matrix multiplication protocol.

Parties: 1, 2.
Input: Party 1: A € Zqum
Party 2: B € Z™"
Output: Party i : [C]; € Z[*",s.t. C = AB

(1) Party 1 computes U, [UV]; + FO(I,m,n)
andsendsE=A—-U

(2) Party 2 computes V, [UV], «+ FOf(I,m,n)
and sends F=B -V

(3) Party 1 sets [C[l; = EF + UF + [UV]
(4) Party 2 sets [Cl, = EV + [UV]3;

4-4.5.1  Baseline: Secure Dense Matrix Multiplication

As before, our goal is to improve on the baseline case where the
sparsity is ignored. The state of the art in terms of (dense) secure matrix
multiplication is presented in Mohassel and Zhang [MZ17]. Similar
to our Tl-based inner product protocol (Protocol 2), their protocol is
split into two phases: an offline phase that provides correlated random
matrices to the parties, and an online phase that uses said randomness
to securely multiply secret-shared input matrices. For the offline phase,
Mohassel and Zhang propose three different approaches: One based
on a trusted initializer (like Protocol 2), one based on homomorphic
encryption, and one based on oblivious transfer (like Protocol 1).
In Protocol 6 we refer to this offline phase as F Off "and we use the
OT-based variant in our experiments.

4-4.5.2  Our Protocol

A naive solution to generalize our protocol from section 4.4.3 to sparse
matrices is to run it |AB| times. In the rest of this section we focus
on improving this by leveraging the sparsity patterns in the matrices
to avoid the quadratic cost of the naive solution. The advantage of
our solution is not only in asymptotic cost, but is also confirmed
experimentally in Section 4.7, using both random and real-world
sparsity patterns.

The entire sparse matrix multiplication protocol is depicted in Fig-
ure 4.1, and goes as follows. Party 1 locally computes Z* := {i |
Col;(A) # 0}, and Party 2 computes Z§* := {j | Row;(B) # 0}. These
index sets are then used as inputs to the functionality for generating
correlated permutations, F Perm which generates two correlated per-
mutations 711, 71> that map elements of Ig‘)l N IBR"W to the same indexes.
Note that, up to this point, the secure computation is independent of



4.4 SPARSE INNER PRODUCTS AND DOCUMENT SIMILARITY \

Party 1 | MPC | Party 2

Input: A € Z;X’” Input: B € Zg™"

Send I4 + ‘Ig“l’ to Party 2. Send Ip + ’IEUW‘ to Party 1.

{zgole{ucoli(A)#o} } £I§°W<—{1'IR0W]-(B)#0} }

Choose a random pair of correlated permu- 3
tations 711, 7o of {1,...,14 + Ig} such that for !
allklE{1,...,1A},k2€{1,...,13}: :

(Igol)kl — (Igow)kz & my(kp) = ma(ky).

B — 0(1A+13)><1’l
For j =1 to Ip:

A — OlX(IAJrlB)

Fori=1tol,:
i (Z5"),
Col;(A) + Coly(A)

A «+ permuteCols(A, 1)

]
Row;(B) < Row; (B

B + permuteRows (B, 1)

| j e (Z5™);

such that [C]l; + [C].=C = A-B.

Choose random shares [C];, [C]2 € Zéxn ’ |

Figure 4.1: Secure sparse matrix multiplication. For details on the imple-
mentations of F"*™Mand FMt, see Sections 4.4.4 and 4.4.5.1,
respectively.

the inner (resp. outer) dimension of A (resp. B). This has an important
effect on efficiency, and follows from the remark above about F Perm
in the inner product protocol being independent of the domain size
of the values in the vectors. In fact, intuitively we can think of mul-
tiplying A and B as computing sparse inner product where values
are vectors, instead of scalars. Next, A and B are computed by first
padding non-zero columns/rows with zeroes, and then applying 71
and 71y, just like @ and b in Section 4.4.3. The result is again obtained
by using a standard MPC protocol for secure matrix multiplication
with A and B as inputs.

Theorem 4.2 (Correctness). For any A € Zéxm, B € Zj", let A, B be
constructed according to the protocol described in Figure 4.1. Then AB =
AB.

59



60

| SECURE AND SCALABLE DOCUMENT SIMILARITY

Proof. By construction of A, foralli € {1,...,I} and allj € {1,...,n},

. la+lp B Ia+lp R
(AB);; = k_Zl Aixbyj = k; Bt () Dy (1)

From the definition of FP¢™ one of the following cases holds for
any pair (k,kp) := (nl’l(k),nz’l(k)),k e{l,...,la+Ip}:

cASE 1. k1 <4 and kp < Ig. Then there is a unique k¥’ € {1,...,m}
such that (Igol)k1 = (I,F;"W)kz =k and g, by,j = ajby;.

CASE 2. ki > I or ko > Ip. Then ay, or Bkzj are zero, and thus
ﬁikl bkzj =0.

On the other hand, for any k' € {1,...,m} with g by # 0, there
is a pair (ki,k2) with (Z§), = (Z8°), = k' and thus a unique
ke{l,...,1a+1p} s.t. m1(k1) = ma(kz) = k. Therefore,

AB Z Ak bk/ = )
k/GICUlmIRUW

O]

Theorem 4.3 (Security). Given public sparsity values 14, g and implemen-
tations of FMt and FPer™ that are secure against semi-honest adversaries,
the protocol in Figure 4.1 implements FM! with security against semi-honest
adversaries.

Proof. We only give the proof for the view of Party 1. By symmetry,
the proof for Party 2 follows analogously. For a functionality F and
a protocol I1, we denote the output to player i of an execution with
inputs x,y by F;(x,y) and output:(x,y), respectively.

We present our proof in the (FFe™, FMUt)_hybrid model. That is,
we construct a simulator S{! for the view of party 1 assuming ideal
functionalities for F7¢™ and FMu!t. Security in the standard model
then follows immediately from the security of the corresponding
protocols and Theorem 2.2.

Our simulator S}! in the ideal model simulates the view of Party 1
on the Protocol in Figure 4.1, i.e.,

Vlewl (A B) (A ]_—Perm(l—(jol/ ROW) f‘MulT(A B))
Upon receiving input A and output FM (A, B), the simulator S}*:

1. samples a permutation 77} of {1,...,14 + Ig} uniformly at ran-
dom,

2. outputs (A, 7}, F)(A, B)).



4.5 PRIVATE FEATURE EXTRACTION \

By Theorem 4.1, F1¢™(Z5°, ZR°) outputs a uniformly random per-
muation of [4 + Ig. Similarly, FM(A, B) is a uniformly random ma-
trix. Finally, by Theorem 4.2, F}"'(A, B) is identically distributed to

FMut(A, B). Therefore
(view¥(A,B),outputH(A,B)) = (s{l (4, flMu“(A,B)),fM““(A)>.
O

In order to compute similarities between documents using the pro-
tocol described in this section, each data holder must know the feature
representation of their documents. This becomes a challenge when
trying to use data-dependent feature representations such as TF-IDF.
We tackle the problem of private feature extraction for this particular
case in the next section.

4.5 PRIVATE FEATURE EXTRACTION

Feature extraction is a fundamental pre-processing step in any data
processing pipeline, including those used in machine learning, data
mining, information retrieval, computer vision and natural language
processing. The goal of feature extraction is to convert raw data (e. g.,
text documents, RGB images, etc.) into a vectorial format suitable for
downstream applications. The same feature representation is often
useful for many different applications, and the most effective feature
representations are typically tailored to the dataset at hand. This poses
a challenge in scenarios where datasets containing sensitive records are
distributed among multiple parties, as obtaining an adequate feature
representation requires a privacy-preserving distributed computation,
and the resulting feature representation might leak information about
the dataset on which it was computed.

In this section we address this challenge for the well-known term
frequency—inverse document frequency (TF-IDF) feature representation
for text documents (cf. Section 4.3). Our contribution is a two-party
protocol for securely computing IDF coefficients on a distributed
document database and releasing them under differential privacy. As
in the previous section, we work in the standard simulation-based
paradigm of security (see Section 2.2) and our computation is secure
against semi-honest adversaries. At the same time, its output preserves
differential privacy with respect to changing one document in the
distributed dataset. Using the output of this protocol, multiple parties
can locally compute a TF-IDF representation of their documents. This
representations will be compatible across parties, and can then be used
in any subsequent privacy-preserving computation. In Section 4.6.1,
we formalize this as secure computation with differentially-private
leakage. Before diving into the details of our protocol, we first review
the formal privacy definition in the distributed setting we consider.

61



62

| SECURE AND SCALABLE DOCUMENT SIMILARITY

4.5.1  Multi-Party Computational Differential Privacy

Differential privacy (DP) is a technique for privacy-preserving dis-
closure [DR14; DMNS16; Dwo+06]. It prevents a potential adversary
observing the output of a computation from recovering information
about individual input data points, i.e., individual document in our
case. This is made formal by saying that two datasets Z and Z’ are
neighbors if they only differ in one data point; this relation is denoted
by Z ~ Z'. We say that a randomized algorithm A : Z — W is
(¢,0)-DP if for any indicator function x : W — {0,1} we have

VZ~Z7": E[x(AZ))] <eEE[x(AZ)] +6 .

When 6 = 0 we also say that A is e-DP. This definition models the
setting where a curator owns the input Z, executes the computation
A, and discloses the output A(Z).

For the purpose of providing DP in a multi-party setting one needs
to modify the above definition to account for the fact that Z is dis-
tributed among several parties. Additionally, implementing DP inside
an MPC protocol requires a further modification to account for the
information that could be obtained by a coalition of adversarial par-
ties involved in the computation who try to break the cryptography
used in the MPC protocol. This leads to the definition of multi-party
computationally differential privacy [Dwo+o06; BNOo8; MPRVog].

Suppose the input dataset is distributed among n parties Z =
(Z1,...,2Zy) and write Z ~; Z' if Z; ~ Z] and Z; = Z]’- for i # j.
Suppose A : Z" — W is an n-party protocol and let view_;(.A(Z))
denote the information observed by all parties except the ith one
during the execution of A(Z). Then we say that A is (¢, )-MPC-DP if
for all i and all Z ~; Z' we have

E [x (view_;(A(Z)))] < €E[x(view_;(A(Z")))] + 6

for any {0,1}-valued polynomial time algorithm yx. In this work
we focus on MPC based on computational security, as opposed to
information-theoretic MPC, and hence resort to the variant of MPC-
DP studied in [MPRVog]. The following key result states that imple-
menting a DP algorithm inside an MPC protocol yields an MPC-DP
protocol.

Theorem 4.4 (informal). If A is (¢, épp)-DP with respect to Z ~ 7/,
then an MPC implementation of A where is Z distributed among n parties
is (¢,0pp + dmpc)-MPC-DP, where dypc is a negligible function of |Z|
obtained from standard cryptographic assumptions.

4.5.2 Differentially Private IDF Computation

One standard approach for making the output of a computation
private is the Laplace mechanism [DMNS16]. It works by adding noise



4.5 PRIVATE FEATURE EXTRACTION \

drawn from the Laplace distribution to the output of a deterministic
function, where the amount of noise is proportional to the /;-sensitivity
of that function and the inverse of the privacy parameter e. This poses
a challenge when it comes to computing the vector of IDF coefficients
¢iae(+, Z) € RY: since we want to provide privacy to whole documents
and there is no a-priori knowledge about which words may occur
in an arbitrary document, replacing a document might result in a
change in several entries of the vector of IDF coefficients. Thus, for
a fixed ¢, the amount of noise needed for each IDF value using the
Laplace mechanism would need to be proportional to the size of the
vocabulary, which can be very large.

To avoid this problem, instead of releasing every single IDF value
using the Laplace mechanism, we design our mechanism to only
release them where they matter most, and resort to outputting a
default value everywhere else. The key observation to justify this
approach is that, in a corpus of documents Z, the distribution of the
values of |Z|, for all v € V typically follows a power-law distribution
[Powg8]. This means there are few very frequent words and lots of
infrequent words. The blue bars in Figure 4.2 exemplify such a typical
scenario. The red curve in Figure 4.2 shows how the IDF values quickly
converge to the maximum as the document frequency decreases. We
can therefore obtain a good approximation across IDFs over all words
by releasing differentially private IDFs for the L most frequent words,
and assume a default value ¢y for all other words. In this way the
noise added to the IDFs of the most frequent words will only be
proportional to L, as opposed to V.

What remains is to make sure the selection of the L most frequent
words is also private. To achieve this, we do not release the L most
frequent words exactly, but instead release a selection of words that
with high probability has a large overlap with the top L. This sampling
is done using the exponential mechanism [MToy], which is a standard
construction for differentially private top-L selection [KOV17].

The pseudo-code of our mechanism is given as Functionality 7. It
takes as input the absolute frequencies of each word in each party’s
dataset Z;. It then proceeds to aggregate these into frequencies across
the whole dataset Z, yielding ¢, = |Z|, for each v € V. The counts are
used in a private top-L selection step to find L words with the largest
frequencies. The mechanism then releases privatized counts ¢, for each
of the selected words using the Laplace mechanism. For unselected
words the mechanism outputs a default public value & = ¢y which is
independent of the true word count.

Theorem 4.5. FPP'PF (Functionality 7) is e-DP.

Proof. Let ¢y = ¢/(2L). Note that for any pair of neighboring datasets
Z ~ 7' and any word v € V we have |c, — c,,| < 1. Thus, the analysis of
the exponential mechanism [DR14, Theorem 3.6] implies that releasing
each selected word v is €9-DP. Furthermore, the analysis of the Laplace

63



64

Functionality 7: Differentially Private IDFs (FPP-1PF),
Public Inputs: 1, V, co, L, €
Private Inputs: Counts {|Z;|,},cy for i € [n]
Output: Privatized values {&, }yey

foreachv € V do
| Compute ¢, = Y11 | Zilo.
for/=1,...,Ldo
Sample v € V with probability « exp (5%).
Sample # from Lap (%)
Release ¢, = ¢, + 71
Remove v from V.

foreach v € V do
| Release ¢, = co.

mechanism [DR14, Theorem 3.10] implies that releasing ¢, for each
selected word is ¢9-DP. Note also that the values released for the
words which are not selected are independent of the dataset Z. Thus,
the result follows by applying the standard composition theorem of
differential privacy 2L times [DR14, Theorem 3.14]. O

Note that using the advanced composition theorem [DR14, Theorem
3.20] one can also show that FPP-'PF is (O(ey/log(1/6)/L),5)-DP for
any 6 > 0. However, we will stick to the e-DP guarantee given above
for the sake of simplicity.

4.5.3 Implementing Private IDFs in MPC

By Theorem 4.4, we can obtain an MPC-DP protocol from Function-
ality 7. We propose a circuit-based implementation of F°PPF which
can be ran using any generic circuit-based MPC framework. While
our protocol in theory supports any number of parties, we limit our
implementation (Section 4.7) and the description in the remainder of
this section to two parties.

The main challenge lies in securely generating noise for the Laplace
mechanism, and sampling words from the exponential mechanism.
Next we describe how to implement both steps.

4.5.3.1  Laplace Mechanism

For the Laplace Mechanism, we use a standard inversion sampling
approach. Given a uniform real number x € (0,1), a Laplace sample
with mean 0 and scale b can be computed using

blog(2x) ifx<1/2,

Lap(b) =
) { —blog(2 —2x) otherwise.



4.5 PRIVATE FEATURE EXTRACTION \

} ~ IDF,

Count ¢,

2. Reveal ¢, = ¢, + Lap (%)

NCO

1. Sample L Word v
o< exp (57)

Figure 4.2: Graphical representation of our differentially private IDF com-
putation functionality FPP'PF. Term counts following a power
law distribution are depicted in form of a histogram, and the
corresponding IDF values are drawn as a solid line. It can be seen
that as ¢, decreases, the IDF values quickly converge towards
IDFy = log(|Z| 4+ 1) + 1. Steps 1 and 2 are repeated L times in a
loop (see Functionality 7).

The required uniform sample can be cheaply computed by adding up
two such samples computed locally by each party inside the MPC, and
subtracting 1 if the result is larger than 1. Note that this ensures that
knowledge of one of the summands reveals nothing about the resulting
uniform sample. For all the other operations, including the logarithm,
there are circuits that give exact results up to the precision of floating-
point numbers. Note that in general, floating-point computation in
circuit-based MPC can be quite expensive. However, because we only
need to sample L times and L < |V|, this only has a minor impact on
the running time of our protocol.

4.5.3.2 Exponential Mechanism

Implementing the exponential mechanism is more challenging since
we need to sample words without replacement. However, we will see that
this can be done in the same asymptotic time as sampling with replace-
ment, using a Bernoulli tree that gets refreshed after each sample. First,
we compute the sampling probability p, = exp(eocy)/ Y, exp(€ocy)
of each word v € V once and write them to the leaves of a balanced
binary tree. Next, we traverse this tree bottom-up, labeling each in-
ner node with the sum of the labels of its children. Now, to sample
a word v € V, we traverse the tree starting from the root. At each
node, we perform a Bernoulli trial and descend into each sub-tree
with probability proportional to the label at the corresponding child
(i.e., the sub-tree’s root). Once we arrive at a leaf node, we return

65



66 | SECURE AND SCALABLE DOCUMENT SIMILARITY

0 02 U3 U4 4] 02 U3 U4 01

Figure 4.3: Example run of our MPC protocol for the exponential mechanism. (Left) The left node
gets selected on the first level (probability 0.7/1), and the right node on the second level
(probability 0.3/0.7 =~ 0.43). The sampled word is v,. (Middle) Refresh step: py, = 0.3
is subtracted from all nodes on the path to the root, then p,, is set to zero. (Right)
A second sample is drawn with updated probabilities. On the first level, the right
node is selected (probability 0.3/0.7), on the second level it is the left node (probability
0.2/0.3 = 0.67). The result is vs.

the word associated with it. Since the binary tree is balanced, it has
depth O(log |V|), so one sample can be computed using O(log |V|)
coin tosses and array accesses. The advantage of this approach is that
we can refresh our Bernoulli tree using also just O(log |V|) steps: after
returning a leaf v, we subtract p, from all nodes on the path from the
root and set p, to 0. This ensures that each leaf is reached at most
once. Note that the updated labels do not need to be normalized as
we take that into account when descending the tree and compute the
probabilities accordingly. An example of our sampling method and
the refresh step is shown in Figure 4.3.

The final piece is the implementation of oblivious reads and writes
in the nodes of the Bernoulli tree as a circuit. This is needed in order
to hide the order in which nodes are accessed, which could leak
their associated probabilities and thus counts of individual words.
Here, the asymptotically best choice is a generic ORAM construction,
which has logarithmic overhead for each access [Ash+20]. However,
in terms of concrete efficiency, the optimal choice depends on the
level of the tree at which we are reading or writing. In particular for
levels with few nodes, asymptotically sub-optimal solutions such as
linear scans still outperform generic ORAMSs. In practice (Section 4.7),
we switch between linear scans, square-root ORAM [Zah+16], and
FLORAM [DS17], depending on the level of the tree we are accessing.
The cutoff points between those are informed by the measurements
of Doerner and Shelat [DS17].

4.5.4 Utility Analysis

We now give a utility result about the mechanism in Functionality 7
for computing differentially private IDFs on a dataset of documents.
While we motivated our mechanism FPP-'PF using the observations
that the distributions of words in a document corpus typically follows



4.6 SECURE DOCUMENT CLASSIFICATION |

a power law, we cannot assume this holds for any possible dataset.
Thus, in the following utility analysis, we make the much weaker
assumption that the documents in Z are sampled i.i.d. from some
unknown distribution. The following result bounds the relative error
between the true vectors of IDFs ¢y4¢ and the privatized vector ¢;4¢
computed using the counts released by Functionality 7.

Theorem 4.6. For any large enough m = |Z| there exists co = ©(y/m)
such that with high probability

| pias — Piaelli _ ~ ( L? ( L ) ( L))
<0 +(1— = )log|(m——
(| piaell1 em|V| v ) 8 €

Note how this result highlights an important trade-off in the choice
of L since the first term grows with L while the second term becomes
smaller for larger L. Additionally, the first terms decreases quickly with
m, while the second term increases slowly with m. In our experiments
we did not observe this growth of the error with m, which suggests
that, for well-behaved datasets where the power-law assumption holds,
the O(log(m)) term could be removed. We leave this as an open
problem for future work.

46 SECURE DOCUMENT CLASSIFICATION

In Section 4.4, we have introduced a protocol that can exploit sparse
feature representations to compute similarities, and that is particularly
efficient when computing many similarities at once. In Section 4.5, we
have shown that such sparse features can be computed even if they
depend on a whole database distributed among multiple parties, by
revealing differentially private IDF coefficients. While each of these
protocols is of independent interest, we will now show how they can
be securely composed to form higher-level functionalities. We focus
on k-Nearest Neighbors classification for the remainder of the chapter.
However, we stress that our protocols can also be used to implement
other functionalities, for example document rankings.

We assume a two-server setting, where each of the servers holds a
database of labeled text documents. The labels are the target classes of
the classification task. A third party, the client, holds a single unlabeled
document x she wants to classify. A k-Nearest Neighbors classification
algorithm can be used to achieve this. In general, it consists of the
following steps: (1) for each document j in the full database, compute
the similarity score s;(x) between x and j; (2) compute the labels
71, ..., corresponding to the documents with the top k scores; and,
(3) return the majority vote § = majority(#y, ..., 7). This process is
formally described in Functionality 8.

67

The accuracy
analysis underlying
this section was
performed by
co-author Borja
Balle. Its main result
is repeated here for
the sake of
completeness. See
[SVGB2o,
Appendix F] for the
full result and the
relevant proofs.



68 | SECURE AND SCALABLE DOCUMENT SIMILARITY

Functionality 8: k-NN Classification
Public Inputs: 1, V, k, {¢,} ey
Server i Inputs: Document database Z;, and labels I, for each
X € Z;
Client Input: Query document g
foreach x € Uic|y Zi U {d} do
| Compute ¢(x,v), the number of occurrences of v in x.

foreach v € V do
Compute IDF coefficient

¢iar (v, Z) = log((|Z] +1)/(¢o +1)) + 1.

Compute query vector (q) = (P (g, v)cpidf(v))vev.

foreach x € Uic[, Zi do

Compute (x) = (P(x, ) $ias(v)) ,),, and similarity score
Sy = simeos (P(x), 9(q))-

Compute I; as the label most common among the k documents
x with the highest scores s.

Reveal /; to the client.

4.6.1  Security with Differentially Private Leakage

We define security of our combined protocol in a similar fashion as
previous work [MG18; GRR19]. That is, in addition to the output of
the ideal functionality, we allow for a randomized leakage £ that de-
pends on the input data. However, said leakage must be differentially
private with respect to individual records. Unlike [MG18; GRR19], we
additionally allow that the output of our functionality may depend
on L. This captures the fact that using the differentially private IDFs
from Section 4.5, we do not compute the exact result, but instead an
approximation that depends on the privatized IDFs. Note that this
setting is also suitable for scenarios where one wants to transfer differ-
entially private hyper-parameter tuning [CV13; FR18] to multi-party
learning settings.

Definition 4.7 (Security with Differentially Private Leakage). Let F
be an n-party functionality with inputs ¥ € ({0,1}*)", additional input
¢ € {0,1}*, and outputs (F1(x,£),...,Fu(x,£)). Let L denote a ran-
domized leakage function with domain ({0,1}*)". We write F(%,L) =
(F(x, L(x)), L(X)) to denote the function F with leakage L, and for any
I C [n], we write Fi(x, L) := (Fi(%, L(%)), L(X)), where Fi is defined
as in Definition 2.1. We say a protocol I1 securely computes F with
(¢,0)-differentially private leakage L if L is (g, 6)-differentially private



46 SECURE DOCUMENT CLASSIFICATION |

with respect to individual records in each x;, and there exists a PPT simulator
S such that for any I C [n]:

{(S(I,xf,f'z(ffﬁ))f (%, £) }fe({O,l}*)n

{ (view (), output'! (%)) }xe({o,l}*)" (4.1)
Note that the additional argument ¢ to F captures the fact that
the output may depend on the leakage. If 7 does not depend on /,
ie, F(x,0) = F (%, L) forall ¢, and n = 2, we get back the definition
from [MG18]. Also observe that in order to prove security with leakage
of a protocol IT, it is enough to define F and £, show that IT securely
computes F according to Definition 2.1, and show that £ is (g, ¢)-
differentially private.
In the next section, we describe a 2-server implementation of the

k-NN functionality F k-NN (Functionality 8) that uses the protocols
from Sections 4.4 and 4.5 and show that it satisfies this notion of secure
computation with differentially private leakage.

4.6.2 Secure k-NN Classification

Figure 4.4 shows the protocol that we use to implement Functionality 8
in our distributed setting with two servers. There are four phases, two
of which correspond to the preceding sections: In a precomputation
phase (a), the two servers perform a two-party computation that im-
plements FPP-IOF from Section 4.5.2. Then, the client and each of the
servers run the secure matrix multiplication protocol from Section 4.4
to obtain shares of the similarities of their respective documents. What
remains is to select the top k labels and perform a majority vote in a se-
cure way. While so far we were able to split up the entire protocol into
two-party components, we need a generic three-party computation
for the top-k selection. However, we can ensure its running time only
depends on k and not on the number of documents: observe that each
document in the top k overall must also be among the top k of the
server that owns this particular documents. Therefore, we can compute
shares of the top k on each server using cheap two-party computation
(c), and then only need 2k inputs to the three-party phase.

Theorem 4.8. The protocol TTKNN described in Figure 4.4 securely com-

Fk-NN

putes with e-differentially private leakage.

Proof. Let L = F DP-IDF "and let F k-NN be defined as the functionality
running £ and then using the output {¢, },ey as input to F kNN Note
that ZX-NN has the structure required by eq. (4.1). By the definition
from Section 4.6.1, it suffices to show that (i) £ is e-differentially
private, and (ii) 11NN FR-NN

computes with security against

69



70

| SECURE AND SCALABLE DOCUMENT SIMILARITY

(a)

Figure 4.4: Diagram of our protocol for k-Nearest Neighbors classification
of text documents. Each of the two servers holds a collection
of labeled text documents, while the client holds an unlabeled
document she wants to classify. The protocol has four stages.
(@) The servers precompute and release private IDF values for
their joint database (Section 4.5). Note that this is a one-time
setup step. (b) With each of the servers, the client performs a
secure batched similarity computation via a secure sparse matrix-
vector multiplication (Section 4.4), where the server inputs a
sparse matrix with rows corresponding to documents, while
the client inputs a single sparse document vector. (c) Using the
similarity shares from the previous step, the client computes
with each server shares of the labels and similarities of the k
most similar documents to her query. (d) The shares from step
(c) are used as inputs to a three-party computation that selects
the top k documents overall. The label for the query document is
computed by a majority vote among those.

semi-honest adversaries. (i) follows directly from Theorem 4.5. As for
(ii), observe that for any subset of the parties, intermediate outputs
are either secret-shared (and can therefore be simulated by uniformly
random values), or part of the final output. Thus, security of TT-NN
reduces to the security of the individual phases (Theorem 4.3 for Step
(b), [LPo9] for (a, c) and [DPSZ12] for (d)) and Theorem 2.2. O

Note that our security definition does not explicitly capture how £
is implemented, and therefore does not require the notion of MPC-DP
(Section 4.5.1). However, Theorem 4.4 states that any e-DP functionality
implemented as an MPC protocol yields a (¢, dmpc)-MPC-DP proto-
col. In our concrete case, this means that protocol 1NN securely
computes F kNN ith e-DP leakage FFe™ (as in the definition from
Section 4.6.1), while at the same time the output of the sub-protocol
implementing F Perm satisfies (e, dmpc)-MPC-DP.

A distinctive feature of our k-NN application is the fact that our
security definition allows for a dishonest majority, and thus the client’s
query remains secure even if both servers collude. This is in stark



4.7 EXPERIMENTS |

contrast to previous work, as we discuss in Section 4.2. We also note
that in principle, our protocol can be extended to more than two
servers, by implementing Protocol 7 (Step (a) in Figure 4.4) using
a generic semi-honest MPC protocol, as for example given by Ben-
Efraim, Lindell, and Omri [BLO16].

4.7 EXPERIMENTS

We will now experimentally evaluate our protocols. We do so from
two perspectives. First, we evaluate the running time for both of our
main protocols, secure matrix multiplication (Section 4.4) and private
IDF precomputation (Section 4.5), in a simple two-party setting. Then,
we explore how our protocols scale when applied to a real-world
classification task. To that end, we implement the k-nearest neighbors
classification protocol from Section 4.6 and evaluate it on real data.
That is, measure the running time taken for similarity computation
and top-k selection, taking into account characteristics of real-world
data; and we measure the effect our privatized IDF values have on the
classification accuracy.

IMPLEMENTATION.  We implement our protocols in C++, using Obliv-
C [ZE15] and MP-SPDZ [Kel20] for generic two-party and multi-party

computation, respectively. We implement the dense matrix multiplica-
tion protocol from [MZ17] using Eigen [G]+10] for the online phase,
and the EMP toolkit [WMK16] for the offline phase. For the ORAMs

needed for the private IDF precomputation, we rely on the imple-
mentations of square-root ORAM [Zah+16] and FLORAM [DS17] by

Doerner [Doe]. For our accuracy experiments, we re-implement the

private IDF protocol (Section 4.5) in Python, and evaluate it in the

clear using Scikit-Learn [Ped+11].

EXPERIMENTAL SETUP.  Our timings were obtained on Azure DS14v2
instances, each having 32 vCPUs and 110 GB of RAM. For WAN ex-
periments, we placed the instances in two different regions, East US

and West Europe. For all of our experiments, we set the number of fea-
tures (i.e., the inner dimension for matrix multiplication experiments,
and the number of words for DP-IDF computation), to 150000. We

chose that number because it is about the size of Aspell’s en_US-1large

dictionary [Atk]. For our matrix multiplication experiments, we set

the bit width to 64 bits. All the times we report are total running times,
i.e., we do not distinguish between offline and online phase for dense

matrix multiplication (cf. Section 4.4.5.1).

71

Our source code is
available at
https://github.
com/schoppmp/
private-knn.


https://github.com/schoppmp/private-knn
https://github.com/schoppmp/private-knn
https://github.com/schoppmp/private-knn

72

| SECURE AND SCALABLE DOCUMENT SIMILARITY

1h 2h
................... WAN
30m - 1h 1 LAN
P 30m
om-q{
g £
= m - Batch size = 1 (sparse) = 10m -
= 3 Batch size = 4 (sparse) =
—— Batch size = 16 (sparse) 5m -
e = 1024 (sparse)
m - Batch size = 2048 (sparse) 2m
Dense
308 T T T T T T m - T T T T T T T
0 50 100 150 200 250 1 2 4 8 16 32 64 128
Nonzeros per row Number of non-default values L

Figure 4.5: Evaluation of the running times of our protocols from Sections 4.4 and 4.5. (Left) Sparse
matrix-vector multiplication in a LAN with varying sparsity and batch sizes. (Right) Pri-
vate IDF precomputation with varying number of selected values L.

Running time
experiments were
mostly performed by
co-author Lennart

Vogelsang.

4.7.1  Running Time
4.7.1.1  Sparse Matrix Multiplication

In this section, we want to measure the improvement of our sparse
matrix multiplication protocol over the dense case, and explore trade-
offs that occur by tuning different parameters. As we have seen in
Section 4.4, our sparse matrix multiplication protocol is an extension
of our inner product protocol. By processing multiple rows at once,
we reduce the number of calls to F"e™ needed. On the other hand,
we possibly increase the number of non-zeros in each such batch of
rows, as we have to consider all columns that are non-zero in at least
one row.

This results in an interesting trade-off between sparsity and batch
size, which we explore here. To that end, we fix some of the parameters.
In particular, we only evaluate matrix-vector products Ab, and we fix
the number of rows of A to 2048. Then, we measure the time taken
for this sparse matrix-vector multiplication using different batch sizes
and different sparsity levels. We also measure the time taken using
only dense multiplication and use it as a baseline.

The results are shown in Figure 4.5 (left). We can see that for the
range of parameters we tested, batches of size 16 or 64 give the best
running times, depending on the sparsity level. It also becomes appar-
ent that for a suitably chosen batch size, our protocol from Section 4.4
consistently outperforms the dense baseline by at least an order of
magnitude. However, note that the running time of our sparse matrix-
vector multiplication inherently depends on the assumed public upper
bound on the sparsity (number of nonzeros per row). As the number of
nonzeros approaches the total number of columns, the dense baseline
will eventually become more efficient than our sparse protocol, due to
the overhead of generating correlated permutations in the latter.



4.7 EXPERIMENTS |

73

sh
sh1 — waN — WAN
LAN zh 1 LAN
@ 1h A
2h 'é 30m
£ 1h- ‘2 10m
= c
£ 5m
om =
3 L 2m
1m A
308
10m ~— T T T T T T T T T T T T T
64 128 256 512 1024 2048 4096 8192 10 20 30 40 50 60
Batch Size Number of neighbors k

Figure 4.6: Running times of our private k-NN classification protocol from Section 4.6. The times
correspond to a single classification run with 28000 documents consisting of Amazon
product reviews [McA]. Overall, we can do a full classification run on this dataset in
less than 40 minutes for any k € [1,60]. (Left) Sparse matrix-vector multiplication on
real-world data, i.e., Step (b) from Figure 4.4. (Right) Top-k selection phase, i.e., Steps

(c, d) from Figure 4.4.

4.7.1.2 Private IDF Precomputation

We also evaluate the time needed for our second protocol, the differen-
tially private IDF generation from Section 4.5. Recall that this protocol
is intended to be used as a one-time precomputation step. Once the
private IDF are computed and released, all parties can use them to
perform feature extraction locally (cf. Section 4.6).

For our evaluation, we fix the vocabulary size to 150000, which
corresponds to a large english dictionary [Atk]. We then run the
precomputation phase for different values of L, i.e., the number of non-
default IDF values selected. The results are shown in Figure 4.5 (right).
In the LAN setting, the running times stay below 10 minutes. This
increases to up to two hours in the WAN setting. Still, as this protocol
needs to be only run once per dataset, this is certainly practical in
real-world settings.

4.7.2 Secure Document Classification

Until now, while we chose the dimensions of the inputs in the previous
section to match the ones found in text data, we have not used any
features of specific datasets in our evaluation. Here, we explore how
our protocols scale when applied to real data. To that end, we evaluate
our implementation of the k-NN application described in Section 4.6.
First, we evaluate the time needed for the top-k selection phase
(Steps (c) and (d) in Figure 4.4). We then explore how the sparsity char-
acteristics of real-world data affects the running time of sparse matrix
multiplication. And finally, we look at how our differentially private
IDF values affect the accuracy of an end-to-end k-NN classification.



74

| SECURE AND SCALABLE DOCUMENT SIMILARITY

4.7.2.1  Datasets

We used two publicly available datasets to set up a multi-class docu-
ment classification tasks. The first dataset is a repository of Amazon
product reviews spanning May 1996 to July 2014 [HM16; McA]. We
used the 5-core version of the dataset containing only products with
at least five reviews. From the entire dataset we extracted reviews for
products in four different categories: “Clothing, Shoes and Jewelry”,
“Toys and Games”, “Tools and Home Improvement”, and “Grocery
and Gourmet Food”. We use these product categorizations to set up a
document classification problem with four classes. To construct the
dataset we randomly selected 28k reviews from the four classes with
a uniform class distribution. This resulted in a dataset with approxi-
mately 40K distinct words, where documents contain an average of
86 words and a maximum of 3300 words. The second dataset is the
RCV1 corpus of Reuters newswire stories produced between August
1996 and August 1997 [LYRLo4]. Documents in this dataset come an-
notated with multiple hierarchical labels related to topic, industry and
geography. To set up a multi-class classification problem we selected
all documents with a single label under topic “Government/Social
(GCAT)” and removed any topic with less than five documents, result-
ing in a total of 19 classes. From the resulting corpus we randomly
selected 28k via stratified sampling. Performing this process with
the tokenized version of the dataset released with [LYRLo4] resulted
in a dataset with approximately 7ok distinct words (tokens), where
documents contain an average of 158 words and a maximum of 2746
words.

4.7.2.2 Effect of Sparsity Distribution on Running Time

For the sparse matrix multiplication experiments in Section 4.7.1.1,
we chose the locations of non-zero values in each row of the matrix
uniformly and independently at random. This does not reflect the
distribution of words in real-world texts, which usually follows a
power-law distribution [Powg8]. Therefore, we re-run our matrix-
vector multiplication experiment, this time fixing the sparsity for each
batch size to the average sparsity of batches of that size in our first
real-world dataset [McA]. We also set the number of rows in the matrix
to the number of documents in our dataset, i. e., 28000. In Figure 4.6
(left), we show the results. While previously (Figure 4.5, left), the
optimal batch size was 16 in most cases, it is 512 when considering the
distribution of real data. This shows that our protocol is particularly
well equipped to handle real-world inputs.

4.7.2.3 Running Time of top-k Selection

We implement steps (c) and (d) in Figure 4.4 using Obliv-C [ZE15]
and MP-SPDZ [Kel20]. We then evaluate their running time on the



4.7 EXPERIMENTS |

75

0.9 A
0.8
) .
2071 ¢
3 -
g g 075 —%— Trunc-TF-IDF
< 06 —¢— TF < 070 —3¢~ DP-TF-IDF (¢ = 0.1)
—>¢— TF-IDF : —>— DP-TF-IDF (¢ = 0.5)
0.5 1 —— Trunc-TF-IDF 0.65 1 —>— DP-TF-IDF (¢ = 1.0)
—— DP-TF-IDF (¢ = 1.0) —3 DP-TF-IDF (¢ = 5.0)
T T T T 0.60 - T T T T
5000 10000 15000 20000 5000 10000 15000 20000
Training Size (m) Training Size (m)
Y 0.86
08 1 E—— —
0.84 s
5071 2082 é
=] =
=i
g > g —%— Trunc-TF-IDF
< 06 —3 TF-IDF <0801 ¥ DP-TE-IDF (¢ = 0.1)
—%— Trunc-TF-IDF —¢— DP-TF-IDF (¢ = 5.0)
054 —%— DP-TF-IDF (¢ = 1.0) 0784 —¢— DP-TF-IDF (¢ = 1.0)
Lap-TF-IDF (¢ = 1.0) A DP-TE-IDF (e = 0.5)
5000 10000 15000 20000 5000 10000 15000 20000
Training Size (m) Training Size (m)

Figure 4.7: Results of accuracy vs. training size experiments for k-NN with differentially private
TF-IDFE. (Left) Comparison our DP-TF-IDF algorithm to different baselines. (Right)
Effect of privacy budget ¢ on the accuracy. (Top) Reviews dataset [McA]. (Bottom) RCV1

dataset [LYRLo4].

Reviews dataset [McA]. The results are shown in Figure 4.6 (right). It
can be seen that top-k selection does impact the overall running time,
while the majority of the computation time for a full classification is
still spent on similarity computation.

Overall, for any k € [1,60], a full classification run on the reviews
dataset takes less than 40 minutes in total time. For comparison, the
same computation using only dense matrix multiplication would take
more than 8 hours, leading to an improvement of at least 12x.

4.7.2.4 Accuracy of Differentially Private IDFs

To evaluate the effect of DP on the privacy-preserving IDF computation
described in Section 4.5.2 we used the resulting feature representations
in two document classification tasks using a k-NN classifier.

BASELINES. To quantify the effect on the accuracy of the resulting
k-NN classifier of using a TF-IDF feature representation with differ-
entially private IDFs (DP-TF-IDF), we compare our approach against
the following baselines: TF where documents are only represented
by their TF vector, which can be computed locally; TF-IDF where we

Accuracy
experiments were
mostly performed by
co-author Borja
Balle.



76

| SECURE AND SCALABLE DOCUMENT SIMILARITY

use true IDFs computed without DP; Lap-TF-IDF where differentially
private IDFs are released using the naive application of the Laplace
mechanism sketched at the beginning of Section 4.5.2; Trunc-TF-IDF
where truncated IDFs computed as in Functionality 7 but without
noise (i.e., the setting ¢ = ).

HYPER-PARAMETER TUNING. To assess the predictive performance
of the different feature representations, we further split the data into
70% for training, 15% for validation, and 15% for testing while main-
taining the class proportions in each of the subsets. When testing the
effect of the amount of training data on the overall accuracy of the
model we further subsample the ~20k training examples to obtain a
smaller training set. For each training size and privacy parameter, we
tune the hyper-parameters of each algorithm separately by optimizing
the accuracy on the validation set, and then report the resulting accu-
racy on the test set. Since differential privacy introduces randomness
in the computation, each accuracy measure is obtained by averaging
over 20 independent runs. The hyper-parameter ranges over which
the optimization is performed are as follows: number of neighbors
k € [1,60], number of non-default IDFs L € {32,64,128}, and default
values ¢g € {16,32,64,128}. These ranges were selected after an initial
data exploration phase.

REsuLTs. The results of these experiments are displayed in Fig-
ure 4.7. In the plots on the left side we compare the accuracy of k-NN
classification as a function of the size of the training dataset using
the TF-IDF representation obtained with our method (for ¢ = 1) and
the baselines described above. We observe that IDFs are necessary to
obtain good accuracies, as the TF baseline performs poorly on both
datasets. Additionally we observe that Lap-TF-IDF is better than plain
TFE but worse than our DP-TF-IDE. On the reviews dataset the Trunc-
TF-IDF baseline has the same performance as standard TF-IDF, while
in the RCV1 dataset the former is slightly better. Finally, our method is
slightly worse than not using DP on the reviews dataset, but performs
identically to the best baseline on the RCV1 dataset.

On the right side of Figure 4.7 we explore the effect of the privacy
parameter ¢ on DP-TF-IDF compared to the best baseline (Trunc-TF-
IDF). On the reviews dataset we see that increasing ¢ leads to a better
feature representation, with ¢ = 1 incurring a 3% accuracy loss with
respect to the best non-private feature representation. On the other
hand, on the RCV1 dataset, DP-TF-IDF is quite insensitive to the choice
of ¢ and matches the behavior of the best baseline for all the values
we tried (¢ € {0.1,0.5,1,5}).



4.8 DISCUSSION

Our MPC protocol for k-NN classification achieves provable security
in the distributed setting with possibly colluding servers, which has
not been reported in academic literature before. At the same time, our
evaluation shows that it scales to real-world dataset sizes and is viable
in both LAN and WAN settings. We show that by precomputing dif-
ferentially private statistics, performance can be improved by an order
of magnitude, while providing a principled way to trade off between
accuracy and privacy. This shows that hybrid solutions combining
MPC and DP are a promising avenue for privacy-preserving data
analysis on distributed data, as carefully designed DP mechanisms for
approximated functionalities can enable efficient MPC protocols.

Apart from classification, our private k-NN algorithm can be easily
adapted to support other types of queries on distributed datasets, for
example private duplicate detection, or query answering. Additionally,
other document similarity measures can be implemented atop our
protocol for secure two-party sparse matrix multiplication. Moreover,
our protocol for sparse matrix multiplication is general in that it works
on arithmetic sharings, and hence can be directly used as a building
block in other applications.

In the next chapter, we will generalize and improve our protocol
from Section 4.4.3, obtaining a general framework for secure sparse
linear algebra. We show that it can also be applied to other machine
learning tasks beyond k-NN, such as logistic regression and naive
Bayes classification.

77






5 THE ROOM FRAMEWORK FOR
SPARSE LINEAR ALGEBRA

5.1 OVERVIEW

Today’s popularity of machine learning is the result of a sequence of
advances in several areas such as statistical modeling, mathematics,
computer science, software engineering and hardware design, as well
as successful standardization efforts. A notable example is the devel-
opment of floating point arithmetic and software for numerical linear
algebra, leading to standard interfaces such as BLAS (Basic Linear Al-
gebra Subprograms): a specification that prescribes the basic low-level
routines for linear algebra, including operations like inner product,
matrix multiplication and inversion, and matrix-vector product. This
interface is implemented by all common scientific computing frame-
works such as Mathematica, MATLAB, NumPy/SciPy, R, Julia, uBLAS,
Eigen, etc., enabling library users to develop applications in a way that
is agnostic to the precise implementation of the BLAS primitives being
used. The resulting programs are easily portable across architectures
without suffering performance loss. The above libraries, and their
variants optimized for concrete architectures, constitute the back-end
of higher-level machine learning frameworks such as TensorFlow and
PyTorch.

In this chapter, we present a framework for privacy-preserving
machine learning that provides privacy preserving counterparts for
several basic linear algebra routines. Similar to the sparse inner prod-
uct protocol from Chapter 4, we exploit data sparsity for scalability,
by tailoring the basic operations in our framework for that purpose.
However, we aim to solve the problem in a much more general way,
by providing low-level data structures and protocols for storing and
accessing sparse data, and then buildings several sparse linear algebra
on top of them. This is analogous to the sparse BLAS interface [DHPo2],
a subset of computational routines in BLAS with a focus on sparse
matrices.

The constructions that we develop for the basic building blocks in
our framework are cryptographic two-party computation protocols,
which provide the formal security guarantees of Definition 2.1. We
optimize our protocols for the setting where the sparsity level of the
input data is not a sensitive feature of the input that needs to be
kept secret. This is the case in many datasets where a bound on a
sparsity metric is public information. For example, text data where the
maximum length of the documents in the training dataset is public,
or genomic data, as the number of mutations on a given individual is

The contents of this
chapter have
previously appeared
in Proceedings of
the 2019 ACM
Conference on
Computer and
Communications
Security [SGRP19].

79



80

known to be very small. Similarly to Sparse BLAS implementations,
sparsity allows us to achieve substantial speed-ups in our secure
protocols. These efficiency gains translate to the efficiency of the
higher-level applications that we develop in our framework, as is
described in Section 5.1.1.

Sparse linear algebra on clear data relies on appropriate data struc-
tures such as coordinate-wise or Compressed Sparse Row (CSR) rep-
resentations for sparse matrices. For the MPC case, we develop a
similar abstract representation, which we call Read-Only Oblivious
Map (ROOM). A significant aspect of this modular approach is that
our alternative back-end implementations of the ROOM functional-
ity immediately lead to different trade-offs, and improvements, with
regards to communication and computation. This also allows MPC
experts to develop new efficient low-level secure computation instan-
tiations for the ROOM primitive. These can then be seamlessly used
by non-experts to develop higher level tools in a way that is agnostic
to many of the details related to secure computation. Such usage of
our framework will be similar to to how data scientists develop high-
level statistical modeling techniques while benefiting from the high
performance of back-ends of ML frameworks.

5.1.1  Chapter Contributions

We present a modular framework for secure computation on sparse
data, and build three secure two-party applications on top of it. Our
secure computation framework (depicted in Figure 5.1) emulates the
components architecture of scientific computing frameworks. We de-
fine a basic functionality and then design and implement several
secure instantiations for it in MPC; we build common linear algebra
primitives on top of this functionality; and then we use these prim-
itives in a black-box manner to build higher level machine learning
applications. More concretely, we present the following contributions:

(1) A Read-Only Oblivious Map (ROOM) data structure to represent
sparse datasets and manipulate them in a secure and composable way
(Section 5.3).

(2) Three different ROOM protocol instantiations (Section 5.3.2)
with different trade-offs in terms of communication and computation.
These include a basic solution with higher communication and mini-
mal secure computation (Basic-ROOM), a solution using sort-merge
networks that trades reduced communication for additional secure
computation (Circuit-ROOM), and a construction that leverages fast
polynomial interpolation and evaluation (Poly-ROOM) to reduce the
secure computation cost in trade-off for local computation, while
preserving the low communication.



5.2 BACKGROUND AND SETUP | 81

X Application k-nearest Logistic
E neighbors regression

________________________________________________________

layer

E Linear :
\ Gather Scatter MvMult ,
! algebra layer :

Figure 5.1: Components of our system.

(3) We leverage our ROOM primitive in several sparse matrix-vector
multiplication protocols (Section 5.4.2), which are optimized for differ-
ent sparsity settings. We also show how to implement sparse gather
and scatter operations using our ROOM primitive.

(4) We build three end-to-end ML applications using our framework.
The resulting protocols significantly improve the state of the art, as
discussed below.

Our three chosen applications are k-nearest neighbors (Section 5.5.1),
naive Bayes classification (Section 5.5.2), and stochastic gradient de-
scent for logistic regression training (Section 5.5.3). We evaluate the
performance of these applications on real-world datasets (Section 5.7)
and show significant improvements over the state of the art:

o For k-NN, we have seen in Chapter 4 how to exploit sparsity
using a hand-crafted sparse matrix multiplication protocol. We
now show that using our new ROOM primitives can reduce the
online running time by up to 5x.

o Our sparse stochastic gradient descent implementation improves
upon the total runtime of the dense protocol by Mohassel and
Zhang [MZ17] by factors of 2xX—94x, and improves communica-
tion by up to 215Xx.

» Our protocol for naive Bayes classification scales to datasets with
tens of thousands of features, while the previous best construc-
tion by Bost et al. handled less than a hundred [BPTG15].

5.2 BACKGROUND AND SETUP

HOW TO EXPLOIT SPARSITY, AND IMPLICATIONS FOR PRIVACY. Two
properties of real-world data representations used for automated anal-



82

| THE ROOM FRAMEWORK FOR SPARSE LINEAR ALGEBRA

ysis are (a) their high dimensionality and (b) their sparsity. For exam-
ple, the Netflix dataset [BLoy] contains ~480k users, ~17k movies, but
only ~100 million out of ~8.5 billion potential ratings, less than 2%.
In another common machine learning benchmark, the 20Newsgroups
dataset [RLo8], the training data consists of just over gooo feature vec-
tors with 10° dimensions, but less than 100 (0.1%) non-zero values in
each vector. Finally, in Genome-Wide Analysis Studies (GWAS), where
the goal is to investigate the relationship between genetic mutations
and specific diseases, the relevant mutations are limited to only about
5 million locations, while a full human genome contains ~3.2 billion
base pairs [The+15].

To cope with memory limits, and speed up computations on sparse
data in general, several data structures have been developed that
exploit sparsity in the data by only storing relevant (i.e., non-zero)
values. For a vector v, a straightforward approach is to store only
pairs ((i, Ui))v,- o For sparse matrices, this generalizes to Compressed
Sparse Row representation, where all rows are successively stored in
the above fashion, and an additional row-index array stores pointers
to the beginning of each row. Linear algebra libraries such as SciPy
and Eigen provide implementations of these sparse vectors and matri-
ces [JOP+; GJ+], and databases for genomic data use similar sparse
storage formats [Dat+17].

Note that sparse data representation does not only reduce the stor-
age overhead, but is also the basis for more efficient algorithms. For
example, a matrix-vector product, where the matrix is stored as CSR,
is independent of the number of columns in the original data and only
depends on the number of rows and the number of non-zero values
in the matrix. For the examples above, where columns correspond
to hundreds of thousands of features, this saves large amounts of
computation.

In this chapter, we show how to obtain the same benefits from spar-
sity in the secure distributed ML setting, revealing only the sparsity
metric of the underlying data while hiding where in the input the
sparsity occurs. There are many scenarios where the sparsity metric
can be revealed safely without compromising privacy guarantees: that
value might already be public (as with the GWAS example above), or
a reasonable upper bound can be set in advance. The main challenge
is hiding the locations of the non-zero values in the data, which are re-
vealed in the plaintext algorithms for the above sparse data structures.
Revealing those indices can leak private information. For example, in
the common bag-of-words representation for text data, words in the
input vocabulary correspond to columns of a sparse matrix. Revealing
the columns where a particular row is non-zero would reveal the
words contained in the training document corresponding to that row.



5.2 BACKGROUND AND SETUP \

In the remainder of this section, we concretely state our privacy
requirements and threat model, and introduce necessary notation and
preliminaries.

THREAT MODEL. We consider a two-party computation setting with
semi-honest parties, and the security of our protocols holds in the
common simulation-based paradigm for secure computation (see Sec-
tion 2.2).

Our computations are over matrices and vectors over a finite domain.
In all cases we assume that the sparsity metric of the input set is public.
For different protocols this metric will be either the total number of
zeros, or the total number of zero rows or columns. In settings where
we apply our protocols to collections of rows of a dataset, i.e. batches,
the sparsity metric is revealed about the batch. In the context of our
applications, the real-world interpretation of the sparsity metric is
straightforward. For example, in our logistic regression application,
the sparsity metric corresponds to revealing an upper bound on the
number of different words in each batch of 128 documents.

THE PREPROCESSING MODEL FOR MPC  Some secure computation
protocols adopt the online-offline paradigm, which splits the computa-
tion work into an offline stage that can be executed before the inputs
are available, and an online stage that depends on the concrete input
values. We do not optimize our constructions for the online-offline
setting but rather focus on minimizing the total cost of the protocol.

RELATED WORK: CUSTOM MPC PROTOCOLS FOR SPARSE DATA. Ex-
ploiting sparsity for efficiency has been explored before in some con-
crete privacy preserving applications. The work of Nikolaenko et al.
[Nik+13a] develops a protocol for privacy preserving collaborative
filtering, a typical application on the Netflix dataset described above.
By disclosing a bound on the number of movies rated by a user
and exploiting sorting networks, the proposed solution significantly
improves on the naive approach that considers all user-movie pairs.

GraphSC [Nay+15] is a framework for secure computation that
supports graph parallelization models. The design crucially relies
on oblivious sorting, as it enables efficiently running computations
expressed as sparse graphs while hiding communication patterns
across processors. Another application of oblivious sorting to MPC
on sparse graphs is given by Laud [Lau15], albeit in a different threat
model (three parties with honest majority).

All of these works, as well as our protocols from Section 4.4, rely on
oblivious sorting networks [HEK12], and task-specific optimizations.
Our ROOM primitive (Section 5.3) abstracts away from the concrete ap-
plication by providing a generic interface for secure sparse lookups. In

83



84

Functionality 9: Functionality of Shared Output ROOM.
Inputs: Server: Key-value pairs d € (K x V)", B € V"™,
Client: Query g € K™.
Output (shared): [r] such that r € V" and Vj € [m]:

B if (q;,0q) € d
! p; otherwise.

the case of k-NN, we show that this directly translates to a significant
improvement in the online running time.

5.3 BASIC PRIMITIVE: ROOM

We define Read-Only Oblivious Maps (ROOMs) as a 2-party func-
tionality between a server and a client. For fixed finite sets K and
V—which we call the domain of keys and values, respectively—the
server holds a list of key-value pairs d = ((x1,0y,), ..., (X4, 0x,)), with
unique keys x; € K and values v,, € V, and the client holds a query
(q1,---,qm), with g; € K.

The output of a ROOM is an array (1, ...,"n), where for each qj,
if g; is a key in d then r; is equal to the corresponding value, namely
rj = vy Otherwise r; gets a default value p; € V chosen by the
server (and which might be different for each index j). This mirrors
common implementations of a map data structure: for example, in
Python d.get(k, val) returns the value associated with the key k in
dictionary d if k is found, and a default value val otherwise. In Java,
d.getOrDefault(k, val) does the same thing.

We formalize this in Functionality 9. Note that, as the output is
secret-shared among the two parties, the question of whether the
indexes in the client can be chosen adaptively by the client is not
relevant. In some cases, when we want a single party to obtain the
output, we write designated output ROOM. This variant can be trivially
implemented by having one party send their shares to the other, or—as
all our concrete implementations have a generic MPC phase at the
end—omitting the secret-sharing step.

5.3.1 Existing Primitives

Before introducing our instantiations of ROOM, we overview what
differentiates our ROOM functionality from existing primitives.
ROOM is related to Private Set Intersection (PSI) (see [PSZ18] and
references therein). However, the ROOM functionality requires se-
lecting data items based on key comparison and thus not every PSI



5.3 BASIC PRIMITIVE: ROOM | 85
Data Structure Initialization Answer a query of length m
Local Comm. MPC Local
Basic-ROOM o(|K]) (5) o(|K]) O(m) O(m) (S and C)
Circuit-ROOM - - O((n+ m)log(n +m)) O(nlog(n)) (S), O(mlog(m)) (C)
Poly-ROOM O(nlog?(n)) (S) Oo(n) O(m) O((m +n)log?(n)) (C)

Table 5.2: Asymptotic costs of initializations and execution of ROOM instantiations, for a database
d € (K x V)" held by the server (S), and a query g of length m held by the client (C).
Initialization is defined as preprocessing independent from the query 4. We assume the
security parameter is constant, and we also do not show factors log(KC) and log(V). The
order of the communication for the online phase (answer length m query) is the same as

the MPC Runtime for that phase in all cases.

protocol will directly imply ROOM. In addition, PSI protocols leak the
size of the intersection to the client, while it is crucial that a ROOM pro-
tocol does not reveal how many indexes in the query were found in the
database. Still, extending recent developments on labeled PSI [CHLR18]
and PSI with shared output [CO18; PSTY19] to the ROOM setting
seems to be a promising approach for future improvements.

Functionalities similar to ROOM have recently been proposed as
private join and compute [lon+20; Lep+20] or private matching [Bud+20].
However, with the exception of [Lep+20]", these protocols reveal the
size of the intersection, whereas our ROOM functionality keeps it
private.

ROOM can also be constructed using Oblivious RAM [GOg6]. How-
ever, ROOM does not need support for writes, and thus the resulting
solution will have much overhead that can be avoided.

Private Information Retrieval (PIR), in its symmetric variant [GIKMoo],
is another primitive relevant to ROOM. Keyword PIR [CGNg8] con-
siders the setting of a database that may not contain items at all in-
dices, which is required for ROOM. Finally, while batching techniques
that allow the execution of multiple queries have been developed for
PIR [ACLS18], they do not directly apply to the keyword variant and
also do not always have good concrete efficiency. Thus, from a PIR per-
spective, our ROOM techniques could be interpreted as improvements
on batched symmetric keyword PIR with shared output.

5.3.2 Instantiations of ROOM
This section presents three instantiations of Functionality 9. As de-
scribed in Section 5.3, they can be easily transformed into the desig-
nated output variant. The first two constructions are based on generic
MPC techniques, while the third instantiation also leverages tech-
niques for oblivious selection using polynomial interpolation.

A naive approach for constructing a ROOM protocol requires mn
comparisons since each of the client’s queries may be present in

' Note that [Lep+20]
appeared after our
work was published,
and in fact the
authors
experimentally
compare their
implementation to
ours.



86 | THE ROOM FRAMEWORK FOR SPARSE LINEAR ALGEBRA

Protocol 10: Basic-ROOM.
Letd € (K x V)", Be V™", g e K", and K be a PRF key.
Inputs: Server: d, B, K; Client: g.
Output (shared): [r] € V™.

(1) Fori € K, Server encrypts ¢; < (v; @ Fx(i)), where

b — { val if (i,val) € d

1 otherwise.

Server sends (c¢;);ex to Client.

(2) For each i € [m], the parties run a secure two-party
computation where Client inputs ¢;, and q; and Server inputs K
and B;. The secure computation decrypts c,;, as v = ¢4, @ Fg(q;),
and reveals shares [[r] to Client and Server where

Vi:{ v, ifv#l,

Bi, otherwise

the server’s database. Our ROOM instantiations reduce this many-to-
many comparison problem to one-to-one comparisons. The asymptotic
behavior of our proposed instantiations of ROOM is presented in
Table 5.2. The online cost distinguishes between local computation
and generic MPC computation because the latter has a significantly
higher overhead in practice, and hence this distinction is essential for
the asymptotics to reflect concrete efficiency.

5.3.2.1  Basic-ROOM

Our Basic-ROOM protocol (Protocol 10) is a baseline construction that
does not exploit sparsity in the database d, and instead expands the
whole domain of keys K. Namely, the server computes and sends an
encrypted answer for each potential query in K. However, as shown
in Table 5.2, the linear dependency on |K| is limited to the local
computation performed by the parties during initialization, whereas
the more costly online MPC computation only depends on the length
of the ROOM query.

Lemma 5.1. Protocol 10 is a secure instantiation for the ROOM functional-
ity with the following overhead: The initialization includes O(|KC|) work for
the server, and O(|K|) communication to send the encrypted database to the
client. The online phase has an O(m) overhead for the MPC protocol.

SECURITY SKETCH. The security of the PRF implies that the client
does not learn anything about database items due to the initialization.



5.3 BASIC PRIMITIVE: ROOM \

The secure computation in the next step guarantees that both parties
learn only shares of the result.

5.3.2.2 Circuit-ROOM

Our second protocol for ROOM uses secure computation and leverages
the following observation. We can compute the ROOM functionality
by doing a join between the server’s data and the query on their key
attribute and then computing a sharing of the vector of the corre-
sponding data items from the server’s input. A common algorithm for
performing equality joins in databases is the sort-merge join [Zhoog],
where elements of each relation are first sorted individually by the
join attribute. Subsequently, the two sorted lists are merged (as in
merge sort), yielding a combined list where elements from both ta-
bles with equal keys are adjacent. This combined list only needs to
be scanned once in order to retrieve all elements of the joined ta-
ble. In the ROOM setting, note that only the last two steps, merge
and iteration, depend on data from both parties, as sorting can be
performed locally. This makes this algorithm particularly useful for
MPC, since merging of n elements can be performed using a circuit of
size O(nlogn) [Bat68], and the circuit for comparing adjacent pairs
is linear. A similar approach has been taken in previous work for
private set intersection [HEK12], and it is also the basis of our sparse
matrix multiplication protocol from Section 4.4. We call this ROOM
instantiation Circuit-ROOM, and describe it in Protocol 11.

Note that we can assume without loss of generality that d and
q are sorted. If they are not, we can extend the MPC protocol that
we construct to first compute the sorting with a small O(mlog(m))
additive overhead.

The secure computation first arranges the inputs into vectors of
triples w® and w®, which consequently are merged by the first and
then third component into a vector v. Entries with matching keywords
are adjacent in v, and the third component of such entries indicates to
which party they belong, i.e., indices greater than 0 indicate entries
originally in the client’s input.

In Step 2) the protocol computes vectors b and c. Each entry of these
vectors stores information about the result of comparing two adjacent
entries of v. In particular, b stores the selected value (i.e., answer),
depending on whether keys of such entries matched. The vector ¢
stores whether the i-th pair of compared adjacent entries involves a
key from g. In that case, ¢; > 0, as it corresponds to the index of that
key in g. Otherwise c; = 0. If ¢; > 0 then the computation must return
an answer in b. The answer is the corresponding value from d if a
match was found, or the corresponding value from B if no match was
found.

87



Protocol 11: Circuit-ROOM.
Letd € (K x V)", and B € V", g € K™. Assume d is sorted by
the first component in each entry, and g is sorted.
Inputs: Server: d, §; Client: q.
Output (shared): [r] € V™.

Client and Server run the following steps in a secure two-party
computation:

(1) Construct w® = ((qi’ﬁi’i))ie[m] and w° = ((di,l’di,Z’O))ie[n}

Merge w® and w® into a vector v of length n + m, sorted
lexicographically by the first and then third component.

(2) Compute vectors b and ¢ in V" and {0, ..., m}" " by
comparing adjacent entries from v (where v; = (a,b,¢),
vit1 = (a’,V',¢")). In particular for i € [m+n —1]:

b,c) ifa=d
bit1,civ1) = (b,
(Bis1 1) { (V',c") otherwise.

In addition, for v; = (a,b,c) we set (by,c1) = (b, c).

(3) Shuffle b and c according to a random permutation 7
unknown to either party, i.e., set b = 71(b) and &é = 7(c).

(4) Tterate over b and ¢ in parallel. Whenever ¢; # 0, reveal & and
share b; between the parties, who both set [rz] = [b;].

Next, in Step 3) b and c are obliviously shuffled to avoid leakage
induced by relative positions of their entries. This is analog to the
shuffle step in Sort-Compare-Shuffle PSI [HEK12].

Finally, in step 4), entries of b that correspond to comparisons with
keys from the client are output in shares between the parties, along
with the corresponding entries in c. This allows the parties to map
their output shares back to the order of the inputs. Note that the
shuffling in step 3) makes sure that the indexes at which elements are
revealed do not leak any information to either party.

Lemma 5.2. Protocol 11 is a secure instantiation for the ROOM func-
tionality with the following overhead. The client and the server run a se-
cure two-party computation protocol whose main bottleneck is computing
O((n + m)log(n + m)) comparisons. Additionally, local computations cost
O(nlogn) for the server and O(mlogm) for the client.

The security claim in the above lemma follows directly since our
protocol is entirely done in MPC and any additional information
revealed beyond the output shares is indistinguishable from random.



Protocol 12: Poly-ROOM.

Letd e (Kx V)", Be V", qec K" Lets € N be a statistical
security parameter and K be a PRF key.

Inputs: Server: d, B, K; Client: g.

Output (shared): [r] € V™.

(1) For each t; = (i,v) € d, Server computes

¢ = Fi(i) @ (v]] 0°8m),

(2) Server interpolates a polynomial P of degree n, such that for
each (i,v) € d, P(i) = c;.

(3) Server sends the coefficients of P to Client.

(4) For each i € [m], the parties run a two-party computation
protocol where Server has input K and Client has inputs
qi, P(gi). Both parties receive shares [r] as output, where

;e { v if P(q) @ Fr(qi) = (o || 0°+1°8")

Bi, otherwise.

5.3.2.3 Poly-ROOM

Finally, as our main instantiation for ROOM, we present a protocol that
has MPC runtime similar to Basic-ROOM (independent of 7 and linear

on m), but avoids the dependence on the key domain in initialization.

The main insight for our new construction (Protocol 12) is that
the server can construct a polynomial which evaluates, for inputs
which are keys of items in the server’s database, to outputs which
are encrypted versions of the corresponding values in the server’s
database. The encryptions are done with a key that is only known to
the server. The resulting polynomial is of degree n and is therefore a
concise representation of the data. At the same time, the polynomial
looks pseudorandom (since it is an interpolation over pseudorandom
points), and therefore hides the points which have non-zero values.

The server sends this polynomial to the client. The client then
evaluates the polynomial on its inputs and learns m outputs. For
each of the client’s keys present in the database, the client obtains
the encrypted version of the corresponding database value. The two
parties then run a secure computation that decrypts each value that
the client obtained, checks if it decrypts correctly (i.e., ends with a
fixed string of zeros), and reveals to the client either a value in the
database or a default value from B depending on the result of that
check. Note that the check passes if the key in the client’s query is
ind.

89



90

| THE ROOM FRAMEWORK FOR SPARSE LINEAR ALGEBRA

Lemma 5.3. Protocol 12 is a secure instantiation for the ROOM func-
tionality. The initialization cost includes O(nlog?n) work for the server
and communication of O(n) to send the polynomial to the client. The on-
line cost of the protocol has O(m) cost for the MPC execution and then
O((m + n)log?® n) local computation for the client.

The overhead of the local computation is based on running efficient
algorithms for polynomial interpolation and multi-point evaluation,
which interpolate a polynomial of degree # in time O(nlog® 1), and
evaluate such a polynomial on 7 points also in time O(n log2 n) [MB72]
(we used an implementation of these protocols in our experiments).

SECURITY SKETCH. The security of the construction follows from
the fact that the polynomial that the client receives is pseudorandom
since the encryptions c; used in step 2) are pseudorandom. The rest of
the computation is implemented in an MPC protocol.

5.4 ROOM FOR SECURE SPARSE LINEAR ALGEBRA

In this section we present efficient two-party protocols for several
common sparse linear algebra operations, which leverage the ROOM
functionality in different ways. Similar to how sparse BLAS operations
are presented in [DHPo2], we first focus on lower-level primitives
(Gather and Scatter), and then use them to implement higher-level
functionality, namely matrix-vector multiplication. However, we stress
that our goal is not to provide implementations of each function
described in [DHPo2], but instead focus on the operations necessary
for the applications described in Section 5.5.

5.4.1  Gather and Scatter

Intuitively, the Gather and Scatter operations correspond, respectively,
to a sequence of indexed reads from a sparse array, and a sequence
of indexed writes into a sparse array. More concretely, Gather takes
a vector of indices g = (ij,...,i,) and a (usually sparse) vector v,
and returns the vector r = (v;,...,v;,) that results from gathering the
values from v at the indices in q. Scatter on the other hand takes a
vector of values v, a vector of indices g = (iy,...,i,), and a vector u,
and updates u at each position 7; with the new value v;.

We transfer the two operations to the two-party setting as follows.
Given a sparse vector v held by Party P,, and a set of query indices g4
held by Party P;, Gather(v, ) returns additive shares of a dense vector
v’, with v/ = ;.. It is clear that this is equivalent to a ROOM query
with P, and P; as the server and client, and inputs ¢q, d = {(i, v;) |
v; # O}, and B =0.



54 ROOM FOR SECURE SPARSE LINEAR ALGEBRA \

Functionality 13: Scatterlnit with shared inputs.

Letv € Zly, and let n > [ be a public parameter.

Inputs: Pq: Vector share [v]p,, indices iy, ..
P2: Vector share [v]p,.

Output: Vector shares [v'], v’ € ZJ,, where

iy

vj, if thereisaj € [I]s.t. ij =1,

U/z' =
0

For Scatter, we focus on a variant where u is zero. We call this
functionality Scatterlnit. Given a dense vector v and a set of indices
g, both of size I, and an integer n > [, Scatterlnit(v, g,n) returns a
vector v’ of length n such that v}, = v; for all i € [I], and v/ = 0 if
j € q. As in the case of gather, we are interested in secure protocols for
Scatterlnit that output v’ additively shared. Regarding the inputs, we
focus on the case where the input vector is also secret-shared between
the parties, while g is held by one party, and 7 is a public parameter.
The reason for this setting will become apparent when we present our
protocol for row-sparse matrix multiplication in Section 5.4.2.2, as it
uses Scatterlnit as a sub-protocol.

We formally define Scatterlnit in Functionality 13. One direct way
to implement this functionality is using generic MPC such as gar-
bled circuits. The approach requires a circuit of size O(nlc) that for
each i € [n] selects the ith output among the all possible values
(0,71,...,7,—;). Hence a solution based on generic MPC constructions
would require O(nlo) communication and computation. Alternatively,
one can rely on additive homomorphic encryption to enable P; to
distribute the encrypted values of r into the right positions of en-
crypted # and then execute a protocol with P, to obtain shares of #' in
the clear. This approach requires O(n) computation and O((n +1)L)
communication where L is the length of a ciphertext of additively
homomorphic encryption, which adds considerable expansion to the
length of the encrypted value. In the next paragraph, we describe a
version that is concretely efficient, building on ROOM and oblivious
transfer extensions.

otherwise.

SCATTERINIT FROM ROOM AND OT EXTENSION. Our implementa-
tion of Scatterlnit is described in Protocol 14. The idea is that P;
generates its random output share [v’]p, and then Py and P, execute
an MPC protocol from which P; obtains (a) all entries of [v']p, at
indices not in {iy,...,i;}, and (b) its share of the output for the re-
maining indices, which is obtained securely from P;’s share of the
output and the shared input vector v. For (a) we use a well-known
(n —I)-out-of-n OT protocol that we describe in the next paragraph.

91

In Chapter 6 we will
introduce a similar
functionality termed
known-indices
multi-point
function secret
sharing (MPFSS)
that can improve
both asymptotic and
concrete efficiency
compared to the
approaches described
here.



92

Protocol 14: Scatterlnit based on ROOM.

Let v € Z),, and let n > I be a public parameter.
Inputs: Py: Vector share [v]p,, indices iy, ..., 1,
P2: Vector share [[v]p,, key K.
Output: [¢v'], for v’ € ZJ,, as defined in Functionality 13.
(1) For each i € [n], P, generates a random value s;.

(2) The parties run a (n — I)-out-of-n Oblivious Transfer protocol,
with P acting as the sender, for P; to obtain

w=((i,s) | i ¢ {ir,...,it}).

(3) The parties run ROOM with P, acting as Server and P; as
Client, and inputs g = (i1,...,1;), d = ((i,si) )icn, and p =1".
The parties obtain shares of the vector i = (s; | i € {i1,...,i}).

(4) The parties engage in a two-party computation with inputs
[v]p,, [©lp,, [#]p,, and [it]p,, where v and i are
reconstructed, and § = v — 7 is revealed to P;.

(5) P2 sets [0']p, = (si)ic|n) and Py sets [v']p, = s with

g — S_j/ ifi:i]‘E{il,...,il},
Z - . .
—s;, where (i,s;) € u, otherwise.

For (b) we use a ROOM query followed by a two-party computation
where P;’s output share is reconstructed in the MPC (step (4) in Pro-
tocol 14) and used to mask v to produce P;’s output share. Note that
Basic-ROOM is the natural instantiation to use in this setting.

The (n — I)-out-of-n OT in step 2 is implemented using a folklore
protocol that requires n invocations of 1-out-of-2 OTs and an [-out-of-n
Shamir secret sharing of a PRF key. It works by the sender encrypting
each of its n inputs using a key K, and then letting the receiver learn
in each of the n OTs either an encrypted input or a share (in /-out-of-n
secret sharing) of K. This forces the receiver to learn at least / shares
of the key, and therefore at most n — I values.

SECURITY SKETCH  We argue that the view of each party after each
step in the protocol includes only random values in addition to its
inputs. This true after the first two steps since first P, generates
random shares and then, using the security of the oblivious transfer,
P; obtains a subset of them while P, obtains nothing. The security
properties of the ROOM protocol guarantee that the shares that each
party obtains after the third step are also indistinguishable from
random from that party’s view. In the secure computation in step
four, P; obtains values that depend on the random masks . The fact



54 ROOM FOR SECURE SPARSE LINEAR ALGEBRA \

that P; does not know i, together with the guarantees of the secure
computation, ensures the output is indistinguishable from random for
P1. The last step involves only local computation for each party and
thus does not change their views.

We will now use the protocols from the previous section to build
sparse matrix-vector multiplication protocols in the next section. Con-
cretely, we will use Gather for column sparsity (Section 5.4.2.1), and
Scatterlnit for row sparsity (Section 5.4.2.2).

5.4.2 Sparse Matrix-Vector Multiplication

Throughout this subsection we consider party P; holding a private
matrix M € Z5;", with exactly I nonzero columns or rows, depending
on the context. Party P, holds a private vector v € Z7; with k nonzero
entries. The value of ¢ is at least 64 in standard ML applications,
and potentially more in settings that require additional precision to
represent real numbers using fixed point arithmetic, or secret shares.
The goal of all protocols is to compute the vector Mv of length n,
additively shared between P and P». This allows us to easily integrate
these protocols as part of higher-level secure protocols, such as the
solutions to machine learning problems presented in Section 5.5. While
we assume that n,m, [, k and ¢ are public, no additional information is
revealed to the parties.

The underlying theme of our protocols is different private reduc-
tions of sparse matrix-vector multiplication to the dense case. The goal
of such reductions is to avoid multiplications by zero, and hence have
the cost of the dense multiplication be dependent only on I and k,
instead of the total size of the sparse dimension. Therefore, the last
step in our protocols will be to use a sub-protocol for two-party dense
matrix-vector multiplication. As discussed in Section 5.2, efficient ded-
icated protocols for this functionality have been recently presented.
This includes solutions based on precomputed triples by Mohassel
and Zhang [MZ17], as well as solutions based on homomorphic en-
cryption [JVC18], and server-aided OT [LJLA17]. In our protocols in
this section we will refer to a generic dense matrix multiplication pro-
tocol MvMult, as well as to a generic ROOM protocol ROOM. In our
implementation, we use the OT-based protocol from [MZ17], which
we presented in the previous chapter (Protocol 6).

5.4.2.1  Column-Sparse Matrix

We propose two protocols for the case where M is sparse in the second
dimension (i.e., there is a small number of non-zero columns). These
have different tradeoffs depending on the relationship between the
sparsity of M and v. Note that matrix-vector multiplication, where
the matrix is sparse in its columns, can be viewed as a generalization

93



94

Protocol 15: Our first protocol for column-sparse matrix—vector
multiplication.

Inputs: Py: Matrix M € Z);", with | nonzero columns,
Py: Vector v € Z7;, with k nonzero entries.
Output: [Mv] = ([Mv]p,, [Mv]p,).
(1) Py setsq = (iy,...,1), the (sorted) list of indexes of non-zero
columns in M.
(2) P1 and P; run Gather(v, g) to obtain shares ([v']p,, [v']p,) of
v’, which is the restriction of v to the indexes in g.

(3) Pq locally computes M’ sub-matrix of M containing only the
nonzero columns.

(4) P1and P, run MvMult with inputs M’ and [v’]p, and obtain
shares ([M/[o'], ey, [M'[¢/p.],) of M'[']p,.

(5) Py sets the output [Mv]p, to [M'[v’]p,]p, and P; sets [Mv]p,
to [M'[o']p,]p, + M'[v"]p,.

of sparse vector inner product, and thus the following protocols can
also be used for this functionality.

Our first protocol is shown in Protocol 15. Let g = (i,...,i;) be
the indexes of the non-zero columns in M. The goal of the sparse-
to-dense reduction here is to replace the computation of Mv by the
computation of M'v/, where M’ is the sub-matrix of M containing
only the non-zero columns iy, ..., 7, and v’ is the restriction of v to the
indices in gq. Party P; can compute M’ locally. The two parties then
call the Gather protocol to obtain shares ([v']p,, [v']p,) of ©'. At this
point the parties invoke the dense matrix multiplication protocol to
compute M'[v']p,. Further, P; locally computes M'[v']p, and adds
the result to its share of M'[v']|p,. As a result, both parties obtain
shares of M'v’. The security of the complete protocol follows directly
from the security of the protocols for ROOM and dense multiplication.

There are two drawbacks of the above protocol: (a) the space of
values of the ROOM sub-protocol coincides with the domain of the
elements of P,’s input vector, Zy-. This is a problem in high-precision
settings where ¢ > 64, which are not uncommon in ML applications
where real numbers are encoded in fixed point. (b) the length of the
ROOM query g is I, which is the sparsity of the server’s input matrix.
In many settings, the vector v has less non-zero values than M, so
k < I. That is why we would like to have our ROOM query to only
be of the smaller size k, which for two of our constructions directly
translates into a speed-up in MPC time (see Table 5.2). However, if we
simply have P act as the server and put the non-zero columns of M
in the ROOM protocol as the database, while v becomes the query, the



Protocol 16: Column-sparse matrix and sparse vector multipli-
cation protocol.

Inputs: P;: Matrix M € Z5;", with | nonzero columns.
P»: Vector v € Z7;,, with k nonzero entries.
Output: [Mv] = ([Mv]p,, [Mv]p,).

(1) Pq chooses a random permutation 711 of [l + k| and sets
d = ((a,m(1)),...,(ar, m1(1))), and
B=(m(l+1),...,m1(l+k)), where the a;’s are the indices of
the nonzero columns in M.

(2) P2 sets g = (by,...,bx), where the b;’s are the indices of the
nonzero values in v.

(3) P1 and P run a designated-output ROOM with inputs d, B, q.
P, obtains r = (pi)ici-

(4) Let M € Zgﬁl be M but with its zero columns removed. P;
defines M as the result of appending k zero columns to M, and
computes M’ = 111(M), where 711 permutes the columns of M.

(5) Letd € Z’gg be v but with its zero entries removed. P, defines
a permutation 715 : [k + I] — [k + I] such that 712 (i) = p; for
1 <i < k. The values (i) fork+1 < i < k+1 are a random
permutation of {1,...,m} \ {p1,..., px} (the set of unused
indexes in [m]). P, computes v’ = 715(3), where @ is ¥ padded
with zeros up to length k + I.

(6) P1 and P, run MvMult with inputs M’ and v’ to obtain shares
of Mv.

values in the ROOM protocol become huge, as it would hold vectors
of length 11, namely the first dimension of M.

Protocol 16 solves both issues (a) and (b), by relying on the correlated
permutations introduced in Section 4.4. First, our protocol ensures
that the server’s input to the ROOM functionality are elements in
K x K, thus avoiding the dependence on ¢. Second, it allows us to
swap the roles of P; and P, in the ROOM protocol, allowing us to
choose them depending on the relationship between k and I, as well
as other nonfunctional requirements induced by computation and
communication limitations of P; and P5.

These two optimizations come at the cost of replacing the input

size to the dense multiplication sub-protocol from 2Inc to 2(I + k)no.

Hence, in practice the actual values of min(/, k), n, and o determine a
trade-off between Protocol 15 and Protocol 16.

The intuition behind Protocol 16 is as follows. Let M and @ be the
result of removing zero columns and entries of M and v, as defined
in Step (4), and let M and © be M and 9 padded with k zero columns

95



96

| THE ROOM FRAMEWORK FOR SPARSE LINEAR ALGEBRA

and [ zeroes, respectively. Now consider a trusted third party that
provides party P; with a random permutation 7r; such that, after
permuting columns of M and @ according to 711 and 71, they are “well
aligned”, meaning 711 (M) 72(7) = Mw. Note that it is crucial that 7
and 7, look random to P; and P; respectively. To achieve that, the
third party generates random 71 and 71, subject to the constraint that
Vie [l+k|:m(i) = m(i) < i€ (ANB), where A and B are the sets
of indexes of nonzero columns and values in M and v.

The idea in Section 4.4 was to implement the above third party
functionality in MPC using garbled circuits. In Protocol 16, we im-
plement this functionality in an different way using the ROOM prim-
itive as follows. P; acts as the ROOM’s server with inputs d =
((a1,71(1)),..., (ag, m1(1))) and B = (1 (k+1),...,m (I +k)), where
7 is a random permutation of [k + [] chosen by P1, and P;’s query
is simply g = (by,...,bi) (see steps (1) and (2) in Protocol 16). The
outputs for the two parties from the ROOM protocol are secret shares
of the array r = (p;)icj- Party Py provides Py with their share of
the p;’s so that P, can reconstruct 71,. Note that this computation is
independent of both n and ¢, in contrast to Protocol 15. Moreover, it
provides flexibility to exchange the roles of the server and client in the
ROOM protocol achieving the second goal defined above.

The security of this construction follows from Theorem 4.3 and
the security of the ROOM protocol. The output of the ROOM allows
party P2 to obtain the evaluation of a random permutation 777 on its
non-zero entries. The rest of the protocol involves local computations
until the final secure computation for the dense multiplication.

5.4.2.2 Row-Sparse Matrix

We now consider the case where M is sparse in its first dimension.
In our solution to this variant P; defines M’ as the matrix resulting
from removing all zero rows from M. Then the parties run a protocol
to compute shares of the vector r = M’v of length I. For this, we
can either use Protocol 15, if v is sparse, or we can rely on dense
multiplication. In any case, r now contains all non-zero values of the
desired result, but its dimensions do not match Mv. However, note
that Mv can be recovered from r by inserting n — I zeros between the
values of r at positions corresponding to zero rows in the original
matrix M. This can directly be achieved by running Scatterlnit(r,i,n),
where i contains the indexes of non-zero rows in M.

In our higher-level applications, which we describe next, we will use
the matrix-vector multiplications described here in various ways. In
particular, we use Protocol 16 for k-NN classification, and the column-
sparse and row-sparse protocols from Protocol 15 and the previous
section for logistic regression.



5.5 APPLICATIONS |

Server k-Nearest Neighbors Client
D=8 . d= é
é“" |t Compute sim(p,d) for | -

all p € D. ?
2. Compute c; by

majority vote among T Cd

the k nearest p € D.

Figure 5.3: Setting for our secure k-NN application. We focus on a single
server, but our protocol can naturally be generalized to multiple
servers as described in Section 4.6.

5.5 APPLICATIONS

We consider three applications to exemplify the features of our frame-
work. These include non-parametric data analysis tasks (k-nearest
neighbors and naive Bayes classification) as well as parametric data
analysis tasks (logistic regression trained by stochastic gradient de-
scent (5GD)).

Our k-NN application is a simplified version of the one presented
in Section 4.6, using only a single server. We choose the other two
applications in order to show the flexibility of our framework, and to
enable comparisons with previous works: secure naive Bayes classifi-
cation was studied by Bost et al. [BPTG15], and the SecureML work by
Mohassel and Zhang [MZ17] is the state of the art in secure two-party
logistic regression learning with SGD.

5.5.1  Similarity Computation and k-Nearest Neighbors

For secure k-NN we use a simplified version of the protocol described
in Section 4.6, using only a single database D of documents held by a
single server. A client wants to classify a document d against D. The
k-NN classification algorithm, which is parameterized by a constant
k, achieves that goal by (a) computing sim(d, p), for each p € D, and
(b) assigning a class c; to d as the result of a majority vote among the
classes of the k most similar documents according to the similarities
computed in step (a). See Figure 5.3 for a schematic depiction of this
setting.

Apart from using a single server, the main difference compared
to Section 4.6 is our choice of multiplication algorithm. While the
circuit-based approach described in Section 4.4.4 is essentially equiv-
alent to Circuit-ROOM, we compare all three ROOM instantiations
here. This allows us to achieve better efficiency in the online phase,
while matching the speedups of Section 4.6 in the offline phase (see
Section 5.2). In Section 5.7.3, we show that our Poly-ROOM indeed
improves the online phase by up to 5x.

97



98

| THE ROOM FRAMEWORK FOR SPARSE LINEAR ALGEBRA

5.5.2 Naive Bayes Classification

A naive Bayes classifier is a non-parametric supervised classification
algorithm that assigns to an item d (for example a document) the class
c in a set of potential classes C (for example {spam, no-spam}) that
maximizes the expression score(c) = P(c) - I1;c4P(t|c), where t € d
denotes the database features present in the feature representation
of d. A common approach to keep underflows under control is to
use logs of probabilities. This transforms the above expression into
score(c) = log(P(c)) + Licq log(P(t[c)).

In Naive Bayes, P(c) is estimated as P(c) = N;/N, namely the
number of items N, of class c in the dataset, divided by the dataset
size N. P(t|c) is estimated as P(t|c) = T/ N,, namely the number of
occurrences (or score) T, of feature t in items of class ¢, normalized
by the total number of examples of class c in the training dataset.
Additionally, Laplace smoothing is often used to correct for terms not
in the dataset, redefining P(t|c) to be P(t|c) = (Tt +1)/(N.+ N)

A secure two-party naive Bayes classification functionality is defined
as follows: a server holds the dataset D that consists of n items with k
features. Each item in the dataset is labeled with its class from the set
C of potential classes. Hence, the server holds the values P(t|c), P(c)
defined above. A client wants to obtain a label for an item d. This
needs to be done in a privacy preserving manner where only the client
learns the output label and the server learns nothing.

The work of Bost et al. [BPTG15] presented a solution to the above
problem using Paillier encryption and an argmax protocol based on
additive homomorphic encryption. Our ROOM functionality provides
a direct solution for this two-party problem, in which the server
reveals an upper bound of its number of features. This solution works
as follows: for each class | € C, the server and the client invoke the
ROOM functionality with input values log(P(t|l)) for all keys t, as
well as default values 1/(N. + N) for the server, and query (t);eq4
for the client. This gives the parties additive shares of the vector
(log(P(t|l))teq- Then, the parties can compute locally shares of the
vector (score(]));ec, which contains the scores of d with respect to all
classes. Finally, the class with highest score, which will be revealed
only to the client, can be computed using any generic MPC protocol
involving only |C| comparisons.

5.5.3 Logistic Regression Training

A drawback of non-parametric approaches like k-NN is that each
query depends on the entire training database. To circumvent this,
parametric approaches such as logistic regression first train a smaller
model 0, which is then used to answer classification queries faster.



5.5 APPLICATIONS |

— Logistic Regression
Compute 0 by iterating
over D! and D? in batches.
See Protocol 17.
[6]p, i [6]e,

Figure 5.4: Setting for two-party logistic regression. Each party holds a set
of labeled documents, and the output is a model that is secret-
shared between the two parties.

Here, we assume a two-party setting where parties P; and P; hold
a horizontally partitioned database, i.e., each party holds a sparse
dataset, where P; holds X’ € R"*4,yi € R", with X’ being the set of
n; records with d features and y' being the vector of corresponding
binary target labels. This corresponds to a training dataset of size
n x d,n = ny + ny distributed among P; and P, and the goal is to
build a shared model 0 that is able to accurately predict a target value
for an unlabeled record, while keeping the local training datasets
private (cf. Figure 5.4).

A widely used algorithm for building this kind of model is mini-
batched stochastic gradient descent (SGD). Here, the empirical loss of the
model 6 is minimized by iteratively refining it with an update rule
of the form 0'+1 = @' — 51g, for a step size 77 and a gradient quantity
g- The training dataset is partitioned in so-called mini-batches, each
of which is used to compute a model update: In a forward pass, the
prediction loss of the current batch is computed, and the gradient g of
that loss is obtained as the result of a backward pass.

Protocol 17 shows a secure protocol for two-party SGD training.
It relies on a secure matrix multiplication protocol MvMult, and an
approximation of the logistic function Sigmoid(x) = 1/(1 + ¢¥) intro-
duced by Mohassel and Zhang [MZ17], implemented with a garbled
circuit. The security of the protocol follows from the fact that 0 is
always kept secret shared, and secure implementations of the two
sub-protocols above.

We now discuss how the calls to MvMult in lines 6 and 9 of the
protocol are instantiated with our protocols from Section 5.4.2. First
note that, as the X/’s are sparse, so will be their mini-batches B/
contributed by Py or P in line 5. In fact, as common mini-batch sizes
are as small as 64 or at most 128, the mini-batches will be sparse in
their columns. We show that this is the case in the context of concrete
real-world datasets in Section 5.7. Hence, the call to MvMult in line
6 involves a column-sparse matrix and a dense vector, and thus we
choose Protocol 15 instantiated with Basic-ROOM. The choice of Basic-
ROOM is justified by the fact that the keys of [0]p, span the whole
key domain K = [d], as it is a secret share, and hence Basic-ROOM

99



100 | THE ROOM FRAMEWORK FOR SPARSE LINEAR ALGEBRA

Protocol 17: Secure two-party gradient descent on sparse dis-
tributed training data.
Inputs: P;: D! = (X1, y1), X' € R4,y € {0,1}",
Py: D* = (X%,y?), X? € R, y? € {0,1}".
Output: Shared model [0]

[6] < (0)icpa
for T epochs do
foric ;| do
forj € [2] do
B/« X{i..i—&-b]
[u/] MvMult(Bj, [6]), [¢'] < Sigmoid([w/])
[w] + [o7] - yfi..i+b]
Ig'] « MwMult(B/", [w/])
[8] < % ([8'] + [8°1)
L [6] « 6] —7lgl

does not incur unneccesary overhead in this case. On the other hand,
the computation of g/ in line 9 is a multiplication between a row
sparse matrix and a dense vector, for which we use our protocol from
Section 5.4.2.2.

In Section 5.7.4, we compare the runtimes of our sparse implemen-
tation to those reported in [MZ17]. With the exception of the smallest
dataset, we improve computation time by a factor of 2x—-11x (LAN)
and 12x-94x (WAN), and communication by 26 x—215x (LAN) and
4x-10x (WAN).

56 IMPLEMENTATION OF OUR FRAMEWORK

Our source code is For our implementation, we follow the general architecture presented
availableat—n Figure 5.1. For each layer of abstraction, we define generic inter-
http 5/: // :HhUb/' faces that are then matched by our concrete implementations. This
roiinm_ fs :a”?:i: rpk_ allows, for example, to use the same matrix multiplication function for
different ROOM instantiations, which in turn simplifies development

and makes sure our framework can be extended seamlessly.

Most of our library is written as generic C++ templates that abstract
away from concrete integer, vector and matrix types. This allows us
to use Eigen’s expression templates [G]+10], and thus avoid unnec-
essary local matrix operations. For generic two-party computation
based on garbled circuits, we use Obliv-C [ZE15]. As a PRF, we use
the AES-128 implementation in Obliv-C by Doerner [Doe]. The fast
polynomial interpolation and evaluation that we need for Poly-ROOM
and Scatterlnit is done using Yanai’s FastPolynomial library [Yan].


https://github.com/schoppmp/room-framework
https://github.com/schoppmp/room-framework
https://github.com/schoppmp/room-framework

5.7 EXPERIMENTAL EVALUATION | 101

Nonzero Features Accuracy
Dataset Documents  Classes
Single (avg.) Total Log. Regression ~ Naive Bayes k-NN
Movies (M) [Maa+11] 34341 2 136 95626 0.88 085 (*)o.74
Newsgroups (N) [RLo8] 9051 20 98 101631 0.73 0.76 0.57
Languages (L1) [The], ngrams=1 783 11 43 1033 0.96 0.87 0.96
Languages (L2) [The], ngrams=2 783 11 231 9915 0.99 0.99 0.99

Table 5.5: Datasets used in the experiments. These comprise a variety of classification tasks such
as sentiment analysis of movie reviews (Movies), topic identification (Newsgroups), and
language identification (Languages). We also report the accuracy achievable using out-of-
the-box classification algorithms. For the the Languages dataset, we further investigate
the effect of analyzing larger n-grams instead of single characters.

(*) k-NN was trained on a subsample of 10k examples due to memory limitations.

5.7 EXPERIMENTAL EVALUATION

Given the large number of parameters and tradeoffs that our frame-
work exhibits, a complete layer-by-layer evaluation of all components
from Figure 5.1 with all ranges of useful parameters is both infeasible
and not very useful. Instead, we chose to run experiments on only two
abstraction layers: ROOM micro-benchmarks, which allow to compare
our constructions with each other and with future improvements, and
entire applications, which allow us to compare against previous work
on application-specific protocols.

All our experiments are performed on Azure DS14 v2 instances
with 110 GB of memory each, using a single core. We note that the
memory bottleneck in our experiments is the “dense” case that we
use as a baseline, not our ROOM-based implementations. For LAN
experiments, we use instances in the same region, while for WAN
experiments, we place one in the US and one in Europe. The measured
roundtrip time was o.7ms in the LAN setting, and 85ms in the WAN
setting. The average data transfer rates were 2.73 Gbit/s and 245
Mbit/s, respectively. We use 64-bit integers for K and V. Garbled
circuits are run with 8o-bit security, due to the default settings in
Obliv-C. For Poly-ROOM, we use s = 40 bits of statistical security.

5.7.1  ROOM Micro-Benchmarks

Table 5.2 presents the runtimes for Circuit-ROOM and Poly-ROOM
and how they depend on the database size n and the query size m. We
tirst measure the runtimes of each algorithm for a range of parameters
n € {500,5000,50000} and m € {0.11,0.2n,...,n}. The results can be
seen in Figure 5.6. Each plot corresponds to one choice of 1, while
values of m are given on the x-axes. The runtime of both ROOM
variants increases as m grows, but Circuit-ROOM is outperformed by
Poly-ROOM as n increases, as long as m < n. The reason is that the



102 | THE ROOM FRAMEWORK FOR SPARSE LINEAR ALGEBRA

Database size n = 500 (LAN)

B Circuit-ROOM  EZZA Local time
EE Poly-ROOM [ MPC time

Time (s)
(=}
[oe}

50 100 150 200 250 300 350 400 450 500
Query size m

100

80 1

Time (s)

40 1

20

60

Database size n = 50000 (LAN)

B Circuit-ROOM FZA Local time

= Poly-ROOM [ MPC time

sk 10k 15k 20k 25k 30k 35k 40k 45k 50k
Query size m

Figure 5.6: Running times of Circuit-ROOM and Poly-ROOM in the LAN setting, for several
choices of query size and database size. We distinguish between local time (for time
spent doing local computation) and MPC time, for running time of MPC sub-protocols.

Algorithm with the lowest running time (LAN)

50k

40k 1
v
o 30Kk
>
I3}
5, 20k

10k 1 BN CircuitROOM

BN Poly-ROOM
o T T T T
o 10k 20k 30k 40k

Database size

50k

50k

EN
Qo
=~

!

Query size
N
(=]
=)

=
=]
=

Algorithm with the lowest running time (WAN)

w2
[=]

=
L

Bl Circuit-ROOM
I Poly-ROOM

T
o 10k

20k 30k
Database size

40k

50k

Figure 5.7: Estimated performance of our two instantiations of sparse ROOM in the LAN (left) and
WAN (right) settings. Running times were measured for length m queries to a ROOM
of size n, with n € {500,5000,50000} and m € {0.1n,0.2n,...,n}. Then, for each of our
algorithms, a model of the running time was computed using nonlinear least-squares
from scipy.optimize.curve_fit, where the function to be fitted was chosen according
to the asymptotics in Table 5.2. Each pixel was computed by averaging over the colors
corresponding to each algorithm, weighted by the inverse of their respective running
times. Thus, the dominant color of a region corresponds to the algorithm that performs
the best in that setting. The solid lines indicate the cutoffs in each setting.

complexity of Circuit-ROOM depends significantly on n, as its runtime
is dominated by oblivious merging and shuffling, which scales with
the sum m + n. The time of Poly-ROOM in mainly determined by m,
while Circuit-ROOM remains more stable across the choices of m.

To investigate the cutoff point between the two instantiations, as
well as their performance relative to each other, we then fit functions of
the runtime to the collected data, which gives us a model to estimate
the performance even for parameter choices not directly measured.
Figure 5.7 shows the results in the LAN and WAN settings, respec-
tively. For each set of choices for m and #, the color in the plot indicates
the relative performance of our two algorithms. Intuitively, in regions



5.7 EXPERIMENTAL EVALUATION \

where one of those two colors is prevalent, the corresponding al-
gorithm is the optimal choice for that setting. Regions in between
(turquoise) correspond to parameters where both of our algorithms
perform equally well, with a solid line indicating the cutoff.

In the LAN setting, Poly-ROOM clearly wins in all cases where
m < n, while Circuit-ROOM is only viable for large queries on small
databases. For m ~ n, both approaches seem equally viable. Similar
observations can be made in the WAN, where Poly-ROOM even
outperforms Circuit-ROOM for m > n when n is large.

5.7.2 Datasets

We implement each of the applications presented in Section 5.5 in
our framework. We analyze three real-world datasets that represent
common classification tasks: sentiment analysis [Maa+11], topic iden-
tification [RLo8], and language detection [The]. Table 5.5 summarizes
the properties of each of the datasets, including the average num-
ber of features of single documents. We also report, for reference,
the classification accuracies that can be achieved using the different
methods outlined in Section 5.5: logistic regression, naive Bayes, and
k-nearest neighbors. These were obtained in the clear using out-of-the-
box Scikit-Learn [Ped+11] model fitting, without any sophisticated
hyper-parameter tuning.

For the Movie Reviews and 20Newsgroups datasets, features cor-
respond to words, using a TF-IDF representation. As in the previous
chapter, we assume a public vocabulary of 150000 words for the first
two datasets (Movie reviews and 2onewsgroups). For the language
classification task, n-grams of n consecutive characters are used in-
stead. We assume the set of characters is public.

5.7.3 k-Nearest Neighbors

For k-NN, the efficiency bottleneck is the computation of scores of the
query document with respect to each training sample, which reduces
to a secure matrix-vector multiplication where the matrix is sparse
in its columns and the vector is sparse. Thus, we can implement this
protocol using Protocol 16, instantiated with any of our ROOMs.

As observed in Section 5.5.1, the approach we used in Section 4.6 is
equivalent to Circuit-ROOM, which is why we use it as the baseline
here. In most of our experiments (Figure 5.8), this already turns out to
be faster in than a simple dense multiplication.

Our new constructions using Basic-ROOM and Poly-ROOM achieve
a similar improvement over the dense case (up to 82x) when it comes
to total time, and at the same time a 2-5x improved online time
compared Circuit-ROOM. Note that the online time includes top-k

103



104 | THE ROOM FRAMEWORK FOR SPARSE LINEAR ALGEBRA

4 k-NN (LAN) k-NN (WAN)
2 2d 1
1‘}11 ) FZ32 Offline [ Dense 1d PZ2 Offline [ Dense
lgh 4 [ Online HEEM Basic-ROOM lgﬂ ] [ Online M Basic-ROOM
2? 1 B Circuit-ROOM 2h 1 B Circuit-ROOM
1 ~ 1h 1 .
2 3om ] = Poly-ROOM 2 3om = Poly-ROOM
= 10m 7 = 10m 4
: B z 55
é 30s é 308 7
10s 108
58 58
2s 25
1S 18
M N L1 L2 M N L1 L2
Dataset Dataset

Figure 5.8: Running times of a single k-NN classification in LAN (left) and WAN (right) settings.
Online time includes the time taken for ROOM queries, multiplication time with the
reduced matrix, and time for top-k selection. See Table 5.5 for a description of the
datasets used.

selection (implemented using generic MPC) and multiplication of the
reduced matrices.

5.7.3.1  Experiments on Naive Bayes

We implemented our protocol described above, which consists of (i)
a ROOM query for each of the |C| potential classes composed with
(ii) a protocol for securely computing the argmax of |C| values. We
do not include the latter here, since it only depends on the number of
classes, which is usually significantly smaller than the dataset sizes (cf.
Table 5.5). The running times, for each of the datasets, are shown in
Figure 5.9. In both the LAN and WAN settings, Poly-ROOM generally
outperforms Circuit-ROOM. This is consistent with the results from
the previous section, since the queries are extremely sparse (i.e., m
is small). Note that neither Circuit-ROOM nor Poly-ROOM require
a public vocabulary. If the vocabulary is public, then Basic-ROOM
can be used as well. The plots in Figure 5.9 show the runtime for a
public vocabulary of size 150000. In the LAN setting this gives a huge
advantage: for the Movie Reviews dataset with >9g5k features, our
protocol takes less than 2s. In contrast, the total classification time for
a dataset with only 70 features took over 3 seconds in [BPTG15].

5.7-4 Logistic Regression Training

For each of our datasets, we also evaluate the time needed to build a
logistic model using Protocol 17. We compare two approaches. One
uses the state-of-the-art dense matrix multiplication protocol to instan-
tiate MvMult (cf. lines 6 and 9 in Protocol 17), which is the extension
of Beaver triples [Beag1] to matrices proposed in [MZ17]. The second
approach uses Protocol 15 and our row-sparse protocol from Sec-



5.7 EXPERIMENTAL EVALUATION | 105

N Naive Bayes (LAN) Naive Bayes (WAN)
1
30m - B Basic-ROOM 1h 1 B Basic-ROOM
om | B Circuit-ROOM 3om 7 B Circuit-ROOM
m Poly-ROOM om 7 = Poly-ROOM
: 5 ¢ 5m
= 2m =
&= &= E
%o m - %0 i$ 4
g 308 g 308
rZ 108 & 108
55 1 55
2S 25
18 -~ 18 -
M N L1 L2 M N L1 L2
Dataset Dataset

Figure 5.9: Running times for computing the conditional probabilities for a single Naive Bayes
classification for each of the datasets in Table 5.5 and each of our ROOM constructions.
Note that for Basic-ROOM, the vocabulary needs to be public. For private vocabularies,
Poly-ROOM is the fastest in all cases.

tion 5.4.2.2 for forward and backward pass, respectively. We measure
the online running time of a full run using both approaches, as well
as the total amount of data transfered. We also estimate offline times
using the measurements provided by Mohassel and Zhang [MZ17,
Table II], and we present it together with the total time that includes
both phases in Table 5.10.

While the dense solution [MZ17] achieves fast online computation,
this comes at a significant offline computation and communication
cost, requiring hours, even days in the WAN setting, and sometimes
terabytes of communication. Our solution on the other hand saves a
factor of 2x—-11x in total runtime and a factor 26 x—215x in commu-
nication in all reasonably large datasets (in “Languages, ngrams=1",
SecureML is faster in total time, but both executions take just a few
seconds).

Finally, we investigate how our solution scales with different dataset
sparsities and the batch size used for training. For that, we run experi-
ments on synthetic datasets. We use 1024 documents for each of the
two servers, and vary the batch size between 128 and 1024. For each
batch, we set the number of nonzero values between 1% and 10%. For
comparison, the sparsity of a batch of 128 documents from the Movies
or Newsgroups datasets is about 3%.

The results are shown in Figure 5.11. It can be seen that our sparse
implementation benefits a lot from increasing the batch size. However,
increasing the batch size will also increase the number of nonzeros
per batch in real datasets, albeit sub-linearly. Thus, the batch size can
be optimized to account for the sparsity of the dataset being used
for training. Research on training ML models in the clear suggests
larger batch sizes can be used without losing accuracy [HHS17], and
we conjecture that this allows us to achieve even better speedups than
those reported in Table 5.10, at the same level of accuracy. However,



106 | THE ROOM FRAMEWORK FOR SPARSE LINEAR ALGEBRA

Offline Time Total Time Offline Communication  Total Communication
Dataset
SecureML Ours SecureML Ours SecureML Ours SecureML Ours

LAN

M 6h17m45.06s  14m19.29s 6h 29m 28.37s 2h 43m 46.09s 4.8TiB 186.25 GiB 4.8TiB 187.42 GiB

N 1h 39m 33.66s 3m 34.558 1th42m38.14s  42m 37.68s 1.26TiB  46.5GiB  1.26TiB 47.63 GiB

L1 3.56s 1.76s 5.95 29.89s 789.88 MiB 390.75 MiB 790.9 MiB 500.61 MiB

L2 1thoim 16.34s 13.07s 1thosmoy.12s 6m17.51s 796.82GiB  2.83GiB 797.85GiB  3.69 GiB
WAN

M 4d 16h 34m 55.36s 4h18m52.67s 4d 18h35m26.99s 9gh29m23.53s 19.19GiB 761.73MiB 19.33GiB  1.92 GiB

N 1d o5h 40m 20.66s 1h o5m 15.155 1d 06h 0ogm 32.82s 2h26m 21.82s  5.01 GiB 190.38MiB 5.13GiB  1.31 GiB
L1 1m 07.18s 35.65s 1m 39.36s 3m18.35s 3.4 MiB 1.9MiB 4.42MiB 111.76 MiB
L2 18h 15m 18.24s gqm177s  18h34m34.36s  13m36.84s 3.05GiB 11.71MiB  4.08GiB 893.73 MiB

Table 5.10: Comparison of our protocols with SecureML [MZ17] for logistic regression training.
Offline times are extrapolated from the results reported in [MZ17, Table II]. In all
experiments, we use a batch size of 128. The total time represents a full training epoch,
including forward pass, sigmoid activation function, and backward pass. Note that in
the WAN setting, we use SecureML’s homomorphic encryption-based offline phase
that requires less communication. See Table 5.5 for a description of the datasets used.

in order to stay functionally equivalent to previous work [MZ17], we
omit such optimizations at this point.

5.8 DISCUSSION

Privacy preserving machine learning algorithms often need to handle
large inputs, and thus scalability is crucial in any solution of practical
significance. Mirroring existing (centralized) computation frameworks,
we leverage data sparsity to achieve this scalability, not only at the
application level, but also in terms of lower-level operations.

A practical and principled approach to this problem calls for a
modular design, where in analogy to the architecture of scientific
computing frameworks, algorithms for linear algebra are built on top
of a small set of low-level operations. With the ROOM framework
presented in this chapter, we took a step in this direction, by defining
sparse data structures with efficient access functionalities, which we
then used to implement fast secure multiplication protocols for sparse
matrices, a core building block in numerous ML applications. By
implementing three different applications within our framework, we
demonstrated the efficiency gain of exploiting sparsity in the context
of secure computation for non-parametric (k-nearest neighbors and
Naive-Bayes classification) and parametric (logistic regression) models,
achieving manyfold improvements over the state of the art techniques.
Beyond our three applications, the sparse linear algebra protocols



5.8 DIscussioN | 107

Logistic Regression (LAN) Logistic Regression (WAN)
1h
h B
30m - 5
AR 2h
tomo  TTteelTTeeell | the e
) o TTTeeall o TTTmeeal @ zom- 0 TTTteeeall T
E s5m TUeeeel 0 TTEeell . TTTeeall £ N
e ~ ~~ao - B | e T el
o0 TTeeell TTee- - op 10m B T
5 2m TTeeel el g 5m Tt T
g —— Dense Tl TTe——lll g — Dense  TTTTTme
5 1m S~ = 3 om
~ -==- 10.0% Nonzeros See—el ~ -==- 10.0% Nonzeros
308 7 5.0% Nonzeros e m 5.0% Nonzeros
-==- 2.0% Nonzeros 3087 - 2.0% Nonzeros
1087 ---- 1.0% Nonzeros 108 { ~~-° 1.0% Nonzeros
T T T T T T T T
128 256 512 1024 128 256 512 1024
Batch Size Batch Size

Figure 5.11: Total running time of a Stochastic Gradient Descent (SGD) training epoch for logistic
regression. We use synthetic datasets with 1024 documents per server, a vocabulary
size of 150k, and varying sparsity per batch. As in Table 5.10, offline times were
extrapolated from SecureML [MZ17]. Note that the SecureML’s HE-based offline
phase used in the WAN setting also benefits from larger batch sizes, which is why the
dense case is not constant.

implemented in our framework represent main building blocks for
many machine learning algorithms.

At the same time, our modular design allows any of our protocols
to be replaced by more efficient variants, thus making our framework
somewhat future-proof. In the next chapter, we present two such
improvements. The first, called known-indices multi-point function secret
sharing, can serve as a more communication-efficient replacement of
our Scatterlnit protocol from Section 5.4.1. The second improvement, a
pseudorandom Vector-OLE generator, can in some settings be used to
speed up the offline phase of the dense matrix-vector multiplication
protocol underlying our sparse constructions.






6

6.1 OVERVIEW

EFFICIENT DISTRIBUTED
VECTOR OLE GENERATION

The ability to distribute correlated randomness between two parties in
the absence of a trusted dealer is a central problem to cryptography.
In the context of secure computation, this ability enables splitting the
computation in an offline phase that is input independent and can be
executed in advance, and an online phase that is very efficient.

Many previous works have focused on improving and optimizing
methods for generation of correlated randomness in the context of
oblivious transfer extension [Beag6; IKNPo3; ALSZ17], which pro-
vides offline precomputation for two party computation based on
garbled circuits [Yao86] or GMW [GMWS8y7]; Beaver multiplication
triples’ [Beag1; DPSZ12; Dam+13; KOS16; KPR18], which are used
in the offline phases of secure arithmetic computation protocols; and
oblivious linear evaluation (OLE) [NPo6; DKM12; Dot+17; BCGI18],
which can be viewed as the equivalent of OT in arithmetic setting and
which can be used for multiplicative triple generation.

In this chapter we focus on vector OLE (VOLE), which is the vec-
torized variant of an oblivious linear evaluation. More concretely, one
party, the sender, holds vectors u, v and a second party, the receiver
has value x. The goal of the protocol is to enable the receiver to learn
w = ux + v without revealing any further information to any of the
parties. The concept of VOLE was introduced by Applebaum et al.
[App+17]. In the recent work of Boyle et al. [BCGI18], the authors
showed that VOLE is implied by a pseudorandom variant of the pro-
tocol where the vectors u, v are pseudorandom and are generated
during the execution of the protocol as outputs to the first party.

Succinctness is a crucial property for correlated randomness pro-
tocols, which aim to distribute long correlated outputs between the
parties by communicating only short seeds. Boyle et al. [BCGI18]
showed how to achieve succinctness in the setting of pseudorandom
VOLE. The idea of their approach is to use a random linear code to
extend short (sub-linear) seed vectors to long pseudorandom vectors.
By masking the encoded vectors with a shared, sparse noise vector,
they reduce security of their VOLE generator to the LPN assump-
tion [BKWo3]. The authors leverage functions secret sharing (FSS) for
multi-point functions as a way to distribute the LPN noise vector to the
inputs of the parties in an oblivious manner with succinct communi-
cation. This requires a two-party computation protocol for distributed
generation of the FSS keys for the underlying multi-point function. The

The contents of this
chapter have
previously appeared
in Proceedings of
the 2019 ACM
Conference on
Computer and
Communications
Security [SGRR19].

* The offline phases
of the dense inner
product and matrix
multiplication
protocols presented
in previous chapters
(Protocols 2 and 6)
can be seen as
generalizations of
Beaver triples to
vectors and matrices.

109



110

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

proposed approach reduces the multi-point FSS to several executions
of single point FSS by leveraging batching techniques. For distributed
single-point FSS key generation, the authors suggest using the two
party FSS key generation protocol of Doerner and Shelat [DS17].

In this work we address pseudorandom VOLE generation from
a practical perspective. In particular, we focus on the primal variant of
the protocol proposed in [BCGI18]. This is because to the best of our
knowledge, there is no practical (i.e., implemented) construction of the
“LPN-friendly” codes required for the dual variant. While the primal
variant has a lower bound of O(y/7) on its communication overhead,
our implementation is still very efficient in practice. This is due to
several improvements we make to the construction in [BCGI18]. Our
main observation is that the non-zero indices of the shared sparse noise
vector needed for LPN are part of the output to one of the parties.
We use this observation in two ways. First, it allows us to use a more
efficient batching scheme than what is proposed in [BCGI18]. Similar
to previous work [ACLS18; DRRT18], we use cuckoo hashing to do
probabilistic batching. This allows us to split up an instance of t-point
FSS into m = O(t) instances of single-point FSS, where m is in practice
only slightly larger than t. Second, we modify the FSS construction
itself, which gives us a large constant-factor speedup in each FSS
generation and evaluation. Our protocol is constant round, does not
require secure PRG evaluations, has sub-linear communication, and
like the distributed construction proposed by [BCGI18], provides
security in the semi-honest model.

Our VOLE construction implies efficiency improvements in a wide
range of applications such as secure linear algebra, sparse matrix
multiplications and machine learning computations over sparse data,
oblivious polynomial evaluation and private set intersection, and
improved efficiency for semi-private data accessed in some ORAM
constructions.

6.1.1  Chapter Contributions

As building blocks for our distributed VOLE protocol we develop
constructions of several primitives of independent interest.

A PROTOCOL FOR (1 —1)-0UT-OF-n RANDOM OT (SECTION 6.3)
An important component of our solution is a novel protocol for (n —1)-
out-of-n Random OT that requires one round and logarithmic commu-
nication. While any m-out-of-n OT protocol requires communication
Q(m), we show how to leverage the fact that all messages are random
to compress n — 1 messages in a logarithmic number of seeds in man-
ner oblivious to the sender. In terms of computation, an execution
involves (i) 2n local PRG evaluations per party, and (ii) log, (1) parallel
executions of an (k — 1)-out-of-k OT protocol. In our implementation



6.1 OVERVIEW |

we choose k = 2, and thus rely on 1-out-of-2 OT. Our (n — 1)-out-of-n
Random OT implies a construction private puncturable PRF [BLW17],
which enables a party to obtain a punctured PRF key at a location that
remains secret to the full PRF key owner.

KNOWN-INDEX SPFSS (SecTioN 6.4). The VOLE generation of
Boyle et al. [BCGI18] uses SPFSS but assumes that one of the par-
ties knows the input that evaluate to non-zero in the point function,
while the function value us secret-shared. We propose a protocol for
known-index SPFSS that outperforms the alternatives proposed in
[BCGI18]. The protocol uses a reduction to (n — 1)-out-of-n Random
OT, and thus leverages the protocol mentioned above. While known-
index SPFSS implies distributed VOLE, its relevance is not limited to
this application. It can be also viewed as a type of “scatter” vector
operation, which is a core component in secure protocols for machine
learning tasks (see Section 5.4.1 in Chapter 5).

EFFICIENT KNOWN-INDICES MPFSS FROM SPFSS (SECTION 6.5).
To obtain a solution for distributed VOLE generation, we show an effi-
cient reduction from known-indices MPFSS, where one party chooses
the indices of the point function, to known-index SPFSS. Our reduction
is based on Cuckoo hashing [PRo4], and in practice it is very efficient,
in particular when compared with the alternatives proposed by Boyle
et al. [BCGI18].

DISTRIBUTED VOLE (SECTION 6.6). We combine the above protocol
building blocks with some further optimizations, to obtain a full
protocol for distributed VOLE generation.

APPLICATIONS (SECTION 6.7). We investigate several applications
of our protocols, including linear algebra and matrix manipulation
primitives commonly used in data analysis tasks. We show how our
protocols yield concretely efficient secure two-party instantiations for
Oblivious Polynomial Evaluation. We further show that our known-
index SPFSS protocol can be used to improve the efficiency (both in
asymptotic round complexity and concrete efficiency) of semi-private
accesses in a recent FSS-based distributed ORAM construction [DS17].

EXPERIMENTAL EVALUATION (SECTION 6.8). Boyle et al. [BCGI18]
provide estimates for runtime and communication, but they do not
provide an implementation or an experimental evaluation. We imple-
ment all of our protocols, both over finite fields and integer rings, as
well as the primal variant of the VOLE protocol proposed by Boyle et
al. [BCGI18]. Instantiated over a finite field, we can generate a random
VOLE of length n = 220 over a 60-bit prime field in about 1.2s. For

111



112

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

comparison, generating the same using standard Gilboa multiplication
takes over 20s and has a 28 x higher communication overhead.

CONCURRENT AND SUBSEQUENT WORK In recent concurrent work
[Boy+19a], Boyle et al. present a two-round OT extension protocol
based on Vector-OLE. As in our work, they observe that VOLE key
generation can be performed in a constant number of rounds. Unlike
us, they implement the more communication-efficient dual VOLE gen-
erator and provide malicious security. However, their implementation
is limited to binary extension fields, as this is sufficient for the OT
extension application they consider.

After publication ouf our work [SGRR19], Yang et al. [Yan+20] and
Weng et al. [WYKW20] improved on it in multiple ways. First, Yang
et al. [Yan+20] show that, because the primal variant of VOLE works
by expanding a short (sublinear) VOLE correlation to a longer one, this
process can be used iteratively to reduce the overall communication
overhead. They also present an improved consistency check, obtaining
malicious security at nearly no overhead compared to the semi-honest
variant. However, as with Boyle et al. [Boy+19a], their work focuses on
the application to OT extension and is thus limited to binary extension
fields. Weng et al. [WYKW20] generalize Yang et al.’s protocols to
arbitrary fields and apply them to efficient zero-knowledge proofs.
We implement all of the improvements of [Yan+20; WYKW20] in our
library. In Section 6.8.3.4 we show that the iterative bootstrapping
approach of [Yan+20] reduces the communication overhead of our
library by up to 96% in the semi-honest case.

6.2 PRELIMINARIES

6.2.1  m-out-of-n Oblivious Transfer

As described in Section 2.4, oblivious transfer (OT) is a fundamental
primitive in cryptography that allows a receiver to obliviously select
one out of two messages held by a sender without revealing the
selection bit to the sender, and without the receiver learning anything
about the second message. In this chapter, we will generalize this
functionality to the case where the sender has n messages, and the
receiver chooses m < n of them. We formalize this in the following
definition.

Definition 6.1 (m-out-of-n Oblivious Transfer (OT)). An m-out-of-n
oblivious transfer is a protocol between two parties, sender and a receiver,
where the sender has n messages as input and the receiver has m selection
indices. The receiver obtains the messages corresponding to its indices while
learning nothing about the remaining messages, and the sender learns nothing.
If the n messages are random and generated during the execution of the



6.2 PRELIMINARIES |

protocol as output for the sender, the protocol is called random m-out-of-n
OT, or m-out-of-n ROT.

The communication complexity of 1-out-of-2 OT constructions is
linear in the number of messages that the sender has. Naor and
Pinkas [NP99] showed a reduction of 1-out-of-n OT to logn instances
of 1-out-of-2 OT, which yields logarithmic communication complexity.
Observing that 1-out-of-n OT is equivalent functionality to symmetric
private information retrieval [CKGS98] is another approach to obtain
an OT protocol with logarithmic complexity. Considering the gen-
eral m-out-of-n functionality the communication complexity naturally
scales linearly in m because we need to transfer at least that many
messages. In Section 6.3 we show that this is no longer the case when
we consider the m-out-of-n ROT functionality and we present a proto-
col that requires only logarithmic communication. Just as random OT
extension can be viewed as a PRF with single oblivious evaluation, we
can view (n — 1)-out-of-n ROT as a privately punctured PRF [BLW17]
where we generate a partial PRF key that enables evaluation of the
PRF on all but one point, without revealing the punctured point to the
PRF key holder.

6.2.1.1  OT-based secure product a.k.a Gilboa multiplication

Gilboa [Gilgg] proposed a two-party secure multiplication protocol of
two [-bit numbers. The protocol outputs additive shares, and requires
I 1-out-of-2 OT that can be run in parallel (throughout this chapter we
assume [ to be a constant, and set it to 64 in our experiments). Due to
the practical efficiency of OT Extension protocols [IKNPo3; ALSZ17],
Gilboa multiplication is a common approach to secure cmultiplication.
In particular, this approach has been used in several works [MZ17;
DSZ15], as well as in Chapters 3-5, to compute Beaver triples for se-
cure multiplication in the preprocessing model of MPC. In the context
of this chapter, Gilboa multiplication is used for scalar vector multi-
plications. Considering practical implementations, one should note
that this protocol can be implemented from correlated OT [ALSZ17], a
more efficient variant of OT. Moreover, for the problem of scalar-vector
multiplication, one can employ optimizations based on batching for
concrete efficiency (see [MZ17] for details). We employ these opti-
mizations in our implementation of secure scalar-vector multiplication
based on Gilboa’s protocol, which we use as a baseline.

6.2.2 Cuckoo Hashing

Cuckoo hashing [PRo4] is an algorithm to build hash tables for (key,
value) pairs with worst-case constant lookup. A cuckoo hash table is
determined by «x hash functions, where the value corresponding to a
key is guaranteed to reside in one of the x locations determined by

113



114

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

the hash function evaluations on the key. Hash collisions are resolved
using the cuckoo approach: if a collision occurs when placing an item
in the hash table, the item residing in the location is evicted and then
placed in the table using a different hash function, potentially evicting
another item in the case of collision. This process continues until all
evicted items are placed, if possible. Due to possible cycles in this
graph of evictions, the insertion algorithm for cuckoo hashing has a
chance to fail. For two hash functions, it is known that inserting 7 items
in a cuckoo tables of size O(n) incurs more than s insertion failures
with probability bounded by O(n~*) [KMWog]. The exact constants
in this asymptotic bound are not known, but multiple papers have
studied them empirically [DRRT18; PSZ18]. This is done by estimating,
for any fixed statistical security parameter 7, the number of hash
functions and the cuckoo table size such that inserting 7 items in the
table fails with probability at most 277.

In cryptography, cuckoo hashing has been used as a probabilistic
bath code to optimize Private Set Intersection (PSI) [CLR17; PSZ18§;
KKRT16] and Private Information Retrieval (PIR) [ACLS18] protocols.
We introduce these ideas in Section 6.5, where we apply cuckoo
hashing to obtain an optimized multi-point function secret sharing
protocol.

6.2.3 Function Secret Sharing

Function secret sharing [BGI15; BGI16] is a primitive that allows a
key generator to distribute the evaluation of a function between two
parties in way that neither of the two parties learns anything about
the evaluated function, but jointly the two parties can recover the
evaluation at any point.

Definition 6.2 (Function Secret Sharing). Let F = {f : I — G} be a
class of functions with input domain I and output group G, and let A € IN
denote a security parameter. A function secret sharing scheme consists of the
following two algorithms:

o (Kq,Kp) + FSS.Gen(1%, f) — given a description of f : I — G,
output two keys Ky, Ka.

o fy(x) « FSS.Eval(b, Ky, x) — given an evaluation key K; for b €
{1,2} and an input x, output a share f,(x) of the value f(x).

We require the following guarantees from the above algorithms:

CORRECTNESS. For any f € F, and any x € I, when (Ky,Kp) <
FSS.Gen(1%, f), we have

Pr[ ) FSSEval(b Ky x)=f(x)] = 1.
be{1,2}



6.2 PRELIMINARIES |

SECURITY. Forany b € {1,2}, there exists a ppt simulator Simy, such that
for any polynomial-size function sequence f) € F,

{Kb ] (K1, Ka) FSS.Gen(lA,fA)} =

{Kb — Simb(l)‘, Leakb(f,\))} . (61)

Note that the only difference between this definition and the one
of Boyle, Gilboa, and Ishai [BGI16] is the leakage function is al-
lowed to be different for each party. In the standard FSS construction,
Leakq (fy) = Leaka(fa) = (I, G), i.e., FSS keys must be simulated given
only the input and output domains for f.

While FSS is defined for any function, an FSS instantiation is non-
trivial if the length of the FSS keys is sub-linear in the size of the
function domain. In this regime of operation we have single point FSS
(SPFSS) constructions for point functions which evaluate to zero on
all but one of their domain points. Boyle et al. [BGI15] introduced an
FSS constructions for point functions where the keys are of length
logarithmic in the function domain size.

Multi-point FSS (MPFESS) is a generalization of FSS where the shared
functions has a larger number of non-zero evaluations. However, for
the purposes of Vector-OLE (cf. Section 6.2.4), we observe that it is
enough to consider a relaxed variant of MPFSS, where one party
knows the where f is nonzero in the clear. We call this variant known-
indices MPFSS, and we provide a reduction to cuckoo hashing and
known-index SPESS in Section 6.5.

6.2.4 Vector OLE

Oblivious linear evaluation (OLE) is functionality that enables two
parties to obtain correlated outputs. One party has input values u, v.
The second party has input x and obtains as output w = ux + v.
Similarly to the use of OT for garbled circuits, OLE is a basic building
block for secure arithmetic computation enabling the generation of
multiplicative triples. Vector OLE (VOLE) [App+17; BCGI18] is a
generalization of OLE to the setting of vector inputs, i.e., one party
has input vectors u, v, the other party has input value x and obtains a
vector w = ux + v. Boyle et al. [BCGI18] present application of VOLE
to secure computation and zero-knowledge constructions.
Analogously to OT there is a variant of VOLE referred to as pseudo-
random VOLE, where the vectors u, v are generated randomly during
the protocol execution. They are then provided as output to the first
party. This primitive suffices for the construction of VOLE as well
as its applications [BCGI18]. In Section 6.6 we present a new pseu-
dorandom VOLE construction that requires a weaker version of the
distributed MPFSS functionality compared to the approach of Boyle et

115



116 | EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

al. [BCGI18], which can be implemented efficiently as we demonstrate
in Section 6.8.

Definition 6.3 (Pseudorandom VOLE). A pseudorandom VOLE consists
of the following algorithms:

o (seedy,seedy) < VOLE.Setup(1*,n,TF, x) — this algorithms takes
vector length n, field IF and value x and outputs two seeds.

o VOLE.Expand(b,seedy) —if b = 1, output (u,v) € F" x ", else if
b = 2, then output w € F".

The correctness of the protocol guarantees that w = ux + v. The security
property requires that seed; does not reveal any information about x and
that seed, does not allow to distinguish (u,v) from random vectors subject
to the correctness property, i.e., for any ppt algorithm A the following holds:

| Prlb =1 | b < A(seedy),
(seedq, seedy) < VOLE.Setup(lA, n,F,x,),
(F,n,x1,x2) < A(1")] —1/2 | < negl.

| Prib =0 | b < A(up, vy, seedy),
(seedy, seedy) VOLE.Setup(l)‘, n,TF, x),
(F,n,x) < A(1"), (1, v1) < VOLE.Expand(1,seed;),
w < VOLE.Expand(2, seed,),
up +pF' oy« w—upx] —1/2 ‘ < negl.

6.2.5 LPN Assumption

The learning parity with noise (LPN) assumption [BKWo3] states that
given the noisy dot product of many public binary vectors a; with
a secret binary vector s is indistinguishable from a string of random
bits. Adding noise to a bit is equivalent the flipping the bit with a
fixed probability. We use the following generalization of the LPN
assumption to larger fields.

Definition 6.4 (LPN Assumption). Let C be a probabilistic code generation
algorithm which given inputs values k,q and a field IF, outputs a matrix
A € TF**9. The LPN assumption with respect to C with dimension k = k(A),
q = q(A) queries and noise rate r = r(A) states that for any PPT algorithm
A the following holds:

Pril1 < A(A,b) | F < A(1"),A < C(k,q,F),e < Ber,(F)",
se]Fk,b%&A—i—e]
~ Pr[l «+ A(Ab) | F + A(1"),A + C(k,q,F),b «+ F).

In our construction (Section 6.6) we use LPN instantiations with
parapets settings as those described by Boyle et al. [BCGI18], i.e., high



6.3 (n—1)-ouT-0F-n RANDOM OT |

dimension k, low noise rate 1/k¢ for a constant € and a polynomial
number of queries ¢ = k + o(k). Since we focus on the primal variant
of VOLE, we can instantiate C using a local linear code, where LPN is
assumed to hold [App+17; BCGI18].

Ring-LPN is a variant of the LPN assumption defined over rings
rather than fields. The security of this assumption is less studied but
there are works that explore its use in the context of protocols for
the purposes of efficiency [Hey+12; DP12]. In our implementation we
evaluate the performance of our protocol both in the setting of a field
and a ring which rely on the two variants of the LPN assumption.

6.2.6 Definitions, Functionalities, and Secure Two-Party Proto-
cols

All the constructions in this chapter describe communication efficient
two-party protocols for computing correlated vectors, for different
types of correlations. This notion has recently been formalized as
a Pseudorandom Correlation Generator (PCG) [Boy+19b]. As observed
there, communication-efficient PCGs don’t lend themselves to direct
simulation-based security proofs. Intuitively, this stems from the fact
that any simulator that takes as input the ideal pseudorandom output
and produces succinct messages for the protocol would be able to
compress pseudorandom strings, which is impossible. However, it
was shown that in many applications (including all the applications
of vector OLE we consider), a weaker security definition is suffi-
cient [BCGI18; Boy+19b]. We will therefore use the same approach
as Boyle et al. and split up our protocols in two phases, namely setup
(or generation), and expansion (or evaluation). This allows us to use
the following structure in our security proofs: First, (i) we define cor-
rectness and security requirements of the generation and expansion
algorithms. Then, (ii) we define ideal functionalities for the two phases
and show that they satisfy our definition. And finally (iii), we show
that our protocols securely (and efficiently) implement the key gener-
ation functionality. We focus on presenting our two-party protocols
in this chapter, and giving the intuition behind for both security and
efficiency. Nevertheless, detailed definitions, functionalities, and se-
curity proofs for all our novel constructions are given in the chapter
appendix.

6.3 (n—1)-0UT-OF-1n RANDOM OT

In this section we consider the question of oblivious selection of n — 1
items out of 7 in the case when all items are pseudorandom. This corre-
sponds to Functionality 18, namely (n — 1)-out-of-n random oblivious
transfer. If we allow linear communication, a protocol for Functional-

117



118

Functionality 18: (n — 1)-out-of-n-ROT
Parties: P, P;
Input: Py: Index i € [n]
Output (for P;): Pseudorandom vector u € [F"
Output (for Py):vector v = (u;);;

ity 18 can be easily obtained using oblivious selection techniques. We
instead propose a protocol with sub-linear communication and linear
computation. Our protocol consists of a key generation phase where
P, learns a key K; consisting of a single PRG seed sg, and P; learns a
key Kj consisting of log, (1) PRG seeds, via log, (1) parallel executions
of a (k — 1)-out-of-k OT protocol, for parameter k > 1. Expanding
the respective seeds to obtain their length-n outputs takes O(n) PRG
evaluations per party.

KEY GENERATION VIA A GGM TREE  We crucially leverage the fact
that values are generated pseudo-randomly in order to obtain a proto-
col with the above communication complexity. Let us assume, without
loss of generality, that log,(n) is an integer. The n values of u are
generated from a single random seed sy using a GGM tree T [GGMB86]
constructed using a PRG G of stretch k, i.e. G : {0,1}* + {0, 1}, for
security parameter A. More concretely, T is an ordered complete k-ary
tree of depth log, (n) and n leaves, with its nodes labeled with seeds
in {0, 1}* (we will refer to nodes and their seeds/labels indistinctly).
The label of the root is sp, and the label s; of the jth child of a node v
is obtained from the seed of v, by applying the PRG G and parsing
the output as (s1] - - [s;] - - - [sk)-

THE 2-PARTY PROTOCOL Our protocol is presented as Protocol 19.
First, P1, the sender, computes the tree T locally from a seed sy (note
that this can be done with 2n — 1 calls to G) and sets s( to be its key
K. The rest of the protocol allows P,, the receiver, to recover all the
seeds of T, except for the ones in the path to the ith leaf. This is done
in a way that does not leak i to P;, and requires only log(n) seeds,
which will constitute P;’s key Kj, to be expanded locally. We now
informally discuss the correctness and security of our protocol, as well
as associated communication and computation costs.

Let (i1, ..., ilog,(n)) e the path to the i-th leaf (this is a sequence of
values in {0,...,k — 1}, indicating which children to follow at each
level to reach the ith leaf from the root, and in fact corresponds to the
k-ary encoding of the integer i — 1). For example, Figure 6.1 shows
how for n = 8 and i = 3, the path the receiver should not learn is 010.
As mentioned above, our goal is that the receiver can reconstruct all
the tree except for the nodes on this path.



6.3 (m—1)-ouT-0F-n RANDOM OT |

Protocol 19: (n — 1)-out-of-n Random OT

Public Params: PRG G of stretch k > 1 and security parameter A,
integer n = k¢ with ¢ > 0
Inputs: Pq: L; Py: index i € [n]
Output: P1: n random values (7;) ¢y
Py: n — 1 random values (7)) je[n),j-£i
Key Generation (ROT.Gen (14, 1,1)):

(1) P; generates a PRG seed s & {0,1}M.

(2) Py computes a k-ary GGM tree of depth « = log, (1), denoted
T = T(so, «), by associating sg to T and, if « > 1, constructing the k
children of T recursively as T(s;,« — 1), with j € [k] and seeds
S1,...,5c computed as (s1 | s2 | ... | sg) := G(sp).

(3) P2 computes (by,...,by), the k-ary encoding of i — 1.

(4) The parties execute a instances of (k — 1)-out-of-k OTs:

e Pj acts as sender. For the /th OT, let (py, ..., py) be the seeds of
the Ith level of T. The jth message in the OT is set to be

m] = @ S

s€{px : x = j mod k}
(the jth message is the XOR of the seeds of the jth children of
trees at level [ — 1).
e Pj acts as the chooser and inputs, in the /th OT, the set

{0,...,k =1} \ {b;}, and obtains k — 1 seeds g;; with

j € K\ A{bi}-
(5) P1 outputs K; < sg, P2 outputs Kp < (q1,j)l€[ac],j€[k]\{b,}'
Expansion (ROT.Expand(b, Kp)):

(i) If b = 1: Pq returns the list of leaves of T.

(i) If b = 2: Py uses the seeds ¢ ; to reconstruct T, except for the path to

the ith leaf (recall that (b, ..., by) is the k-ary encoding of i — 1).

e For the first level, P, constructs trees T; = T(qy,;, & — 1) with
j € K\ {1}

o For each level I € [a], let Ty, ..., Ty be the sub-trees of T at level
[. In previous iterations P, has computed all such sub-trees
except for Tl-j, with i; = Yl k*=1. by + 1. P, then collects the
seeds of the direct children of each Tj as {sj1, ..., Sjk}je[i\i-
Then, additional seeds {sp, };;,,, can be obtained from

(41,40, as

Sbyj = & sDq;

s€{sjy : x = j mod k}

By expanding those seeds using G, P, computes all sub-trees of
T at level [ + 1, except for the one at position

i141 = Leepan) K1 by + 1,

P; returns the list of seeds of leaves of T, except for the one at
position i = ¥ [y Kloby + 1.

119



120

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

Although it will become clear that the protocol can be parallelized
across levels, for explanatory purposes it is useful to think of it as
processing T level by level from the root guaranteeing that, for each
level | € [log,(n)], the receiver can reconstruct T up to level I, except
for the nodes in the path (iy, ..., ). This property obviously holds
for | = 0 and, to argue the correctness of our protocol, we now argue
inductively how to extend it from level / to level  + 1.

By induction assume that the receiver can reconstruct all sub-trees
Ty, ... Ty of depth a — [ rooted at the nodes of level I except for exactly
one: the one rooted at path (iy, ..., ;). This is, precisely, T(Exe[l] kL1
which we denote T* for simplicity. Now, let us show how a single
execution of (k — 1)-out-of-k OT is enough to extend the above prop-
erty to level | + 1. Intuitively, we want to ensure that the receiver
learns all direct children of T*, except for the i;,1th one. As T* has
k direct children, this corresponds to a (k — 1)-out-of-k-OT. However,
for privacy, it is important that the sender never learns that T* is in
fact the sub-tree that the receiver cannot reconstruct at level I, as this
reveals too much about the index i. This difficulty can be overcome by
constructing the messages in the (k — 1)-out-of-k-OT as follows.

Letsjo,...,sjk—1 be the seeds of the nodes that are direct children of
each tree Tj. As the receiver knows all the Tjs except for T*, she has all
such seeds except for the ones with j = (er[ll kK*=1.i, +1),ie., the
children of T*. The key idea to achieve the above goal is to have the

sender compute k values my = (@;‘l:l sj,()), ce, Mg = (@;‘;1 s]',k_1>.
Here, mg is the XOR of all direct first children of nodes at level I,
mq is the XOR of all second children, and so on. Now observe that,
given any value m, the receiver can compute the seed S( ey K Li 1),
(the yth child of T*) since she knows all the other values XOR-ed
into the m; value. On the other hand, m; does not reveal anything
about the seeds sy , with x # j. Thus, the sender and the receiver run
(k — 1)-out-of-k OT where the sender’s inputs are my, ..., m;_; and
the receiver’s input is the set {0,...,k — 1} \ {i;}. After running this
sub-protocol the receiver can reconstruct T up to level [ 41, except
for the nodes in the path (i, ...,i41). This shows how to extend the
construction from level / to 41, and the protocol finishes when I = n.

An important observation is that the instances of (k — 1)-out-of-k
OT used in the above construction can all be run in parallel. The
correctness of our construction follows from the above discussion, and
its security, stated in the next lemma, follows directly from the security
of G, and the underlying protocol for (k — 1)-out-of-k OT. A detailed
proof can be found in Appendix 6.A.1. In Section 6.8 we describe how
G is instantiated in our implementation, as well as other practical
considerations and optimizations.

Lemma 6.5. For any constant k > 1, Protocol 19 is a secure two party
computation protocol for the (n — 1)-out-of-n ROT functionality in the (k —
1)-out-of-k OT hybrid model assuming a secure PRG G. The protocol is one



6.4 KNOWN-INDEX SPFSS |

round, and requires O(Alog(n)) communication and O(An) computation
per party, including 2n PRG evaluations, where A is the length of the PRG
seed.

PROOF SKETCH Showing the security of the above protocol consists
of two steps: first, showing that the keys that the parties receive have
the desired pseudorandom properties (Definition 6.9), which follows
from the pseudorandom properties of the GGM construction and
which we formally prove in Theorem 6.10. And second, showing that
the key generation protocol is a secure two party computation protocol
for the generation of the keys, which follows from the OT security
and which we prove formally in Theorem 6.11. The communication
overhead follows from the fact that the parties execute log, n OTs,
which have linear communication in A. The computation O(An) for
each comes from the execution of the log, n OTs and the expansion of
the keys which uses 21 PRG calls.

HOW TO SET k, AND INSTANTIATIONS OF (k—1)-ouT-oF-k oT The
construction of Protocol 19 works for any integer k > 1. Choosing
k constant results in logarithmic communication, and in fact in our
implementation we use k = 2. In practice, this allows us to leverage
very efficient implementations of 1-out-of-2 OT based on OT Extension.
When instantiated with k = 2, our protocol resembles the Function
Secret sharing construction by Boyle et al. [BGI15].

PRIVATELY PUNCTURED PRF  Our (n — 1)-out-n random OT protocol
also provides a construction for a privately punctured pseudorandom
function, where one party has the PRF key and can evaluate the PRF
on any input (in our case this is P; who has the GGM root) and the
other party has a punctured key which allows it to evaluate the PRF
on all but one inputs (P, in our case). The OT protocol enables P, to
obtain its punctured PRF key without revealing the punctured point
to Py (the punctured key is the output that P; has at the end of the
KeyExchange phase of the OT protocol). We note the difference in the
punctured key generation algorithm from the one defined in other
contexts for privately puncturable PRFs [BLW17], where the party
who has the full PRF key generates the punctured key and knows the
point at which it is punctured.

6.4 KNOWN-INDEX SPFSS

In this section we use our (n — 1)-out-of-n random OT protocol to
construct a 2-party computation protocol to jointly generate FSS keys
for point functions. The setup for our distributed FSS protocol assumes
that one party knows the non-zero evaluation point while the value at

121



122

[
\T@_I 7
® '@ ° '@
SN X
‘e ‘@ e @ :
=N A A A
‘o 0o 0 0 0 0 0 9 @® 000 0 0
Sender Receiver

Figure 6.1: Example of the GGM tree generated by the sender and partially learnt by the receiver.
Here, k =2, n = 8, and i = 3. Thus, the path not learnt by the receiver is (010). For
each level, the parties run an OT where the receiver learns an XOR of either the left
children or the right children of that level. Using previously expanded sub-trees, this
information allows the receiver to learn a new seed (nodes filled in blue) which can be
expanded by repeatedly calling G (the nodes resulting from such expansions are filled
in black). Figure contributed by co-author Leonie Reichert.

that point is shared between the two parties. Thus, it is not equivalent
to a generic distributed FSS scheme for point functions, as for example
described by Doerner and Shelat [DS17]. However, this relaxed version
suffices for our VOLE construction described in Section 6.6. We call
our FSS variant Known-Index SPFSS to emphasize that one party knows
the non-zero index.

Conceptually, the existing construction of point function FSS [BGI15]
generates two PRF keys K; and K, such that PRFg, (x) = —PRFk, (x)
for all values of x except the input with non-zero evaluation i. The
values PRFg, (i) and PRFg, (i) are random shares of the function
evaluation B at the input i. If two parties need to generate K; and K
in a distributed way, they can use secure general computation for this
task, and Doerner and Shelat [DS17] show a more efficient way to
construct such an MPC protocol in the semi-honest setting.

When one of the parties, P,, knows i, we can construct K; and
K in a distributed fashion as follows. First, P; and P, run a secure
(n — 1)-out-of-n-ROT key generation protocol (the construction from
the previous section), for the parties to obtain keys KROT and KROT.
Note that, if the parties compute ¥ = ROT.Expand (b, KROT) the vec-
tors 7!, 2 coincide at every position except for a posmon i known to
P. As P, can negate its vector, we can think of 1 and —r? as additive
shares of a vector of all zeroes except for the ith position. Now all that



6.4 KNOWN-INDEX SPFSS |

Protocol 20: Distributed Known-Index Single Point FSS
Params and Building Blocks: (1 — 1)-out-of-n-ROT;
Point function f: [n] = G, f(i) =B, f(j) =0V j #i
Random shares 1,2 : p1+ P2 =B; b € {0,1}
Parties: P, P>
Inputs: Py : 81, P2 : Bo,1
Key Generation (SPFSS.Gen(1%, f; 4)):

(1) The parties run a secure ROT.Gen(l)‘, n,i) protocol to obtain
keys KROT and K5OT.

(2) The parties execute locally ROT.Expand, from which P; gets n
random values {r;}c[,), and P2 obtains {7;} e[y j-.i-

3) Let R = Zje[n] ri. P1 sends to P; the value Rg = R — B.

(
(4) P2 computes 7 = B2 — Rg + Yjep (i} 7ie
(5) P1outputs K; <+ K—'fOT

(6) P, outputs Kp < (KXOT, 7).

Expansion (SPFSS.Eval(b, K;, x)):

o If b =1, compute v! < ROT.Expand(1,K;) and output vl.

o If b =2, parse K; as (K?OT, i’). If x = i, output 7. Otherwise,

compute v? +— ROT.Expand (2, K§°") and output —v2.

remains is to modify r! and —#?2 to fix the ith position to be a share
of a value B shared among P and P, (see Protocol 20). Crucially, this
needs to be done in a way that does not leak B to either party, and
keeps i private from P;. To do this we leverage the observation that P
and P, can compute sums R = }; r} and R’ = Yiti r]2-. The difference
R — R’ will be the evaluation of PRFg, (j). Since the parties have shares
B1 and B of the point function evaluation B at i, we complete the
protocol by Py sending Rg = R — By to Py (note that this hides
because P, does not know ril, which is a random mask) who can then
appropriately set the ith entry of r? so that r} 4+ r? = B. Note that, as
long as P, obtains Rg in the key generation phase, the corrections can
be applied during expansion. Our construction is presented in Proto-
col 20 in terms of the key generation and expansion procedures for
(n — 1)-out-of-n-ROT from the previous section, which encompasses
the steps from above.

Lemma 6.6. Protocol 20 securely implements Known-Index SPEFSS over a
domain of size n in the (n — 1)-out-of-n-ROT hybrid model. With (n — 1)-
out-of-n-ROT instantiated by the construction of Protocol 19, Protocol 20
requires O(A log n) communication and O(An) computation per party where
A is the security parameter of the ROT.

123



124

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

PROOF SKETCH. The main argument in the security proof is that
Rg is a one-time pad that masks B, given the property of (n —
1)-out-of-n-ROT that the output of P; is a random vector. A detailed
proof is given in Appendix 6.A.2.

65 KNOWN-INDICES MPFSS VIA CUCKOO HASH-
ING

In this section we present a reduction from known-index multi-point
FSS to known index single point FSS. The multi-point setting is anal-
ogous to the SPFSS functionality of Protocol 20, but extended to
functions that fix the value of t > 1 points. We formalize our Known-
Indices MPFSS variant in Definition 6.15 in the appendix. A naive
reduction executes ¢ independent instances of known-index SPFSS on
the original database. However, as observed by Boyle et al. [BCGI18],
this requires evaluating all ¢+ SPFSS instances on the whole domain,
which results in an Q)(tn) computational overhead.

A general idea to improve on this baseline is to rely on batching
schemes that split the domain of size n into m small parts in a way
that allows to distribute the ¢+ SPFSS instances across the m smaller
parts. One can instantiate this general idea using a combinatorial ob-
ject called batch codes (see Ishai et al. [[KOSo4] for an introduction). A
batch code with parameters n, t, k, m gives a partition of a database of
size n into m parts such that any f indices from [n] can be recovered by
reading at most k entries in each of the m parts. Although batch codes
are attractive in that they offer very strong provable guarantees, they
can be hard to instantiate in practice. This issue arises in the construc-
tion proposed by Boyle et al. [BCGI18], who explore Combinatorial
Batch Codes (CBCs) for batching multiple FSS instances to obtain
MPESS. Since explicit constructions of the expander graphs required
for instantiating a CBC do not satisfy their efficiency requirements,
Boyle et al. propose a heuristic construction of a CBC. This leads to a
small failure probability, which asymptotically depends on t and the
expansion factor of the batch code. However, concrete parameters for
the heuristic CBC construction are not given by Boyle et al., and in
their running time estimates, the authors assume t SPFSS instances on
disjoint subsets of [n] instead of full MPFSS.

A second approach to baching is given by Angel et al. [ACLS18],
who introduce a relaxed notion of Probabilistic Batch Codes (PBCs).
Unlike the heuristic CBC construction of Boyle et al. [BCGI18], batch-
ing here may fail on each insertion of t indices with a certain proba-
bility (which can be made arbitrarily small). The PBC construction
of Angel et al. [ACLS18] is inspired by many works in the PSI litera-
ture [FHHNP16; PSZ18; CLR17; DRRT18], where cuckoo hashing [PRo4]
is commonly used to reduce PSI to private set membership queries.



65 KNOWN-INDICES MPFSS VIA CUCKOO HASHING |

1] m Buckets Hash Table T t Indices
| m—=
B i
|
e !
I 0
| |
Li] Foa ]!
h3 I | hs
|
I X 1|
- - _ 1
—_ J C 7

Public P,

Figure 6.2: Simple hashing and cuckoo hashing for mapping indices to buck-
ets in MPFSS. The domain of the multi-point function is hashed
x times into m Buckets using x different hash functions (this
arrangement is public). P, privately builds a cuckoo hash table
of the indices of the MP function. Then, an instance of known-
index SPFSS is executed for each bucket. Figure contributed by
co-author Leonie Reichert.

We follow this line of work, and base our MPFSS construction on
probabilistic batching.

6.5.1 Batching Known-Index SPFSS

6.5.1.1  Cuckoo hashing as a PBC

Our approach to build MPFSS from single point FSS is to use Cuckoo
hashing [PRo4] and simple hashing in a similar manner as in PSI and
PIR protocols [FHNP16; PSZ18; CLR17; DRRT18; ACLS518]. Cuckoo
hashing [PRo4] is a multi-choice hashing scheme with eviction pa-
rameterized by x universal hash functions h;, ..., h,. Cuckoo hashing
achieves the goal of distributing ¢ items in a table T of size m in a man-
ner that guarantees that each location in T is occupied by at most one
item. The insertion algorithm puts the item to be inserted x at T [l (x)]
and, if this position is occupied, evicts the item in that position and
relocates it using hy, which may cause yet another eviction resolved
using h3, and so on. This insertion algorithm may fail when a cycle of
evictions is found, and thus cuckoo hashing has a failure probability
that depends on parameters «,7,t and m. Multiple works [PSZ18;
DRRT18] that use cuckoo hashing in secure computation protocols
have empirically studied such parameters and how they relate to the
failure probability. In our work we use the estimates of Demmler et al.
[DRRT18], which leads to the same parameter choices used by Angel
et al. [ACLS18] and Chen, Laine, and Rindal [CLR17].

125



126

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

While we present our concrete parameter choices in Section 6.8.2,
we keep these symbolic in the protocol description for presentation
purposes. We therefore introduce a statistical security parameter 7,
meaning that the probability of failing at hashing t items is bounded
by 27". More specifically, we denote by ParamGen(#,t,7) the function
that generates cuckoo hashing parameters, i.e., number of hash func-
tions x and cuckoo table size m, that guarantee this statistical bound
on the insertion failure probability. Note that in the case of such an
insertion failure, Py learns of it in Step (1) of the protocol and thus
can handle this case in several ways in practice. For example, it could
simply abort the protocol, or it could sample new hash functions until
the hashing step succeeds or a maximum number of trials is reached.
In these cases, hashing failures result in leakage, as the adversary can
infer information about the indices from the fact that they failed (or
did not fail) to hash. A second option is to sacrifice correctness instead,
and simply ignore indices that failed to hash. This way, no information
is leaked from the generated MPFSS keys, but the multi-point function
changes with a small probability. As discussed in [ACLS18; CLR17],
the strategy for handling hashing failures depends a lot on the exact
use case. In the case of vector OLE, we choose to drop indices that fail
to hash (cf. Section 6.6). This is also the approach suggested by Boyle
et al. [BCGI18] for their heuristic batch code construction. Our protocol
therefore achieves the same type of security guarantee, while at the
same time being concretely efficient.

6.5.1.2 Our protocol.

Our construction is shown in Protocol 21. We use a cuckoo hashing
scheme with capacity ¢ instantiated with x hash functions mapping [n]
to [m], where (m,x) = ParamGen(n, t,17) as described above. In step
(1), the party holding the t non-zero evaluation points of the multi-
point function computes a cuckoo hash table T of size m that contains
them. In step (2), the two parties use all of the x hash functions to
simple-hash the whole domain [n]. This results in m buckets I, ..., I,
with « copies of each integer in [n] distributed across them uniformly
at random. An important point is that this arrangement is public (see
left side of Figure 6.2). The parties also fix an order within each bucket
I;, and compute the reverse mapping pos; from items to positions.
After having assigned indices to buckets, our protocol securely runs
an SPFSS key generation for each bucket I;. First, in step (3), the parties
obtain shares of the vector v of values to be fixed in each of the SPFSS
instances (the value B in Protocol 20). This needs to be done in a
secure computation because both parties share all B;’s, while only P,
knows which B; maps to which bucket. The secure computation can
be implemented using permutation networks [Wak68] in a garbled
circuit, or using additive homomorphic encryption. However, as we



613 KNOWN-INDICES MPFSS VIA CUCKOO HASHING |

Protocol 21: Distributed Known-Indices MPFSS

Public Params: Input domain [n], number of points f, statistical
security parameter 77,

Cuckoo hash parameters: table size m, and number of hash
functions «, (m,x) = ParamGen(n,t,1)

Point function f; g : [n] — T, f; g(i;) = ,8]1 + ,3]2 forall j € [t],
fi,g(j') = 0 for all other inputs.

Parties: P1, P,

Inputs: Py: x, L, ..., B Paiiy,...it, B3,..., B2

Key Generation (MPFSS.Gen(1%, f; )):

(1) P2 randomly chooses « hash functions (%;) e[, with
hi: [n] — [m]. Py inserts iy, ...i; into a Cuckoo hash table T of
size m using hy, ..., hy, and it sends the x hash functions to P;.
Let empty bins in T be denoted by L.

(2) Py and Py do simple hashing with all k4, ..., on the domain
[n], to independently build m buckets I, . .., I, i.e.
I =(xec[n]|3pelk]:hy(x) =1),forl € [m], each sorted in
some canonical order. The parties compute functions
pos; : I; — [|];|] that map values to their position in the I-th
bucket.

(3) Letu = ((,B]1 + B2, lf))je[t]’ where [; is the location of i; in T.

The parties run a secure 2PC protocol to obtain random shares

v1,v? of the vector v € F" defined as

vj:{a if (a,j) €u,

0 otherwise.

(4) Foralll € [m], P1 and P, run SPFSS.Gen (1%, g;) (Protocol 20)
to obtain seeds (K}, K}), with g; : [|I;|]] — FF defined as

() = ol +0?  if T[l] # L and x = pos;(T[I]),
0 otherwise.

(5) Py outputs K; = (K}) and P, outputs K, = (K})

le[m] 1€[m]’

Expansion (MPFSS.Eval(b, K, x)):
h
Output Y5, SPFSS.Eval (b, K,"™, pos, ) (x)).

will see at the end of this section, this step can be omitted in the special
case of Vector OLE.

In Steps (4) and (5), we generate and return SPFSS keys for each
of the buckets, where the values are the shares obtained in the pre-
vious step, and the indexes are known to P,. Note that, since m > t,

127



128

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

some positions in T might be empty, so those instances have the zero
function associated to them (which is known only to P»).

Finally, the evaluation of an MPFSS key on an input x is the sum
the evaluations of the SPFSS keys corresponding to the buckets into
which x is mapped by the cuckoo hash functions.

Lemma 6.7. Assume a secure Known-Index SPFSS scheme with a secure
two-party key generation protocol, both with security parameter A. Then
Protocol 21 implements a secure two-party protocol for generating Known-
Indices MPFSS keys in the semi-honest model with statistical security 1.
Using Yao garbled circuits to instantiate step (2), the MPFSS.Gen protocol
is constant round, and requires O(mA logn) communication and O(Axkn +
Amlogn) local computation per party, where (m,x) = ParamGen(n,t,1)
are cuckoo hashing parameters.

PROOF SKETCH. We outline the intuition for the proof of Lemma 6.7
here and provide the full proof in Appendix 6.A.3. Proving the security
of the MPFESS protocol involves two steps: first, proving that the
keys generated from the generation algorithm satisfy the FSS security
requirements, and second, proving the generation protocol is a secure
two party computation protocol that reveals to each party only its
corresponding key. The first claim follows directly from the security
guarantee of the SPFSS construction used to generate a key for each
bucket. We prove this formally in Theorem 6.16. The second claim
follows from the security of the two party protocol used for the SPFSS
key generation, which we prove formally in Theorem 6.17.

The communication and computation for the garbled circuit used
for Step (2) is O(Amlogm) since it needs to implement an oblivious
permutation protocol over m items. For each SPFSS instance in Step (3),
we need O(Alogn) communication, since in the worst case each bucket
has size O(n). The computation that each party does includes simple
hashing of all elements in O(Axn), SPFSS distributed key generation
for each bucket in O(Amlogn) and the MPFSS evaluation in O(Axn).

AN OPTIMIZATION FOR VECTOR-0LE We leverage another observa-
tion related to the use of MPFSS in the context of vector OLE, which
allows us to construct a more efficient solution. In the VOLE generator
of Boyle et al. [BCGI18], the non-zero values for t-point MPFSS are
of the form xy;,...,xy;, where one party knows the indices of the
non-zero function values and yy, ..., y;, and the other party knows x.
Thus, we can have a secure two party computation protocol where one
party inputs v, ..., y: padded with zero up to the size of the cuckoo
table, in the order in which they are mapped to the cuckoo bins, and
the other party inputs x. The protocol multiplies x with the permuted
vector and outputs shares of the result to the two parties. That way,
we can generate the MPFSS keys needed for VOLE generation without



Protocol 22: MPFSS Optimization for VOLE
Public Params: Input domain [#], number of points ¢, hash
table size m = O(t), and number of hash functions «.
Point function f; .y, : [n] = T, fi 1, (ij) = (xy); for all j € [t],
fixy(j') = 0 for all other inputs.
Parties: P1, P»
Inputs: Pq: x; Poiiy, .. i, y1,. .., Yt

Key Generation (MPFSS.Gen(1%, f; .y)):

(1, 2) These are the same as in Protocol 21.

(3a) Let u = ((yj,1))je[, where [; is the location of i; in T. P
locally computes the vector w € IF" defined as:

wj:{a if (a,j) € u,

0 otherwise.

(3b) The parties run an MPC to compute shares of v = xw.

(4, 5) The rest of the protocol is as Protocol 21.

the expensive secure permutation in Step (3), and instead use a cheap
multiplication protocol such as Gilboa multiplication [Gilgg].

6.6 DISTRIBUTED VECTOR-OLE FROM MPFSS

In this section we present a new construction for two party computa-
tion of pseudorandom vector OLE that relies on multi-point function
secret sharing. The main difference between our construction and
the reduction described in the work of Boyle et al. [BCGI18] is the
observation that the multi-point function that the two parties evaluate
does not need to be completely hidden from both of them, since one
of the keys contains the non-zero points in the clear. Thus, it suffices
to use our distributed Known-Indices MPFSS from the previous section.
We present our construction in Protocol 23.

The goal of a pseudorandom VOLE is to enable two parties P; and
P, to obtain the following correlated outputs: P obtains vectors u and
v, and P; obtains integer value x and a vector w such that ux +v = w.
The requirements for these correlated outputs are that 1) # and v do
not reveal information about x and 2) given w, u and v are indistin-
guishable from random vectors generated subject to the above relation.
Without any further efficiency constraints the above functionality can
be realized using standard MPC techniques. However, the goal here is
to generate a VOLE correlation with much less communication than
the length of the vectors. In this case, distributed VOLE faces the same

129



130

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

problems as other correlation generators (cf. Section 6.2.6 and Boyle
et al. [Boy+19b]), i.e., that protocol messages of sublinear size can’t be
simulated from an ideal uniform output. Hence, the VOLE functional-
ity is divided into two parts: an interactive setup protocol VOLE.Setup
that produces short seeds for each party, and an expansion protocol
VOLE.Expand that involves only local computation in which each party
expands the short seed it has obtained from the setup to generate
its long output vectors. It was shown that if these two phases satisfy
Definition 6.3, the resulting pseudorandom correlation can securely
be used for various applications of VOLE, such as secure arithmetic
computation [BCGI18; Boy+19b].

The idea of the construction of Boyle et al. [BCGI18] is to start from
short vector a,b and c of length k < n that have the required corre-
lation, i.e., ¢ = ax + b, which the two parties can generate efficiently
using MPC, and to expand them to long pseudorandom vectors using
the LPN assumption. This assumption states that for appropriate code
generating matrix C € IF**", the vector u = a - C + p is pseudorandom,
where p is a sparse random vector. Now if we compute v =b-C —v;
and w = ¢ - C + 1, where v; and v, are shares of ux, we will achieve
the correctness property that ux + v = w. Additionally, in order to
get security, we need that v; and v, are pseudorandom and do not
reveal any information about ux. This guarantees the pseudorandom
properties of u and v under the correlation and that v; (and hence u
and v) does not reveal any information about x.

Given the above idea, the heart of the VOLE generation is obtaining
the shares v; and 1, in a communication efficient manner. Boyle et
al. [BCGI18] propose using a distributed multi-point FSS protocol.
Our observation is that this functionality is more than what is needed
for the pseudorandom VOLE construction. More specifically, an FSS
protocol will guarantee that both shares v, and v, do not reveal any
information about the multi-point function defined by ux. However,
while x needs to remain hidden, y is revealed to P;, which in turn
reveals the non-zero indices of yx = v; 4 v». This observation is what
allows us to use our known index MPFESS from Section 6.5 to generate
the shares v, and v, more efficiently.

We note that as discussed in Section 6.5, our batching scheme intro-
duces a small probability 277 of failing to batch all t non-zero indices.
This is also the case for the heuristic batch code construction of Boyle
et al. [BCGI18]. However, as also pointed out there, this only strength-
ens the required LPN assumption a little: If batching fails (which
results in some elements of yx becoming zero instead of nonzero),
the distribution of noise values will only slightly deviate from uni-
form, but LPN for such a distribution remains a very conservative
assumption.

Theorem 6.8. Protocol 23 implements a secure distributed vector OLE
generator in the semi-honest model. With step (3) instantiated with OT-



6.0 DISTRIBUTED VECTOR-OLE FROM MPFSS |

Protocol 23: Distributed Vector OLE
Public Params: Vector length n, LPN parameters t, k, code
generating matrix C € FF*".
Parties: Pq, P».
Inputs: None.
Outputs: Py : u,v € F"; P, : w € F", x € F, such that
ux +v = w.

Share Generation (VOLE Setup(1*,FF, n))

(1) Py chooses a set of S random positions S = {s1,...,s;}, with
si € [n], t random values y = (y1,...,y:) € F, and a pair of
random vectors a, b € F¥. P, chooses random x € F.

(2) Py and P, run MPFESS.Gen to obtain keys Kj, K of the
multi-point function fs vy

(3) P71 and P, run an MPC with inputs a, b and x respectively,
from which P, obtains a vector ¢ = ax + b.

(4) Pq outputs seed; < (K3, S,y,4,b) and P, outputs
seedy < (K, x, ¢).

Expansion (VOLE.Expand(b, seed;))

(i) If b =1, Py runs v;[i] < MPFSS.Eval(1,Ky,i) for i € [n] and
defines a vector u € F" such that u[s;| = y; for all i € [t] and
pls] =0foralls ¢ S. Pyoutputsu=a-C+p,v=>b-C—v.

(ii) If b = 2, Py runs v;[i] <~ MPFSS.Eval(2, Ky, i) for i € [n] and
outputs w = c- C +1».

based Gilboa multiplication, MPFSS instantiated using Protocol 22, and C
instantiated by a local linear code, the protocol is constant round, and requires
O(Amlogn + Ak) communication and O(Axkn + Amlogn) computation
per party, where (m,x) <— ParamGen(n,t, 1), A is a computational security
parameter, and 1 is the statistical security parameter of the MPFSS scheme.

PROOF SKETCH As mentioned above, our protocol is obtained using
a simple modification of the scheme of Boyle et al. [BCGI18], i.e.,
using known-index MPFSS instead of full MPFSS. Since the only
additional information our variant reveals is already included in the
VOLE keys, their proof [BCGI18, Section 3.2.2] can be trivially adapted
to our protocol. We will give an overview here, but refer the reader
to [BCGI18] for the full details.

Correctness follows from the observation that ux = vy +1o. It
follows that

ux+v=(a-C+u)x+b-C—v
=(ax+b)C+ux—vy =c-C+v, = w.

131



132

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

To prove security we need to show that the two security properties
from Definition 6.3 hold. To show the first property we observe that
the only part of seed; that depends on x is K;. However, since it is
generated using the distributed MPFSS construction, it follows by the
security of known-index MPFSS (see Appendix 6.A.3) that there is a
simulator that can simulate K; without knowledge of x. Note that the
non-zero indices needed to simulate K; are also included in seed;.

To prove the second property we show a transition between the
distributions (u1,v1, seedy) and (uy, v2, seedy) in two steps and argue
that an adversary cannot distinguish the changes applied in each of
them. In the first step the input to the adversary is the same but we
replace the K; with the simulated MPFSS key, which is generated
from F and n alone. Security of the MPFSS scheme guarantees that
this simulated key is indistinguishable from the real one. In this
distribution gy = a-C+pand vy =b-C—v; =b-C+vy —ux =
c-C+vy—(a-C+u)x =c-C+vy—uix. In the next step we replace
u1 and v; with u, & and vy < w — upx = ¢ - C + vy — upx. By the
LPN assumption, #; and u are indistinguishable and since v; and
vy are computed in the same way, the change in the second step in
indistinguishable for the adversary.

The communication in the protocol consists of the execution of the
distributed MPFSS key generation and the secure computation for c,
which have cost O(Amlogn) and O(Ak), respectively. The computation
overhead additionally consists of the expansion of the MPFSS, which
is O(Axn) and the vector matrix multiplications with the matrix C,
which using a local linear code is in O(n).

In our evaluation (Section 6.8), rely on previous work [DRRT18] to
choose a constant ¥ and m = O(t) such that # > 40 for the param-
eter ranges we're interested in. Together with the observation that ¢
and k are both in O(y/n) [BCGI18], this simplifies the communica-
tion overhead of our protocol to O(Ay/nlogn) and the computation
to O(An).

6.7 APPLICATIONS

Our distributed pseudorandom vector OLE protocol can be seen as a
communication efficient precomputation that enables arbitrary secure
two-party scalar-vector multiplications. This is thanks to a simple
reduction from VOLE to pseudorandom vector OLE. The reduction is
analogous to how a random multiplication triple can be exploited to
compute extremely efficiently a secure multiplication in just a round of
communication. The reduction from VOLE to pseudorandom VOLE is
given in [BCGI18] (Proposition 10). The overhead of the reduction with
respect to running pseudorandom VOLE generation and expanding
the resulting seeds is just the cost of performing the scalar vector



6.7 APPLICATIONS |

multiplication in the clear, and transmitting a vector of the same
length as the input vector. For that reason, in the context of multi-
party computation, distributed pseudorandom vector OLE should be
considered as a data independent preprocessing step that enables fast
secure distributed scalar-vector multiplication, aka vector OLE. In this
section we overview some applications that fit in this paradigm and
thus can benefit from our protocol for distributed vector-OLE, as well
as applications of our sub-protocol for known-Indices MPFSS.

Generally speaking, vector OLE can be used to batch one-against-
many OLE computations, and thus directly provides a way to batch
applications that rely on OLE computations. Such applications include,
for example, PSI [GN19], and keyword search [FIPRos]. The latter
relies on Oblivious Polynomial Evaluation (OPE) for which, as we
will discuss later in this section, an efficient reduction to vector OLE
exists. Our VOLE generator can also be used to implement PSI and
variants thereof directly [RS21]. From a general MPC perspective,
vector OLE enables communication efficient evaluation of arithmetic
circuits with multiplication gates with large fan-out. This includes
several important settings, including protocols for secure distributed
data analysis.

6.7.1  Secure Linear algebra

As mentioned above, vector OLE is directly applicable in settings were
OLE computations, i.e., secure multiplications, can be vectorized and
thus computed by invoking several instances of vector OLE. This is
the case, for example, in matrix-vector multiplication, as this operation
can be computed, for a matrix of dimensions n x m, by m invocations
of length n vector OLE. Hence interesting settings for our protocols
are the ones where n is a lot larger than m. This corresponds to
datasets with many records, and a limited number of features per
record, which are natural in the context of training and evaluation of
machine learning models, such as logistic regression. Similarly, matrix
convolutions operations, the main ingredient of convolutional neural
networks, rely on multiplying a small matrix called kernel (common
kernel sizes are 3 x 3,5 x 5, and 9 x 9) in a sliding fashion at each
position of a input image (or layer input for intermediate layers). This
corresponds to a small number of vector OLE computations of length
the size of the image (which is commonly 255 x 255).

A natural approach to distributed vector OLE is (vectorized) Gilboa
multiplication, as discussed in Section 5.2, and thus it has been used
as a way to precompute multiplication triples for MPC in several
works [MZ17; DSZ15]. This approach requires linear communication
and computation in the size of the matrix. In contrast our Protocol 23
has sub-linear communication. In Section 6.8 we compare these two

133



134

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

approaches empirically, both in terms of communication and compu-
tation.

6.7.1.1  Sparse matrix manipulations

As mentioned in the Section 6.1, known-indices MPFSS can also be
seen as a type of “scatter” vector operation. This functionality was
presented in Section 5.4.1 under the name Scatterlnit. In that setting,
two parties hold a share of a sparse vector, represented as a list of
index-value pairs for which one party knows the indices and the values
are additively shared. The goal is to securely convert the vector into
a dense representation, where it is represented as an array of shared
values of length equal to the size of the domain of indices. The protocol
presented in Section 5.4.1 has computation and communication linear
in the size of the dense vector. In contrast, known-indices MPFSS only
needs linear computation, but has sub-linear communication overhead.
Thus, it can be used directly as a replacement for Scatterlnit in the
row-sparse matrix-vector multiplication protocol of Section 5.4.2.2.

6.7.2 Oblivious Polynomial Evaluation

The problem of oblivious polynomial evaluation (OPE) considers the
setting where one party, the server, has the coefficients of a polynomial
P(x) and a second party, the client, has an input z and the goal of
the protocol is to enable the client to learn P(z) without learning
anything more about the polynomial and without the server learning
anything about the input. OPE has applications to privacy preserving
set operations and data comparison, anonymous initialization for
metering and anonymous coupons [NPo6]. The OPE setting can be
viewed as a generalization of the OLE problem to a higher degree
polynomial.

We show that we can implement the OPE protocol leveraging the
VOLE functionality. We use the OPE construction introduced in the
work of Naor and Pinkas [NPo6]. The idea is to reduce the evaluation
of a degree n polynomial to n evaluations of linear polynomials,
which can be executed in parallel. Next we overview the main idea
of the reduction. Let P(x) = a,x" + -+ + a1x + ap be a degree n
polynomial. It can be expressed as P(x) = xQ(x) + bp where Q(x) is
a degree n — 1 polynomial. If the client and the server have obtained
respectively additive shares g, gs of the evaluation of Q(x) = gqc + s,
then P(x) = gcx + gsx + bp. If the server fixes its share g5 in advance,
then the client’s share gc = Q(x) — gs = Q'(x) can be computed using
oblivious polynomial evaluation of Q'(x), which is of degree n — 1 and
its coefficients are known to the server. Now P(x) = xQ’(x) + P'(x)
where P’(x) = qsx + by is a linear polynomial. Therefore the OPE of
P(x) reduces to the oblivious evaluation of Q'(x) and P’(x), which



can be done in parallel. By induction we obtain that the evaluation of
P(x) can be reduced to the parallel evaluation of # linear polynomials
of the forms w; = P;(x) = u;x + v; for i € [n] where the server knows
the values (u;,v;);c[, and the client knows x and obtains {w;}c[,-
These corresponds to n OLE evaluations, with the crucial aspect that
one of the inputs is common to all of them. Hence an OPE of degree n
can be implemented with a single vector OLE computation where the
server has two vectors of length n: # and v, which consist of the values
{ti}icpn) and {v;}ic,) respectively, and the client obtains w = ux + v,
which contains the values {w; }c(y-

6.7.3 Partially Private Distributed ORAM

Doerner and Shelat [DS17] presented a distributed ORAM construction
(FLORAM) that has asymptotically linear access time but achieves
practically very competitive concrete efficiency. This advantage is even
more pronounced in the RAM secure computation setting where this
ORAM construction is used for memory access and the access queries
are executed jointly by the two parties. The authors also consider
semi-private queries which consist of both data dependent and data
independent queries. In the latter type the parties know the accessed
index. For these types of queries the FLORAM construction enables
access in constant time.

We consider semi-private queries where the query index is known
only to one of the parties. This corresponds to situations when data
held by one party is indexed at private locations by the other party. We
show that in this setting we can use our SPFSS construction and avoid
having a Write-Only ORAM structure in the overall construction.

First, we briefly overview the FLORAM construction [DS17]. The
ORAM in this construction consists of a Read-only ORAM, a Write-
Only ORAM and a stash. The Read-Only ORAM consists of encryp-
tions of the data under a key shared among the two parties. Each
party has a copy of the Read-Only ORAM. The two parties execute an
access query using a two server PIR construction based on SPFSS to
retrieve the corresponding data item. They generate the distributed
query running the distributed FSS key generation. The Write-Only
ORAM consists of two XOR shares of the database, where each party
holds one of the shares. It is updated with a write for a new item again
using an SPFSS which evaluates to a non-zero value at the location
of the write and this evaluation there is the XOR of the old value
and the new value. The stash contains all the items that are currently
in Write-Only ORAM. An ORAM access that hides read and writes
consists of one Read-Only ORAM access, and one addition to the
stash of the item that is written. Periodically all the content of the
Write-Only ORAM is moved to the Read-Only ORAM using a special
protocol with linear communication.

135



136

Our source code is
available at
https://github.
com/schoppmp/
distributed-
vector-ole.

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

We observe that in setting of partially private queries where one of
the parties knows the access index we can use our distributed only
shared value FSS key generation presented in Section 6.4. This results
in an improvement in terms of round communication, as the general
SPFESS construction by Doerner and Shelat requires a logarithmic
number of rounds. In Section 6.8 we show empirically the benefits
of using our variant in the specific setting of semi-private queries by
comparing two implementations of these protocols. Our results show
improvements of up to an order of magnitude.

6.8 EXPERIMENTAL EVALUATION

6.8.1 Implementation and Setup

We implement all the protocols needed for Vector-OLE (Protocols 19,
20, 22, 23). Our implementation is written in C++. For OT exten-
sion we use EMP [WMKa16], for finite field computations we use
NTL [Sho+o1], and for matrix multiplications needed in Protocol 23
we rely on Eigen [G]+10]. We use AES to implement the PRG needed
for Protocol 19. Just as the FLORAM implementation of Doerner and
Shelat [DS17], we rely on the Davies-Meyer construction [Win84] to
avoid repeated expansions of AES keys. We further interleave the
setup and expansion phases in our implementation, and therefore
only report the total time in each of our experiments.

All our experiments are done on Azure Dsv3 machines in the same
region, using 2.4 GHz Intel Xeon E5-2673 v3 CPUs. For our compar-
isons against other protocols, we used a single thread. Note that this
does not penalize any protocol in particular, since their local computa-
tions all parallelize well. To show the scalability of our protocol, we
also implement a parallel version of it using OpenMP [DMg8].

6.8.2 Parameter Selection

In our experiments, we use A = 128 as the computational security
parameter. Following the analysis in [BCGI18, Section 5.1], we choose
the parameters for Vector-OLE (i.e., number of noise indices ¢ and
number of rows in the code matrix k) such that known attacks on LPN
require at least 280 arithmetic operations. The concrete parameters
depending on the vector size n are given in Table 6.3. To instantiate the
code generator C € F**" we choose a local linear code with d = 10
non-zeros per column, which is also suggested by previous work on
Vector-OLE from LPN [BCGI18; App+17]. Finally, we rely on the esti-
mates in [DRRT18, Appendix B] to choose cuckoo hashing parameters
such that hashing of the t random indices fails with probability at
most 2740 je., n = 40. For the values of t in Table 6.3 and x = 3,


https://github.com/schoppmp/distributed-vector-ole
https://github.com/schoppmp/distributed-vector-ole
https://github.com/schoppmp/distributed-vector-ole
https://github.com/schoppmp/distributed-vector-ole

6.8 EXPERIMENTAL EVALUATION |

n 210 212 214 216 218 220 222 224

57 98 192 382 741 1422 2735 5205
k652 1589 3482 7391 15336 32771 67440 139959

Table 6.3: Vector-OLE parameters used in our evaluation. These were com-
puted by Boyle et al. such that solving the corresponding LPN
instance requires at least 280 operations using either low-weight
parity check, Gaussian elimination, or Information Set Decod-
ing [BCGI18].

SPFSS vs. FLORAM-FSS (computation)

--- FLORAM-FSS s
551 — sprss e

108

- N
7 ®
L

Running Time
N u
Q ]
2 o]
32 3
w 12

100ms -

50ms -

20ms A

oms T T T T T T T T
2]0 212 214 216 218 220 222 024
Vector length n

Figure 6.4: Comparison of our single-point FSS variant (Section 6.4) with the
implementation of Doerner and Shelat [DS17].

this yields m = 1.5t. Those exact parameters have also been used in a
previous work that uses cuckoo hashing for batching [ACLS18].

6.8.3 Results

6.8.3.1  Comparison of Known-Index SPFSS with FLORAM

First, we compare our distributed Known-Index SPFSS variant (Proto-
col 20) with the SPFSS implementation of Doerner and Shelat [DS17]
in order to demonstrate the efficiency gain we can obtain in set-
tings where the index might be known to one of the parties, e.g.,
semi-private accesses. The results are shown in Figure 6.4. Our im-
plementation performs better for all vector lengths we tested. For
short vectors, this is not surprising given that our protocol does not
require expensive garbled circuits, but only log(n) oblivious transfers.
Even for large vectors, where both protocols take time approximately
linear in 1, our implementation remains very efficient, which is made
possible by the simplicity of our construction.

137



Running Time

18

100ms 1

1ioms

138 | EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

VOLE vs. Gilboa (LAN) VOLE vs. Gilboa (communication)

| === MPFSS (Naive Batching)

=== Gilboa (NTL::zz_p, 60) —— VOLE (NTL::zz_p, 60)
Gilboa (uint64_t, 64) VOLE (uint64_t, 64)

1010 4

109 4

108 -

Bytes sent by both parties

107 4

o0 ol2 ol 216 218 220 92 on 510 212 o4 ol6 918 920 222 024
Vector length n Vector length n

Figure 6.5: (Left) running time of our Vector-OLE (VOLE) implementation for generating a single

random Vector-OLE. We compare against two baselines: Our known-indices MPFSS,
but using naive batching instead of cuckoo hashing (cf. Section 6.5); and Gilboa multi-
plication [Gilgg], which is also commonly used in the literature to implement two-party
multiplications [MZ17; DSZ15]. We also compare two multiplication types: a 60-bit
finite field (NTL: :zz_p), and a 64-bit integer ring (uint64_t). It can be seen that VOLE
outperforms both baselines as soon as 1 > 2!2. (Right) communication overhead of our
Vector-OLE and Gilboa multiplication. Here, our VOLE implementation outperforms
Gilboa multiplication for n > 211,

6.8.3.2 Vector-OLE computation

We also measure the time it takes to generate a full Vector-OLE. Here,
we compare our implementation of Protocol 23 against two baselines.
First, our variant of MPFSS, but using naive batching by repeatedly
evaluating over the whole domain. And second, our own implemen-
tation of Gilboa’s multiplication protocol [Gilgg]. We already heavily
optimized this second baseline. In particular, we employ all of the
optimizations from [MZ17], and our time per single-element multipli-
cation is lower than the one reported in [MZ17].

Figure 6.5 (left) shows a comparison of wall-clock running times of
all three approaches. Our first baseline, known-indices MPFSS with
naive batching, is worse than both Gilboa and our VOLE in terms of
asymptotics as well as concrete efficiency. As for the second baseline,
Gilboa’s multiplication is only slightly faster than our protocol for
vector lengths below 22, and slower for larger values of n. For both
Gilboa and our VOLE, the finite field variant is slightly slower than the
integer variant. This is due to the fact that in addition to the reduced
computational overhead from the lack of modular reductions, using
64-bit integers directly allows us to use correlated OT [ALSZ17].

6.8.3.3 Communication Experiments

We also investigate the communication overhead of both our VOLE
implementation and Gilboa multiplication. To that end, we measure
the number of bytes sent by both parties during the protocol ex-



6.9 pDiscussioNn | 139

N VOLE vs. Gilboa (LAN) VOLE vs. Gilboa (communication)
10l =
--~ Gilboa (NTL: :zz_p, 60) —— VOLE (NTL: : zz_p, 60) 109 /,/
1h 4 Gilboa (uint64_t, 64) VOLE (uint64_t, 64) ot
8 ot
10m ‘é Rt
v 2 10° A e
g Po s
= im I .
o0 = RS
5 = .
‘2 10s 2 108 A 4%
5 5 et
& 2 g
15 i //
& 1074 -
100ms | <
oms T T T T T T T T T T T T T T T T
10 ol2 ol4 216 218 220 o2 22 210 12 14 216 218 220 o2 224
Vector length n Vector length n

Figure 6.6: Communication and computation cost of our VOLE generator with the iterative boot-
strapping approach of Yang et al. [Yan+2o0].

ecution. The results are shown in Figure 6.5 (right). Compared to
Figure 6.5 (left), the cutoff point where our protocol outperforms
Gilboa is slightly lower. We can also clearly observe the difference in
asymptotic communication complexity given the different slopes in
the log-log plot.

6.8.3.4 Incorporating Improvements of Yang et al. [Yan+20]

Finally, we investigate how the iterative bootstrapping approach of
Yang et al. [Yan+20] affects communication and computation when
applied to our vector OLE generator. To that end, we re-run the
experiments from Figure 6.5 with this variant. The results are shown
in Figure 6.6. It can be seen that communication is drastically reduced
by up to 96% when using bootstrapping, at the cost of a slightly
increase running time.

6.9 DISCUSSION

In this chapter we presented a new protocol for shared randomness
generation in the form of a random vector oblivious linear evaluation,
which generates vectors with linear correlations. On the way to our fi-
nal construction we also developed several new protocols, which are of
independent interest, in the areas of random OT, private puncturable
PRFs, and function secret sharing for single and multi-point functions
with known indices. We showed how our VOLE construction can be
leveraged in the context of several secure computation constructions,
and compared them experimentally with two alternatives. We also
implemented the bootstrapping approach of Yang et al. [Yan+20] and
showed how it improves the communication complexity of our library.



140

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

Further possible improvements can be achieved in our lowest-level
primitive, (n — 1)-out-of-n-ROT. While our construction is based on
GGM trees with arbitrary arity, our implementation is limited to
binary trees and 1-out-of-2-OT. We believe that by using efficient
(k — 1)-out-of-k-OT sub-protocols for larger k, e. g.from homomorphic
encryption, we can gain additional concrete efficiency. In terms of
asymptotics, to our knowledge, ours is the first implementation of
general Vector OLE with sub-linear communication. However, it does
not reach the asymptotical guarantees that alternative constructions
(in particular the dual version by Boyle et al.) provide, namely poly-
logarithmic communication. This is due to the lack of concretely
efficient, LPN-friendly encoding schemes, and we believe that if such
encoding schemes become available, our implementation can yield
poly-logarithmic communication complexity while staying concretely
efficient.



CHAPTER APPENDIX

6.A SECURITY PROOFS

In this section, we will prove security of all our main constructions,
that is, Protocols 19, 20, and 21. We do not provide a full proof for
Protocol 23, but as we discuss in Section 6.6, this proof can be obtained
directly by taking the one given by Boyle et al. [BCGI18] and replacing
their MPFSS construction by ours. As described in Section 6.2.6, we
split our proofs in three phases, i.e., we (i) define correctness and
security requirements, (ii) define ideal functionalities that satisfy these
requirements, and (iii) prove our key generation protocols securely
implement the ideal functionalities.

We note that our definitions are also closely related to the Pseu-
dorandom Correlation Generators (PCGs) of Boyle et al. [Boy+19b].
However, as our key generators take additional arguments beyond the
security parameter, we cannot use their definition out-of-the-box. Still,
our (n — 1)-out-of-n-ROT is defined in a similar way as PCGs. For our
FSS variants, we stick to pure simulation-based proofs using Defini-
tion 6.2, which ensures they cen be used as a drop-in replacement for
the constructions of Boyle et al. [BCGI18].

6.A.1  (n —1)-out-of-n-ROT

Definition 6.9 (Pseudorandom (n — 1)-out-of-n-OT Generator). A pseu-
dorandom (n — 1)-out-of-n-OT generator for a group G consists of the fol-
lowing two algorithms:

o (Kq,Kz) + ROT.Gen(1%,n,i) - Outputs two keys when given an
output size n and a single index i € [n].

o v’ + ROT.Expand(b, K}) - Given an evaluation key K, for b € {1,2},
outputs a vector of length n.

Here, A € IN denotes a security parameter. Additionally, the following
properties must hold:

CORRECTNESS. Foranyn € Nand i € [n], any pair (K1, Ky) in the image
of ROT.Gen(1%,n,1), and v* + ROT.Expand(b,K,) for b € {1,2},
we have that v' is computationally indistinguishable from a uniformly
random vector from G", and 0]1 = UJZ- forall j € [n]\ {i}.

141



142 | EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

Functionality 24: (n — 1)-out-of-n-ROT

Public Parameter: k
Key Generation (ROT.Gen(1%,7,1)):

(1) Run steps (1) and (2) from Protocol 19 as P to obtain a k-ary
GGM tree T with root sy and depth a = log, (1), using seeds of
size A.

(2) For each level I € [a], let (p1,..., pu) be the seeds of the Ith
level of T, and for each j € [k] \ {0;}, compute

111,]‘ $— @ S.

se{px : x = j mod k}

(3) Let (by,...,by) be a k-ary encoding of i — 1. Return Kj < sg
and Ky <= (i, (41,)1eal jeli (b))

Expansion (ROT.Expand(b, Kp)):
Let o = log, (n).

o If b =1, compute the GGM tree T = T(K;, «) and output the
n leaves of T.

o If b= 2, parse Kb as (l, (q1,]')l€[uc],j6[k]\{b;})/ where (bl, ey ba)
is a k-ary encoding of i — 1. Then run steps (5) and (7) of
Protocol 19 as P».

SECURITY. There are ppt simulators Simy, for b € {1,2} such that for any
neNandie [n],

{Kl \ (K, Kz) & ROT.Gen(17‘,n,i),} £
{K1 ‘Kl & Slm1(1)‘,n)} , (6.2)
and

(K1,K2) € ROT.Gen(14, 1, i), | <
v! « ROT.Expand(1,K;) B

{Kz,v} Kz & simy(1%,n,1), 00 & G}. (6.3)

{Kz, Z)}

Informally, the above security definition ensures that Py does not learn
anything about i, while P, does not learn anything about v}, i.e., the random
value it chooses not to receive, beyond the fact that it is random.

Theorem 6.10. Functionality 24 is a pseudorandom generator for (n —
1)-out-of-n-OT.



6.A SECURITY PROOFS |

Proof. Correctness. First, observe that a GGM tree T with n leaves and
initial seed sy implements a PRF F;, : [n] — {0,1}* with key so, where
F;,(j) is the j-th leaf of T [GGMB86; KL14]. Since s¢ is chosen uniformly
at random, v! < ROT.Expand(1,K;) = (F (j>)]'€[n] is indistinguish-
able from a vector drawn uniformly at random from G". Second,
observe that in ROT.Expand(2,K;) in Functionality 24, all seeds of
sub-trees of T that do not lie on the path to the i-th leaf are recovered.
Since the expansion of G is deterministic, all leaves of these sub-trees

are equal to the corresponding leaves in T, and therefore 0]1 = 0]2 for

all j € [n] \ {i}.

Security. We construct simulators Sim;, for b € {1,2} as follows.

b = 1. Sample a random seed s, € {0,1}" and output s. Indistin-
guishability of the two sides in Eq. (6.2) follows immediately as
K; on the left hand side is also sampled uniformly from {0, 1})‘.

b=2. Let a = log,(n), and let (by,...,b,) be a k-ary encoding of
i — 1. Construct a partial GGM tree by following the path from
the root to the i-th leaf, sampling uniformly random seeds for
all siblings of nodes on that path, and expanding them using
the GGM construction. Now, for each level I € [« and each
j € [k]\ {b;}, compute g; ; as in Step (2) of Functionality 24, and
output Kj < (i, (4] ;)1e(a] jelk)\ (n})-
We will now show the indistinguishability of the two sides of
Eq. (6.3) using a hybrid argument. We construct a + 1 hybrid
distributions by successively modifying ROT.Gen as follows. Let
1 be the left-hand side of Eq. (6.3), and let (p1, ..., pa) denote
the nodes on the path from the root to the i-th leaf of the GGM
tree generated in ROT.Gen. Now, for each I € [a], construct H!
from #!~1 by replacing the result of the PRG expansion of p; by k
uniformly random strings from {0, 1}*, and proceeding normally
from then on to compute Kj. Note that neither H'~! nor H'
contain p;, but both contain at least one of the children. Thus, any
distinguisher between #/~! and H' could be used to distinguish
the output of a PRG from random. Now, by construction of
Sim; above, H* is precisely the right-hand side of Eq. 6.3 which
concludes the security proof.

O]

What remains to be shown is that the key generation of Protocol 19
securely implements Functionality 24. We reduce this to the security
of the (k — 1)-out-of-k-OT sub-protocol used in Protocol 19.

Theorem 6.11. Steps (1) — (4) of Protocol 19 implement Functionality 24
in the (k — 1)-out-of-k-OT-hybrid model with security against semi-honest
adversaries.

143



144 | EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

Proof. For each b € {1,2}, we construct a simulator Sim; for the view
of Py in the (k — 1)-out-of-k-OT-hybrid model.

b = 1. Since P; does not receive any messages in Protocol 19, Sim; is
the identity function. Since the computation performed is the
same in Protocol 19 and Functionality 24, the simulated and real
views are identically distributed.

b = 2. Here, in addition to the outputs of the ideal functionality, P>
receives the outputs of the OTs in Step (4). However, note that
these are directly passed through to P;’s output and are there-
fore trivially simulatable. Since the values computed in Step (2)
of Functionality 24 are precisely the ones selected by the OT
functionality, the two views are again identically distributed.

O]

We can now compose Protocol 19 with any (k — 1)-out-of-k-OT pro-
tocol using a standard modular composition theorem, as for example
given by Canetti [Canoo], thus obtaining a secure protocol in the plain
model.

6.A.2 Known-Index SPFSS

Here, we define out Known-Index SPFSS as an instance of Defini-
tion 6.2 from the preliminaries section.

Definition 6.12 (Known-Index SPFSS). Let F = {f;z : [n] — G} denote
a class of point functions, where for all x € [n],

ﬁ’ﬁ:{ B ifx=i

0 otherwise.

A Known-Index Single-Point Function Secret Sharing (Known-Index
SPESS) scheme is a FSS scheme for F, where Leaky(fip) = (I,G) and
Leakz(fip) = (I, G, i), i.e., we allow the recipient of K, to additionally learn
the non-zero index i (but not the value p).

In Functionality 25, we define key generation and evaluation pro-
cedures for our known-index FSS scheme. We will now prove that
this functionality indeed satisfies Definition 6.12, and that Protocol 20
implements the key generation phase securely.

Theorem 6.13. Functionality 25 is a Known-Index Single-Point Function
Secret Sharing scheme.

Proof. Correctness. For any j € [n] \ {i}, the correctness of the ROT
scheme guarantees that 0]1- = 0]2-, and hence SPFSS.Eval(1,Ky,j) +

SPFSS.Eval(2,Ky,j) = v} - 0]2 = 0. On the other hand, for j = i, we



6.A SECURITY PROOFS |

Functionality 25: Known-Index SPFSS

Key Generation (SPFSS.Gen(1%, f; 5)):
Let [n] denote the domain of f; g.

(1) Generate keys for a (n — 1)-out-of-n-ROT scheme
(KROT, KROT) +— ROT.Gen(1%, m, 7).

(2) Compute v! = ROT.Expand(1,K;) and 7 = B — 0’.
(3) Output K; = KFO" and K, = (K597, 7).

Expansion (SPFSS.Eval(b, K;, x)):
Let G denote the image of f; 5.

o If b =1, compute v! +— ROT.Expand(1, K;) and output vl.

o If b =2, parse K; as (KEOT, 17). Note that KSOT contains the
non-zero index i. If x = i, output 7. Otherwise, compute
v? + ROT.Expand (2, KR°T) and output —v2.

have SPFSS.Eval(1,Ky,j) + SPFSS.Eval(2, Ky, j) = v} +F =0} + B —
1
v; = p.

Security. We construct the following simulators Sim, for b € {1,2},

assuming simulators Simy°' for the random OT scheme used.

b = 1. Output Sim{°"(1*, n). Indistinguishability follows from Eq. (6.2)
in Definition 6.9.

b = 2. Sample r & Gand output (Sim?OT(l)‘,n, i),7). Note that this
distribution is the same as the right side of Eq. (6.3). Therefore,
any distinguisher of the two sides of Eq. (6.1) could be used to
distinguish the distributions in Eq. (6.3) by choosing a g <+ G
and replacing o} in Eq. (6.3) by f — v}.

O

Theorem 6.14. Steps (1)—(6) in Protocol 20 implement SPFSS.Gen(1%, f; )
from Functionality 25 with security against semi-honest adversaries, where i
is input by Py and B is secret-shared between the two parties.

Proof. We first prove that Protocol 20 is secure in the (n — 1)-out-of-
n-ROT-hybrid model when all calls to ROT.Gen are performed by the
ideal Functionality 24. We construct simulators Sim;, for b € {1,2} for
the views of both parties in the ideal model.

b = 1. The only messages received by P; come from the execution of
ROT.Gen, and thus Sim; is the identity function.

b = 2. Here, in addition to the output of ROT.Gen, P receives Rg.
Simulate this with B> — 7+ ¥jc(u)\ iy SPFSS.Eval(2, Ky, j). In the

145



146

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

(n — 1)-out-of-n-ROT-hybrid model, this simulated view is dis-
tributed identically to the real view.

To prove security in the plain model, we again use the modular compo-
sition theorem for semi-honest security together with a secure protocol
for ROT.Gen, as proven in Theorem 6.11 ]

6.A.3 Known-Indices MPFSS

We will now prove security of our batched FSS implementation. How-
ever, as discussed in Section 6.5, there is a small probability that the
batching fails (note that this is also the case for the heuristic batch code
construction suggested by Boyle et al. [BCGI18]). Here we have two
options if batching fails: We could abort the key generation, sacrificing
security as this leaks some information about the non-zero indices that
failed to be batched; or we could sacrifice correctness by returning
keys that will result in shares of zeros for some indices that should
be non-zero. Both are valid approaches depending on the concrete
application, as also discussed in [ACLS18; CLR1y]. For our VOLE
construction, we will opt for the second choice, since this will allow
us to achieve the same security guarantee as Boyle et al. [BCGI18], i.e.,
our scheme is either secure under standard LPN (if batching succeeds),
or under a slightly stronger variant of LPN (if batching fails). See also
the discussion in Section 6.6. We will not mention this explicitly in
the following definitions and proofs, but whenever cuckoo hashing is
performed, we assume that failures are handled by dropping indices
that would result in a hashing failure.

Definition 6.15 (Known-Indices MPESS). For any t,n € IN, let F =
{fip : [n] = G} be a class of multi-point functions, where i € [n]', p € G',
and
fip(x) = Bj if x =i, for some j € [t],
' 0 otherwise.
Let further 5, A € IN denote statistical and computational security parame-

ters, respectively. A Known-Indices Multi-Point Function Secret Sharing
(Known-Indices MPFESS) scheme consists of the following two algorithms:

o (Kq,Kz) < MPFSS.Gen(1%, 1, f) — given a description of f € F,
outputs two keys.
e fp(x) < MPFSS.Eval(b, Ky, x) — given a key for party b € {1,2}
and an input x € [n], return a share of f(x).
Where the following properties have to be satisfied:

CORRECTNESS. For any f € F, and any x € I, when (Ki,Kp) <
MPFSS.Gen(1%, 7, f), we have

Pr| ) MPFSSEval(b Ky x) = f(x)| >1—-27".
be{1,2}



6.A SECURITY PROOFS |

Functionality 26: Known-Indices MPFSS
Key Generation (MPFSS.Gen(1%, 7, f; 5)):
Let [n] denote the domain of f; g, and t the number of non-zero
points.

(1) Choose parameters (x,m) <— ParamGen(n, t,7) for a cuckoo
hashing scheme such that hashing any t indices from [n] fails
with probability at most 277.

(2) Perform Steps (1) and (2) from Protocol 21, i. e., choose «
random hash functions and use them to insert (iy,...,i) into a
cuckoo hash table T, and simple-hash the domain [n]. Let pos;
be defined as in Protocol 21.

(3) Letu = ((Bj, lj))].e[t], where [; is the location of i; in T.
Compute v € G, where

sz{ a if (a,j) € u,

0 otherwise.

(4) Call SPFSS.Gen m times as in Step (4) from Protocol 21 to
obtain m sets of keys <(K§, Ké))

le[m]
(5) Output K, = <(hp)p€[1c]’ (Ké)le[m]) for b € {1,2}.
Expansion (MPFSS.Eval(b, K, x)):
Parse Kj, as ((hp)pE[K]’ (Ké)le[m}) and output
hy (x
»—1 SPFSS.Eval(b, Kb”( ), Posy, (x) (X))

SECURITY. Forany b € {1,2}, there exists a ppt simulator Simy, such that
for any polynomial-size function sequence f) € F,

C

{K,, ‘ (K1, K2) MPFSS.Gen(lA,n,fA)}
{Kb « Simy(1%, 7, Leakb(fA))}, (6.4)

where Leaki (fi g) = ([n],G) and Leaky(fig) = ([n, G|, ).

Note that the security guarantee of Definition 6.15 is the same as
in Definition 6.2. The main difference is in the correctness guarantee,
where we allow the output to be incorrect with a small probability
depending on the statistical security parameter 7.

Functionality 26 describes our MPFSS procedure. We will now prove
its correctness and security guarantees according to Definition 6.15.

Theorem 6.16. Functionality 26 is a Known-Index MPFSS scheme.

Proof. Correctness. First, observe that the parameters for cuckoo hash-
ing are chosen in Step (1) such that insertion fails with probability of

147



148

| EFFICIENT DISTRIBUTED VECTOR OLE GENERATION

at most 2777. Thus, it remains to show in the case that cuckoo hashing
succeeds,

fip(x) = Y MPFSS.Eval(b, Ky, x)
be{1,2}

- h
= be%:Z} ;;1 SPFSS.Eval(b, Kbp(x), POSy, (x) (x))

= Z:lghp(x)<poshp(x)(x))
p:

where g;(x) is defined as in Step (4) of Protocol 21. There are two
cases.

1. x = i; for some j € [t]. Then, since cuckoo hashing was success-
ful, for exactly one p* € [«], T[hy(x)] = x. Let I* = )+ be the
location of x in T. Then g;- (pos«(x)) = B;, while g;(pos;(x)) =0
foralll € {h,(x)|p e [x]\{p*}}.

2. x ¢ i. Then for all possible locations | € {h,(x)|p € [x]},
T[l] # x and thus g;(pos;(x)) = 0.

Security. We construct simulators Sim, for b € {1,2} by calling
simulators Simp" "> for the SPFSS key generation algorithm used
in Step (4) of Functionality 26.

Both simulators start by computing (x,m) <— ParamGen(#,t,%) and
sampling x random hash functions (%) ,¢[«- They then simple-hash
the domain [n], resulting in m buckets of sizes (I});c[y-

b = 1. For each bucket [ € [m], call SimyP™>>Ce"(11 I, G) to obtain
keys (K!). Output ((hp)p . (K, G[m]>. Indistinguishability of
the distributions in Eq. (6.4) follows from the fact that the &,
(and therefore the bucket sizes ;) are identically distributed, and
for each bucket the simulated keys are indistinguishable from
the real ones due to the security of the SPFSS.Gen procedure

(Eq. (6.1)).

b = 2. Construct a cuckoo hash table T of size m using the hash
functions (hp),e[q and iy, . . ., i as in Step (2) of Functionality 26.
Now for each bucket I € [m], compute

Kj = Simp"™>>%e" (1, 1, G, posy (T11]))

and output ((hp) pelel” (K3), e[m]> . Again, indistinguishability fol-
lows from the fact that both views are identically distributed up
to and including the creation of T, and then from the fact that

the simulated and real keys for each bucket are indistinguishable
by Eq. (6.1).

O]



6.A SECURITY PROOFS |

Theorem 6.17. Protocol 21 implements MPFSS.Gen(1%, 1, f; g) from Func-
tionality 26 with security against semi-honest adversaries, where i is input
by Py and B is secret-shared element-wise between the parties.

Proof. We will first prove security assuming an ideal functionalities
SPFSS.Gen (Functionality 25) for SPFSS key generation, and F2P¢
for generic two-party computation. Then we again rely on modular
composition to obtain a protocol in the plain model. We construct
simulators Sim; for the the views of both parties b € {1,2}. Both
simulators perform simple hashing to obtain bucket sizes consistent
with the keys from the ideal output. Then, the simulation depends on

b:

b = 1. The only messages Sim; needs to simulate are the outputs of
F?PC, which by construction are equal to the inputs to the calls
to SPFSS.Gen, since all other messages received by P, are part
of the output. Since by definition, v! in Step (3) of Protocol 21 is

a random share, this can be simulated by sampling v! & G. The
resulting view is identical to the one in the (SPFSS.Gen, F 2PCy.
hybrid model.

b = 2. Simj needs to first perform cuckoo hashing to generate a hash
table T consistent with the input indices i and hash functions
from the ideal output. It can then call 72" with a uniform

vector ! & G as above. The inputs to each SPFSS.Gen call are
computed from T as in Step (4) of Protocol 21. The resulting view
is again identical to the one in the (SPFSS.Gen, F27¢)-hybrid
model.

O]

149






CONCLUSION

As machine learning becomes an increasingly important tool in many
disciplines, so do privacy-enhancing technologies that enable data
holders to collaborate without revealing their private data. In this
thesis, we have shown that secure multi-party computation (MPC) is
well-suited for machine learning tasks on distributed data. By imple-
menting and evaluating MPC versions of various machine learning
algorithms, including linear and logistic regression, and k-nearest
neighbors and naive Bayes classification, we have shown that MPC
can scale to real-world dataset sizes, while providing provable security
in well-defined threat models.

The scalability of our protocols was achieved by developing custom
sub-protocols for the most expensive parts of each task, while using
generic MPC for the rest of the computation. This modular approach
also allows sub-protocols to be reused as building blocks across differ-
ent ML tasks. In some settings, we have shown that further speedups
can be obtained by relaxing the privacy guarantees and revealing ad-
ditional information, such as the sparsity or other high-level statistics
about the inputs. In these cases, differential privacy can be used to
provably quantify and limit the amount of information revealed.

While the protocols in this thesis scale well with the sizes of the
inputs, they do less so with regard to the number of computing parties.
In fact, most of the protocols presented in this thesis are two-party
protocols. In some cases, such as our linear regression protocol from
Chapter 3, there can be many input parties, but the security in this case
still relies on the fact that two of the computing parties are not allowed
to collude. Extending the ideas from this thesis to the multi-party case
without non-collusion assumptions is an important, albeit non-trivial
next step. In terms of practical deployment, data harmonization and
record linkage are two obstacles that have remained outside the scope
of this thesis. Combining recent progress in secure record linkage
based on MPC with the protocols in this thesis is another promising
avenue towards real-world deployment of privacy-preserving machine
learning.

Looking outside of the secure machine learning space, our work
features several connections to other parts of cryptography. For exam-
ple, as mentioned in Chapter 5, our ROOM functionality is close (but
not equivalent) to private set intersection with secret-shared outputs
(a.k.a. circuit-PSI), as well as the private matching-type protocols that
are recently gaining traction in both academia and industry. We be-
lieve that progress in these areas will enable more efficient versions

151



152 | CONCLUSION

of our protocols. In the other direction, our work in this thesis can
be—and has been—used to improve cryptographic protocols for OT
extension, zero-knowledge proofs, and (circuit-)PSI. We hope that
our open-source implementations continue to help others advance
research in these and other fields.



BIBLIOGRAPHY

REFERENCES

[Aba+16]

[ASKG19]

[ACLS18]

[App+17]

[Ash+20]

[ALSZ17]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Gregory S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal J6zefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Gordon Mur-
ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Vié-
gas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems.” In: CoRR abs/1603.04467 (2016).
URL: http://arxiv.org/abs/1603.04467 (visited on
10/20/2020).

Nitin Agrawal, Ali Shahin Shamsabadi, Matt ]J. Kusner,
and Adria Gascon. “QUOTIENT: Two-Party Secure Neu-
ral Network Training and Prediction.” In: CCS. ACM,
2019, pp. 1231-1247. DOI: 10.1145/3319535.3339819.

Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V.
Setty. “PIR with Compressed Queries and Amortized
Query Processing.” In: IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2018, pp. 962-979. DOIL:
10.1109/SP.2018.00062.

Benny Applebaum, Ivan Damgard, Yuval Ishai, Michael
Nielsen, and Lior Zichron. “Secure Arithmetic Com-
putation with Constant Computational Overhead.” In:
CRYPTO (1). Springer, 2017, pp. 223—254. DOIL: 10.1007
/978-3-319-63688-7_8.

Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik
Nayak, Enoch Peserico, and Elaine Shi. “OptORAMa:
Optimal Oblivious RAM.” In: EUROCRYPT (2). Springer,
2020, pp. 403—432. DOI: 10.1007/978-3-030-45724-2_1
4.

Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. “More Efficient Oblivious Transfer Ex-

153


http://arxiv.org/abs/1603.04467
https://doi.org/10.1145/3319535.3339819
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-030-45724-2_14

154

| BIBLIOGRAPHY

[Atk]

[BBGN19]

[Bat68]

[Beag1]

[Beag6]

[BMRo9o]

[BGLB16]

[BNOOoS]

[BHKR13]

[BLO16]

[BLo7]

tensions.” In: J. Cryptology 30.3 (2017), pp. 805-858. pDOI:
10.1007/s00145-016-9236-6.

Kevin Atkinson. Aspell dictionary creation. URL: http :
//app.aspell.net/create (visited on 10/20/2020).

Borja Balle, James Bell, Adria Gascén, and Kobbi Nissim.
“The Privacy Blanket of the Shuffle Model.” In: CRYPTO
(2). Springer, 2019, pp. 638-667. DOI: 10.1007/978-3-03
0-26951-7_22.

Kenneth E. Batcher. “Sorting Networks and Their Ap-
plications.” In: AFIPS Spring Joint Computing Conference.
Vol. 32. AFIPS Conference Proceedings. Thomson Book
Company, Washington D.C., 1968, pp. 307—314. DOI: 10
.1145/1468075.1468121.

Donald Beaver. “Efficient Multiparty Protocols Using
Circuit Randomization.” In: CRYPTO. Springer, 1991,
Pp- 420—432. DOI: 10.1007/3-540-46766-1_34.

Donald Beaver. “Correlated Pseudorandomness and the
Complexity of Private Computations.” In: STOC. ACM,
1996, pp- 479—488. DoI: 10.1145/237814.237996.

Donald Beaver, Silvio Micali, and Phillip Rogaway. “The
Round Complexity of Secure Protocols (Extended Ab-
stract).” In: STOC. ACM, 1990, pp. 503—-513. DOI: 10.114
5/100216.100287.

Joran Beel, Bela Gipp, Stefan Langer, and Corinna Bre-
itinger. “Research-paper recommender systems: a litera-
ture survey.” In: Int. . Digit. Libr. 17.4 (2016), pp. 305-338.
DOI: 10.1007/s500799-015-0156-0.

Amos Beimel, Kobbi Nissim, and Eran Omri. “Dis-
tributed Private Data Analysis: Simultaneously Solving
How and What.” In: CRYPTO. Springer, 2008, pp. 451—
468. por1: 10.1007/978-3-540-85174-5_25.

Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and
Phillip Rogaway. “Efficient Garbling from a Fixed-Key
Blockcipher.” In: IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2013, pp. 478-492. DOI: 10.1109
/SP.2013.39.

Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. “Op-
timizing Semi-Honest Secure Multiparty Computation
for the Internet.” In: CCS. ACM, 2016, pp. 578-590. DOIL:
10.1145/2976749.2978347.

James Bennett and Stan Lanning. “The Netflix Prize.”
In: KDDCup. 2007, pp. 3—6. URL: https://www.cs.uic.
edu/~1iub/KDD- cup-2007/proceedings/The-Netflix-
Prize-Bennett.pdf (visited on 10/20/2020).


https://doi.org/10.1007/s00145-016-9236-6
http://app.aspell.net/create
http://app.aspell.net/create
https://doi.org/10.1007/978-3-030-26951-7_22
https://doi.org/10.1007/978-3-030-26951-7_22
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1145/237814.237996
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1007/978-3-540-85174-5_25
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1145/2976749.2978347
https://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/The-Netflix-Prize-Bennett.pdf
https://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/The-Netflix-Prize-Bennett.pdf
https://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/The-Netflix-Prize-Bennett.pdf

[Ber11]

[BEWL11]

[BKWo3]

[BCG14]

[BKLS18]

[BLW17]

[BPTG15]

[BCGI18]

[Boy+19a]

[Boy+19b]

REFERENCES |

Thierry Bertin-Mahieux. YearPredictionMSD Data Set.
2011. URL: https : / /archive . ics . uci . edu/ml/
datasets/YearPredictionMSD (visited on 10/20/2020).

Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whit-
man, and Paul Lamere. “The Million Song Dataset.”
In: ISMIR. University of Miami, 2011, pp. 591-596. URL:
http://ismir2011.ismir.net/papers/0S6-1.pdf (vis-
ited on 10/20/2020).

Avrim Blum, Adam Kalai, and Hal Wasserman. “Noise-
tolerant learning, the parity problem, and the statistical
query model.” In: ]. ACM 50.4 (2003), pp. 506—519. DOIL:
10.1145/792538.792543.

Carlo Blundo, Emiliano De Cristofaro, and Paolo Gasti.
“EsPRESSO: Efficient privacy-preserving evaluation of
sample set similarity.” In: J. Comput. Secur. 22.3 (2014),
pp- 355—381. DOI: 10.3233/1CS-130482.

Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk.
“Rmind: A Tool for Cryptographically Secure Statistical
Analysis.” In: IEEE Trans. Dependable Secur. Comput. 15.3
(2018), pp. 481—495. pOI: 10.1109/TDSC.2016.2587623.

Dan Boneh, Kevin Lewi, and David J. Wu. “Constrain-
ing Pseudorandom Functions Privately.” In: Public Key
Cryptography (2). Springer, 2017, pp. 494—524. DOI: 10.10
07/978-3-662-54388-7_17.

Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi
Goldwasser. “Machine Learning Classification over En-
crypted Data.” In: NDSS. The Internet Society, 2015. URL:
https://www.ndss - symposium.org/ndss2015/ndss -
2015 - programme/machine - learning- classification-
over-encrypted-data (visited on 10/20/2020).

Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval
Ishai. “Compressing Vector OLE.” In: CCS. ACM, 2018,
pp- 896—912. DOI: 10.1145/3243734.3243868.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, Peter Rindal, and Peter Scholl. “Efficient Two-
Round OT Extension and Silent Non-Interactive Secure
Computation.” In: CCS. ACM, 2019, pp. 291-308. DOL:
10.1145/3319535.3354255.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, and Peter Scholl. “Efficient Pseudorandom
Correlation Generators: Silent OT Extension and More.”
In: CRYPTO (3). Springer, 2019, pp. 489-518. poIL: 10.10
07/978-3-030-26954-8_16.

155


https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
http://ismir2011.ismir.net/papers/OS6-1.pdf
https://doi.org/10.1145/792538.792543
https://doi.org/10.3233/JCS-130482
https://doi.org/10.1109/TDSC.2016.2587623
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-662-54388-7_17
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/machine-learning-classification-over-encrypted-data
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/machine-learning-classification-over-encrypted-data
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/machine-learning-classification-over-encrypted-data
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16

156

| BIBLIOGRAPHY

[BGI15]

[BGI16]

[BGV14]

[Bud+20]

[Buis+18]

[BB13]

[Buz12]

[Buz14]

[Canoo]

[CM20]

[CD14]

Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function
Secret Sharing.” In: EUROCRYPT (2). Springer, 2015,
pp- 337—367. DOI: 10.1007/978-3-662-46803-6_12.

Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function
Secret Sharing: Improvements and Extensions.” In: CCS.
ACM, 2016, pp. 1292-1303. DOI: 10.1145/2976749.2978
429.

Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. “(Leveled) Fully Homomorphic Encryption
without Bootstrapping.” In: ACM Trans. Comput. Theory
6.3 (2014), 13:1-13:36. DOL: 10.1145/2633600.

Prasad Buddhavarapu, Andrew Knox, Payman Mohas-
sel, Shubho Sengupta, Erik Taubeneck, and Vlad Vlaskin.
“Private Matching for Compute.” In: IACR Cryptol. ePrint
Arch. 2020 (2020), p. 599. URL: https://eprint.iacr.
org/2020/599.

Niklas Biischer, Daniel Demmler, Stefan Katzenbeisser,
David Kretzmer, and Thomas Schneider. “HyCC: Com-
pilation of Hybrid Protocols for Practical Secure Com-
putation.” In: CCS. ACM, 2018, pp. 847-861. po1: 10.11
45/3243734.3243786.

Sahin Buyrukbilen and Spiridon Bakiras. “Secure Simi-
lar Document Detection with Simhash.” In: Secure Data
Management. Springer, 2013, pp. 61—75. DOI: 10.1007/97
8-3-319-06811-4_12.

Krisztian Buza. “Feedback Prediction for Blogs.” In: GfKI.
Studies in Classification, Data Analysis, and Knowledge
Organization. Springer, 2012, pp. 145-152. DOL: 10.1007
/978-3-319-01595-8_16.

Krisztian Buza. BlogFeedback Data Set. 2014. URL: https:
//archive.ics.uci.edu/ml/datasets/BlogFeedback
(visited on 10/20/2020).

Ran Canetti. “Security and Composition of Multiparty
Cryptographic Protocols.” In: J. Cryptology 13.1 (2000),
pp- 143—202. DOIL: 10.1007/s5001459910006.

Melissa Chase and Peihan Miao. “Private Set Intersection
in the Internet Setting from Lightweight Oblivious PRF.”
In: CRYPTO (3). Springer, 2020, pp. 34—63. DOIL: 10.1007
/978-3-030-56877-1_2.

Kamalika Chaudhuri and Sanjoy Dasgupta. “Rates of
Convergence for Nearest Neighbor Classification.” In:
NIPS. 2014, pp. 3437-3445. URL: http://papers.nips.
cc/paper/5439-rates-of-convergence- for-nearest-
neighbor-classification (visited on 10/20/2020).


https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/2633600
https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2020/599
https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1007/978-3-319-06811-4_12
https://doi.org/10.1007/978-3-319-06811-4_12
https://doi.org/10.1007/978-3-319-01595-8_16
https://doi.org/10.1007/978-3-319-01595-8_16
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
http://papers.nips.cc/paper/5439-rates-of-convergence-for-nearest-neighbor-classification
http://papers.nips.cc/paper/5439-rates-of-convergence-for-nearest-neighbor-classification
http://papers.nips.cc/paper/5439-rates-of-convergence-for-nearest-neighbor-classification

[CV13]

[Che+20]

[CHLR18]

[CLR17]

[Che+19]

[CGNo8]

[CKGS98]

[CO15]

[CO18]

REFERENCES |

Kamalika Chaudhuri and Staal A. Vinterbo. “A Stability-
based Validation Procedure for Differentially Private
Machine Learning.” In: NIPS. 2013, pp. 2652—2660. URL:
http://papers.nips.cc/paper/5014-a-stability -
based - validation - procedure - for-differentially -
private-machine-learning (visited on 10/20/2020).

Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburin-
naya, Ilya P. Razenshteyn, and M. Sadegh Riazi.
“SANNS: Scaling Up Secure Approximate k-Nearest
Neighbors Search.” In: USENIX Security Symposium.
USENIX Association, 2020, pp. 2111—2128. URL: https:
/ /www . usenix . org/ conference/usenixsecurity20 /
presentation/chen-hao (visited on 10/25/2020).

Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal.
“Labeled PSI from Fully Homomorphic Encryption with
Malicious Security.” In: CCS. ACM, 2018, pp. 1223-1237.
DOI: 10.1145/3243734.3243836.

Hao Chen, Kim Laine, and Peter Rindal. “Fast Private
Set Intersection from Homomorphic Encryption.” In:
CCS. ACM, 2017, pp. 1243—1255. DOI: 10.1145/3133956
.3134061.

Albert Cheu, Adam D. Smith, Jonathan Ullman, David
Zeber, and Maxim Zhilyaev. “Distributed Differential
Privacy via Shuffling.” In: EUROCRYPT (1). Springer,
2019, pp. 375—403. DOI: 10.1007/978-3-030-17653-2_1
3.

Benny Chor, Niv Gilboa, and Moni Naor. “Private Infor-
mation Retrieval by Keywords.” In: IACR Cryptol. ePrint
Arch. 1998 (1998), p. 3. URL: https://eprint.iacr.org/1
998/003 (visited on 10/20/2020).

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and
Madhu Sudan. “Private Information Retrieval.” In: J.
ACM 45.6 (1998), pp- 965-981. DOI: 10.1145/293347.293
350.

Tung Chou and Claudio Orlandi. “The Simplest Protocol
for Oblivious Transfer.” In: LATINCRYPT. Springer, 2015,
pp. 40-58. DOI: 10.1007/978-3-319-22174-8_3.

Michele Ciampi and Claudio Orlandi. “Combining Pri-
vate Set-Intersection with Secure Two-Party Computa-
tion.” In: SCN. Springer, 2018, pp. 464—482. DOI: 10.100
7/978-3-319-98113-0_25.

157


http://papers.nips.cc/paper/5014-a-stability-based-validation-procedure-for-differentially-private-machine-learning
http://papers.nips.cc/paper/5014-a-stability-based-validation-procedure-for-differentially-private-machine-learning
http://papers.nips.cc/paper/5014-a-stability-based-validation-procedure-for-differentially-private-machine-learning
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hao
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hao
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hao
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1007/978-3-030-17653-2_13
https://doi.org/10.1007/978-3-030-17653-2_13
https://eprint.iacr.org/1998/003
https://eprint.iacr.org/1998/003
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25

158

| BIBLIOGRAPHY

[CDNN15]

[Cor14]

[Cor+oga]

[Cor+ogb]

[CSo8]

[Cra+19]

[DMo8]

[Dam+13]

Martine De Cock, Rafael Dowsley, Anderson C. A. Nasci-
mento, and Stacey C. Newman. “Fast, Privacy Preserv-
ing Linear Regression over Distributed Datasets based
on Pre-Distributed Data.” In: AISec@CCS. ACM, 2015,
pPp- 3—14. DOIL: 10.1145/2808769.2808774.

Paulo Cortez. Student Performance Data Set. 2014. URL:
https://archive.ics.uci.edu/ml/datasets/Student+
Performance (visited on 10/20/2020).

Paulo Cortez, Anténio Cerdeira, Fernando Almeida,
Telmo Matos, and José Reis. “Modeling wine prefer-
ences by data mining from physicochemical properties.”

In: Decis. Support Syst. 47.4 (2009), pp. 547-553. DOIL: 10
.1016/j.dss.2009.05.016.

Paulo Cortez, Anténio Cerdeira, Fernando Almeida,
Telmo Matos, and José Reis. Wine Quality Data Set. 2009.
URL: https://archive.ics.uci.edu/ml/datasets/
Wine+Quality (visited on 10/20/2020).

Paulo Cortez and Alice Maria Gongalves Silva. “Using
data mining to predict secondary school student perfor-
mance.” In: Future Business Technology Conference. EURO-
SIS, 2008, pp. 5—12. URL: http://www3.dsi.uminho.pt/
pcortez/student.pdf (visited on 10/20/2020).

Mark Craddock, David W. Archer, Dan Bogdanov, Adria
Gascoén, Borja Balle, Kim Laine, Andrew Trask, Mar-
iana Raykova, Matjaz Jug, Robert McLellan, Ronald
Jansen, Olga Ohrimenko, Simon Wardley, Kristin Lauter,
Nigel Smart, Alekh Sharan, Ira Saxena, Rebecca N.
Wright, Eddie Garcia, and Andy Wall. UN Handbook
on Privacy-Preserving Computation Techniques. BigData
UN Global Working Group, 2019. URL: https : / /
publications . officialstatistics . org/handbooks /
privacy - preserving - techniques - handbook / UN %
20Handbook % 20for % 20Privacy - Preserving % 20
Techniques.pdf (visited on 10/26/2020).

Leonardo Dagum and Ramesh Menon. “OpenMP: An
industry-standard API for shared-memory program-
ming.” In: Computational Science and Engineering 5.1
(1998), pp. 46-55. DOI: 10.1109/99.660313.

Ivan Damgard, Marcel Keller, Enrique Larraia, Vale-
rio Pastro, Peter Scholl, and Nigel P. Smart. “Practi-
cal Covertly Secure MPC for Dishonest Majority - Or:
Breaking the SPDZ Limits.” In: ESORICS. Springer, 2013,
pp- 1-18. DOIL: 10.1007/978-3-642-40203-6_1.


https://doi.org/10.1145/2808769.2808774
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1016/j.dss.2009.05.016
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
http://www3.dsi.uminho.pt/pcortez/student.pdf
http://www3.dsi.uminho.pt/pcortez/student.pdf
https://publications.officialstatistics.org/handbooks/privacy-preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
https://publications.officialstatistics.org/handbooks/privacy-preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
https://publications.officialstatistics.org/handbooks/privacy-preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
https://publications.officialstatistics.org/handbooks/privacy-preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
https://publications.officialstatistics.org/handbooks/privacy-preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
https://doi.org/10.1109/99.660313
https://doi.org/10.1007/978-3-642-40203-6_1

[DP12]

[DPSZ12]

[Dat+17]

[Dem+15]

[DRRT18]

[DSZ15]

[Doe]

[DS17]

[Dot+17]

REFERENCES |

Ivan Damgérd and Sunoo Park. “Is Public-Key Encryp-
tion Based on LPN Practical?” In: IACR Cryptol. ePrint
Arch. 2012 (2012), p. 699. URL: http://eprint.iacr.org/
2012/699 (visited on 10/20/2020).

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah
Zakarias. “Multiparty Computation from Somewhat Ho-
momorphic Encryption.” In: CRYPTO. Springer, 2012,
pp- 643-662. DOI: 10.1007/978-3-642-32009-5_38

Kushal Datta, Karthik Gururaj, Mishali Naik, Paolo Nar-
vaez, and Ming Rutar. GenomicsDB: Storing Genome Data
as Sparse Columnar Arrays. Tech. rep. Intel Health and
Life Sciences, 2017. URL: https://www . intel . com/
content /dam/www/public/us/en/documents/white -
papers/genomics - storing - genome - data - paper . pdf
(visited on 10/20/2020).

Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar,
Ahmad-Reza Sadeghi, Thomas Schneider, and Shaza
Zeitouni. “Automated Synthesis of Optimized Circuits
for Secure Computation.” In: CCS. ACM, 2015, pp. 1504—
1517. DOI: 10.1145/2810103.2813678.

Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni
Trieu. “PIR-PSI: Scaling Private Contact Discovery.” In:
Proc. Priv. Enhancing Technol. 2018.4 (2018), pp. 159-178.
DOI: 10.1515/popets-2018-0037.

Daniel Demmler, Thomas Schneider, and Michael
Zohner. “ABY — A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation.” In: NDSS.
The Internet Society, 2015. URL: https://www . ndss -
symposium.org/wp-content/uploads/2017/09/08_2_1
.pdf (visited on 10/20/2020).

Jack Doerner. Absentminded Crypto Kit. URL: https://
bitbucket.org/ jackdoerner/absentminded - crypto -
kit (visited on 10/20/2020).

Jack Doerner and Abhi Shelat. “Scaling ORAM for Se-
cure Computation.” In: CCS. ACM, 2017, pp. 523-535.
DOI: 10.1145/3133956.3133967.

Nico Déttling, Satrajit Ghosh, Jesper Buus Nielsen, To-
bias Nilges, and Roberto Trifiletti. “TinyOLE: Efficient
Actively Secure Two-Party Computation from Oblivi-
ous Linear Function Evaluation.” In: CCS. ACM, 2017,
pp- 2263—2276. DOIL: 10.1145/3133956.3134024.

159


http://eprint.iacr.org/2012/699
http://eprint.iacr.org/2012/699
https://doi.org/10.1007/978-3-642-32009-5_38
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/genomics-storing-genome-data-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/genomics-storing-genome-data-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/genomics-storing-genome-data-paper.pdf
https://doi.org/10.1145/2810103.2813678
https://doi.org/10.1515/popets-2018-0037
https://www.ndss-symposium.org/wp-content/uploads/2017/09/08_2_1.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/08_2_1.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/08_2_1.pdf
https://bitbucket.org/jackdoerner/absentminded-crypto-kit
https://bitbucket.org/jackdoerner/absentminded-crypto-kit
https://bitbucket.org/jackdoerner/absentminded-crypto-kit
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1145/3133956.3134024

160

| BIBLIOGRAPHY

[DKM12]

[DAo1a]

[DAo1b]

[DHCo4]

[DG17]

[DHPo2]

[Dwo+06]

[DMNS16]

[DNo4]

Nico Déttling, Daniel Kraschewski, and Jorn Miiller-
Quade. “David & Goliath Oblivious Affine Function
Evaluation - Asymptotically Optimal Building Blocks
for Universally Composable Two-Party Computation
from a Single Untrusted Stateful Tamper-Proof Hard-
ware Token.” In: IACR Cryptol. ePrint Arch. 2012 (2012),
p.- 135. URL: http://eprint.iacr.org/2012/135 (visited
on 10/20/2020).

Wenliang Du and Mikhail J. Atallah. “Privacy-Preserving
Cooperative Scientific Computations.” In: CSFW. IEEE
Computer Society, 2001, pp. 273—294. DOL: 10.1109/CSFW.
2001.930152.

Wenliang Du and Mikhail J. Atallah. “Protocols for Se-
cure Remote Database Access with Approximate Match-
ing.” In: E-Commerce Security and Privacy. Vol. 2. Ad-
vances in Information Security. Springer, 2001, pp. 87—
111. DOIL: 10.1007/978-1-4615-1467-1_6.

Wenliang Du, Yunghsiang S. Han, and Shigang Chen.
“Privacy-Preserving Multivariate Statistical Analysis:
Linear Regression and Classification.” In: SDM. SIAM,
2004, pp- 222-233. DOI: 10.1137/1.9781611972740.21.

Dheeru Dua and Casey Graff. UCI Machine Learning
Repository. 2017. URL: http://archive.ics.uci.edu/ml
(visited on 10/20/2020).

Iain S. Duff, Michael A. Heroux, and Roldan Pozo. “An
overview of the sparse basic linear algebra subprograms:
The new standard from the BLAS technical forum.” In:
ACM Trans. Math. Softw. 28.2 (2002), pp. 239—267. DOL:
10.1145/567806.567810.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSh-
erry, Ilya Mironov, and Moni Naor. “Our Data, Our-
selves: Privacy Via Distributed Noise Generation.” In:
EUROCRYPT. Springer, 2006, pp. 486—503. DOI: 10.1007
/11761679_29.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam D. Smith. “Calibrating Noise to Sensitivity in Pri-
vate Data Analysis.” In: J. Priv. Confidentiality 7.3 (2016),
pp- 17—-51. DOL: 10.29012/jpc.v713.405.

Cynthia Dwork and Kobbi Nissim. “Privacy-Preserving
Datamining on Vertically Partitioned Databases.” In:
CRYPTO. Springer, 2004, pp. 528-544. DOIL: 10.1007/978
-3-540-28628-8_32.


http://eprint.iacr.org/2012/135
https://doi.org/10.1109/CSFW.2001.930152
https://doi.org/10.1109/CSFW.2001.930152
https://doi.org/10.1007/978-1-4615-1467-1_6
https://doi.org/10.1137/1.9781611972740.21
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/567806.567810
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.29012/jpc.v7i3.405
https://doi.org/10.1007/978-3-540-28628-8_32
https://doi.org/10.1007/978-3-540-28628-8_32

[DR14]

[Efr17]

[ELo4]

[FV12]

[FG13]

[FG14]

[FR18]

[FH15]

[FSHM15]

[FHNP16]

REFERENCES |

Cynthia Dwork and Aaron Roth. “The Algorithmic Foun-
dations of Differential Privacy.” In: Found. Trends Theor.
Comput. Sci. 9.3-4 (2014), pp. 211—407. DOI: 10.1561/040
0000042.

Alexei Efros. How to stop worrying and learn to love Near-
est Neighbors. NIPS workshop on Nearest Neighbors
for Modern Applications with Massive Data. 2017. URL:
https : //nn2017 . mit . edu / wp - content / uploads /
sites/5/2017/12/Efros - NIPS-NN- 17 . pdf (visited
on 10/20/2020).

Milo$ D Ercegovac and Tomads Lang. Digital arithmetic.
Elsevier, 2004. 1sBN: 978-1558607989.

Junfeng Fan and Frederik Vercauteren. “Somewhat Prac-
tical Fully Homomorphic Encryption.” In: IACR Cryptol.
ePrint Arch. 2012 (2012), p. 144. URL: http://eprint.
iacr.org/2012/144 (visited on 10/20/2020).

Hadi Fanaee-T and Jodo Gama. Bike Sharing Dataset
Data Set. 2013. URL: https : / / archive . ics . uci .
edu/ml/datasets/Bike+Sharing+Dataset (visited on
10/20/2020).

Hadi Fanaee-T and Jodo Gama. “Event labeling combin-
ing ensemble detectors and background knowledge.” In:
Prog. Artif. Intell. 2.2-3 (2014), pp. 113—-127. DOL 10.1007
/513748-013-0040- 3.

Maryam Fanaeepour and Benjamin L. P. Rubinstein. “His-
togramming Privately Ever After: Differentially-Private
Data-Dependent Error Bound Optimisation.” In: ICDE.
IEEE Computer Society, 2018, pp. 1204-1207. poIL: 10.11
09/ICDE.2018.00111.

Jordi Fonollosa and Ramon Huerta. Gas sensor array
under dynamic gas mixtures Data Set. 2015. URL: https:
//archive.ics.uci.edu/ml/datasets/Gas+sensor+
array + under + dynamic + gas + mixtures (visited on
10/20/2020).

Jordi Fonollosa, Sadique Sheik, Ramén Huerta, and San-
tiago Marco. “Reservoir computing compensates slow
response of chemosensor arrays exposed to fast vary-
ing gas concentrations in continuous monitoring.” In:
Sensors and Actuators B: Chemical 215 (2015), pp. 618-629.
DOI: 10.1016/j.snb.2015.03.028.

Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and
Benny Pinkas. “Efficient Set Intersection with Simulation-
Based Security.” In: J. Cryptol. 29.1 (2016), pp. 115-155.
DOI: 10.1007/s00145-014-9190-0.

161


https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://nn2017.mit.edu/wp-content/uploads/sites/5/2017/12/Efros-NIPS-NN-17.pdf
https://nn2017.mit.edu/wp-content/uploads/sites/5/2017/12/Efros-NIPS-NN-17.pdf
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
https://doi.org/10.1007/s13748-013-0040-3
https://doi.org/10.1007/s13748-013-0040-3
https://doi.org/10.1109/ICDE.2018.00111
https://doi.org/10.1109/ICDE.2018.00111
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://doi.org/10.1016/j.snb.2015.03.028
https://doi.org/10.1007/s00145-014-9190-0

162

| BIBLIOGRAPHY

[FIPRos5]

[Genog]

[GIKMoo]

[GN19]

[Gilgg]

[Gl14]

[Golog]

[GGMS6]

[GMW87]

[GO96]

[GLN12]

[Gra+11a]

Michael J. Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. “Keyword Search and Oblivious Pseu-
dorandom Functions.” In: TCC. Springer, 2005, pp. 303~
324. DOIL: 10.1007/978-3-540-30576-7_17.

Craig Gentry. “Fully homomorphic encryption using
ideal lattices.” In: STOC. ACM, 2009, pp. 169—178. DOL:
10.1145/1536414.1536440.

Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal
Malkin. “Protecting Data Privacy in Private Informa-
tion Retrieval Schemes.” In: |. Comput. Syst. Sci. 60.3
(2000), pp- 592—629. DOIL: 10.1006/jcss.1999.1689.

Satrajit Ghosh and Tobias Nilges. “An Algebraic Ap-
proach to Maliciously Secure Private Set Intersection.”
In: EUROCRYPT (3). Springer, 2019, pp. 154-185. DOI:
10.1007/978-3-030-17659-4_6.

Niv Gilboa. “Two Party RSA Key Generation.” In:
CRYPTO. Springer, 1999, pp. 116-129. DOIL: 10.1007/3-5
40-48405-1_8.

Niv Gilboa and Yuval Ishai. “Distributed Point Functions
and Their Applications.” In: EUROCRYPT. Springer,
2014, pp. 640-658. DOL: 10 . 1007 /978 - 3 - 642 - 55220 -
5_35.

Oded Goldreich. The Foundations of Cryptography - Volume
2: Basic Applications. Cambridge University Press, 2004.
DOI: 10.1017/CB09780511721656.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
“How to construct random functions.” In: ]. ACM 33.4
(1986), pp. 792-807. pOI: 10.1145/6490.6503.

Oded Goldreich, Silvio Micali, and Avi Wigderson.
“How to Play any Mental Game or A Completeness
Theorem for Protocols with Honest Majority.” In: STOC.
ACM, 1987, pp. 218-229. DOI: 10.1145/28395.28420.

Oded Goldreich and Rafail Ostrovsky. “Software Protec-
tion and Simulation on Oblivious RAMs.” In: |. ACM
43.3 (1996), pp. 431—473. DOIL: 10.1145/233551.233553.

Thore Graepel, Kristin E. Lauter, and Michael Naehrig.
“ML Confidential: Machine Learning on Encrypted
Data.” In: ICISC. Springer, 2012, pp. 1—21. DOI: 10.1
007/978-3-642-37682-5_1.

Franz Graf, Hans-Peter Kriegel, Matthias Schubert, Se-
bastian Polsterl, and Alexander Cavallaro. “2D Image
Registration in CT Images Using Radial Image Descrip-
tors.” In: MICCAI (2). Springer, 2011, pp. 607—614. DOI:
10.1007/978-3-642-23629-7_74.


https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1006/jcss.1999.1689
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/233551.233553
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-642-23629-7_74

[Gra+11b]

[GRR19]

[G]+10]

[GJ+]

[HEN11]

[HM16]

[HMFS17]

[HK20]

[Hey+12]

[HHS17]

REFERENCES |

Franz Graf, Hans-Peter Kriegel, Matthias Schubert, Se-
bastian Polster]l, and Alexander Cavallaro. Relative loca-
tion of CT slices on axial axis Data Set. 2011. URL: https:
//archive . ics . uci.edu/ml/datasets/Relative+
location+of+CT+slices+on+axial+axis (visited on
10/20/2020).

Adam Groce, Peter Rindal, and Mike Rosulek. “Cheaper
Private Set Intersection via Differentially Private Leak-
age.” In: Proc. Priv. Enhancing Technol. 2019.3 (2019),
pp- 6—25. DOIL: 10.2478/popets-2019-0034.

Gaél Guennebaud, Benoit Jacob, et al. Eigen v3. 2010. URL:
http://eigen.tuxfamily.org (visited on 10/20/2020).

Gaél Guennebaud, Benoit Jacob, et al. Eigen: Sparse matrix
manipulations. URL: https://eigen.tuxfamily.org/dox/
group__TutorialSparse.html (visited on 10/20/2020).

Rob Hall, Stephen E Fienberg, and Yuval Nardi.
“Secure multiple linear regression based on homo-
morphic encryption.” In: Journal of Official Statistics
27.4 (2011), p. 669. URL: https : / /www . scb . se/
contentassets / ff271leeeca694f47ae99b942de61df83 /
secure - multiple - linear - regression - based - on -
homomorphic-encryption.pdf (visited on 10/20/2020).

Ruining He and Julian J. McAuley. “Ups and Downs:
Modeling the Visual Evolution of Fashion Trends with
One-Class Collaborative Filtering.” In: WWW. ACM,
2016, pp. 507-517. DOIL: 10.1145/2872427.2883037.

Xi He, Ashwin Machanavajjhala, Cheryl J. Flynn, and
Divesh Srivastava. “Composing Differential Privacy and
Secure Computation: A Case Study on Scaling Private
Record Linkage.” In: CCS. ACM, 2017, pp. 1389-1406.
DOI: 10.1145/3133956.3134030.

David Heath and Vladimir Kolesnikov. “Stacked Gar-
bling — Garbled Circuit Proportional to Longest Execu-
tion Path.” In: CRYPTO (2). Springer, 2020, pp. 763-792.
DOI: 10.1007/978-3-030-56880-1_27.

Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof
Paar, and Krzysztof Pietrzak. “Lapin: An Efficient Au-
thentication Protocol Based on Ring-LPN.” In: FSE.
Springer, 2012, pp. 346—365. DOL: 10.1007/978 -3 - 64
2-34047-5_20.

Elad Hoffer, Itay Hubara, and Daniel Soudry. “Train
longer, generalize better: closing the generalization
gap in large batch training of neural networks.” In:
NIPS. 2017, pp. 1731-1741. URL: http : / / papers .

163


https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://doi.org/10.2478/popets-2019-0034
http://eigen.tuxfamily.org
https://eigen.tuxfamily.org/dox/group__TutorialSparse.html
https://eigen.tuxfamily.org/dox/group__TutorialSparse.html
https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/secure-multiple-linear-regression-based-on-homomorphic-encryption.pdf
https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/secure-multiple-linear-regression-based-on-homomorphic-encryption.pdf
https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/secure-multiple-linear-regression-based-on-homomorphic-encryption.pdf
https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/secure-multiple-linear-regression-based-on-homomorphic-encryption.pdf
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/3133956.3134030
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-642-34047-5_20
http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks
http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks

164

| BIBLIOGRAPHY

[HSV16]

[HEK12]

[Hua+11]

[Ton+20]

[IKNPos3]

[IKOSo4]

[IPSo8]

[JMCSo08]

[JOP+]

nips . cc/ paper /6770 - train - longer - generalize -
better-closing-the-generalization-gap-in-large-
batch - training - of - neural - networks (visited on
10/20/2020).

Sebastiaan de Hoogh, Berry Schoenmakers, and Meilof
Veeningen. “Certificate Validation in Secure Computa-
tion and Its Use in Verifiable Linear Programming.” In:
AFRICACRYPT. Springer, 2016, pp. 265-284. DOL: 10.10
07/978-3-319-31517-1_14.

Yan Huang, David Evans, and Jonathan Katz. “Private
Set Intersection: Are Garbled Circuits Better than Cus-
tom Protocols?” In: NDSS. The Internet Society, 2012.
URL: https://www . ndss - symposium. org/ ndss2012
/ndss -2012 - programme/private - set- intersection -
are-garbled-circuits-better-custom-protocols/.

Yan Huang, Chih-Hao Shen, David Evans, Jonathan Katz,
and Abhi Shelat. “Efficient Secure Computation with
Garbled Circuits.” In: ICISS. Springer, 2011, pp. 28—48.
DOI: 10.1007/978-3-642-25560-1_2.

Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sar-
var Patel, Mariana Raykova, Shobhit Saxena, Karn Seth,
David Shanahan, and Moti Yung. “On Deploying Secure
Computing: Private Intersection-Sum-with-Cardinality.”
In: EuroS&P. 1IEEE, 2020.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
“Extending Oblivious Transfers Efficiently.” In: CRYPTO.
Springer, 2003, pp. 145-161. DOI: 10.1007/978-3-540-4
5146-4_09.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit
Sahai. “Batch codes and their applications.” In: STOC.
ACM, 2004, pp. 262—271. DOIL: 10.1145/1007352.100739
6.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai.
“Founding Cryptography on Oblivious Transfer - Ef-
ficiently.” In: CRYPTO. Springer, 2008, pp. 572-591. DOIL:
10.1007/978-3-540-85174-5_32.

Wei Jiang, Mummoorthy Murugesan, Chris Clifton, and
Luo Si. “Similar Document Detection with Limited Infor-
mation Disclosure.” In: ICDE. IEEE Computer Society,
2008, pp. 735—743. DOIL: 10.1109/ICDE.2008.4497482.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. Sparse
matrices (scipy.sparse) — SciPy v1.1.0 Reference Guide. URL:
https ://docs . scipy . org/doc/scipy/ reference/
sparse.html (visited on 10/20/2020).


http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks
http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks
http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks
http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks
https://doi.org/10.1007/978-3-319-31517-1_14
https://doi.org/10.1007/978-3-319-31517-1_14
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/private-set-intersection-are-garbled-circuits-better-custom-protocols/
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/private-set-intersection-are-garbled-circuits-better-custom-protocols/
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/private-set-intersection-are-garbled-circuits-better-custom-protocols/
https://doi.org/10.1007/978-3-642-25560-1_2
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1145/1007352.1007396
https://doi.org/10.1145/1007352.1007396
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1109/ICDE.2008.4497482
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html

[JVC18]

[Kai+19]

[KOV17]

[KO62]

[KLSRo4]

[KL14]

REFERENCES |

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. “GAZELLE: A Low Latency Framework
for Secure Neural Network Inference.” In: USENIX Secu-
rity Symposium. USENIX Association, 2018, pp. 1651—
1669. URL: https://www . usenix . org/ conference/
usenixsecurityl8/presentation/juvekar (visited on
10/20/2020).

Peter Kairouz, H. Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Salim El
Rouayheb, David Evans, Josh Gardner, Zachary Gar-
rett, Adria Gascén, Badih Ghazi, Phillip B. Gibbons,
Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He,
Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin
Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub
Konecny, Aleksandra Korolova, Farinaz Koushanfar,
Sanmi Koyejo, Tancrede Lepoint, Yang Liu, Prateek Mit-
tal, Mehryar Mohri, Richard Nock, Ayfer Ozgiir, Ras-
mus Pagh, Mariana Raykova, Hang Qi, Daniel Ram-
age, Ramesh Raskar, Dawn Song, Weikang Song, Se-
bastian U. Stich, Ziteng Sun, Ananda Theertha Suresh,
Florian Tramer, Praneeth Vepakomma, Jianyu Wang, Li
Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and
Sen Zhao. “Advances and Open Problems in Federated
Learning.” In: CoRR abs/1912.04977 (2019). URL: http:
//arxiv.org/abs/1912.04977 (visited on 10/26/2020).

Peter Kairouz, Sewoong Oh, and Pramod Viswanath.
“The Composition Theorem for Differential Privacy.” In:
IEEE Trans. Inf. Theory 63.6 (2017), pp. 4037—4049. DOL:
10.1109/TIT.2017.2685505.

Anatolii Alekseevich Karatsuba and Yu P Ofman. “Mul-
tiplication of many-digital numbers by automatic com-
puters.” In: Doklady Akademii Nauk. Vol. 145. 2. Russian
Academy of Sciences. 1962, pp. 293—294.

Alan F. Karr, Xiaodong Lin, Ashish P. Sanil, and Jerome P.
Reiter. “Regression on Distributed Databases via Secure
Multi-Party Computation.” In: DG.O. ACM International
Conference Proceeding Series. Digital Government Re-
search Center, 2004. URL: http://dl.acm.org/citation.
cfm?1d=1124299 (visited on 10/20/2020).

Jonathan Katz and Yehuda Lindell. Introduction to Mod-
ern Cryptography, Second Edition. CRC Press, 2014. 1SBN:

9781466570269.

165


https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1912.04977
https://doi.org/10.1109/TIT.2017.2685505
http://dl.acm.org/citation.cfm?id=1124299
http://dl.acm.org/citation.cfm?id=1124299

166

| BIBLIOGRAPHY

[Kel20]

[KOS15]

[KOS16]

[KPR18]

[KMWoo]

[Knug7]

[KKRT16]

[KSo8]

[Lauis]

[LP16]

[Laz+18]

Marcel Keller. “MP-SPDZ: A Versatile Framework
for Multi-Party Computation.” In: CCS. ACM, 2020,
pPp- 1575-1590. DOI: 10.1145/3372297.3417872.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. “Ac-
tively Secure OT Extension with Optimal Overhead.” In:
CRYPTO (1). Springer, 2015, pp. 724—741. DOL 10.1007
/978-3-662-47989-6_35.

Marcel Keller, Emmanuela Orsini, and Peter Scholl.
“MASCOT: Faster Malicious Arithmetic Secure Com-
putation with Oblivious Transfer.” In: CCS. ACM, 2016,
pp- 830-842. por: 10.1145/2976749.2978357.

Marcel Keller, Valerio Pastro, and Dragos Rotaru. “Over-
drive: Making SPDZ Great Again.” In: EUROCRYPT (3).
Springer, 2018, pp. 158-189. DOI: 10.1007/978-3-319-7
8372-7_6.

Adam Kirsch, Michael Mitzenmacher, and Udi Wieder.
“More Robust Hashing: Cuckoo Hashing with a Stash.”
In: SIAM . Comput. 39.4 (2009), pp. 1543—1561. DOIL: 10
.1137/080728743.

Donald E. Knuth. The Art of Computer Programming,
Volume 2 (3rd Ed.): Seminumerical Algorithms. Addison-
Wesley, 1997. ISBN: 978-0201896848.

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek,
and Ni Trieu. “Efficient Batched Oblivious PRF with
Applications to Private Set Intersection.” In: CCS. ACM,
2016, pPp- 818-829. po1: 10.1145/2976749.2978381.

Vladimir Kolesnikov and Thomas Schneider. “Improved
Garbled Circuit: Free XOR Gates and Applications.” In:
ICALP (2). Springer, 2008, pp. 486—498. por: 10.1007/97
8-3-540-70583-3_40.

Peeter Laud. “Parallel Oblivious Array Access for Secure
Multiparty Computation and Privacy-Preserving Mini-
mum Spanning Trees.” In: Proc. Priv. Enhancing Technol.
2015.2 (2015), pp. 188—205. DOIL: 10.1515/popets-2015-
0011.

Peeter Laud and Martin Pettai. “Secure Multiparty Sort-
ing Protocols with Covert Privacy.” In: NordSec. 2016,
pp- 216—231. DOI: 10.1007/978-3-319-47560-8_14.

Ibrahim Lazrig, Toan C. Ong, Indrajit Ray, Indrakshi Ray,
Xiaogian Jiang, and Jaideep Vaidya. “Privacy Preserv-
ing Probabilistic Record Linkage Without Trusted Third
Party.” In: PST. IEEE Computer Society, 2018, pp. 1-10.
DOI: 10.1109/PST.2018.8514192.


https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1137/080728743
https://doi.org/10.1137/080728743
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1515/popets-2015-0011
https://doi.org/10.1515/popets-2015-0011
https://doi.org/10.1007/978-3-319-47560-8_14
https://doi.org/10.1109/PST.2018.8514192

[Lep+20]

[LYRLo4]

[LSP15]

[Lin17]

[LOP11]

[LPoz2]

[LPog]

[LJLA17]

[Maa+11]

[MNPSo4]

REFERENCES |

Tancrede Lepoint, Sarvar Patel, Mariana Raykova, Karn
Seth, and Ni Trieu. “Private Join and Compute from PIR
with Default.” In: IACR Cryptol. ePrint Arch. 2020 (2020),
p- 1011. URL: https://eprint.iacr.org/2020/1011.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan
Li. “RCV1: A New Benchmark Collection for Text Cat-
egorization Research.” In: J. Mach. Learn. Res. 5 (2004),
pp- 361—397. URL: http://jmlr.org/papers/volume5
/lewis04a/lewis04a.pdf (visited on 10/20/2020).

Frank Li, Richard Shin, and Vern Paxson. “Exploring Pri-
vacy Preservation in Outsourced K-Nearest Neighbors
with Multiple Data Owners.” In: CCSW. ACM, 2015,
pp- 53—64. DOL: 10.1145/2808425.2808430.

Yehuda Lindell. “How to Simulate It - A Tutorial on the
Simulation Proof Technique.” In: Tutorials on the Founda-
tions of Cryptography. Springer International Publishing,
2017, pp. 277-346. DOIL: 10.1007/978-3-319-57048-8_6.

Yehuda Lindell, Eli Oxman, and Benny Pinkas. “The
IPS Compiler: Optimizations, Variants and Concrete Ef-
ficiency.” In: CRYPTO. Springer, 2011, pp. 259—276. DOI:
10.1007/978-3-642-22792-9_15.

Yehuda Lindell and Benny Pinkas. “Privacy Preserving
Data Mining.” In: J. Cryptology 15.3 (2002), pp. 177-206.
DOI: 10.1007/s500145-001-0019-2.

Yehuda Lindell and Benny Pinkas. “A Proof of Security
of Yao’s Protocol for Two-Party Computation.” In: J.
Cryptology 22.2 (2009), pp. 161-188. poI: 10.1007/50014
5-008-9036-8.

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. “Oblivious
Neural Network Predictions via MiniONN Transforma-
tions.” In: CCS. ACM, 2017, pp. 619-631. DOL: 10.1145
/3133956.3134056

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. “Learning
Word Vectors for Sentiment Analysis.” In: ACL. The
Association for Computer Linguistics, 2011, pp. 142-150.
URL: https://www.aclweb.org/anthology/P11-1015/
(visited on 10/20/2020).

Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron
Sella. “Fairplay — A Secure Two-Party Computation Sys-
tem.” In: USENIX Security Symposium. USENIX, 2004,
pp. 287-302. URL: https://www.usenix.org/legacy/
events/sec04 /tech/malkhi/malkhi . pdf (visited on
10/20/2020).

167


https://eprint.iacr.org/2020/1011
http://jmlr.org/papers/volume5/lewis04a/lewis04a.pdf
http://jmlr.org/papers/volume5/lewis04a/lewis04a.pdf
https://doi.org/10.1145/2808425.2808430
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-642-22792-9_15
https://doi.org/10.1007/s00145-001-0019-2
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://www.aclweb.org/anthology/P11-1015/
https://www.usenix.org/legacy/events/sec04/tech/malkhi/malkhi.pdf
https://www.usenix.org/legacy/events/sec04/tech/malkhi/malkhi.pdf

168

| BIBLIOGRAPHY

[MRSo8]

[MG18]

[McA]

[MToy]

[Meuo6]

[MPRVog9]

[MB72]

[MFo6]

[MZ17]

[Muri2]

[Mur+10]

[NPg9]

Christopher Manning, Prabhakar Raghavan, and Hin-
rich Schiitze. “Scoring, term weighting and the vector
space model.” In: Introduction to information retrieval.
2008, pp. 100-122. ISBN: 978-0521865715.

Sahar Mazloom and S. Dov Gordon. “Secure Compu-
tation with Differentially Private Access Patterns.” In:
CCS. ACM, 2018, pp. 490-507. DOL: 10.1145/3243734.3
243851.

Julian McAuley. Amazon Product Data. URL: http :
/ / jmcauley . ucsd . edu / data / amazon/ (visited on
10/20/2020).

Frank McSherry and Kunal Talwar. “Mechanism De-
sign via Differential Privacy.” In: FOCS. IEEE Computer
Society, 2007, pp. 94-103. DOIL: 10.1109/F0CS.2007.41.

G. Meurant. The Lanczos and Conjugate Gradient Al-
gorithms: From Theory to Finite Precision Computations.
Vol. 19. Software, Environments and Tools. STAM, 2006.
ISBN: 978-0898716160.

Ilya Mironov, Omkant Pandey, Omer Reingold, and
Salil P. Vadhan. “Computational Differential Privacy.”
In: CRYPTO. Springer, 2009, pp. 126—142. DOI: 10.1007
/978-3-642-03356-8_8.

R. Moenck and Allan Borodin. “Fast Modular Trans-
forms via Division.” In: SWAT (FOCS). IEEE Computer
Society, 1972, pp. 90—96. DOIL: 10.1109/SWAT.1972.5.

Payman Mohassel and Matthew K. Franklin. “Efficiency
Tradeoffs for Malicious Two-Party Computation.” In:
Public Key Cryptography. Springer, 2006, pp. 458—473. DOIL:
10.1007/11745853_30.

Payman Mohassel and Yupeng Zhang. “SecureML: A
System for Scalable Privacy-Preserving Machine Learn-
ing.” In: IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2017, pp. 19—38. por: 10.1109/5P. 20
17.12.

Kevin P. Murphy. Machine Learning: A Probabilistic Per-
spective. Adaptive computation and machine learning.
MIT Press, 2012. I1SBN: 978-0262018029.

Mummoorthy Murugesan, Wei Jiang, Chris Clifton, Luo
Si, and Jaideep Vaidya. “Efficient privacy-preserving
similar document detection.” In: VLDB J. 19.4 (2010),
PP- 457-475. DOIL: 10.1007/s00778-009-0175-9.

Moni Naor and Benny Pinkas. “Oblivious Transfer and
Polynomial Evaluation.” In: STOC. ACM, 1999, pp. 245-
254. DOIL: 10.1145/301250.301312.


https://doi.org/10.1145/3243734.3243851
https://doi.org/10.1145/3243734.3243851
http://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/amazon/
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1109/SWAT.1972.5
https://doi.org/10.1007/11745853_30
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1007/s00778-009-0175-9
https://doi.org/10.1145/301250.301312

[NPo1]

[NPo6]

[NPSg9]

[Nay+15]

[NNOB12]

[Nik+13a]

[Nik+13b]

[NWo9]

[PRo4]

[PSWoo]

[Ped+11]

REFERENCES |

Moni Naor and Benny Pinkas. “Efficient oblivious trans-
fer protocols.” In: SODA. ACM/SIAM, 2001, pp. 448—
457. URL: http://dl.acm.org/citation.cfm?id=365411
.365502 (visited on 10/20/2020).

Moni Naor and Benny Pinkas. “Oblivious Polynomial
Evaluation.” In: SIAM ]. Comput. 35.5 (2006), pp. 1254~
1281. DOI: 10.1137/50097539704383633.

Moni Naor, Benny Pinkas, and Reuban Sumner. “Privacy
preserving auctions and mechanism design.” In: EC.
ACM, 1999, pp. 129-139. DOIL: 10.1145/336992.337028.

Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi
Weinsberg, Nina Taft, and Elaine Shi. “GraphSC: Parallel
Secure Computation Made Easy.” In: IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2015,
pPP- 377-394. DOIL: 10.1109/SP.2015. 30.

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio
Orlandi, and Sai Sheshank Burra. “A New Approach
to Practical Active-Secure Two-Party Computation.” In:
CRYPTO. Springer, 2012, pp. 681—700. DOL 10.1007/978

-3-642-32009-5_40

Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg,
Marc Joye, Nina Taft, and Dan Boneh. “Privacy-
preserving matrix factorization.” In: CCS. ACM, 2013,
pp- 801-812. poI: 10.1145/2508859.2516751.

Valeria Nikolaenko, Udi Weinsberg, Stratis Ioanni-
dis, Marc Joye, Dan Boneh, and Nina Taft. “Privacy-
Preserving Ridge Regression on Hundreds of Millions
of Records.” In: IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2013, pp. 334—348. DOI: 10.1109
/SP.2013.30.

Jorge Nocedal and Stephen J. Wright. Numerical Opti-
mization. Springer, 1999. ISBN: 978-0387987934.

Rasmus Pagh and Flemming Friche Rodler. “Cuckoo
hashing.” In: J. Algorithms 51.2 (2004), pp. 122—144. DOL:
10.1016/j.jalgor.2003.12.002.

Maura B. Paterson, Douglas R. Stinson, and Ruizhong
Wei. “Combinatorial batch codes.” In: Adv. Math. Com-
mun. 3.1 (2009), pp. 13—27. DOL 10.3934/amc.2009.3.13.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake VanderPlas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Edouard Duchesnay. “Scikit-learn: Machine Learning in

169


http://dl.acm.org/citation.cfm?id=365411.365502
http://dl.acm.org/citation.cfm?id=365411.365502
https://doi.org/10.1137/S0097539704383633
https://doi.org/10.1145/336992.337028
https://doi.org/10.1109/SP.2015.30
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1145/2508859.2516751
https://doi.org/10.1109/SP.2013.30
https://doi.org/10.1109/SP.2013.30
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.3934/amc.2009.3.13

170

| BIBLIOGRAPHY

[PRTY20]

[PSTY19]

[PSZ18]

[Powg8]

[PS15]

[Quig3a]

[Quig3b]

[Rab81]

[Redog]

[RBoz2]

Python.” In: J. Mach. Learn. Res. 12 (2011), pp. 2825-2830.
URL: http://dl.acm.org/citation.cfm?id=2078195
(visited on 10/20/2020).

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. “PSI from PaXoS: Fast, Malicious Private Set In-
tersection.” In: EUROCRYPT (2). Springer, 2020, pp. 739—
767. DOI: 10.1007/978-3-030-45724-2_25.

Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko,
and Avishay Yanai. “Efficient Circuit-Based PSI with
Linear Communication.” In: EUROCRYPT (3). Springer,
2019, pp. 122-153. DOL: 10.1007/978-3-030-17659-4_5.

Benny Pinkas, Thomas Schneider, and Michael Zohner.
“Scalable Private Set Intersection Based on OT Exten-
sion.” In: ACM Trans. Priv. Secur. 21.2 (2018), 7:1-7:35.
DOI: 10.1145/3154794.

David M. W. Powers. “Applications and Explanations
of Zipt’s Law.” In: CoNLL. ACL, 1998, pp. 151-160. URL:
https://www.aclweb.org/anthology/W98-1218/ (vis-
ited on 10/20/2020).

Pille Pullonen and Sander Siim. “Combining Secret Shar-
ing and Garbled Circuits for Efficient Private IEEE 754
Floating-Point Computations.” In: Financial Cryptography
Workshops. Springer, 2015, pp. 172-183. DoI: 10.1007/97
8-3-662-48051-9_13.

J. Ross Quinlan. Auto MPG Data Set. 1993. URL: https://
archive.ics.uci.edu/ml/datasets/Auto+MPG (visited
on 10/20/2020).

J. Ross Quinlan. “Combining Instance-Based and Model-
Based Learning.” In: ICML. Morgan Kaufmann, 1993,
pp- 236—243. DOL: 10.1016/b978-1-55860-307-3.50037-
X.

Michael O. Rabin. How to exchange secrets with oblivious
transfer. Tech. rep. TR-81. Aiken Computation Lab, Har-
vard University, 1981. URL: https://eprint.iacr.org/2
005/187 (visited on 10/20/2020).

Michael Redmond. Communities and Crime Data Set. 2009.
URL: https://archive.ics.uci.edu/ml/datasets/
Communities+and+Crime (visited on 10/20/2020).

Michael Redmond and Alok Baveja. “A data-driven soft-
ware tool for enabling cooperative information sharing
among police departments.” In: Eur. |. Oper. Res. 141.3
(2002), pp. 660-678. DOI: 10.1016/50377-2217(01)0026
4-8.


http://dl.acm.org/citation.cfm?id=2078195
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1145/3154794
https://www.aclweb.org/anthology/W98-1218/
https://doi.org/10.1007/978-3-662-48051-9_13
https://doi.org/10.1007/978-3-662-48051-9_13
https://archive.ics.uci.edu/ml/datasets/Auto+MPG
https://archive.ics.uci.edu/ml/datasets/Auto+MPG
https://doi.org/10.1016/b978-1-55860-307-3.50037-x
https://doi.org/10.1016/b978-1-55860-307-3.50037-x
https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2005/187
https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
https://doi.org/10.1016/S0377-2217(01)00264-8
https://doi.org/10.1016/S0377-2217(01)00264-8

[RLo8]

[Ria+16]

[RWLX16]

[AWCK17]

[SKLRo4]

[SLo3]

[Sho+o1]

[The+15]

[The]

[Wako68]

[WMK16]

REFERENCES |

Jason Rennie and Ken Lang. The 20 Newsgroups data set.
2008. URL: http://qwone.com/~jason/20Newsgroups/
(visited on 10/20/2020).

M. Sadegh Riazi, Beidi Chen, Anshumali Shrivastava,
Dan S. Wallach, and Farinaz Koushanfar. “Sub-linear
Privacy-preserving Search with Untrusted Server and
Semi-honest Parties.” In: CoRR abs/1612.01835 (2016).
URL: http://arxiv.org/abs/1612.01835 (visited on
10/20/2020).

Hong Rong, Huimei Wang, Jian Liu, and Ming Xian.
“Privacy-Preserving k-Nearest Neighbor Computation in
Multiple Cloud Environments.” In: IEEE Access 4 (2016),
pPp- 9589—9603. DOI: 10.1109/ACCESS.2016.2633544.

Mohammad Al-Rubaie, Pei Yuan Wu, J. Morris Chang,
and Sun-Yuan Kung. “Privacy-preserving PCA on
horizontally-partitioned data.” In: DSC. IEEE, 2017,
pp- 280—287. por: 10.1109/DESEC.2017.8073817.

Ashish P. Sanil, Alan F. Karr, Xiaodong Lin, and Jerome
P. Reiter. “Privacy preserving regression modelling via
distributed computation.” In: KDD. ACM, 2004, pp. 677-
682. pOIL: 10.1145/1014652.1014139.

George A. F. Seber and Alan J. Lee. Linear regression
analysis. 2nd ed. John Wiley & Sons, 2003. 1sBN: 978-
0471415404.

Victor Shoup et al. NTL: A library for doing number theory.
2001. URL: https://www. shoup.net/ntl (visited on
10/20/2020).

The 1000 Genomes Project Consortium et al. “A global
reference for human genetic variation.” In: Nature 526
(2015), pp- 68-74. DOI: 10.1038/naturel5393.

The Scikit-learn authors. Scikit-learn language identifica-
tion dataset. URL: https://github.com/scikit-learn/
scikit - learn/ tree / master /doc / tutorial / text _
analytics/data/languages (visited on 10/20/2020).

Abraham Waksman. “A Permutation Network.” In: J.
ACM 15.1 (1968), pp. 159-163. DOIL: 10.1145/321439.321
449,

Xiao Wang, Alex ]J. Malozemoff, and Jonathan Katz.
EMP-toolkit: Efficient MultiParty computation toolkit. 2016.
URL: https://github.com/emp - toolkit (visited on
10/20/2020).

171


http://qwone.com/~jason/20Newsgroups/
http://arxiv.org/abs/1612.01835
https://doi.org/10.1109/ACCESS.2016.2633544
https://doi.org/10.1109/DESEC.2017.8073817
https://doi.org/10.1145/1014052.1014139
https://www.shoup.net/ntl
https://doi.org/10.1038/nature15393
https://github.com/scikit-learn/scikit-learn/tree/master/doc/tutorial/text_analytics/data/languages
https://github.com/scikit-learn/scikit-learn/tree/master/doc/tutorial/text_analytics/data/languages
https://github.com/scikit-learn/scikit-learn/tree/master/doc/tutorial/text_analytics/data/languages
https://doi.org/10.1145/321439.321449
https://doi.org/10.1145/321439.321449
https://github.com/emp-toolkit

172

| BIBLIOGRAPHY

[Weib1]

[WYKW20]

[Wil88]

[Win84]

[Yan]

[Yan+20]

[Yao86]

[YV]o6]

[ZE15]

[ZRE15]

Martin H Weik. A Third Survey of Domestic Electronic Dig-
ital Computing Systems. Tech. rep. DTIC Document, Bal-
listic Research Laboratories, Aberdeen Proving Ground,
Maryland, 1961. URL: https://archive.org/details/
DTIC AD0253212 (visited on 10/20/2020).

Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao
Wang. “Fast, Scalable, and Communication-Efficient
Zero-Knowledge Proofs for Boolean and Arithmetic Cir-
cuits.” In: IACR Cryptol. ePrint Arch. 2020 (2020), p. 925.
URL: https://eprint.iacr.org/2020/925 (visited on
01/10/2021).

James Hardy Wilkinson. The algebraic eigenvalue problem.
Clarendon Press Oxford, 1988. 1sBN: 978-0198534181.

Robert S. Winternitz. “A Secure One-Way Hash Function
Built from DES.” In: IEEE Symposium on Security and
Privacy. IEEE Computer Society, 1984, pp. 88—90. DOIL:
10.1109/5P.1984.10027.

Avishay Yanai. FastPolynomial. URL: https://github.
com / AvishayYanay / FastPolynomial (visited on
10/20/2020).

Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang,
and Xiao Wang. “Ferret: Fast Extension for Correlated
OT with Small Communication.” In: CCS. ACM, 2020,
pp. 1607-1626. DOI: 10.1145/3372297.3417276.

Andrew Chi-Chih Yao. “How to Generate and Exchange
Secrets (Extended Abstract).” In: FOCS. IEEE Computer
Society, 1986, pp. 162-167. DOI: 10.1109/SFCS.1986.25.

Hwanjo Yu, Jaideep Vaidya, and Xiaogian Jiang.
“Privacy-Preserving SVM Classification on Vertically Par-
titioned Data.” In: PAKDD. Springer, 2006, pp. 647-656.
DOI: 10.1007/11731139_74.

Samee Zahur and David Evans. “Obliv-C: A Language
for Extensible Data-Oblivious Computation.” In: JACR
Cryptol. ePrint Arch. 2015 (2015), p. 1153. URL: https:
//eprint.iacr.org/2015/1153 (visited on 10/20/2020).

Samee Zahur, Mike Rosulek, and David Evans. “Two
Halves Make a Whole — Reducing Data Transfer in Gar-
bled Circuits Using Half Gates.” In: EUROCRYPT (2).
Springer, 2015, pp. 220-250. DOI: 10.1007/978-3-662-4
6803-6_8.


https://archive.org/details/DTIC_AD0253212
https://archive.org/details/DTIC_AD0253212
https://eprint.iacr.org/2020/925
https://doi.org/10.1109/SP.1984.10027
https://github.com/AvishayYanay/FastPolynomial
https://github.com/AvishayYanay/FastPolynomial
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/11731139_74
https://eprint.iacr.org/2015/1153
https://eprint.iacr.org/2015/1153
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8

[Zah+16]

[Zhoog]

AUTHOR'S

[Ali+21]

[Gas+17]

[RS21]

[SGRP19]

[SGRR19]

[SVGB2o0]

AUTHOR'S PUBLICATIONS |

Samee Zahur, Xiao Wang, Mariana Raykova, Adria
Gascon, Jack Doerner, David Evans, and Jonathan Katz.
“Revisiting Square-Root ORAM: Efficient Random Ac-
cess in Multi-party Computation.” In: IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2016,

pp- 218-234.

Jingren Zhou. “Sort-Merge Join.” In: Encyclopedia of
Database Systems. Springer US, 2009, pp. 2673—2674. DOI:
10.1007/978-0-387-39940-9_867.

PUBLICATIONS

Asra Ali, Tancréde Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. “Communication-Computation Trade-offs in PIR.”
In: USENIX Security Symposium. USENIX Association,
2021, pp. 1811-1828. URL: https://www.usenix.org/
conference/usenixsecurity2l/presentation/ali.

Adria Gascoén, Phillipp Schoppmann, Borja Balle, Mar-
iana Raykova, Jack Doerner, Samee Zahur, and David
Evans. “Privacy-Preserving Distributed Linear Regres-
sion on High-Dimensional Data.” In: Proc. Priv. Enhanc-
ing Technol. 2017.4 (2017), pp. 345-364. DOL: 10 . 1515
/popets-2017-0053.

Peter Rindal and Phillipp Schoppmann. “VOLE-PSI:
Fast OPRF and Circuit-PSI from Vector-OLE.” In: EU-
ROCRYPT (2). Vol. 12697. Lecture Notes in Computer
Science. Springer, 2021, pp. 901-930. DOL 10.1007/978-
3-030-77886-6_31.

Phillipp Schoppmann, Adria Gascén, Mariana Raykova,
and Benny Pinkas. “Make Some ROOM for the Zeros:
Data Sparsity in Secure Distributed Machine Learning.”
In: CCS. ACM, 2019, pp. 1335-1350. DOL: 10.1145/33195
35.3339816.

Phillipp Schoppmann, Adria Gascon, Leonie Reichert,
and Mariana Raykova. “Distributed Vector-OLE: Im-
proved Constructions and Implementation.” In: CCS.
ACM, 2019, pp. 1055-1072. DOIL: 10.1145/3319535.3363
228.

Phillipp Schoppmann, Lennart Vogelsang, Adria Gascén,
and Borja Balle. “Secure and Scalable Document Similar-
ity on Distributed Databases: Differential Privacy to the
Rescue.” In: Proc. Priv. Enhancing Technol. 2020.2 (2020),
Pp- 200—229. DOI: 10.2478/popets-2020-0024.

173


https://doi.org/10.1007/978-0-387-39940-9_867
https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://doi.org/10.1515/popets-2017-0053
https://doi.org/10.1515/popets-2017-0053
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1145/3319535.3339816
https://doi.org/10.1145/3319535.3339816
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.2478/popets-2020-0024

174

| BIBLIOGRAPHY

[Sta+20]

[Vog+20]

Sebastian Stammler, Tobias Kussel, Phillipp Schopp-
mann, Florian Stampe, Galina Tremper, Stefan Katzen-
beisser, Kay Hamacher, and Martin Lablans. “Mainzel-
liste SecureEpiLinker (MainSEL): Privacy-Preserving
Record Linkage using Secure Multi-Party Computation.”
In: Bioinformatics (Sept. 2020). btaay64. por: 10 . 1093
/bioinformatics/btaa764.

Lennart Vogelsang, Moritz Lehne, Phillipp Schoppmann,
Fabian Prasser, Sylvia Thun, Bjorn Scheuermann, and
Josef Schepers. “A Secure Multi-Party Computation Pro-
tocol for Time-To-Event Analyses.” In: MIE. Vol. 27o0.
Studies in Health Technology and Informatics. IOS Press,
2020, pp. 8-12. DOIL: 10.3233/SHTI200112.


https://doi.org/10.1093/bioinformatics/btaa764
https://doi.org/10.1093/bioinformatics/btaa764
https://doi.org/10.3233/SHTI200112

DECLARATION

I declare that I have completed the thesis independently using only the
aids and tools specified. I have not applied for a doctor’s degree in the
doctoral subject elsewhere and do not hold a corresponding doctor’s
degree. I have taken due note of the Faculty of Mathematics and
Natural Sciences PhD Regulations, published in the Official Gazette
of Humboldt-Universitdt zu Berlin no. 42 on July 11 2018.

Phillipp Schoppmann



	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.1.1 Linear Regression
	1.1.2 Document Similarity and Classification
	1.1.3 Sparse Linear Algebra
	1.1.4 Distributed Vector OLE


	2 Background
	2.1 Privacy-Preserving Machine Learning
	2.2 Secure Multi-Party Computation
	2.3 Composition and Secret Sharing
	2.4 Oblivious Transfer
	2.5 Garbled Circuits

	3 Secure Linear Regression on High-Dimensional Data
	3.1 Overview
	3.1.1 Chapter Contributions

	3.2 Related Work
	3.3 Background on Linear Regression
	3.4 Protocol Description
	3.4.1 Aggregation Phase
	3.4.2 Solving Phase
	3.4.3 Secure Linear Regression

	3.5 Number Representation
	3.5.1 Fixed-Point Arithmetic
	3.5.2 Accuracy of Inner Product
	3.5.3 Data Standardization and Scaling

	3.6 Solving Linear Systems
	3.6.1 Conjugate Gradient Descent

	3.7 Experimental Results
	3.7.1 Implementation and Setup
	3.7.2 Solving Phase
	3.7.3 Aggregation Phase
	3.7.4 Experiments on Real Datasets

	3.8 Beyond Semi-Honest Security
	3.8.1 The Verification Phase

	3.9 Discussion

	 Chapter Appendix
	3.A Further Experimental Results

	4 Secure and Scalable Document Similarity
	4.1 Overview
	4.1.1 Chapter Contributions

	4.2 Related Work
	4.3 Background: TF-IDF Features
	4.4 Sparse Inner Products and Document Similarity
	4.4.1 Sparsity in Real-World Data
	4.4.2 Notation
	4.4.3 Secure Sparse Inner Products
	4.4.4 Secure Correlated Permutations
	4.4.5 From Inner Products to Sparse Matrix Multiplication

	4.5 Private Feature Extraction
	4.5.1 Multi-Party Computational Differential Privacy
	4.5.2 Differentially Private IDF Computation
	4.5.3 Implementing Private IDFs in MPC
	4.5.4 Utility Analysis

	4.6 Secure Document Classification
	4.6.1 Security with Differentially Private Leakage
	4.6.2 Secure k-NN Classification

	4.7 Experiments
	4.7.1 Running Time
	4.7.2 Secure Document Classification

	4.8 Discussion

	5 The ROOM Framework for Sparse Linear Algebra
	5.1 Overview
	5.1.1 Chapter Contributions

	5.2 Background and Setup
	5.3 Basic Primitive: ROOM
	5.3.1 Existing Primitives
	5.3.2 Instantiations of ROOM

	5.4 ROOM for Secure Sparse Linear Algebra
	5.4.1 Gather and Scatter
	5.4.2 Sparse Matrix-Vector Multiplication

	5.5 Applications
	5.5.1 Similarity Computation and k-Nearest Neighbors
	5.5.2 Naive Bayes Classification
	5.5.3 Logistic Regression Training

	5.6 Implementation of our Framework
	5.7 Experimental Evaluation
	5.7.1 ROOM Micro-Benchmarks
	5.7.2 Datasets
	5.7.3 k-Nearest Neighbors
	5.7.4 Logistic Regression Training

	5.8 Discussion

	6 Efficient Distributed Vector OLE Generation
	6.1 Overview
	6.1.1 Chapter Contributions

	6.2 Preliminaries
	6.2.1 m-out-of-n Oblivious Transfer
	6.2.2 Cuckoo Hashing
	6.2.3 Function Secret Sharing
	6.2.4 Vector OLE
	6.2.5 LPN Assumption
	6.2.6 Definitions, Functionalities, and Secure Two-Party Protocols

	6.3  (n-1)-out-of-n Random OT
	6.4 Known-Index SPFSS
	6.5 Known-Indices MPFSS via Cuckoo Hashing
	6.5.1 Batching Known-Index SPFSS

	6.6 Distributed Vector-OLE from MPFSS
	6.7 Applications
	6.7.1 Secure Linear algebra
	6.7.2 Oblivious Polynomial Evaluation
	6.7.3 Partially Private Distributed ORAM

	6.8 Experimental Evaluation
	6.8.1 Implementation and Setup
	6.8.2 Parameter Selection
	6.8.3 Results

	6.9 Discussion

	 Chapter Appendix
	6.A Security Proofs
	6.A.1 (n-1)-out-of-n-ROT
	6.A.2 Known-Index SPFSS
	6.A.3 Known-Indices MPFSS


	7 Conclusion
	Declaration

