51,157 research outputs found

    Using Data in Undergraduate Science Classrooms

    Get PDF
    Provides pedagogical insight concerning the skill of using data The resource being annotated is: http://www.dlese.org/dds/catalog_DATA-CLASS-000-000-000-007.htm

    Big Data as a Technology-to-think-with for Scientific Literacy

    Get PDF
    This research aimed to identify indications of scientific literacy resulting from a didactic and investigative interaction with Google Trends Big Data software by first-year students from a high-school in Novo Hamburgo, Southern Brazil. Both teaching strategies and research interpretations lie on four theoretical backgrounds. Firstly, Bunge's epistemology, which provides a thorough characterization of Science that was central to our study. Secondly, the conceptual framework of scientific literacy of Fives et al. that makes our teaching focus precise and concise, as well as supports one of our methodological tool: the SLA (scientific literacy assessment). Thirdly, the "crowdledge" construct from dos Santos, which gives meaning to our study when as it makes the development of scientific literacy itself versatile for paying attention on sociotechnological and epistemological contemporary phenomena. Finally, the learning principles from Papert's Constructionism inspired our educational activities. Our educational actions consisted of students, divided into two classes, investigating phenomena chose by them. A triangulation process to integrate quantitative and qualitative methods on the assessments results was done. The experimental design consisted in post-tests only and the experimental variable was the way of access to the world. The experimental group interacted with the world using analyses of temporal and regional plots of interest of terms or topics searched on Google. The control class did 'placebo' interactions with the world through on-site observations of bryophytes, fungus or whatever in the schoolyard. As general results of our research, a constructionist environment based on Big Data analysis showed itself as a richer strategy to develop scientific literacy, compared to a free schoolyard exploration.Comment: 23 pages, 2 figures, 8 table

    Effects of immersion in inquiry-based learning on student teachers’ educational beliefs

    Get PDF
    Professional development on inquiry-based learning (IBL) generally draws heavily on the principle of providing instruction in line with what teachers are expected to do in their classroom. So far, however, relatively little is known about how this impacts teachers' educational beliefs, even though these beliefs ultimately determine their classroom behavior. The present study therefore investigates how immersion in inquiry-based learning affects student teachers' beliefs about knowledge goals, in addition to their self-efficacy for inquiry. In total, 302 student history teachers participated in a 4-h long inquiry activity designed within the WISE learning environment, and completed a pre- and posttest right before and after the intervention. Multilevel analyses suggest that the intervention had a significant positive effect on the value that student teachers attributed to procedural knowledge goals, or learning how historical knowledge is constructed, and on student teachers' self-efficacy for conducting inquiries. Despite these general positive results, however, the results also show that the impact of the intervention differed significantly across students. In particular, it appears that immersion in IBL had little effect on a subgroup of 25 student-teachers, who held largely content-oriented beliefs. Based on these findings, the present study discusses a number of implications for professional development on IBL

    The representation of scientific research in the national curriculum and secondary school pupils’ perceptions of research, its function, usefulness and value to their lives

    Get PDF
    Young people’s views on what research is, how it is conducted and whether it is important, influences the decisions they make about their further studies and career choices. In this paper we report the analysis of questionnaire data with a particular focus on pupil perceptions of research in the sciences and of the scientific method. The questionnaire was a 25-item Likert Scale (1-5) distributed to seven collaborating schools. We received 2634 returns from pupils across key stages 3, 4 and 5. We also asked teachers to complete the questionnaire in order to explore how they thought their pupils would respond. We received 54 teacher responses. Statistically significant differences in the responses were identified through a chi-square test on SPSS. As what is being taught influences secondary pupil views on research we also consider how the term ‘research’ appears in the national curriculum for England and Wales and the three main English exam boards. The main theoretical construct that informs our analysis of the questionnaire data and the national curriculum is Angela Brew’s 4-tier descriptor of perceptions of research (domino, trading, layer, journey). We use this framework in order to map what, when and how research is presented to school pupils in England and Wales. We also use this framework in order to highlight and discuss certain pupil views that emerged from the questionnaire data and which indicate areas where curriculum and pedagogy intervention may be necessary: pupils seem less confident in their understanding of research as involving the identification of a research question; and, they often see research as a means to confirm one’s own opinion. They do however understand research as involving the generation of new knowledge and the collection of new data, such as interviews and questionnaires as well as laboratory work, field trips and library searches and they appear relatively confident in their statements about their ability to do research, their school experiences of research and the importance of research in their future career choice

    How physics instruction impacts students' beliefs about learning physics: A meta-analysis of 24 studies

    Get PDF
    In this meta-analysis, we synthesize the results of 24 studies using the Colorado Learning Attitudes about Science Survey (CLASS) and the Maryland Physics Expectations Survey (MPEX) to answer several questions: (1) How does physics instruction impact students' beliefs? (2) When do physics majors develop expert-like beliefs? and (3) How do students' beliefs impact their learning of physics? We report that in typical physics classes, students' beliefs deteriorate or at best stay the same. There are a few types of interventions, including an explicit focus on model-building and/or developing expert- like beliefs that lead to significant improvements in beliefs. Further, small courses and those for elementary education and non-science majors also result in improved beliefs. However, because the available data oversamples certain types of classes, it is unclear whether these improvements are actually due to the interventions, or due to the small class size, or student population typical of the kinds of classes in which these interventions are most often used. Physics majors tend to enter their undergraduate education with more expert-like beliefs than non-majors and these beliefs remain relatively stable throughout their undergraduate careers. Thus, typical physics courses appear to be selecting students who already have strong beliefs, rather than supporting students in developing strong beliefs. There is a small correlation between students' incoming beliefs about physics and their gains on conceptual mechanics surveys. This suggests that students with more expert-like incoming beliefs may learn more in their physics courses, but this finding should be further explored and replicated. Some unanswered questions remain. To answer these questions, we advocate several specific types of future studies.Comment: 30 pages. Accepted to Phys Rev ST-PE

    Building an Expert System for Evaluation of Commercial Cloud Services

    Full text link
    Commercial Cloud services have been increasingly supplied to customers in industry. To facilitate customers' decision makings like cost-benefit analysis or Cloud provider selection, evaluation of those Cloud services are becoming more and more crucial. However, compared with evaluation of traditional computing systems, more challenges will inevitably appear when evaluating rapidly-changing and user-uncontrollable commercial Cloud services. This paper proposes an expert system for Cloud evaluation that addresses emerging evaluation challenges in the context of Cloud Computing. Based on the knowledge and data accumulated by exploring the existing evaluation work, this expert system has been conceptually validated to be able to give suggestions and guidelines for implementing new evaluation experiments. As such, users can conveniently obtain evaluation experiences by using this expert system, which is essentially able to make existing efforts in Cloud services evaluation reusable and sustainable.Comment: 8 page, Proceedings of the 2012 International Conference on Cloud and Service Computing (CSC 2012), pp. 168-175, Shanghai, China, November 22-24, 201
    • …
    corecore