6,711 research outputs found

    Link Before You Share: Managing Privacy Policies through Blockchain

    Full text link
    With the advent of numerous online content providers, utilities and applications, each with their own specific version of privacy policies and its associated overhead, it is becoming increasingly difficult for concerned users to manage and track the confidential information that they share with the providers. Users consent to providers to gather and share their Personally Identifiable Information (PII). We have developed a novel framework to automatically track details about how a users' PII data is stored, used and shared by the provider. We have integrated our Data Privacy ontology with the properties of blockchain, to develop an automated access control and audit mechanism that enforces users' data privacy policies when sharing their data across third parties. We have also validated this framework by implementing a working system LinkShare. In this paper, we describe our framework on detail along with the LinkShare system. Our approach can be adopted by Big Data users to automatically apply their privacy policy on data operations and track the flow of that data across various stakeholders.Comment: 10 pages, 6 figures, Published in: 4th International Workshop on Privacy and Security of Big Data (PSBD 2017) in conjunction with 2017 IEEE International Conference on Big Data (IEEE BigData 2017) December 14, 2017, Boston, MA, US

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes

    Get PDF
    The application of emerging technologies of Internet of Things (IoT) and cloud computing have increasing the popularity of smart homes, along with which, large volumes of heterogeneous data have been generating by home entities. The representation, management and application of the continuously increasing amounts of heterogeneous data in the smart home data space have been critical challenges to the further development of smart home industry. To this end, a scheme for ontology-based data semantic management and application is proposed in this paper. Based on a smart home system model abstracted from the perspective of implementing users’ household operations, a general domain ontology model is designed by defining the correlative concepts, and a logical data semantic fusion model is designed accordingly. Subsequently, to achieve high-efficiency ontology data query and update in the implementation of the data semantic fusion model, a relational-database-based ontology data decomposition storage method is developed by thoroughly investigating existing storage modes, and the performance is demonstrated using a group of elaborated ontology data query and update operations. Comprehensively utilizing the stated achievements, ontology-based semantic reasoning with a specially designed semantic matching rule is studied as well in this work in an attempt to provide accurate and personalized home services, and the efficiency is demonstrated through experiments conducted on the developed testing system for user behavior reasoning

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Enrichment of raw sensor data to enable high-level queries

    Get PDF
    Sensor networks are increasingly used across various application domains. Their usage has the advantage of automated, often continuous, monitoring of activities and events. Ubiquitous sensor networks detect location of people and objects and their movement. In our research, we employ a ubiquitous sensor network to track the movement of players in a tennis match. By doing so, our goal is to create a detailed analysis of how the match progressed, recording points scored, games and sets, and in doing so, greatly reduce the eort of coaches and players who are required to study matches afterwards. The sensor network is highly efficient as it eliminates the need for manual recording of the match. However, it generates raw data that is unusable by domain experts as it contains no frame of reference or context and cannot be analyzed or queried. In this work, we present the UbiQuSE system of data transformers which bridges the gap between raw sensor data and the high-level requirements of domain specialists such as the tennis coach

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    Semantically-aware data discovery and placement in collaborative computing environments

    Get PDF
    As the size of scientific datasets and the demand for interdisciplinary collaboration grow in modern science, it becomes imperative that better ways of discovering and placing datasets generated across multiple disciplines be developed to facilitate interdisciplinary scientific research. For discovering relevant data out of large-scale interdisciplinary datasets. The development and integration of cross-domain metadata is critical as metadata serves as the key guideline for organizing data. To develop and integrate cross-domain metadata management systems in interdisciplinary collaborative computing environment, three key issues need to be addressed: the development of a cross-domain metadata schema; the implementation of a metadata management system based on this schema; the integration of the metadata system into existing distributed computing infrastructure. Current research in metadata management in distributed computing environment largely focuses on relatively simple schema that lacks the underlying descriptive power to adequately address semantic heterogeneity often found in interdisciplinary science. And current work does not take adequate consideration the issue of scalability in large-scale data management. Another key issue in data management is data placement, due to the increasing size of scientific datasets, the overhead incurred as a result of transferring data among different nodes also grow into a significant inhibiting factor affecting overall performance. Currently, few data placement strategies take into consideration semantic information concerning data content. In this dissertation, we propose a cross-domain metadata system in a collaborative distributed computing environment and identify and evaluate key factors and processes involved in a successful cross-domain metadata system with the goal of facilitating data discovery in collaborative environments. This will allow researchers/users to conduct interdisciplinary science in the context of large-scale datasets that will make it easier to access interdisciplinary datasets, reduce barrier to collaboration, reduce cost of future development of similar systems. We also investigate data placement strategies that involve semantic information about the hardware and network environment as well as domain information in the form of semantic metadata so that semantic locality could be utilized in data placement, that could potentially reduce overhead for accessing large-scale interdisciplinary datasets

    A semantic context management framework on mobile device

    Get PDF
    We present a semantic context management framework named ContextTorrent, which can make various types of context information be semantically searchable and sharable among local and remote context-aware applications. We implement this framework on the Google Android platform with its elegant application support. An open source RDF parser has been extended to effectively get RDF triples from files or over the network. Three embedded database systems were evaluated for storing ontology represented contexts in the resource-constrained mobile devices. We use the FOAF ontology schema and a synthetic data set of up to 2500 records to evaluate the context query and storage performance. Ordinary context queries can be replied instantaneously.published_or_final_versionThe 6th IEEE International Conference on Embedded Software and Systems (ICESS 2009), Zhejiang, China, 25-27 May 2009. In Proceedings of the 6th ICESS, 2009, p. 331-33
    corecore