
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2011

Research In High Performance And Low Power Computer Research In High Performance And Low Power Computer

Systems For Data-intensive Environment Systems For Data-intensive Environment

Pengju Shang
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Shang, Pengju, "Research In High Performance And Low Power Computer Systems For Data-intensive
Environment" (2011). Electronic Theses and Dissertations, 2004-2019. 1889.
https://stars.library.ucf.edu/etd/1889

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F1889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F1889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1889?utm_source=stars.library.ucf.edu%2Fetd%2F1889&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Research in high performance and low power computer
systems for Data-intensive environment

by

Pengju Shang
BS Computer Science, Jilin University, China 2005

MS Computer Science, Huazhong University of Tech. & Sci., China 2007

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the School of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Summer Term
2011

Major Professor:
Jun Wang

c⃝ 2011 Pengju Shang

ii

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . x

CHAPTER 1: INTRODUCTION . 1

1.1 Transaction Processing Systems (TPS) on Redundant Array of Indepen-

dent Disks (TRAID) . 4

1.2 A New Data-gRouping-AWare Data Placement Scheme for Data Intensive

Applications with Interest Locality (DRAW) 6

1.3 Power Management for CMP Systems in Data-intensive Environment (MARS) 9

CHAPTER 2: BACKGROUND . 12

2.1 Logging Methods Background . 12

2.2 Power Management Background . 13

2.2.1 CPU Frequency and Energy Consumption 14

2.2.2 Workload partitioning . 15

CHAPTER 3: TRANSACTIONAL RAID (TRAID) DESIGN 19

3.1 Parity Redundancy: TRAID5 . 19

3.1.1 Complete Rollback . 22

3.1.2 Partial Rollback . 22

iii

3.2 Mirroring Redundancy: TRAID10 . 23

3.2.1 Complete Rollback . 25

3.2.2 Partial Rollback . 25

3.2.3 Other Design Issues . 26

3.3 Experimental Setup . 33

3.3.1 Testbed . 33

3.3.2 Implementation of TRAID5 & TRAID10 33

3.3.3 Workloads . 34

3.4 Experimental Results . 35

3.4.1 Experiments on BDB . 36

3.4.2 Experiments on PostgreSQL . 42

3.4.3 TRAID & group commit . 45

3.4.4 Rollback Performance . 48

CHAPTER 4: A NEW DATA-GROUPING-AWARE DATA PLACEMEN-

T SCHEME FOR DATA INTENSIVE APPLICATIONS WITH INTER-

EST LOCALITY . 51

4.1 Motivation . 51

4.2 Data-gRouping-AWare Data Placement 53

4.2.1 History Data Access Graph (HDAG) 53

4.2.2 Data Grouping Matrix (DGM) 55

4.2.3 Optimal Data Placement Algorithm (ODPA) 56

4.2.4 Exceptions . 58

4.3 Analysis . 58

iv

4.3.1 The chance that “random = optimal” 59

4.3.2 The optimal degree of a given data distribution 61

4.3.3 The “optimal-degree” of the random distribution 63

4.3.4 Multi-replica per rack . 64

4.4 Methodology . 65

4.4.1 Test Bed and Applications . 65

4.4.2 Implementation . 66

4.5 Experimental Results and Analysis . 68

4.5.1 The Data Distribution . 68

4.5.2 Performance Improvement of MapReduce Programs 70

4.5.3 Sensitivity Study: the number of replica (NR) 73

4.5.4 Overhead of DRAW . 74

CHAPTER 5: MAR: A NOVEL POWER MANAGEMENT FOR CMP

SYSTEMS IN DATA-INTENSIVE ENVIRONMENT 77

5.1 Task I: Learning the Core’s Behaviors . 78

5.1.1 Per-Core . 80

5.1.2 Multi-Core . 83

5.1.3 Analysis of I/O Wait . 84

5.2 Task II: A Modeless, Adaptive, Rule-based (MAR) Controller Design . . 86

5.2.1 MAR Control Model . 86

5.2.2 Rules . 88

5.2.3 Self-Tuning . 91

5.3 Other design issues . 92

v

5.3.1 Calculating ∆ecb . 92

5.3.2 Specifying The Threshold(s) . 93

5.4 Methodology . 94

5.5 Experiments . 97

5.5.1 Modeless-ness of I/O wait . 97

5.5.2 Power Efficiency . 100

CHAPTER 6: RELATED WORKS . 106

6.1 Transaction processing efficiency . 106

6.2 DAFA Data Management . 108

6.3 Power Management . 109

CHAPTER 7: CONCLUSION AND FUTURE WORK 112

7.1 Contributions of Transactional RAID . 112

7.2 Future Work . 114

7.3 Contribution of DRAW . 115

7.4 Future Work . 115

7.5 Contributions of MAR . 116

7.6 Future Work . 118

LIST OF REFERENCES . 119

vi

LIST OF FIGURES

1.1 Research Work Overview . 1

1.2 A simple case showing the efficiency of data placement for MapReduce

programs. 8

1.3 Two data-intensive threads are running on a core, the I/O wait phase and

idle phase could be used for power saving 11

2.1 DVFS for CPU related, CPU unrelated and hybrid workloads 17

3.1 RAID5 and TRAID5 . 20

3.2 RAID10 and TRAID10 . 24

3.3 Execution Time (TPC-C) . 37

3.4 Throughput (TPC-C) . 38

3.5 Comparison of Log Size (TPC-C) . 39

3.6 Benchmark with access locality (BTPC-C1) 40

3.7 Throughput Improvement (BTPC-C1) 41

3.8 Overall Execution Time with write intensive workload (BTPC-C2) 42

3.9 Statistics of data sizes when generating TPC-C warehouses 44

3.10 Statistics of logging latency when generating TPC-C warehouses 44

3.11 Throughput comparison of RAID and TRAID on PostgreSQL 45

3.12 Throughput (write intensive workload BTPC-C2) 46

vii

3.13 Throughput of DB with GC on RAID5, DB with GC on TRAID5 47

3.14 Rollback Performance . 49

3.15 Rollback Performance Improvement . 49

4.1 A simple case showing the efficiency of data placement for MapReduce

programs. 52

4.2 An example showing the History Data Access Graph (HDAG). 54

4.3 An example showing the grouping matrix and the overall flow to cluster

data based on their grouping weights. 54

4.4 Without ODPA, the layout generated from CDGM (Clustered Data-Grouping

Matrix) may be still non-optimal. 56

4.5 The Possibility of achieving “OPtimal data placement” (POP) for Hadoop’s

default data placement algorithm. 61

4.6 An example to show how to use Equation 4.4 to calculate the optimal

degree of data distribution: Degree(A) = 0(clustered), Degree(B) =

Degree(C) = 0.5(suboptimal), Degree(D) = 1(optimal). 62

4.7 Level of approximation between random data distributions and the optimal

solution, the number of nodes N is set to 40. 64

4.8 The data layout after bulk uploading six species’ genome data, and the

human’s genome data layout. 69

4.9 The layout of human genome data after DRAW placement. 70

4.10 The running of Genome indexing MapReduce program on human genome

data. 71

4.11 The running of Mass Analyzer on astrophysics data; the size of interested

data for each run is relative small (8 blocks on average). 73

viii

4.12 The data distributions (NHD) of four species, on 1-replica, 2-replica and

3-replica Hadoop. 75

5.1 The relationship among CPU’s frequency, power consumption and perfor-

mance . 79

5.2 Prediction accuracy of Busy-Idle model for different workloads 81

5.3 Core’s statistics for different workloads 82

5.4 Working status trace of core0; the overall execution times are comparable

for both cases. 83

5.5 Two cases when I/O wait time exists. “Core bounded” area represents the

busy status. 85

5.6 The overall architecture of MAR power management 87

5.7 Self-tuning of I/O wait thresholds (“rt” is response time, “th” is threshold,

“w” is I/O wait percentage) . 91

5.8 Comparison of the prediction accuracy of I/O wait ratio on a randomly

picked core . 98

5.9 Avg. Prediction errors for different SPs 99

5.10 MAR’s performance for various benchmarks 101

5.11 Comparison of the power management efficiency of MAR with the base-

lines, SP = 10s/5s . 102

5.12 Running gcc, mcf, bzip2, gap, applu, gzip and TPCC, the DVFS results

of MAR/MAR(-W), SP = 10s/5s . 103

5.13 Scalability study of MAR and baselines under different number of cores in

simulations . 104

ix

LIST OF TABLES

3.1 TRAID-parity calculation for complete transaction rollback in TRAID5 . 22

3.2 TRAID-parity calculation for partial transaction rollback in TRAID5 . . 23

3.3 TRAID-parity calculation for complete transaction rollback in TRAID10 25

3.4 TRAID-parity calculation for partial transaction rollback in TRAID10 . 25

3.5 Throughput Improvement (T5/T10 stands for TRAID5/TRAID10, GC

stands for group commit, use RAID5/10 with GC as the baseline) 48

4.1 Comparison of two runs of Genome Indexing application 70

4.2 Comparison of the experimental NHD (% of nodes holding the data) and

DRAW’s ideal NHD . 73

5.1 L1 data cache miss, L2 cache miss and mispredictions per 1000 instructions. 80

5.2 Fuzzy Rule-Base to Calculate Pcore and I/Owait 88

5.3 Rules in MAR to adjust the CPU frequency 90

5.4 Detailed rules description . 90

5.5 The Relationship Between Core Frequency and Performance in Six Hybrid

Benchmarks . 93

5.6 Comparison of the overhead of different managements 104

x

CHAPTER 1

INTRODUCTION

The evolution of computer science and engineering is always motivated by the require-

ments for better performance, power efficiency, security, user interface (UI), etc [CM02].

The first two factors are potential tradeoffs: better performance usually requires bet-

ter hardware, e.g., the CPUs with larger number of transistors, the disks with higher

rotation speed; however, the increasing number of transistors on the single die or chip

reveals super-linear growth in CPU power consumption [FAA08a], and the change in disk

rotation speed has a quadratic effect on disk power consumption[GSK03]. We propose

three new systematic approaches as shown in Figure 1.1, Transactional RAID, data-

affinity-aware data placement DAFA and Modeless power management, to tackle the

performance problem in Database systems, large scale clusters or cloud platforms, and

the power management problem in Chip Multi Processors, respectively.

The first design, Transactional RAID (TRAID), is motivated by the fact that in recent

years, more storage system applications have employed transaction processing techniques

High performance
 Low power consumption

Database/RAID
 CPU (CMP)

Computer Systems for

Data-intensive applications

Transactional

RAID(TRAID)

Rule-based CMP

power manage-

-ment (MAR)

Hadoop/Cloud

Data-gRoupin

g-AWare Data

Placement

(DRAW)

Figure 1.1: Research Work Overview

1

to ensure data integrity and consistency. In transaction processing systems(TPS), log is a

kind of redundancy to ensure transaction ACID (atomicity, consistency, isolation, dura-

bility) properties and data recoverability. Furthermore, high reliable storage systems,

such as redundant array of inexpensive disks (RAID), are widely used as the underlying

storage system for Databases to guarantee system reliability and availability with high

I/O performance. However, the Databases and storage systems tend to implement their

independent fault tolerant mechanisms [GR93, Tho05] from their own perspectives and

thereby leading to potential high overhead. We observe the overlapped redundancies

between the TPS and RAID systems, and propose a novel reliable storage architecture

called Transactional RAID (TRAID). TRAID deduplicates this overlap by only logging

one compact version (XOR results) of recovery references for the updating data. It min-

imizes the amount of log content as well as the log flushing overhead, thereby boosts

the overall transaction processing performance. At the same time, TRAID guarantees

comparable RAID reliability, the same recovery correctness and ACID semantics of tra-

ditional transactional processing systems.

On the other hand, the emerging myriad data intensive applications place a demand

for high-performance computing resources with massive storage. Academia and industry

pioneers have been developing big data parallel computing frameworks and large-scale

distributed file systems (DFS) widely used to facilitate the high-performance runs of

data-intensive applications, such as bio-informatics [Sch09], astronomy [RSG10], and

high-energy physics [LGC06]. Our recent work [SMW10] reported that data distribution

in DFS can significantly affect the efficiency of data processing and hence the overall ap-

plication performance. This is especially true for those with sophisticated access patterns.

For example, Yahoo’s Hadoop [refg] clusters employs a random data placement strategy

for load balance and simplicity [reff]. This allows the MapReduce [DG08] programs to

access all the data (without or not distinguishing interest locality) at full parallelism.

Our work focuses on Hadoop systems. We observed that the data distribution is one of

2

the most important factors that affect the parallel programming performance. However,

the default Hadoop adopts random data distribution strategy, which does not consider

the data semantics, specifically, data affinity. We propose a Data-Affinity-Aware (DAFA)

data placement scheme to address the above problem. DAFA builds a history data ac-

cess graph to exploit the data affinity. According to the data affinity, DAFA re-organizes

data to maximize the parallelism of the affinitive data, and also subjective to the overall

load balance. This enables DAFA to realize the maximum number of map tasks with

data-locality.

Besides the system performance, power consumption is another important concern of

current computer systems. In the U.S. alone, the energy used by servers which could be

saved comes to 3.17 million tons of carbon dioxide, or 580,678 cars [Kar09]. However, the

goals of high performance and low energy consumption are at odds with each other. An

ideal power management strategy should be able to dynamically respond to the change

(either linear or nonlinear, or non-model) of workloads and system configuration without

violating the performance requirement. We propose a novel power management scheme

called MAR (modeless, adaptive, rule-based) in multiprocessor systems to minimize the

CPU power consumption under performance constraints. By using richer feedback fac-

tors, e.g. the I/O wait, MAR is able to accurately describe the relationships among core

frequencies, performance and power consumption. We adopt a modeless control model

to reduce the complexity of system modeling. MAR is designed for CMP (Chip Multi

Processor) systems by employing multi-input/multi-output (MIMO) theory and per-core

level DVFS (Dynamic Voltage and Frequency Scaling).

3

1.1 Transaction Processing Systems (TPS) on Redundant Array of

Independent Disks (TRAID)

In transaction processing systems, logging is the key mechanism to guarantee the durabili-

ty and correctness of transactions [MHL92] [GR92] [JCM00] [FM07] and has been playing

an increasingly important role in Transaction Processing Systems (TPS). Recent years

have seen increasing number of I/O bound transaction processing applications, for exam-

ple, in Temporal databases [MZ06] and Multidimensional databases [DPJ03][WLO01].

The log latency increases significantly in these systems because: 1) more object activities

need to be logged; 2) the description of a single object includes more multi-dimensional

data sources. The latency caused by logging denotes the wait time before a transaction

commits: the locks on the updating data cannot be released and the transaction cannot

commit until the log is flushed onto stable storage devices. This longer log latency results

in committing a fewer number of transactions in a particular time frame and is becoming

the bottleneck of the overall transaction processing performance.

DRAM capacity doubles every two years [OH07], so a normal OLTP database that was

considered “large” can now fit into main memory easily. However, TPS always requires

the log data to write to stable media before the transaction can commit. This protocol is

known as write-ahead-logging (WAL). In other words, log latency is mainly determined

by the amount of log data which is going to be flushed and the I/O bandwidth of the log

devices.

With the increasing popularity of flash memory and flash disks, several works are

proposed [LMP08, Che09, CGS09, LM07] to use these new type of storage devices

for database logging. Flash devices do not suffer from the small sequential log writes

(9X faster than magnetic disks) since they have no moving components. At the same

time, their capacities have been increasing and the price per GB decreasing exponential-

ly [MN06]. However, flash devices are still expensive at $5-10 per GB in 2009 (compared

4

to magnetic disks at $0.1-0.2 per GB), and the aforementioned researches do not solve

the increasing log size issue. The solution we proposed is an ideal complement to flash

device-based logging systems by decreasing almost half of the log size and therefore saving

the budget on the needed capacity.

Some traditional approaches also tried to decrease the log latency. Bulk-logged

[SIG06] option in SQL Server reduces the logging penalty by only recording the meta-

data changes (the allocation or de-allocation information) rather than both data and

metadata. It supports transaction undo and warm restart, but no media recovery/redo

because there is no second-copy of the objects data in the log. Other techniques include

adjusting the log file size at the database or application level, running hourly backups

and truncating it nightly [JCM00]. But they do not really reduce the log latency and

cost. Structuring the transaction into sub-transactions allows early partial commit of

the transaction, and corresponding compensation transactions are provided for recov-

ery purposes[KS03][ooH97]. This method improves transaction processing efficiency for

independent sub-transactions but has its limitations in the dependent cases.

In our design, we propose a new TransactionalRAID (TRAID) to attack the long log

latency problem for transaction processing applications. The idea is to deduplicate the

information redundancy at different layers, e.g., temporal redundancy (i.e. different

versions of data copies in the time domain) on the database’s log disk and spatial re-

dundancy (i.e. parity redundancy or mirroring redundancy) in the RAID architecture.

Our design is based on the observation that highly reliable RAID systems are widely used

in commercial databases [YY01, PP01, SB03], such as RAID5 and RAID10. For these

database systems, there exists an overlap between databases log disk and underlying

storage system: the spatial redundancy provided by the disk arrays is often overlooked

by the database and file system designers. On the other hand, the disk array designers

are often unaware of the fault tolerant mechanisms deployed by the upper level file sys-

tems and database management systems. As a result, both groups tend to implement

5

an independent fault tolerant system from their own perspectives and thereby leading to

potential high overhead.

TRAID exploits this overlap to improve the overall performance without violating the

ACID [MH94, GR93] properties and recovery correctness of transactions. The databases

using erasure coded disk arrays allow us to deduplicate redundancy by exploiting an

extra XOR operation without compromising reliability. Instead of storing before and

after images of the updating block, we only save the XOR result of the old parity and the

new parity on the same stripe. In databases with underlying replica-based disk arrays,

we only log the XOR result of old data and new data. Both of aforementioned XOR

results can provide enough information for recovery when they cooperate with the parity

or mirroring redundancy on disk arrays. The feasibility of the additional XOR calculation

relies on the existing XOR support in RAID and rich CPU cycles.

1.2 A New Data-gRouping-AWare Data Placement Scheme for Data

Intensive Applications with Interest Locality (DRAW)

With the advent of large-scale data intensive clusters, more scientists employ data par-

allel computing frameworks such as MapReduce and Hadoop to run their data intensive

applications and conduct analyzes. In these co-located compute and storage frameworks,

a task is split into many sub-tasks that execute in parallel for maximum performance.

The sub-tasks are scheduled on the nodes that host the needed data, namely with the

data locality to achieve better performance. Hence how to place data wisely over the

clusters is crucial. Existing data parallel frameworks, e.g. Hadoop, or Hadoop-based

clouds, distribute the data using a random placement strategy for simplicity and load

balance. It is observed that, many applications have interest locality that only analyze

part of a big data set. In multi-user environment such as cloud computing, hot spots

6

of a big data set exist when many programs share the same interests. We define a hot

spot in a big data set as data affinity . Unfortunately, random placement does not take

data affinity into consideration. Although the overall data distribution over the cluster

is balanced, affinitive data could be clustered into a small number of nodes. Subject to

the per node capability constraint, many map tasks are initiated on nodes that do not

host data needed and thus violate data locality.

Unfortunately in practice, many scientific and engineering applications have interest

locality , which means they are only interested in a subset of the whole data set. For ex-

ample, in the bioinformatics domain, X and Y chromosomes are related to the offspring’s

gender. Both chromosomes are often analyzed together in generic researches rather than

all the 24 human chromosomes [Dum04]. Regarding other mammal’s genome data pools,

the chimpanzee is usually compared with human [HL05, SLZ07]. Another example is,

in the climate modeling and forecasting domain, some scientists are only interested in

some specific time periods [TG09, PY08]. In summary, these co-related data have high

possibility to be processed as a group by specific domain applications. Here, we formally

define the “data affinity” to represent the possibility of two data (blocks in Hadoop) to

be accessed as a group, and it is quantified as the times that these two data have already

bulk accessed.

Unfortunately, current random placement schemes are not suit for the applications

with high interest locality when only a SUBSET of the data is processed. This is because

the affinitive data may be clustered into a small number of nodes rather than being evenly

distributed because of the random-ness. To further explore why such clustered affinitive

data becomes performance barriers for the MapReduce program, we need to know how a

MapReduce program works. A MapReduce job is split into many map tasks to process in

parallel. Map tasks intend to be allocated to the nodes with the needed data locally being

stored to achieve “data locality”. If the needed data is well distributed among all the

nodes, map tasks can be evenly scheduled to realize ideal parallelism due to the nature

7

map
 map

map
 map

map
 map

map
 map

map
 map

map
 map

map
 map

map
 map

Node1
 Node2
 Node3
 Node4

Node1
 Node2
 Node3
 Node4

map

map

Blocks of interest

Other blocks

Map with data

locality

Map without

data locality

Hadoop's random

data placement

may cluster the

blocks of interest

Ideal data

placement

evenly distributing

the affinitive data

The maximum of simultaneous maps on each node is 2.

map

map
 map

map

map

Map waiting

in the queue

Figure 1.2: A simple case showing the efficiency of data placement for MapReduce pro-
grams.

of co-located compute and storage in data-intensive clusters. However, if the affinitive

data is significantly clustered (e.g., only a few nodes hold most needed data), and when

the number of concurrent local map tasks per node reaches the limit on the clustered

nodes (2 by default in Hadoop) 1, many map tasks are scheduled on other nodes which

remotely access the needed data, or, they are scheduled on these data holding nodes but

have to wait in the queue to be processed. These map tasks violate the data locality

and could severely drag down the MapReduce program performance [refg]. We shown an

example in Figure 4.1, where the map tasks with either remote data access or queueing

delay are the performance barriers.

In this paper, we develop a new Data-gRouping-AWare data placement scheme (DRAW)

that takes into account the data grouping effects to significantly improve the performance

for data-intensive applications with interest locality. Without loss of generality, DRAW

is designed and implemented as a Hadoop-version prototype. For a multi-rack Hadoop

cluster, DRAW is launched at rack level (inter-rack) to manage the data distribution.

1Usually it is denoted as the maximum number of concurrent map tasks, which is determined by the
hardware (processor) configurations.

8

DRAW consists of three components: 1) a history data access graph (HDAG) to scruti-

nize history data access patterns, 2) a data grouping matrix (DGM) derived from HDAG

to group related data, and 3) an optimal data placement algorithm (ODPA) generating

final data layout. By experimenting with real world genome indexing [refa] and astro-

physics applications [refc], DRAW is able to execute up to 59.8% more local map tasks

in comparison with random placement. In addition, DRAW reduces the completion time

of map phase by up to 41.7%, and the MapReduce task execution time by up to 36.4% 2.

1.3 Power Management for CMP Systems in Data-intensive Environment

(MARS)

Multicore processors also known as CMP have become the mainstream in the curren-

t processor market because of tremendous increase in transistor density and advances

in semi-conductor technology. At the same time, the limitations in ILP (Instruction

Level Parallelism) coupled with the power dissipation restrictions encourage us to en-

ter the “CMP” era for both high performance and power saving’s sake [HRV09, AAV08].

However many crucial application domains still have demand for single thread (core) per-

formance growth [IBC06b]; and even without that, the increasing number of transistors

on a single die or chip reveals super-linear growth in power consumption [FAA08b]. In

this paper, performance is granted as the first priority: we try to minimize the processor’s

power consumption while maintaining the required performance quality.

In recent years, many power management strategies [WRW05, ICM06, WB02, XMM05,

IBC06a, TT08] have been proposed for CMP processors based on DVFS(Dynamic Voltage

and Frequency Scaling) [refi, ref06, ref09]. Most of these works focus on compute-intensive

or memory-intensive applications, hence they try to balance the power consumption and

performance based on the CPU or memory boundness of the running workloads, or the

2These numbers can be affected by the number of launched reduce tasks, the required data size, etc..

9

busy/idle ratio of the CPU. This is reasonable for these non-I/O intensive applications,

because the processes waiting for I/O to complete will be suspended by the operating

system and the core will be given to other waiting threads [FSS07] to avoid the I/O wait

time. However, in the face of today’s emerging data-intensive applications, I/O wait time

in processors is non-negligible [refl], and could affect the performance of CPU’s power

management methods, especially in the presence of many synchronized I/Os. During the

CPU’s I/O waiting period, the performance will be decided by the I/O subsystem rather

than the CPU, hence this is a chance to lower the CPU frequency and save more power

without a performance penalty.

Previous works have some limitations either in maintaining the required performance

or power saving efficiency. For example, [FWB07, WMW09] focus on the non-I/O inten-

sive cases, and their power management methods are based on CPU utilization, which is

defined as U = 100%− (% of time spent in idle tasks); the latter part is calculated by

idle time
overall time

. In addition, most of power management implementations are based on Linux

operating systems [BMK02], in which the “iowait” field is separated from the “busy”

(the sum of user, sys, and nice fields) and “idle” fields. If we apply U into data-intensive

environment where the I/O operations are non-negligible, we could miss the I/O wait

phases for deeper power saving. For example, assuming there are two data-intensive

threads running on one CPU core as shown in Figure 1.3. Two threads have an over-

lapped I/O portion that would make the core enters its I/O wait phase. If we could scout

both I/O wait (35%) phase and idle (10%) phase in a timely fashion, we can lower the

CPU frequency to save power without sacrificing the performance. However, if we adopt

the aforementioned U = 100% − idle time
overall time

= 90% in this case, the I/O wait phase is

categorized as busy status and not used for power saving.

On the other hand, some works consider I/O factor in their power management so-

lutions. [GFF07] divides every workload into “on-chip” part and “off-chip” part; the

I/O wait time is categorized into the “off-chip” part along with the idle time, both of

10

Compute
 I/O
 Compute
 Idle

Compute
 I/O
 Idle

Thread1

Thread2

Busy
 I/O wait
 Busy
 Idle
Core

30%
 35%
 25%
 10%

On-chip
 On-chip
Off-chip
 Off-chip

Figure 1.3: Two data-intensive threads are running on a core, the I/O wait phase and
idle phase could be used for power saving

which are irrelevant to CPU’s frequency. They calculate the workload characteristics as

k = onchip
onchip+offchip

and scale the CPU frequency based on k
k+δ

· fmax, where δ is the user

specified performance loss and fmax is CPU’s maximum frequency setting. Their solution

works well when the workload is uniform, e.g., they can scale the lowest frequency when

the workload is I/O-bound (k = 0) or scale the highest frequency when the workload is

CPU bounded. However it cannot handle the data-intensive applications where the com-

putation and I/O operations are non-uniformly distributed. Consider the same example

in Figure 1.3, we assume it takes place in one sampling period, and k = 35%+25%
1

= 55%.

If no performance loss is allowed (δ = 0), [GFF07] picks the highest frequency. In fact,

we could scale down a lower frequency fnew to save more power without compromising

performance. The challenge is how to calculate fnew since the relationships among fre-

quency, performance, and power consumption is too complex to be modeled when I/O

factor is taken into account.

11

CHAPTER 2

BACKGROUND

In this chapter, we will briefly describe the relevant concepts of logging methods in

transaction processing systems, and the traditional power management strategies.

2.1 Logging Methods Background

For transaction processing, the log efficiency is critical to both throughput and application

response time. There are several different logging schemes to provide a balance between

transactional ACID properties and the overall performance.

The basic WAL adopts Physical Logging [GR93] which places the old and new object

states (or values) in the log record. The advantage of this method is simplicity: undo

operation sets the page to the old value, while redo sets it to the new one; both undo and

redo are idempotent, which is not so trivial in other logging methods. The disadvantage is

large log space and long log latency: one operation, such as splitting a B-tree, may result

in tens or hundreds of physical log records. In order to solve the problems of Physical

Logging, Logical Logging [GR93] is developed. Logical Logging records the name of an

undo-redo operation and its parameters, rather than the values. This method achieves the

smallest logging space and the shortest latency; however, it may fail in media recovery.

Moreover, it assumes that each action is atomic. This assumption is often violated when

the action is partially complete and the system cannot decide how far to undo. It is a big

problem in logical logging where the undo operation may not be idempotent. As a result,

Physiological Logging [GR93] is developed, which uses logical logging when possible and

12

uses physical logging when higher reliability is required. This method transforms one

complex action into a sequence of messages and page actions. These are structured as

mini-transactions and log records are generated for the changes in pages or session state.

In other words, Physiological Logging is a fine-grain logging method, where both the old

and new values for the updating page or record are logged when necessary.

Besides the logging schemes, there are tremendous works have been done to further im-

prove the logging efficiency. In commercial databases, e.g., SQL Server 2008, techniques

like regular backup truncates old log records no longer needed for recovery to prevent the

log files from consuming all of the disk space [JCM00]. Log compression [RL04] allows

log records to be compressed and decompressed as they are written and read from the log

files, which can provide disk usage savings. Bulk-logged [SIG06] option in SQL Server

reduces the penalty of logging because the following operations are minimally logged and

not fully recoverable: SELECT INTO, bulk-load operations, CREATE INDEX as well as

text and image operations. Hence any-point-in-time recovery is not possible with bulk-

logged option. The group commit option [YG05] accumulates several parity updates into

one bigger parity update by employing journaling techniques, so that the “write penalty”

for small writes can be alleviated. However, all of these logging methods and adjustments

are based on the tradeoff between performance and correctness (ACID properties). Our

solution in this paper exploits a new perspective to improve logging efficiency without

violating ACID by utilizing the data redundancy in the storage systems.

2.2 Power Management Background

For each operational server supporting DVFS (Dynamic Voltage and Frequency Scaling),

its CPU can run between a maximum frequency fmax (consuming the most power) and

a minimum frequency fmin (consuming the least power).

13

2.2.1 CPU Frequency and Energy Consumption

As widely used in previous works, CPU power consumption is given by the following

formula [10, intel]:

CPU Power = A · C · V 2 · f (2.1)

where A is an activity factor that accounts for how frequently gates switch, C is the total

capacitance at the gate outputs, V is the voltage of the processor, and f is the operating

frequency. In processors supporting DVFS, underlying circuit design inherently imposes

a proportional relationship between the operating voltage and circuit frequency, which

is given by V ∝ f . As a result, equation 2.1 can be reduced to a function of processor

frequency:

CPU Power = c1 · f 3 (2.2)

Since the power consumption of all other components in the system is essentially constant

and independent of the CPU frequency, we have the following simple model of the power

consumption by one node in the cluster running at frequency f :

System Power = c0 + c1 · f 3 (2.3)

where c0 is a constant that includes the power consumption of all components except

CPU, plus the base power consumption of the CPU. Power consumption of a cluster

is simply the sum of the system power consumed by its nodes, which is shown in the

following equation:

Cluster Power =
n∑

i=1

c0 + c1 · f 3
i (2.4)

14

. Equation r̃efeq:spp can be easily transformed as energy consumption as following:

Cluster Energy = c0

n∑
i=1

ti + c1

n∑
i=1

(f 3
i · ti) (2.5)

where ti is the operational time of ith node. As a result, the goal “saving the most

energy” could be turned into “using the lowest CPU frequency to meet the performance

requirement”. 2.5, so in the following discussion, we will focus on the second adjustable

part.

2.2.2 Workload partitioning

During the CPU operational period, the task being performed consists of a sequence of

phases. These phases can in turn be classified as CPU-related (data dependency, cache

hit, branch prediction instructions), CPU-unrelated (memory access, PCI access, I/O

instructions) and hybrid (synchronized write, log data flush instructions). The execution

time of a task is the sum of latencies to perform all phases.

If we define the response time as RT , the RT of CPU-related instructions is syn-

chronized to the CPU internal clock and may have linear relationship with the CPU

frequency. On the other hand, RT of CPU-unrelated instructions is not affected by

scaling CPU frequency. For example, accesses to external devices such as SDRAM, P-

CI peripheral devices are synchronized to the BUS clock, which is independent of the

CPU frequency. The hybrid phases consist of CPU related part as well as unrelated

part. Note that these two parts may be dependent or independent to each other. For

independent cases, a memory stall (or other CPU unrelated stalls) for one instruction

may be completely hidden by successful completion of a later instruction [HP07]. As

a result, the RT is max{ 1·p
fCPU

, 1·(1−p)
fBUS

}. Since we are focusing on CPU frequency scal-

15

ing, we assume the CPU unrelated part always meets the RT requirement, so that the

overall response time is only linearly determined by the CPU related part. In this way,

we could transfer an independent hybrid phase as a special case of CPU-related phase.

For dependent case (two parts are timesharing), the CPU related part has to wait for

the CPU unrelated one to complete, for example, synchronized writes in file systems, all

transaction log data flushes in write-ahead logging (WAL) based database systems. So

the RT is 1·p
fCPU

+ 1·(1−p)
fBUS

, Where p is the percentage of CPU related part in the hybrid

region. Scaling CPU frequency will only affect the CPU related part, so the RT is not

only related to CPU internal clock but also the percentage of CPU related part.

Now considering a single node with CPU frequency fCPU and BUS clock frequency

fBUS. For a workload W , we have W = Wrelated+Wunrelated+Whybrid. If T is the required

time for this node to process W , then

T =
Wrelated

fCPU

+
Wunrelated

fBUS

+ (
Whybrid · p

fCPU

+
Whybrid · (1− p)

fBUS

) (2.6)

.

Now we define MAF as the most appropriate CPU frequency. For different type of

instructions, MAF has different meanings.

1. For CPU unrelated instructions, theMAF is the minimum CPU frequency. Because

the latencies will not change no matter how we scale the CPU frequency. Here

notice that these CPU unrelated workloads should be large enough compared to the

voltage and frequency scaling cost. For example, if the task has a large number of

small WCPU unrelated which are scattered over the whole process, then the overhead

of scaling CPU frequency may excess the obtained benefit.

16

W1

CPU related

W2

CPU unrelated

f

max

CPU frequency

Operational time

f

min

t

(1) CPU is working on f

max

for the whole task

W1

W2

f

max

CPU frequency

Operational time

f

min

t

(2) CPU is working on f

1

for W

1

, f

min

for W2, and f

3

 for W

3

which is hybrid

f

3

W3 Hybrid

W3
f

3

f

1

f

1
 f

min

Figure 2.1: DVFS for CPU related, CPU unrelated and hybrid workloads

2. For CPU related instructions, by using MAF, there is no CPU idle time (CPU is

fully utilized) and the SLA is just met. If we use any frequency higher (lower) than

f , the response time may be unnecessarily better (worse) than SLA requirement.

3. For hybrid instructions, we can not eliminate the CPU idle time due to the CPU

unrelated part. We want to find the MAF f for the CPU related part. By using

f , the overall response time p/f + (1− p)/fBus should just meet SLA requirement.

Consider a workload on a single sever which has three sub-workloads W1,W2,W3.

W1 is CPU related ; W2 is CPU unrelated ; W3 is Hybrid, as shown in Figure 2.1. Fig-

ure 2.1(1) shows that the CPU works with highest frequency fmax for all the workloads.

The length of execution times with fmax are t1, t2, t3 for W1,W2,W3, respectively, and

the total execution time is t. We assume the MAF for W1,W2,W3 are f1, f2, f3, respec-

17

tively. Energy consumption in Figure 2.1(1) is:

c0 · t+ c1 · f 3
max · t (2.7)

Figure 2.1(2) shows that using MAF can achieve the same overall execution time,

at the same time, based on Equation 2.5, the energy consumption on this single node in

Figure 2.1(2) is:

c0 · t+ c1 · (f 3
1 · t1 + f 3

min · t2 + (f 3
3 · t3)) (2.8)

where t = t1 + t2 + t3.

Obviously (2.7) > (2.8). Compared to f1, f2, f3, any higher frequencies for those

workloads will consume more energy and any lower frequencies will violate the perfor-

mance requirement. As a result, Figure 2.1(2) is the ideal CPU frequency and energy

management.

18

CHAPTER 3

TRANSACTIONAL RAID (TRAID) DESIGN

TRAID is implemented as a reliable RAID storage for TPS, and reduces log latency by

minimizing log overhead. As a result, besides performance and reliability, we also show

how redo/undo operations are performed correctly, i.e. recovery correctness and also

the ACID semantics provided by relational database systems are maintained in TRAID.

TRAID design exploits the overlap between the existing spatial redundancy in the most

commonly used RAID architectures e.g. parity based (RAID5) redundancy or mirroring

based (RAID10) and temporal redundancy in log disks.

3.1 Parity Redundancy: TRAID5

RAID5 is a representative storage system with parity redundancy. In database systems

on RAID5, besides the original data block, there are two more copies of the same block

in the system. Upon a block update request, both the before and after image of the

updating block are saved to the log disk. Hence, one copy (with two versions) is on

the log disk, while the other copy can be generated on the fly by using the RAID5

parity and the other blocks on the same stripe. The overlap between these two copies

at any point in time enables us to log less data. More specifically, we log the XOR

result of the old parity and new parity instead of before and after images of the updating

block. This XOR result can provide enough references for undo and redo operations

when it works with the copy in spatial redundancy. In this way, the overlap between

the spatial (parity) redundancy in RAID5 and the temporal redundancy in database log

19

is eliminated. The XOR of successive updates technique has been successfully adopted

in several recent storage system applications, such as block-level backup [YXR06] and

versioning filesystem [PBA07].

Before going to the details of TRAID5 design, we recall how RAID5 processes a block

update transaction. (1) Reading the target block and the parity on the same stripe from

disk to memory; (2) Calculating the new parity; (3) Writing the raw data and updated

data into log file for undo and redo operations. Transaction can commit after Step 3; (4)

Writing the updated data and new parity onto disk;

The parity P in RAID5 is calculated as follows: suppose at time T1, we have

(A1,B1,C1,P1) in RAID5, where P1 = A1 ⊕ B1 ⊕ C1 ; at time T2, one update request

changes A1 to A2, then P2 = A2 ⊕ A1 ⊕ P1 = A2 ⊕B1 ⊕ C1 .

In TRAID5 design, we add one new XOR result defined as TRAID-parity. Instead of

logging old and new block data in Step (3), we log: Q = P1 ⊕ P2 = A1 ⊕ A2 . TRAID5

architecture compared with RAID5 is shown in Figure 3.1.

DataBase

Update reuqest:

A->A'

FileSystem/ RAID Controller

Update(A)+update(P)-->W(A')+W(P')

Log Disk

Log{

 Begin;

 LSN;

 TrID;

 Pages;

BeforeImage;

AfterImage;

 ...

 Commit;}

Disk0

Disk1

A

Disk2
 Disk3
 Parity disk4

Old or new data

are not needed

B
 C
 P

(1)Read A
 (3) W(A')+W(P')

Disk1

Block A

Disk2
 Disk3
 Parity Disk

RAID5

RAID5 Controller

Array Management Software

Provides Logical to Physical Mapping

TRAID5

Block B
 Block C
 Parity P

(2)Write Log (TRAID-parities)

Q

Figure 3.1: RAID5 and TRAID5

The update transaction is processed in TRAID5 in 3 steps as follow: (1) Reading the

block and corresponding parity information from disk into memory; (2) Calculating the

new RAID parity P and TRAID-parityQ; writingQ and all other transaction information

20

into the log file; the transaction can commit after Step (2); no physical undo or redo data

is required; (3) Writing the updated block and parity P onto disk.

In this way, the log space is decreased. Because of WAL protocol, less log content in

TRAID5 will decrease the log flushing time, as well as the transaction committing time.

Although, the above TRAID-parity equation is for single-block-update cases, it can

be adopted for multi-block-update cases. As we know, the write penalty in RAID5 (the

extra disk I/O to calculate the new parity) is alleviated by combining the “small writes”

into one “big write”. However in memory, the calculation of the new parity still requires

several steps to cover all the updating blocks. For example, one update request on the

stripe containing (A1,B1,C1,P1) in RAID5 may want to get a result like (A2,B2,C1,P2).

The one-time write of P2 can be P2 = A2 ⊕ B2 ⊕ C1 . But before that, we will have

two versions of P in the memory, such as P
′
2 = A2 ⊕ A1 ⊕ P1 = A2 ⊕ B1 ⊕ C1 and

P
′′
2 = B2 ⊕ B1 ⊕ P

′
2 = A2 ⊕ B2 ⊕ C1 , where P

′′
2 equals to P2. TRAID-parity of block

“A” and block “B” are obtained by taking advantage of these intermediate calculations:

QA = P1 ⊕ P
′
2 = A2 ⊕ A1 and QB = P

′
2 ⊕ P

′′
2 = B2 ⊕ B1 . Hence, TRAID5 won’t bring

any extra I/O while still guaranteeing one P write as RAID5 does. For simplicity, in

the following discussion about the TRAID-parity calculation, we only consider a single-

block-update case.

Above equations are for the transactions updating the block only once. Given a

transaction which will update the block multiple times during its life time, we need to

calculate a Q list recording all the updates. However for those multiple-update transac-

tions, the way to calculate Q will depend on whether complete rollback or partial rollback

is required. We discuss these two cases in the following two sections.

21

3.1.1 Complete Rollback

A complete rollback means that we need to reset the database to the original state when

undo is needed. For example, one transaction updates block A for K times from time T1

to TK . Complete rollback will require the system to be reset to the status at T1, rather

than other intermediate statuses. In this case, we only record the newest TRAID-parity

info (at time of point TK) QK for the updates on block A as follows: Q1 = ϕ when T = 1,

where ϕ denotes NULL; Q2 = P2 ⊕ P1 ⊕ Q1 when T = 2; QK = PK ⊕ PK−1 ⊕ QK−1

when K ≥ 2. If the old data A1 is lost, QK guarantees that old data can be recovered

by A1 = QK ⊕AK . Similarly, if the new data AK is lost, the XOR result of QK and old

data A1 obtains the new data (redo to AK). Table 3.1 shows the details of recovery in

case of a complete rollback to A1.

Table 3.1: TRAID-parity calculation for complete transaction rollback in TRAID5
Time Action Parity P Parity Q Get A

T(0) Initialize P0 = A⊕B ⊕ C Q0 = NULL A = A

T(1) A → A1 P1 = A1 ⊕A⊕ P0 Q1 = P1 ⊕ P0 ⊕Q0 A = A1 ⊕Q1

T(2) A1 → A2 P2 = A2 ⊕A1 ⊕ P1 Q2 = P2 ⊕ P1 ⊕Q1 A = A2 ⊕Q2

...

T(K) AK−1 → AK PK = AK ⊕AK−1 ⊕ PK−1 QK = PK ⊕ PK−1 ⊕QK−1 A = AK ⊕QK

3.1.2 Partial Rollback

In real database environment, a transaction supporting partial rollback can write to

the disk several times before it commits. In this case, we need a list of Q parities i.e.

Q1, Q2, ..., Qn for all the writes as some or all of them will be used for the partial rollback.

Q for the partial rollback is calculated as follows: Q1 = P1⊕P0 when T = 1, Q2 = P2⊕P1

when T = 2 and QT = PT ⊕PT−1 when T ≥ 2. If there is a system failure at a time point

n with data An and the database needs to roll back to Am at time point of m, where

22

1 ≤ m < n, undo operation to Am will work as follows: Am = An⊕Qn⊕Qn−1⊕...⊕Qm+1

. Having Q1, Q2, ..., Qn and A1, we also can redo this transaction to any point of time m,

where 1 < m ≤ n, by the following calculation. Am = A1 ⊕Q2 ⊕ ...⊕Qm . The details

of partial recovery of data is shown in Table 3.2.

Table 3.2: TRAID-parity calculation for partial transaction rollback in TRAID5
Time Action Parity P Parity Q Get any version of A

T(0) Initialize P0 = A⊕B ⊕ C Q0 = NULL A = A

T(1) A → A1 P1 = A1 ⊕A⊕ P0 Q1 = P1 ⊕ P0 A = A1 ⊕Q1

T(2) A1 → A2 P2 = A2 ⊕A1 ⊕ P1 Q2 = P2 ⊕ P1 A = A2 ⊕Q2 ⊕Q1;
A1 = A2 ⊕Q2

...

T(K) AK−1 → AK PK = AK ⊕AK−1 ⊕ PK−1 QK = PK ⊕ PK−1 Ai = AK ⊕QK ⊕ ...
⊕Qi+1 0 ≤ i < K

It may be noted that the TRAID5 technique can be easily ported to build TRAID6

and other erasure coded arrays. The double-parity RAID or parity-based RAID6— such

as RDP [CEG04]— maintains two parities P and P
′
. P is same as the RAID5 parity and

P
′
is used for the recovery of a second disk failure. Only P parity is used to calculate

the TRAID-parity Q.

3.2 Mirroring Redundancy: TRAID10

RAID10 combines mirroring redundancy (RAID1) and striping (RAID0). Every striped

block in the RAID0 part has a mirroring block in its RAID1 partner. We exploit the

overlap between the temporal redundancy in the log disk and spatial redundancy in the

mirroring copies to implement TRAID10.

A database running on RAID10 processes an update transaction in following steps:

(1) Read the requested data from disks into the memory. (2) Write the Before Image

(e.g. A1) into the log for undo requests. (3) Write the After Image (e.g. A1
′
) into the

23

log for redo requests. Transaction cannot commit until the log is flushed due to WAL

protocol. (4) Update the data anytime before or after transaction commits.

We add an XOR operation to TRAID10. Instead of logging the old data and new

data, TRAID10 also records their XOR result in the log file. As shown in Figure 3.2, an

update request in TRAID10 is processed as follows:

(1) Read the requested data into memory.

(2) Calculate the TRAID-parity Q based on both old version and new version data; write

Q into the log file; transaction can commit after Step (2).

(3) Update the data anytime before or after transaction commits.

DataBase

Update request:

A->A'

FileSystem/ RAID10 Controller

Calculate TRAID-parity
 Q

Disk1

Original

Page (A)

Log Disk

Log{

 Begin;

 LSN;

 TrID;

 Pages;

BeforeImage;

AfterImage;

 ...

 Commit;}

Disk0

Disk2

Mirroring

Page (Am)

......

Other disks

(1)

Read A

After (1)(2), transaction can commit

After (3), transaction is written to the disk and can provide service

(3)Write A' and Am'

TRAID10

Q

(2)Write TRAID-parity
 Q
 into Log

Disk1

Original

Page (A1)

Disk2

Mirroring

Page (A1)

Disk3

Original

Page (A2)

Disk4

Mirroring

Page (A2)

RAID0

RAID10

RAID1
 RAID1

Figure 3.2: RAID10 and TRAID10

Since the mirroring redundancy from the underlying RAID10 will provide ideal relia-

bility for either old data (before the data on disk is updated) or new data, we will always

have the reference for transaction undo and redo. In this way, we utilize the overlap

between the temporal redundancy and spatial redundancy to reduce log space and log

flushing latency, thereby accelerate the transaction commit procedure.

The way of calculating Q in TRAID10 also depends on whether complete rollback or

partial rollback is adopted, as shown in the following two sections.

24

3.2.1 Complete Rollback

We use the same example in TRAID5: one transaction updates block A for K times from

time T1 to TK , and needs to be completely rollback from the current Ai where 1 ≤ i ≤ K,

to the original A at time T0. We calculate the TRAID-parity Q as Table 3.3 shows.

Table 3.3: TRAID-parity calculation for complete transaction rollback in TRAID10
Time Action TRAID-parity Q Get A

T(0) Initialize Q0 = NULL A = A0

T(1) A → A1 Q1 = A⊕A1 ⊕Q0 A = A1 ⊕Q1

T(2) A1 → A2 Q2 = A1 ⊕A2 ⊕Q1 A = A2 ⊕Q2

...

T(K) AK−1 → AK QK = AK−1 ⊕AK ⊕QK−1 A = AK ⊕QK

The “Get A” column in Table 3.3 shows how to do the complete rollback from time

Ti where 1 ≤ i ≤ K to T0. For the committed transactions, if system fails before the data

on disks get updated (we have the original version of A), TRAID-parity Q can be used

to get AK by calculating AK = A ⊕ QK . Formally, Q is able to calculate AK from any

intermediate version of A, denoted as Ai where 0 ≤ i < K, by calculating AK = Ai⊕QK .

3.2.2 Partial Rollback

We need a list of Q parities in TRAID10 for partial rollback. Using the same example

as above, we need to record every Qi at time Ti where 1 ≤ i ≤ K. The detail calculation

of Q list Q1, Q2, ..., QK is shown in Table 3.4.

Table 3.4: TRAID-parity calculation for partial transaction rollback in TRAID10
Time Action Parity Q Get any version of A

T(0) Initialize Q0 = NULL A = A0

T(1) A → A1 Q1 = A1 ⊕A0 A = A1 ⊕Q1

T(2) A1 → A2 Q2 = A2 ⊕A1 A = A2 ⊕Q2 ⊕Q1; A1 = A2 ⊕Q2

...

T(K) AK−1 → AK QK = AK ⊕AK−1 Ai = AK ⊕QK ⊕ ...⊕Qi+1 0 <= i < K

25

The “Get any version of A” column in Table 3.4 shows how to use Q and the current

version of A on disk to roll the transaction backward to any point of time. If system

failed after the transaction committed but before the data updated to the final version

AK , we can get AK from the current Ai where 0 ≤ i < K by calculating AK = Ai ⊕

Qi+1 ⊕Qi+2 ⊕ ...⊕QK .

3.2.3 Other Design Issues

Data Version Check We use TRAID-Parity Q with the updated data for both TRAID5

and TRAID10 to perform undo, and with the old data to do redo. In order to imple-

ment such recovery function, we need to know whether the data on disk is old or new.

We resort to the existing checksum [KBG08, BS04, SHS01] solutions for data version

check. Parity-based RAID systems always turn to checksum to detect data corruption. A

checksum is a fixed-size datum computed from hash functions, fingerprints, and so forth.

When the data block is being updated, a checksum is calculated based on a function f

of the new data. RAID can use the checksum to tell whether the update is complete or

has failed. TRAID can use this checksum to do a data version check: upon a recover

request, we use the same f based on the current data on disk. If this result is as same as

the checksum calculated before, it means the update operation has finished successfully,

and the data on disk is new; otherwise, the data on disk is the old version.

Group Commit: TRAID can easily work with other log I/O optimization methods,

such as group commit [YG05], to gain incremental performance benefit. In database

with group commit, instead of starting a WAL flush immediately after a commit record

is inserted, it waits for a while to give other backends a chance to finish their transactions

and have them flushed by one log I/O. There are two parameters related to group commit:

how many commits to wait for (commit group size), and how often (timeout) to flush the

26

dirty log buffer. Given a specified commit group size, since TRAID can shrink a single

log record size by avoiding the before image for update and replace transactions, one log

I/O in TRAID can commit even more transactions.

Adopting group commit will require the system to maintain the commit ordering and

the serialization of the transactions. All the related requirements just affect the lock

table and transaction table [DKO84], but have nothing to do with the log content. On

the other hand, TRAID optimizes the log I/O by exploiting the overlap between the

spatial and temporal redundancy so that the log content of every update transaction is

reduced. As a result, TRAID complements other log I/O optimization methods, such as

group commit, etc..

Log space:The aforementioned discussion is based on the assumption that log is

recorded in either an inexpensive disk or disk arrays, where disk I/O is expensive. If log

is stored on some expensive storage devices, such as NVRAM or flash memory, where

the storage space is the main concern, TRAID can reduce the log size to improve the

efficiency of space utilization.

Locking granularity: Almost all database systems support fine granularity locking

besides page level locking, such as record level locking (for high concurrency require-

ments), object level locking (for object-oriented database systems), etc [MH94]. For

example, in Berkeley DB, page level locking is adopted for creating the database file,

since a page is the basic allocation unit. While record level locking may be enabled

for updates to records that are on the page, in order to achieve high concurrency. The

data structures of undo and redo information in the log are affected by the locking level.

The whole page (record) content is logged for page level (record level) locking, if need-

ed [Yad07]. However, different granularity locking does not affect the recovery process.

For example, in ARIES [MHL92], both page-level and record-level locking are supported

in a uniform fashion in the log subsystem. In other words, no matter whether the whole

page or only the record, or even only the changed attribute is logged, the recovery works

27

in the same way: undo based on the original image, redo based on the new image. Our

design avoids the redundant original image (no matter which level locking is being used)

stored in the log file when a database is working with RAID architecture.

Modularity loss: TRAID utilizes the overlapped redundancy between database

log space and RAID storage space, hence these two levels are unified at some extent

which will result in some loss in modularity. For TRAID5, the new generated log which

contains the TRAID-parity will depend on the setting of underlying RAID system (strip

size, block size, number of disks and so on); for TRAID10, the late-update version on the

secondary disk will provide the undo reference, and the RAID controller will depend on

transaction demarcations. As a result, the modularity between the storage system and

application level is potentially compromised. In the future work, we want to implement

an abstraction layer to eliminate this trade-off.

Data Reliability of TRAID: The core idea of TRAID is to exploit the inherent

RAID redundancy to boost the performance for transaction processing systems. RAID

architecture was developed to enhance the reliability of the multi-disk subsystem. There-

fore, in this section we analyze the reliability of TRAID10 and TRAID5 architecture

respectively, and compare them with RAID10 and RAID5 architecture. We show that

reliability of TRAID5 and RAID5 are equivalent; while in TRAID10, reliability is com-

parable to RAID10, except during a small time frame during which it is compromised in

exchange for performance.

TRAID5: The only difference between databases using TRAID5 and RAID5 is the

log content, which does not affect the reliability of the storage system. Assuming that

the log disk can not fail in a database system with RAID5, then more than one disk

failure will result in data loss. Similarly in TRAID5, if one disk fails, the data on the

failed block can be recovered by one XOR calculation. Furthermore, by using TRAID-

Parity Q we can do undo or redo according to the transaction requirement. If more than

one disk fails, the data will be lost since there is not enough redundancy information

28

to do the recovery. In other words, the TRAID-Parity Q is used to undo or redo the

transactional operations, rather than doing recovery in case of disk failure. As a result,

the data reliability of RAID5 and TRAID5 is same.

Let N be the number of disks in the TRAID5 and RAID5, MTTFdisk be the mean

time to failure for each disk, MTTR be the mean repair time. Hence, the MTTDL of

TRAID5 and RAID5 are given by:

MTTDLTRAID5 = MTTDLRAID5 =
MTTF 2

disk

N(N − 1)×MTTR

TRAID10: In order to calculate the reliability of TRAID10, we divide the processing

of a transaction into three steps:

Step 1 : Before a transaction can commit, all the transaction data and log records

are in the database buffer and log buffer, respectively;

Step 2 : The log records are flushed onto the log disk; transaction is ready to commit,

and transaction data in the database buffer is being written to the disk;

Step 3 : Transaction commits and all the transaction data and log records are on the

disks.

In the step 1 and 3, TRAID10 has the same data reliability as RAID10 does because

both of them have the same redundancy. In step 1, the data will be lost if both database

buffer and log buffer failed in TRAID10 or RAID10, as a result, the mean time to data

loss (MTTDL) depends on the mean time to failure (MTTF) of the buffer modules. Let

MTTFbuf represent the mean time to failure of a buffer module, and SDB, SLB be the

size of database buffer and the size of the log buffer respectively. The mean failure rate

caused by both DB buffer and log buffer is

λ1 =
SDBSLBMTTR

(MTTFbuf)2

29

The MTTDL of TRAID10 and RAID10 in step 1 is therefore given by:

MTTDLTRAID10 = MTTDLRAID10 =
1

λ1

In step 3, TRAID10 and RAID10 have all the data on the disks; mirrored and

stripped, so the MTTDL depends on the mean time failure rate of disks. Let N be

the number of disks, and MTTFdisk be the mean time to failure of a disk. It is not

straightforward to calculate the MTTDL of TRAID10 and RAID10 directly. However,

we can calculate the reliability of RAID10 by using the MTTDL of RAID1 and RAID0.

Suppose, we have 2-way mirroring redundancy in RAID1, the MTTDLRAID1 is given by:

MTTDLRAID1 = 2×MTTFdisk

And the MTTDLRAID0 can be denoted as (one disk failure will cause data loss):

MTTDLRAID0 =
MTTFdisk

N

A RAID10 with N disks can be treated as a RAID0 with N
2
RAID1 groups, each of

which contains 2 mirroring disks, as a result, the MTTDLRAID10 can be given as:

MTTDLTRAID10 = MTTDLRAID10 =
MTTFgroup

N/2
=

2MTTFdisk

N/2
=

4MTTFdisk

N

However in step 2, TRAID10 and RAID10 perform differently since we update the

two mirroring copies in a different way; RAID10 writes the two copies at the same time,

while TRAID10 updates one of them before the transaction commits, and then updates

the other copy after the transaction commits. RAID10 in step 2 has the same data

reliability as it does in step 3, since the system failure happens if and only if both the

30

disks in one mirroring group fail at the same time. Therefore the MTTDLRAID10 in step

2 can be also given by: 4MTTFdisk

N
.

While the situation of TRAID10 is a little more complicated. For all Read transac-

tions, we do not need to update the data on the disks, so the MTTDLTRAID10 Read in

step 2 is still denoted as 4MTTFdisk

N
.

For the write operations, during the asynchronous updates, the disk with un-updated

copy has the old data, if this disk failed after the data on the other one is updated and

before the transaction commit, we will lose the reference for possible undo or rollback

actions. As a result, besides the normal mirroring group-failure which also happened in

RAID10, we need to consider the failure of the disk containing the old data.

Before calculating the MTTDLTRAID10 in step 2, we need to formulate the write

and read operations. Suppose we have totally TN transactions, the probability of write

operations is P , and the average processing time for each write transaction is Tw, average

processing time for each read transaction is Tr. The percentage of read operation time

is:

Tr × (1− p)× TN

(Tw × P + Tr × 1− p)× TN

It reduces to

Tr × (1− p)

(Tw × P + Tr × 1− p)

The mean failure rate of mirroring group failure is given by

λ2 =
N/2

2×MTTFdisk
=

N

4×MTTFdisk

The mean failure rate of the disk containing un-updated data for one write request is

31

λ3 =
1

MTTFdisk ×N/2

The MTTDLTRAID10 Write can be denoted as

MTTDLTRAID10 Write =
1

λ2 + λ3
=

1
N

4×MTTFdisk
+ 2

N×MTTFdisk

=
4×N ×MTTFdisk

N2 + 8

As a result, the MTTDLTRAID10 in step 2 can be given by

MTTDLTRAID10 =
Tr × (1− p)

(Tw × P + Tr × (1− p))
× 4×MTTFdisk

N

+
Tw × p

(Tw × P + Tr × (1− p))
× 4×N ×MTTFdisk

N2 + 8

Since the data reliability in step 1 and step 3 is same, we focus on one case study in

step 2. Suppose there is a database with an underlying RAID10, which is composed of 8

disks, the workloads are 50% read and 50% write. The MTTF for disks is assumed to be 1

million hours [SG07]. Fitting these data into the MTTDLTRAID10 and MTTDLRAID10,

we getMTTDLTRAID10 = 4.9×105hours, whileMTTDLRAID10 = 5.0×105hours, which

mean 1.79% Annual Failure Rate and 1.75% Annual Failure Rate, respectively. There is

0.04% tradeoff in data reliability as compared to 40% transaction processing performance

improvement. We also considered an alternative implementation of TRAID10, which can

use the parity redundancy style data in logs, i.e. log XOR of old data and new data. It is

anticipated that this new solution gives the same reliability as RAID10 instead of 0.04%

tradeoff, but also incurs an extra overhead of XOR hardware cost that is not a part of

RAID10 design.

32

3.3 Experimental Setup

3.3.1 Testbed

In order to implement TRAID5 and TRAID10, we modify the corresponding RAID codes

in Linux kernel version 2.6.11 on a Dell Precision 690 (Intel Xeon E5345 - 2.33GHz/4.0GB

RAM). 5 uniform 250G SATA disk drives with 7200 rpm rotation speed are installed.

The benchmarks are TPCC and tailored TPCC(s). We create soft (T)RAID5 (with 4

disks – 3 data disks and 1 parity disk, another disk was used as log disk) and (T)RAID10

(with 4 disks, the last disk is the log disk). We launch the experiments on top of two

open source database systems: Berkeley DB 4.3 version [Yad07] and PostgreSQL 8.1.4

version [refo]. There is another well-known open source database system MySQL, which

uses similar logging method as Berkeley DB (Rollback Segments). We chose to hack

Berkeley DB because it is more light-weight and simple. PostgreSQL is considered be-

cause it uses a different transaction logging scheme, named Multi-Version Concurrency

Control (MVCC). Moreover, Berkeley DB uses page-level logging while PostgreSQL uses

record level logging by default. We will evaluate our TRAID on top of these two different

logging systems.

3.3.2 Implementation of TRAID5 & TRAID10

For simplicity, we only consider the transactions without partial commit, so TRAID5

and TRAID10 just need one version of TRAID Parity.

In TRAID5, we add one TRAID5-parity calculation step using the existing XOR

engine in RAID5. A hook is also added to the XOR block function in the RAID5 source

code to get the required block information and write the calculated TRAID-Parity into

the buffer. When the buffer is full, or the size of group commit limitation is reached or the

33

database decides to write the updated transaction data to the disk, the TRAID-parities

are flushed to the log disk.

In TRAID10, we create an XOR-calculation function because there is no XOR engine.

One hook is added in the RAID10 controller to record two versions of the block which

is to be updated. The old version and new version of the data are the inputs for XOR

calculation.

3.3.3 Workloads

In order to have a fair evaluation of TRAID, we use three benchmarks: a commercial

benchmark for transaction processing evaluation: TPC-C [170], and two modified versions

of TPC-C as micro benchmarks.

The first benchmark, TPC-C, simulates an Online Transaction Processing (OLTP)

database environment. It can measure the performance of a system which is tasked with

processing numerous short business transactions concurrently. It is set in the context

of a wholesale supplier operating on a number of warehouses and their associated sales

districts. TPC-C incorporates five types of transactions with different complexity for

online and deferred execution on a database system. These transactions perform the basic

operations on databases such as inserts, deletes, updates and so on. The transactions in

TPC-C and their percentage of the transaction mix are [TPC]: (1) New Order (45%):

read-write. (2) Payment (43%): read-write. (3) Order Status (4%): read-only. (4) Stock

Level (4%): read-only. (5) Delivery (4%): read-write.

Based on the implementation of standard TPC-C, we developed a special version of

TPC-C for our test, named BTPC-C1 (Biased TPC-C benchmark1). In BTPC-C1, the

key values in the queries and updates were changed from a uniformly random distribu-

tion to a biased distribution in the form of 90/10 rules. In this way, we increase the

access locality so that the resulting workload is more sensitive to lock content delay, and

34

the log-lock content delay. By using BTPC-C1, one locked transaction can cause more

transactions to wait for the lock release, so we can see how much benefit can be gained

by using TRAID, i.e. a reduced log-lock latency. In the experiments with BTPC-C1, we

increase the number of concurrent processes to see the performance of DB+TRAID and

DB+RAID systems.

The third benchmark aims to test the performance of TRAID with a write-intensive

workload, called BTPC-C2 (Biased TPC-C benchmark2). In BTPC-C2, we shield all the

read-only transactions in TPC-C. Because read requests in TRAID and RAID are iden-

tical, read intensive transactions may obviate the performance improvement. Therefore,

by using BTPC-C2, we can explore the advantages of TRAID for the transactions with

dominant update requests.

It is necessary to consider the locking-level issue: it is known that there are page-

level locking and record-level locking in database. We want to show the performance

improvement of TRAID is not limited to any specific locking level. Hence the block size

of a TRAID-parity is set to 512 Bytes, which is same as the default page size in Berkeley

DB and PostgreSQL. In our experiments, the page size is 512 Bytes, the record size in

WAREHOUSE Table is about 480 Bytes, in CUSTOMER Table is over 700 Bytes, and

in STOCK Table is about 420 Bytes; while in other 5 tables, the record sizes range from

100 Bytes to 200 Bytes. 92% of the transactions will read/write the first three tables.

For the majority of time, only 1 record can be fit in 1 page, which means the page level

locking in our experimental configuration is comparable to record level locking.

3.4 Experimental Results

We run the TPC-C benchmark workload with the warehouse parameter set to 20, rep-

resenting an initialized database size of 4 GB, which grows during each test run as new

records are inserted. In our TPC-C benchmark, the input includes number of transac-

35

tions, number of terminals (number of concurrent processes). The output consists of the

transaction processing time and the transactions per minute (tpmC). For each test, we

run the given number of transactions ten times and get the average response time to

analyze the TRAID performance in addition to the size of log file in each experiment.

Berkeley DB and PostgreSQL are denoted as BDB and PGS for short, respectively.

3.4.1 Experiments on BDB

In Berkeley DB, the logging method is similar as the Rollback Segments-based schemes

in Oracle, MySQL. These database systems simply store the modified data of each trans-

action in the data tables; meanwhile, the information required to rollback any particular

transaction is stored in the rollback segments (in log files). BDB uses page-level logging.

3.4.1.1 Standard TPC-C Benchmark

The first experiment compares the overall response time of BDB+RAID and BD-

B+TRAID for a given number of transactions. In standard TPC-C, we set the number

of concurrent processes to 10 (as the official setting), and the number of warm-up trans-

actions to 1,000. Figure 3.3 shows the overall execution times of TPC-C on RAID10,

RAID5, TRAID10 and TRAID5; Figure 3.4 shows the corresponding throughputs.

From Figure 3.3, we can see that compared to RAID10 and RAID5, TRAID10 and

TRAID5 improves the overall response time significantly, and the improvement increases

with the increasing number of transactions. The average throughput of RAID10 in

Figure 3.4 is 230.21 tpm-C, while the average throughput of TRAID10 is 329.71 tpm-C,

which means BDB+TRAID10 is 43.23% faster than BDB+RAID10. Similar conclusions

are drawn for RAID5 and TRAID5, the average throughput of RAID5 is 197.4 tpm-C,

36

0

500

1000

1500

2000

2500

3000

3500

1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000

Number of Transactions

O
ve

ra
ll

R
es

p
o

n
se

 T
im

e(
se

co
n

d
)

BDB+RAID10

BDB+RAID5

BDB+TRAID10

BDB+TRAID5

E

x

e

c
u

t
i

o

n

T

i
m

e

(

s
e

c

o

n

d

)

Figure 3.3: Execution Time (TPC-C)

while the one of TRAID5 is 310.5 tpm-C, which means TRAID5 outperforms RAID5 by

56.89%.

There are two reasons behind this improvement: 1) instead of writing two versions of

the updating page or record into the log disk, TRAID only writes two thirds of the amount

of data, which will decrease the log flushing time as well as the time when the updating

transactions are locked; 2) in order to maximize the I/O bandwidth utilization, database

systems usually buffer the updating writes and wait until the buffer is full to execute a

big I/O. For the logging system, a similar mechanism is also used via a log buffer (group

commit). Since we decreased the log content significantly, the buffer with same size for

group commit in TRAID systems can hold more committing transactions compared to

RAID systems, hence one same log flush I/O operation in TRAID can commit more

transactions. The latter one is the key to realize the significant improvement of overall

response time.

37

0

50

100

150

200

250

300

350

400

450

500

1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000

Number of Transactions

T
h

ro
u

g
h

p
u

t
(t

p
m

-C
)

BDB+TRAID10

BDB+TRAID5

BDB+RAID10

BDB+RAID5

Figure 3.4: Throughput (TPC-C)

The improvement of TRAID5 over RAID5 is more significant than that of TRAID10

over RAID10, because the TRAID5-parity is the intermediate result of RAID5 parity

calculation. For example, upon one request to update page A to A′, the RAID5 parity

calculation needs to do P ′ = P ⊕A⊕A′ while TRAID5-parity is part of it: Q = P ⊕P ′ =

A⊕A′. As a result, we can simply read and record Q from the P ′ calculation rather than

doing one extra calculation. However in TRAID10, we need to implement a real XOR

function and do a real calculation for TRAID10-parity Q.

The throughput of TRAID5/RAID5 is a little less than TRAID10/RAID10 because

we do not implement any extra optimization to eliminate the write penalty in RAID5 or

TRAID5, while TPC-C has a larger percentage of writes than reads.

TRAID is also evaluated for log size improvement as shown in Figure 5. The size of

log files in BDB+RAID10 and BDB+RAID5 is the same since all the pages being updated

(including the before and after images) are logged in Berkeley DB. Both BDB+TRAID10

and BDB+TRAID5 only record the TRAID-parity information instead of before and

after images. From Figure 5, we can see that TRAID10 saves the log space up to 33.7%

compared to a RAID system, while TRAID5 saves 32.6%. Before analyzing this result,

note that we cannot avoid recording the regular transaction information in the log file:

38

0

50

100

150

200

250

300

350

400

1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000

Number of Transactions

L
o

g
 F

ile
 S

iz
e(

M
B

)

BDB+RAID

BDB+TRAID10

BDB+TRAID5

Figure 3.5: Comparison of Log Size (TPC-C)

(1) LSN, Transaction ID, etc.; (2) some other logged operations, such as page allocation,

keep track of record counts in a B tree, mark a record on a page as deleted, etc.; (3)

the relative large checkpoint records in BDB log file, which log all the pages are being

accessed by the running transactions. Hence, by only recording the TRAID-parity in

TRAID, the log size is reduced by one-third rather than 50%.

As we mentioned above, we set the parity block size as 512 Bytes in TRAID and it

is the basic unit for parity computations. Actual data sizes of disk write requests (stripe

size) are independent of the parity block size but are aligned with parity blocks. With

this setting, one TRAID-parity will take as much space as one Before image does in BDB

log file, and it is the only way to make a fair size comparison of the TRAID5 log with

Berkeley DB log. As a result, theoretically the log size of TRAID5 should be similar to

TRAID10. The small difference in the experiment result is due to the different response

time: TRAID5 needs a little bit more time to do all the transactions, which may result

in several more checkpoint records (a new checkpoint is made every 60 seconds).

39

3.4.1.2 BTPC-C1 with Access Locality

The second experiment with BTPC-C1 benchmark evaluates the impact of data access

locality on the TRAID performance. Since in BTPC-C1 90% of the queries and update

requests focus on 10% of the data, the overall performance will be more sensitive to

the log-lock-latency effect. With the increasing number of concurrent processes, the

benefit of TRAID over RAID becomes more significant because TRAID reduces the wait

time of subsequent transactions. We run 10,000 transactions implemented by BTPC-C1,

and gradually increase the number of concurrent processes. The overall corresponding

throughputs are shown in Figure 3.6.

Figure 3.6: Benchmark with access locality (BTPC-C1)

From Figure 3.6, we can see the performance improvement from RAID to TRAID

is not substantial when there is only 1 process. The difference between TRAID and

RAID in this case (sequentially transaction processing) is the waiting-time of log-writing

for sequential transactions. Also, since no concurrent transactions exist, there is no

log-locking time which can further delay the transaction commit time.

The trend of throughput improvement for different number of concurrent processes

is shown in the Figure 3.7. It is clear that the throughput improvement from RAID

40

to TRAID increases gradually with the number of concurrent transactions up till 5,

and then the improvement factor starts decreasing. The lock-content delay is a crucial

factor in transaction response time before the number of concurrent processes reaches

5. TRAID gains more improvement with the increasing concurrency and more lock

contention because it can decrease the log-lock content delay. However, after this point,

the disk I/O costs dominate the transaction response time while the lock content effect

has reached the peak. The throughput improvement of TRAID over RAID becomes

stable (between 41.9% to 49.6%) after the concurrency reaches a threshold of 5, where

the improvement is maximized as 79.6% for TRAID10 and 63.7% for TRAID5.

Figure 3.7: Throughput Improvement (BTPC-C1)

3.4.1.3 Write-intensive BTPC-C2

The third experiment tests the performance of TRAID for write-intensive workload-

s, BTPC-C2, in which every transaction needs to read and update the database. We

changed the percentages of five transaction mix by deleting the read-only transactions

such as Order Status transactions and Stock Level transactions, and increasing the per-

centages of the other three kinds of transactions. In this experiment, we set the number

41

of concurrent processes to 5, which is the turning point of performance improvement ac-

cording to Section 3.4.1.2. The overall execution times of BDB+RAID10, BDB+RAID5,

BDB+TRAID10 and BDB+TRAID5 are shown in Figure 3.8.

Figure 3.8: Overall Execution Time with write intensive workload (BTPC-C2)

By calculating the average improvement, TRAID10 outperforms RAID10 by 69.5%

while TRAID5 outperforms RAID5 by 62.7%. Recall these numbers with standard TPC-

C benmark in the first experiment, the TRAID10 and TRAID5 outperform RAID10 and

RAID5 by 43.23% and 56.89% respectively. Hence TRAID obtains more improvement

for writes-intensive workloads because more updates of the transactions are needed to be

logged. Meanwhile, more write requests result in higher possibility of resource conflicts,

which force more transactions to wait for the conflicting transaction commit. This log-

locking time for a transaction commit can be reduced by TRAID. Therefore, TRAID

performs even better for write-intensive workloads.

3.4.2 Experiments on PostgreSQL

PostgreSQL (PGS) uses MVCC-based logging method, which is different from Berkeley

DB. Rows of a table in PGS are stored as tuples; two fields of each tuple are xmin and

42

xmax, which record the transaction ID of the transaction creating and deleting this tuple,

respectively. Insertions in PGS will generate one tuple (in both database table and log

files) with the xmax blank and the xmin set to the transaction ID. Deletions in PGS will

find the tuple in database table and set the xmax field; but in sequencing log files, PGS

will add a new deleting log record rather than looking up and modifying the existing

tuple because log buffer operations are much faster than accessing the log files on disk.

Update in PGS is no more than a concurrent insert and delete, which will write both the

new tuple and the old tuple into the log files 1. PGS uses record-level logging.

3.4.2.1 Log Size and Latency

In order to highlight the log size and logging latency, we use PGS to generate the database

according to the TPC-C criterions. The database generating process includes insertions,

deletions and updates, all of which will write log files. The results about log size are

shown in Figure 3.9. In PGS, each log file is 16M by default. When it is full, a new log

file is generated; there are at most 7 log files at one time; thereafter, the oldest one will

be removed as the new one is added.

Figure 3.9 shows that the real data size of warehouses’s tables is relatively small when

compared with the log size. On average, log size is 6.01− 6.74 times as large as the size

of generated Database. When using TRAID, the log size reduces by 28.57− 35.48% for

TRAID10 and 25.37− 31.03% for TRAID5.

For the logging latency, it should be noted that PGS has two functions to perform

WAL logging: XLogInsert and XLogFlush. XLogInsert is used to place a new record

into the WAL buffers during the transaction processing phase; XLogFlush is made at

transaction commit time to ensure that transaction records are flushed to permanent

1There are many ways to tune PGS’s logging system to boost its performance, we only consider the
most safe configuration to strictly guarantee ACID properties in our experimental settings.

43

Figure 3.9: Statistics of data sizes when generating TPC-C warehouses

storage. We add a timer in XLogFlush function to quantify the log flushing latencies, as

illustrated in Figure 3.10.

Figure 3.10: Statistics of logging latency when generating TPC-C warehouses

The results show that the logging latencies on regular RAID devices are 81.9−82.08%

of the overall time. When using TRAID, the above numbers become 54.9 − 60.5% for

TRAID10 and 58.9−62.2% for TRAID5. On average, TRAID can reduce the log latency

by 26.7 − 30.6%. Although these latencies are related to the I/O speed of the storage

devices, we only focus on the improvement ratio by using TRAID.

44

3.4.2.2 Throughput of TRAID

We use a open-source implementation of TPC-C, named TPCC-UVA [lla04] on Post-

greSQL engine to evaluate the performance of TRAID. We run the test with different

numbers of warehouses and fixed 10 terminals in each warehouse. The ramp-up period

is set to 20 minutes and the measurement period is set to 2 hours. The results are shown

in Figure 3.11.

Figure 3.11: Throughput comparison of RAID and TRAID on PostgreSQL

Based on the results, TRAID10 outperforms RAID10 by 54.3%, TRAID5 outperforms

RAID5 by 57.5% on average. It is interesting to observe that TRAID only reduces the

log latency by 26.7− 30.6%, while it can improve the overall throughput over 50%. The

reason is the conflict transactions need to wait less in TRAID; a small reduction in log

latency may help more transactions to proceed or commit earlier. As a result, TRAID

can comparably improve the transaction processing efficiency for both page-level logging

(BDB) and record-level logging (PGS).

3.4.3 TRAID & group commit

Group commit can be used in some databases to improve the log I/O efficiency. In

this set of experiments, we show that TRAID combined with group commit can further

improve transaction processing throughput. The database we use is Berkeley DB.

45

We enable group commit in BDB by setting DB TXN WRITE NOSYNC to the

database environment, which is disabled by default. If DB TXN WRITE NOSYNC is

set, Berkeley DB will write, but not synchronously flush the log on transaction commit.

This means that transactions do not exhibit the durability requirement of the ACID

semantics. Database integrity will be maintained. However, if the application or system

fails, some number of the most recently committed transactions may be undone during

recovery [BDB]. The number of transactions at risk is governed by how many log updates

can fit into the log buffer, how often the operating system flushes dirty buffers to disk

(controlled by a data structure called Timer), and how often the log is checkpointed.

We disable the checkpoint in Berkeley DB and do not set the Timer so that the log buffer

will not flush to disks unless it is full. In other words, the log buffer size is exactly the

same as group commit size.

0

50

100

150

200

250

300

350

400

450

500

1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000

Number of Transactions

T
h

ro
u

g
h

p
u

t
(t

p
m

-C
)

DB+TRAID10

DB+TRAID5

DB+RAID10

DB+RAID5

BDB+TRAID10

BDB+TRAID5

BDB+RAID10

BDB+RAID5

Figure 3.12: Throughput (write intensive workload BTPC-C2)

Before doing the experiment, we need to give an optimized range of log buffer size

in a busy, high-DML (Data Manipulation Language) database. Common wait events

related to a too-small log buffer size include high “redo log space requests” and a too-

large log buffer may result in high “log file sync” waits. [Bur05] recommends that a

value of 10MB for the log buffer is a reasonable value for Oracle Applications and it

46

represents a balance between concurrent programs and online users, and the value of log

buffer must be a multiple of log buffer block size, 512 bytes. Following these rules 1M to

10M log buffer sizes are used in the experiment. After setting the log buffer size, we run

10,000 TPC-C transactions on top of BDB+RAID with group commit (GC for short)

and BDB+TRAID with GC. The first 200 and the last 200 transactions are used for

warm up and cool down which are not counted in the overall performance. The results

are shown in Figure 3.13.

0

50

100

150

200

250

300

350

400

450

500

550

1M
 2M
 4M
 6M
 8M
 10M

Log buffer size

T
h

ro
u

g
h

p
u

t(
T

p
m

-C
)

RAID5 with group commit
 TRAID5 with group commit

RAID10 with group commit
 TRAID10 with group commit

Figure 3.13: Throughput of DB with GC on RAID5, DB with GC on TRAID5

We list all the throughput improvement percentages of BDB+TRAID with GC over

BDB+RAID with GC in Table 3.5. TRAID5+GC outperforms RAID5+GC by 17.8%

on average, while TRAID10+GC outperforms RAID10+GC by 18.9% on average. It

is interesting to observe that the throughput improvement is decreasing along with the

increasing group commit size. With a larger log buffer size, more transactions to commit

can fit in the buffered group; the log I/O efficiency is being improved. But the improve-

ment is decreasing because the impact of log I/O cost is getting smaller. When log I/O

latency is no longer the main bottleneck, we cannot improve the overall performance sig-

47

nificantly by only adopting group commit. As a result, the improvement of transaction

throughput comes down to about 11% and stabilizes afterwards. The reason is that one

log buffer flush (group commit) in TRAID can commit more transactions.

Table 3.5: Throughput Improvement (T5/T10 stands for TRAID5/TRAID10, GC stands
for group commit, use RAID5/10 with GC as the baseline)

Log buffer 1M 2M 4M 6M 8M 10M
T5+GC 29% 26% 18% 11% 11% 12%
T10+GC 31% 25% 19% 15% 12% 12%

3.4.4 Rollback Performance

TRAID and RAID use different ways to undo transactions, so it is interesting to compare

their respective rollback performance. We create transactions modifying some values

of the records in CUSTOMER table, such as the customer’s name, address, etc. All

the transactions will be processed to the end but rolled back before it is committed.

Only 1 process is generated to run this simulation because we just want to highlight

the rollback performance. We run 500 to 3000 transactions sequentially and record the

whole execution time including the transaction processing time plus the rollback time.

The results are shown in Figure 3.14, the corresponding improvements are shown in

Figure 3.15.

Since the transactions in this section are write-intensive, we compare Figure 3.14 with

Figure 3.12. We firstly notice that RAID10 always outperforms RAID5 in non-rollback

situation in Figure 3.12, but it is not always true when the transactions need to be rolled

back, as shown in Figure 3.14. When the transactions are processing normally, RAID10

is doing better due to the write penalty of RAID5; while during the transaction rollback,

RAID5 could do it with higher parallelism. The read from log disk will collect all the

data that the undoing transaction needs, RAID5 in our experiment (consists of 4 disks)

could undo the transaction on 3 disks (not including the 1 parity disk) at the same time,

while RAID10 does it only on 2 mirroring groups. Our second finding is that although the

48

Rollback Performance

0

10

20

30

40

500
 1000
 1500
 2000
 2500
 3000

Number of Transactions

E
xe

cu
ti

o
n

 T
im

e
(m

)
 RAID10
 RAID5
 TRAID10
 TRAID5

Figure 3.14: Rollback Performance

overall performance of TRAID10/5 is always better than that of RAID10/5 no matter

whether there is rolled back or not, the improvement is decreased when we include the

rolled back transactions.

Rollback Performance Improvement

0%

10%

20%

30%

40%

50%

500
 1000
 1500
 2000
 2500
 3000

Number of Transactions

Im
p

ro
ve

m
en

t(
%

)

TRAID5
 TRAID10

Figure 3.15: Rollback Performance Improvement

Figure 3.15 shows that when the transactions are rolled back, the average improve-

ment of TRAID10 is 35.7%, while TRAID5 is 28.6%. These numbers in Section 3.4.1.3

are 47.4% and 61.7%, respectively. The reason is that our new rollback methods result in

more disk I/O. For example, the undo operation on single block in RAID5 only results in

one read (from log disk), one write (to the block on data disk); while in TRAID5, we will

49

have one read (from log disk), one read (from data disk), one XOR calculation and one

write (to the block on data disk), plus the extra I/O to update the parity information

on the same stripe. But this overhead is still trivial when compared with the benefit

TRAID brought. The most interesting find is that when we include rollback, the overall

performance of TRAID5 is decreased more than that of TRAID10 (33.1% compared with

11.7%). This is still caused by the write penalty in RAID5. When the transaction is

rolled back, we write the calculated value (the old value) to the disk, this write will in

turn cause extra I/O to calculate the new RAID5 parity; while in TRAID10, we intro-

duce less overhead (one read from data disk, one XOR calculation, and one write) since

there is no parity and related write penalty.

50

CHAPTER 4

A NEW DATA-GROUPING-AWARE DATA PLACEMENT
SCHEME FOR DATA INTENSIVE APPLICATIONS WITH

INTEREST LOCALITY

In this section, we design DRAW at rack-level, which optimizes the affinitive-data distri-

bution inside the rack. There are three parts in our design: a history data access graph

(HDAG) to exploit the data affinity, a data affinity matrix (DAM) to group the affinitive

data, and an optimal data placement algorithm (ODPA) to generate the optimal data

placement.

4.1 Motivation

The raw data obtained from the scientific simulations/sensors needs to be uploaded to the

Hadoop cluster for subsequent MapReduce programs [SMW10]. In these large scale data

sets, the accessing frequency and pattern of each data varies because of the applications’

interest locality. For example, UCSC Genome Browser [refp] hosts the reference sequences

and working draft assemblies for a large collection of genomes. It is obvious that different

groups will access different subsets of these genome data: mammal [BR06], insect [HG09],

or vertebrate [ZYN07]. Even in the same category, e.g. mammal, different groups may

focus on different species [HL05, SLZ07].

By using Hadoop’s default random data placement strategy, the overall data distri-

bution may be balanced1, but there is no guarantee that the data being accessed as a

1If the initial data distribution is not balanced, Hadoop users can start a balancer (an utility in
Hadoop), to re-balance the data among the nodes.

51

map
 map

map
 map

map
 map

map
 map

map
 map

map
 map

map
 map

map
 map

Node1
 Node2
 Node3
 Node4

Node1
 Node2
 Node3
 Node4

map

map

Blocks of interest

Other blocks

Map with data

locality

Map without

data locality

Hadoop's random

data placement

may cluster the

blocks of interest

Ideal data

placement

evenly distributing

the affinitive data

The maximum of simultaneous maps on each node is 2.

map

map
 map

map

map

Map waiting

in the queue

Figure 4.1: A simple case showing the efficiency of data placement for MapReduce pro-
grams.

group is evenly distributed. To further explore why such clustered grouping data becomes

performance barriers for the MapReduce program, we need to know how a MapReduce

program works. A MapReduce job is split into many map tasks to process in parallel.

Map tasks intend to be allocated to the nodes with the needed data locally being stored to

achieve “compute-storage co-locality”. Without evenly distributed grouping data, some

map tasks may have to be scheduled on other nodes which remotely access the needed

data, or, they are scheduled on these data holding nodes but have to wait in the queue.

These map tasks violate the data locality and could severely drag down the MapReduce

program performance [refg]. We shown an example in Figure 4.1, if the grouping data

are distributed by Hadoop’s random strategy, the shaded map tasks with either remote

data access or queueing delay are the performance barriers; whereas if these data are

evenly distributed, the MapReduce program can avoid these barriers.

Therefore, the reason for the inefficiency of Hadoop’s random data placement is be-

cause the data semantics, e.g., grouping access patterns (caused by applications’ interest

locality), are lost during the data distribution. On the other hand, dynamic data group-

52

ing is an effective mechanism for exploiting the predictability of data access patterns

and improving the performance of distributed file systems [?, ?, ?]. In this work, we

incorporate data grouping semantics into Hadoop’s data distribution policy to improve

the MapReduce programs’ performance.

4.2 Data-gRouping-AWare Data Placement

In this section, we design DRAW at rack-level, which optimizes the grouping-data

distribution inside a rack. There are three parts in our design: a history data access

graph (HDAG) to exploit system log files learning the data grouping information; a data

grouping matrix (DGM) to quantify the grouping weights among the data and generate

the optimized data groupings; an optimal data placement algorithm (ODPA) to form the

optimal data placement.

4.2.1 History Data Access Graph (HDAG)

HDAG is a graph describing the access patterns among the files, which can be learned

from data accesses history. In each Hadoop cluster rack, the NameNode maintains system

logs recording every system operation, including the files have been accessed. A naive

solution can be: filter out the files have been accessed, and every two continuously files

are in the same group. This solution is simple for implementation because it only needs

a traversal of the NameNode log files. However in practical there are two problems: first,

the log files could be huge which may result in unacceptable traversal latency; second,

the continuously accessed files are not necessarily related, e.g., the last file accessed by

task x, and the first file accessed by task x+1. Therefore, we need to define checkpoint

53

d1

Data: d1 -- d10

Task: t1--t3

d8

d2
 d3

d7

d6

d10

d4

d5

d9

t1
 t1

t1

t1

t1

t2

t2

t2

t2

t3

t3

t3

t3

t3

Tasks
 Data of interest

t1
 {d1,d2,d3,d6,d7,d8}

t2
 {d2,d3,d4,d7,d9}

t3
 {d1,d2,d5,d6,d7,d10}

HDAG

Figure 4.2: An example showing the History Data Access Graph (HDAG).

d1
 t1,t3

d2
 t1,t2,t3

d3
 t1,t2

d4
 t2

d5
 t3

d6
 t1,t3

d7
 t1,t2,t3

d8
 t1

d9
 t2

d10
 t3

d1
 d2
 d3
 d4
 d5
 d6
 d7
 d8
 d9
 d10

d1
 2
 2
 1
 0
 0
 2
 2
 1
 0
 1

d2
 2
 2
 2
 1
 0
 2
 3
 1
 1
 1

d3
 1
 2
 2
 1
 0
 1
 2
 1
 1
 0

d4
 0
 1
 1
 1
 0
 0
 1
 0
 1
 0

d5
 0
 0
 0
 0
 1
 1
 1
 0
 0
 1

d6
 2
 2
 1
 0
 1
 2
 2
 1
 0
 1

d7
 2
 3
 2
 1
 1
 2
 3
 1
 1
 1

d8
 1
 1
 1
 0
 0
 1
 1
 1
 0
 0

d9
 0
 1
 1
 1
 0
 0
 1
 0
 1
 0

d10
 1
 1
 0
 0
 1
 1
 1
 0
 0
 1

t1
 {d1,d2,d3,d6,d7,d8}

t2
 {d2, d3,d4,d7,d9}

t3
 {d1,d2,d5,d6,d7,d10}

6
 7
 1
 2
 3
 10
 5
 9
 8
 4

6
 3
 2
 2
 2
 2
 1
 1
 0
 1
 1

7
 2
 3
 2
 2
 2
 1
 1
 1
 1
 1

1
 2
 2
 2
 2
 1
 1
 0
 0
 1
 0

2
 2
 2
 2
 2
 2
 1
 0
 0
 1
 0

3
 2
 2
 1
 2
 2
 0
 0
 1
 1
 1

10
 1
 1
 1
 1
 0
 1
 1
 0
 0
 0

5
 1
 1
 0
 0
 0
 1
 1
 0
 0
 0

9
 0
 1
 0
 0
 1
 0
 0
 1
 0
 1

8
 1
 1
 1
 1
 1
 0
 0
 0
 1
 0

4
 1
 1
 0
 0
 1
 0
 0
 1
 0
 1

10
 5
 9
 8
 4

10
 1
 1
 0
 0
 0

5
 1
 1
 0
 0
 0

9
 0
 0
 1
 0
 1

8
 0
 0
 0
 1
 0

4
 0
 0
 1
 0
 1

4
 9
 5
 10
 8

4
 1
 1
 0
 0
 0

9
 1
 1
 0
 0
 0

5
 0
 0
 1
 1
 0

10
 0
 0
 1
 1
 0

8
 0
 0
 0
 0
 1

Unnecessary

for this example

step1

step2

step3

Data Affinity Matrix (DAM)

C

l
u

s

t
e

r

e

d

D

A

M

(

C

D

A

M

)

Assume there are 5 datanodes

step4

step5

Sub-matrix

for ODPA

(OSM)

Group 1
 Group 2

Tasksets(ts)

Figure 4.3: An example showing the grouping matrix and the overall flow to cluster data
based on their grouping weights.

denoting how far the HDAG will traversal back in the NameNode logs; and we also

need to exploit the mappings between tasks and files to accurately learn the file access

patterns. Note that in Hadoop clusters, files are split into blocks which is the basic

data distribution unit; hence we need to translate the grouping information at file level

into block level. Fortunately, the mapping information between files and blocks can be

found in the NameNode. Figure 4.2 shows an example of HDAG: given three MapReduce

tasks, t1 accesses d1 ∼ d8, here d is block; t2 accesses d2, d3, d4, d7, d9; and t3 accesses

d1, d2, d5, d6, d7, d10. The accessing information initially generated from the log files is

shown as Figure 4.2(a). Thereafter we can easily translate the table into the HDAG

shown as Figure 4.2(b). This translation step makes it easier to generate the grouping

Matrix for next step.

54

4.2.2 Data Grouping Matrix (DGM)

Based on HDAG, we can generate a data grouping matrix (DGM) showing the relation

between every two data blocks. Given the same example as shown in Figure 4.2, we can

build the DGM as shown in Figure 4.3 (step1 and step2), where each element DGMi,j =

groupingi,j is the grouping weight between data i and j. Every DGMi,j can be calculated

by the counting the tasks in common between task sets of tsi and tsj. The elements in

the diagonal of the DGM show the number of jobs that have used this data. In DRAW,

DGM is a n by n matrix, where n is the number of existing blocks. As we stated before,

one data belonging to group A may belong to group B at the same time; the grouping

weight in the DGM denotes “how likely” one data should be grouped with another data.

After knowing the DGM in Figure 4.3, we use a matrix clustering algorithm to group

the highly related data in step3. Specifically, Bond Energy Algorithm (BEA) is used

to transform the DGM to the clustered data grouping matrix (CDGM). Since weighted

matrix clustering problem is N-P hard, the time complexity to obtain the optimized

solution is O(nn), where n is the dimension. The BEA algorithm saves the computing

cost by finding the sub-optimal solution in time O(n2) [GZ99]; it has been widely utilized

in distributed database systems for the vertical partition of large tables [OV99] and matrix

clustering work [GZ99]. The BEA algorithm clusters the highly associated data together

indicating which data should be evenly distributed. Assuming there are 5 DataNodes in

the Hadoop cluster, the CDGM in Figure 4.3 indicates data {6, 7, 1, 2, 3} (group 1) and

{4, 9, 5, 10, 8} (group 2) should be evenly distributed when placed on the 5 nodes. Note

that we have only 10 pieces of data in our example, after knowing that {6, 7, 1, 2, 3} should

be placed as a group (horizontally), it is natural to treat the left data {4, 9, 5, 10, 8} as

another group. Hence step 4 and step 5 in Figure 4.3 are not necessary for our case, but

when the number of remaining data (after recognizing the first group) is larger than the

number of nodes, more clustering steps are needed.

55

node1
 node2
 node3
 node4
 node5

d6
 d7
 d1
 d2
 d3

d4
 d9
 d5
 d10
 d8

Tasks
 requried data
 Involved nodes

t1
 d1,d2,d3,d6,d7,d8
 1,2,3,4,5

t2
 d2,d3,d4,d7,d9
 1,2,4,5

t3
 d1,d2,d5,d6,d7,d10
 1,2,3,4

node1
 node2
 node3
 node4
 node5

d6
 d7
 d1
 d2
 d3

d9
 d8
 d4
 d10
 d5

Tasks
 requried data
 Involved nodes

t1
 d1,d2,d3,d6,d7,d8
 1,2,3,4,5

t2
 d2,d3,d4,d7,d9
 1,2,3,4,5

t3
 d1,d2,d5,d6,d7,d10
 1,2,3,4,5

Without ODPA, the parrallelism

may be not maximized

Optimized data layout

maximizes the parallelism

Not optimal
 Optimal

(1)
 (2)

Figure 4.4: Without ODPA, the layout generated from CDGM (Clustered Data-Grouping
Matrix) may be still non-optimal.

4.2.3 Optimal Data Placement Algorithm (ODPA)

Only knowing the data groups is not enough to achieve the optimal data placement.

Given the same example from Figure 4.3, random placing of each group, as shown in

Figure 4.4 (1), task 2 and task 3 can only run on 4 nodes rather than 5, which is not

optimal.

Algorithm 4.2.1 ODPA algorithm
Input: The OSM from CDGM: M [n′][n]; where n′ is the number of data already placed;
Output: A n′ ∗ 2 matrix indicating the data placement: DP [n′][2];
Steps:
for each row from M [n′][n] do

R = the index of current row;
Find the minimum value V in this row (not include the ones from the columns already assigned);
Put this value and its corresponding column index C into a set MinSet ;
MinSet = C1, V 1, C2, V 2, ; // there may be more than one minimum value
if there is only one tuple (C1, V 1) in MinSet then

//The data referred by C1 should be placed with the data referred by R on the same node;
DP [R][0] = R;
DP [R][1] = C1;
Mark column C1 is invalid (already assigned);
Continue;

end if
for each column Ci from MinSet do

Calculate Sum[i] = sum(M [⋆][Ci]); // all the items in Ci column
end for
Choose the largest value (or the first largest value) from Sum array;
C = the index of the chosen Sum item;
DP [R][0] = R;
DP [R][1] = C;
Mark column C is invalid (already assigned);

end for

This is because the above data grouping only considers the horizontal relationships

among the data in DAM, and so it is also necessary to make sure the blocks on the same

56

node has minimal chance to be in the same group (vertical relationships). In order to

obtain this information, we propose an algorithm named Optimal Data Placement Algo-

rithm (ODPA) to complete our DRAW design, as described in Algorithm 4.2.1. ODPA

is based on sub-matrix for ODPA (OSM) from CDGM. OSM indicates the dependencies

among the data already placed and the ones being placed. For example, the OSM in

Figure 4.3 denotes the vertical relations between two different groups (group1:6, 7, 1, 2, 3

and group2:4, 9, 5, 10, 8).

Take the OSM from Figure 4.3 as an example, ODPA algorithm starts from the first

row in OSM, whose row index is 6. Because there is only one minimum value 0 in

column 9, we assign DP [6] = {6, 9}, which means data 6 and 9 should be placed on the

same data node because 9 is the least relevant data to 6. When checking row 7, there

are five equal minimum values, which means any of these five data is equally related

on data 7. To choose the optimal candidate among these five candidates, we need to

exam their dependencies to other already placed data, which is performed by the FOR

loop calculating the Sum for these five columns. In our case, Sum[8] = 5 is the largest

value; by placing 8 with 7 on the same node, we can, to the maximum extent, reduce

the possibility of assigning it onto another related data block. Hence, a new tuple {7, 8}

is added to DP . After doing the same processes to the rows with index 1, 2, 3, we have

a DP = {{6, 9}, {7, 8}, {1, 4}, {2, 10}, {3, 5}}, indicating the data should be placed as

shown in Figure 4.4 (2). Clearly, all the tasks can achieve the optimal parallelism (5)

when running on the optimal data layout. With the help of ODPA, DRAW can achieve

the two goals: maximize the parallel distribution of the grouping data, and balance the

overall storage loads.

57

4.2.4 Exceptions

The cases without interest locality: DRAW is designed for the applications showing

interest locality. However there are some real world applications do not have interest

locality. In this case, all the data on the cluster belongs to the same group. Therefore

the data grouping matrix contains the same grouping weight for each pair of data (except

for the diagonal numbers); the BEA algorithm will not cluster the matrix, all the data

blocks will stay on the nodes and distributed as the default random data distribution.

Because all the data are equally popular, theoretically random data distribution can

evenly balance them onto the nodes. In this case, DRAW has the same performance as

Hadoop’s random data distribution strategy.

The cases with special interest locality: The purpose of DRAW is to optimize

the performance for the common applications which follow or not totally deviated from

the previous interest locality. However in practice, some applications may have unpredict-

ed access patterns that DRAW did not studied yet. These uncommon queries may suffer

from bad performance because DRAW cannot guarantee these accessing data are well

distributed. But this pattern will be considered into DRAW’s future data organization

in case it happened more times.

4.3 Analysis

In order to reveal the importance and necessity of DRAW, we need to show how inefficient

the default random data distribution strategy is. Specifically, we quantify four factors in

this section: the possibility for a random data distribution to be an optimal solution, the

optimal degree of a given data distribution, how optimal the random data distribution

can achieve, and how much improvement the random solution can achieve by using multi-

replica in the same rack.

58

We make two assumptions: 1)uniform block size (64M) is used; 2) the default Input-

Split is used, so the Hadoop block size is treated as the size for each input split [refg].

The Hadoop Map/Reduce framework spawns one map task for each InputSplit, hence

we assume that the number of map tasks is the same as the number required blocks.

4.3.1 The chance that “random = optimal”

Given a cluster with N nodes, and a running application accessing M blocks that are

distributed on these nodes, the “optimal data placement” should be able to distribute

the M data as evenly as possible so that the corresponding M map tasks can also benefit

from the maximum parallelism and data locality. However the practical Hadoop cluster’s

configuration may result in another “optimal” case: if the maximum number of simulta-

neous map tasks on each node is 2 as our assumption, and each node is equipped with

a dual-core processor, then the performance of running 2 maps on a single node is the

same as running 1 map. Hence we define the “optimal data placement” as: given a

TaskTracker running l maps, l ̸= 0, any other TaskTracker running j ̸= 0 maps has to

obey |l − j| < 2; any other TaskTracker running j = 0 map has to obey |l − j| ≤ 2.

We have two cases to analyze: the number of data (M) is less than or equal to the

number of nodes (N); and the M is larger than N.

Case 1: M ≤ N In this case, all the M blocks can be fit into one stripe on the

data nodes, after which there are two ways to achieve the “optimal data placement”:

1. M blocks are evenly distributed on M nodes. The possibility for Hadoop’s random

data placement to achieve this distribution is: CM
N /NM , where CM

N means choosing

M nodes from N nodes to hold the M data, NM means the number of all possible

data layouts (each block of M has N possible locations);

59

2. i nodes hold 1 block each, and other M−i
2

nodes are allowed to hold 2 blocks each.

The possibility of this case is:
∑M

2
i=1[C

i
N ·Ci

M ·C
M−i

2
N−i ·

∏M−i
2

j=0 C2
M−i−2·j]

NM , where Ci
N ·C i

M means

the nodes holding 1 block each, the rest of the items are for the nodes holding 2

blocks each.

Hence, when M ≤ N , the possibility of achieving “optimal data placement” for Hadoop’s

random data placement is the combination of above two euqations:

CM
N +

∑M
2
i=1[C

i
N · Ci

M · C
M−i

2
N−i ·

∏M−i
2

j=0 C2
M−i−2·j]

NM
(4.1)

Case 2: M > N In this case, M = kN + d = (k + 1) · d + k · (N − d), where k ≥ 1,

d ≥ 0. The “optimal data placement” can be achieved by distributing the blocks in two

groups: the first group has d nodes, each of which host k + 1 blocks; the second group

has N − d nodes, each of which hosts k blocks. In this way, each node will be assigned

the same number of map tasks. For random data placement, the possibility of achieving

this is shown in Equation 4.2. The number of all possible data layout is still NM .

Cd
N

∏d−1
j=0 C

k+1
M−(k+1)j · C

N−d
N−d

∏N−d−1
j=0 Ck

M−(k+1)d−k·j

NM
(4.2)

Hence, the Possibility of achieving the “OPtimal data placement” (POP) for Hadoop’s

default data placement algorithm is the combination of Equation 4.1 and Equation 4.2.

It is clear that POP is related to three factors: the number of data(blocks) of interest,

the number of nodes in the Hadoop cluster, and the maximum number of simultaneous

map tasks on a single node. We already assume the last factor as 2 in this paper. We

plot the trajectory of POP in Figure 4.5. Note that in the z axis, we show the log value

of the POPs for clarity: when z = 0, it means the random data placement is the “optimal

data placement”; when z < 0, it means the possibility is 10z. As Figure 4.5 shows, for a

specific number of data of interest (> 2), along with the increasing number of nodes in the

60

1 5 9 13 17 21 25 29 33 37 40

L

o

g

v

a

l
u

e

o

f

t
h

e

r

a

n

d

o

m

s
c

h

e

m

e

'
s

p

o

s

s

i
b

i
l

i
t

y

t

o

a

c

h

-

-
i

e

v

e

o

p

t
i

m

a

l

d

a

t
a

p

l
a

c

e

m

e

n

t

N
u
m
b
e
r

o
f

b
l
o
c
k
s

o
f

i
n
t
e
r
e
s
t
 Number of nodes in the Hadoop cluster

Figure 4.5: The Possibility of achieving “OPtimal data placement” (POP) for Hadoop’s
default data placement algorithm.

Hadoop cluster, POP is decreasing; given a cluster with a specific number of nodes, the

increasing number of data of interest leads to a lower POP as well. Based on our analysis,

for a small scale cluster as our test bed which only has 40 nodes, when the number of data

of interest is larger than 5 (320M), it is highly unlikely that (POP = 10−100) the random

data placement to achieve optimal data layout. Unfortunately, most of data-intensive

applications work on large-scale (GB or even PB) data [DG08].

4.3.2 The optimal degree of a given data distribution

As we already proposed the definition of the optimal data distribution, the ones do

not satisfied the requirement are not optimal, but it is still interesting to know “how

optimal” they are. Therefore, we propose a concept “optimal degree of data distribution”

, denoted as Degree . Degree is between [0, 1]: Degree for the “optimal data placement”

in Section 4.2.3 is 1; in the cases when all the interested data are clustered in one node,

Degree is 0.

61

(A)
 (B)

(C)
 (D)

map cycle

1

2

3

1

2

1

2

1

map cycle

Figure 4.6: An example to show how to use Equation 4.4 to calculate the optimal
degree of data distribution: Degree(A) = 0(clustered), Degree(B) = Degree(C) =
0.5(suboptimal), Degree(D) = 1(optimal).

To calculate Degree, we assume there are N nodes, M data of interest, the maximum

number of simultaneous map tasks on a single node is k, the number of data of interest on

ith node is Bi, so M =
∑n

i=1Bi. As a result, the Degree can be defined as Equation 4.3.

The max(Bi) − Bopt means the difference between the node storing the max number

of (interest) data in a random distribution and any node in optimal data distribution;

the less this number is, the more efficient the random solution is; Bopt can be denoted as

⌈ M
N ·K ⌉·k. Symbol “⌈⌉” is used because of simultaneous running map tasks (x ∼ x+ k − 1

blocks result in the same number of map cycles to run the maps simultaneously); note

that the ks cannot be canceled because of the existence of “⌈⌉”.

Degree = 1− ⌈(max(Bi)−Bopt)/k⌉
⌈(M −Bopt)/k⌉

= 1−
⌈(max(Bi)− ⌈ M

N ·K ⌉ · k)/k⌉
⌈(M − ⌈ M

N ·K ⌉ · k)/k⌉

(4.3)

We use an example in Figure 4.6 to show how to use Equation 4.3. Assume we have

N = 3 nodes, M = 5 data of interest, and k = 2 as in previous analysis, Figure 4.6 shows

four different data distribution. Bopt = ⌈ M
N ·K ⌉ ·k = 2, hence in optimal data distribution,

62

the maximum number of blocks on a single node is 2. In practical MapReduce running,

(A) can finish the five maps on the five blocks in three mapping cycles (because k = 2),

while (B) and (C) need two cycles, D needs only one cycle. We can calculate the

Degrees for these four cases to quantify their efficiency: (A), max(Bi) = M = 5, hence

the Degree(A) = 0, which means (A) is the least optimal distribution; similarly we also

get Degree(B) = 0.5, Degree(C) = 0.5 (suboptimal) and Degree(D) = 1 (optimal).

4.3.3 The “optimal-degree” of the random distribution

We already proved random distribution can hardly achieve optimal solution in Sec-

tion 4.3.1, but it is also necessary to show how close the random and optimal data

distributions are. Therefore we quantify the level of approximation (LoA) between ran-

dom and optimal solutions as shown in Equation 4.4 2; where P (Degree) means the

possibility of random solution achieves the distributions with the Degree of optimal data

distribution, e.g., P (0) is the possibility for random data distribution to cluster all the

data of interest onto the same node (Degree = 0).

LoA =

∫ 1

Degree=0

Degree · P (Degree)

=

∫ ⌈ M
N·K ⌉·k

maxBi=M

Degree · P (Degree)

(4.4)

It is observed that LoA is a function related to three factors: M (number of blocks of

interest),N (number of nodes in the cluster),and k (number of allowed simultaneous map

tasks on a single node). We use sampling technique to obtain the trajectories of LoA to

learn how the factors affect the efficiency of random data distribution. We set N = 40 in

the simulation according to the cluster size of our test bed; M = 10, 30, 60, 80, k = 1, 2.

2In other words, LoA denotes how sub-optimal the random distribution is, on average. The more
LoA is close to 1, the closer the random and optimal approaches are.

63

Figure 4.7: Level of approximation between random data distributions and the optimal
solution, the number of nodes N is set to 40.

The results are shown in Figure 4.7. Larger k always increases LoA because the more

simultaneously running map tasks will hide the unbalanced data distribution better;

M , the number of data of interest, affects LoA in an uncertain way: when M << N

(M=10,N=40), increasing M may decrease LoA but when M is close the N or M > N ,

increasing M leads to a larger LoA. However, the average LoA for k ≤ 2 is less than 45%,

which means the random data distribution can only achieve “less-than-half-optimal” data

distribution, on average.

4.3.4 Multi-replica per rack

In previous analysis, we assume that there is only one copy of each data existing in each

rack. This assumption is derived from the practical Hadoop configurations, e.g., Hadoop

with single-replica for each data [refn, ZZL09], Hadoop with three replica for each data

but put into three different racks [refd], etc.. However, there are some Hadoop clusters

keep two or even three copies of the same data in the same rack [refg] to provide better

write performance. As we stated in Section 4.1, the more replica for each data in the

64

same rack, the more optimal data distribution the random strategy can achieve (given

that any two replica cannot stay in the same node). In order to prove our DRAW is still

necessary for multiple replica Hadoops, we launch intensive experiments as sensitivity

study in Section 4.5.3.

4.4 Methodology

4.4.1 Test Bed and Applications

Our test bed consists of 40 heterogenous nodes in total with Hadoop 0.20.1 installed on

it. All these nodes are in a single rack. In our setup, the cluster’s master node is used

as the NameNode and JobTracker, whereas the 39 worker nodes are configured to be

DataNodes and TaskTrackers. The cluster and node configurations are omitted due to

space limitation.

We launched two applications on the real scientific data in our experiments: one from

bio-informatics area, and one from astrophysics research.

Bowtie [refa], is a real application from genome research. This application indexes the

chromosomes with a Burrows-Wheeler indexing [refb] algorithm to keep their memory

footprint small. The genome’s indexing is a strategy for rapid gene search or alignment.

In our experiments, Bowtie’s indexing algorithm is implemented in MapReduce frame-

work. The data is about 40GB genome data that is downloaded from [refp], including

human, horse, chimpanzee, etc. 32 species in total. The application is performed on

specific species, or random combinations of species (interest locality).

65

The second application is a mass analyzer working with astrophysics data sets for

halo finding [refc]. The data sets are comprised of particle positions and velocities.

Specifically, each particle has one corresponding file, which has the following content:

position(x, y, z), velocity(Vx, Vy, Vz), particlemass, and particletag. The total size of

the download is about 10GB of particle data in total. And each particle file is exactly

512MB. The mass analyzer reads the mass data for specific particles, or combinations

of particles, and calculates the average mass in each area (interest locality); the area size

is pre-defined.

We first run each application 20 times on randomly chosen data sets to build the

grouping history. Then DRAW is used to re-organize the data. Finally we re-run the

applications on the newly distributed data, and compare the performance of the appli-

cations running on DRAW data and the randomly placed data, respectively.

4.4.2 Implementation

Data grouping learning: Data grouping information can be derived from the NameN-

ode log file, which maintains all the system operations. We filter out the file accessing

information from the log file first, and the files accessed by the same task (denoted by

the same “JobID”) are considered as grouping files in HDAG, as shown in Figure 4.2.

After the log traversal, a matrix showing the data grouping at file-level (file-grouping)

can be generated. The mapping between filenames and blocks is exploited 3 to generate

the “Data Grouping Matrix (DGM)” at block level (as shown in Figure 4.3). In order

to improve the log learning efficiency, we set a check point using the time stamp when

we used DRAW last time, thus the current log learning starts from the most recent

operations back to the check point.

3By using Hadoop system call “fsck” with parameters “-files -blocks -locations” for each file.

66

Data grouping clustering: Given the data grouping matrix, Bond Energy Algo-

rithm is used to perform matrix clustering. The size of each group is same as the number

of nodes in the cluster. In this way, all the data groups should be placed one after anoth-

er from right-top to the left-bottom in the clustered DGM(CDGM) (Figure 4.3). As we

explained in Section 4.2.3, in order to achieve the optimal data placement, we also need

ODPA algorithm to generate the final DRAW matrix showing the target data layout.

Data placement: The most challenging part of this work is how to implement the

data re-organization according to the “optimal data layout” generated by DRAW. In a

Hadoop cluster, all the information about the block locations, and mappings between

the files and blocks, are located in the NameNode. If we want to re-organize the data in

the cluster, we need to, accordingly, modify the information in the NameNode. However,

the NameNode does not provide any functionality that allows the users to modify this

information; it just passively updates them based on the periodical reports from the living

DataNodes. On the other hand, the DataNodes only support read, write, and delete

operations, but there is no available function to migrate the data among the DataNodes.

We solve this problem by modifying the Hadoop storage system. Our observations show

that each block and its metadata on the DataNode are registered in a log file, which

reports to the NameNode for updating. By logging in each DataNode which requires

data re-organization, we migrate the data, metadata, and its registration information as

a group. After the migration, we temporarily change the heartbeat interval of the Hadoop

cluster so that the most-up-to-date data layout can be updated in the NameNode as

fast as possible. DRAW is implemented as an off-line tool for Hadoop cluster, users

need to manually launch it to achieve the “optimal data layout” based on the latest data

grouping information.

67

4.5 Experimental Results and Analysis

In this section, we present four sets of results: the unbalanced data distribution

caused by Hadoop’s default random data placement; comparison of the traces of the

MapReduce programs on the randomly placed data, and the DRAW’s re-organized data;

the sensitivity study used to measure the impact of the NR (number of replica for each

data block in Hadoop) on DRAW; and the overhead of performing DRAW data re-

organization.

4.5.1 The Data Distribution

Intuitively, the data distribution may be related to the way the data is uploaded. There

are two ways for the users to upload data: bulkily upload all the data at once; or upload

the data based on their categories, e.g. species or particles in our cases. The second way

considers the human-readable data grouping information (in our case, data belonging to

the same species or particles are assumed to be highly related) rather than the blindly

uploading as in the first method. We upload the data to our test bed by using these two

data uploading methods, 20 times for each. The overall data distributions are similar in

these runs.

First, after bulk uploading the genome data of six species (a subset of our 40GB

genome data), the data distribution (from a randomly picked run) is shown in Figure 4.8

(1). Given a research group only interested in human [HL05, SLZ07], the requiring data

is clustered as shown in Figure 4.8 (2). The human data is distributed on only half

(51.3%) of the cluster, which means the parallelism for the future MapReduce job is not

optimal.

68

(1)

(2)

Figure 4.8: The data layout after bulk uploading six species’ genome data, and the
human’s genome data layout.

When using the category-based uploading method, we surprisingly find that the

overall data distribution is similar as what is shown in Figure 4.8. To highlight the

unbalanced distribution of the related data, we quantify the degree of unbalance with

1− # of nodes having the data
of nodes

. With 20 runs using the species-based data uploading method,

on average, the data of a specific species is distributed over only 53.2% nodes of the clus-

ter. The conclusion shows that even when the data is uploaded based on the initial data

grouping information, the Hadoop’s random data placement is not able to achieve the

maximal parallelism for the associate data.

In order to show the efficiency of the DRAW data placement strategy, Figure 4.9

plots the balanced data distribution (human) after using DRAW on our Hadoop test

bed. The grouping information to generate HDAG is artificially defined as: all human

data is accessed as a group. Note that we assume the human data is the single grouping

data only for Figure 4.9, so that to avoid the noise from other data groups. This will be

released in the following sections.

69

Figure 4.9: The layout of human genome data after DRAW placement.

Table 4.1: Comparison of two runs of Genome Indexing application
Total maps Local maps Ratio

On DRAW 397 302 76.1%

On Random 401 189 47.1%

4.5.2 Performance Improvement of MapReduce Programs

4.5.2.1 Genome Indexing

Based on the DRAW re-organized 40GB genome data, we run the Bowtie indexing

MapReduce program to index the human’s chromosomes. Figure 4.10 shows the traces of

two runs on DRAW’s re-organized data and Hadoop’s randomly placed data, respectively.

We configure the MapReduce job according to the assumptions described in Section 4.3.

The number of reducers is set as large as possible so that the reduce phase will not be

the performance bottleneck. In our case, we use 39 reducers. The map phase running

on DRAW’s data is finished 41.7% earlier than the one running on randomly placed da-

ta, and the job’s overall execution time is also improved by 36.4% when using DRAW’s

data. The reason is shown in Table 4.1. The MapReduce job running on the DRAW’s

re-organized data has 76.1% maps which benefit from having data locality, compared

with 47.1% from the randomly placed data; the number of local map tasks is increased

by (320− 189)/189 = 59.8%.

Note that there are still 23.9% maps which are working without having data locality

even after the DATA’s data re-organization. There are two reasons: first, the data

grouping information the BEA algorithm used is generated from all previous MapReduce

70

Running on the re-orgnized data

Running on the random placed data

maps are

finished

maps are

finished

Figure 4.10: The running of Genome indexing MapReduce program on human genome
data.

71

programs rather any specific one, and the ODPA follows High-Weight-First-Placed

strategy, which means the data with higher (accumulative) grouping weights will be

granted higher priority to be evenly distributed. In other words, the distribution of the

non-hottest data is only optimized but may be not 100% perfect for the corresponding

MapReduce programs. Second, the matrix clustering is a N-P hard problem, hence

the clustered grouping matrix generated from BEA algorithm, whose time complexity is

O(n2) rather than O(nn), is a pseudo-optimal solution. Adoption of BEA algorithm is a

reasonable tradeoff between efficiency and accuracy. However, since the hottest data will

be granted the highest priority to be clustered, the applications interested in these data

can achieve the ideal parallelism. Apparently, before we run the human genome indexing

application, the human data is not the hottest based on the history information; its data

distribution is changed and different from that Figure 4.9 shows.

4.5.2.2 Mass Analyzer on Astrophysics Data

In the above bio-informatics applications, the data size of each species, especially for

the mammals, is about 3GB after decompression. When using Hadoop’s default 64MB

block size, about 48 blocks are required to represent one species, which is greater than

the 40 nodes in our test bed. In this section, we do experiments on smaller data sets:

each particle’s data is exactly 512M , which will be split into only 8 blocks.

Our Mass Analyzer on the astrophysics data tries to calculate the average mass of

each area. The results are shown in Figure 4.11. DRAW reduces the map phase by 18.2%,

and the overall performance of the MapReduce program is improved by only 11.2%. It is

obvious that the impact of DRAW is linearly related to the size of the required data by the

MapReduce program. The less data is being accessed, the more close that random data

placement can achieve maximized parallelism (which is already proved in Section 4.3).

For example, given 40 nodes in the cluster and 2 maximum simultaneous map tasks on

72

1st run uses the

re-orgnized data

2nd run uses the

random placed

data

1st map phase

is finished

2nd map phase

is finished

Figure 4.11: The running of Mass Analyzer on astrophysics data; the size of interested
data for each run is relative small (8 blocks on average).

each node, the 8 blocks of each astrophysics data file is more likely to be balanced placed

when compared to the 48 blocks of an mammal’s genome data. Hence the conclusion is

DRAW works better for the MapReduce programs accessing large-scale data (larger than

3GB for our hardware configuration).

4.5.3 Sensitivity Study: the number of replica (NR)

Table 4.2: Comparison of the experimental NHD (% of nodes holding the data) and
DRAW’s ideal NHD

NR=1 NR=2 NR=3
Blks E NHD DRAW NHD Blks E NHD D NHD Blks E NHD D NHD

Stickleback 44 44.7% 100% 82 63.2% 100% 122 81.6% 100%

Opossum 48 47.4% 100% 100 73.7% 100% 150 86.8% 100%

Chicken 61 73.7% 100% 122 97.4% 100% 174 89.5% 100%

C.briggsae 13 26.3% 34.2% 23 42.1% 60.5% 34 68.4% 89.5%

The number of replica (NR) for each data block in Hadoop cluster is configurable.

For data distribution, the more replica for each block exist, the higher possibility that

the grouping data can be evenly distributed. Hence, the efficiency of DRAW on the

MapReduce programs is inverse proportional to NR in the Hadoop.

In order to quantify the impact of NR on our design, we bulkily upload the 40G

genome data to our test bed configured with NR = 1, NR = 2 and NR = 3, respec-

73

tively. Figure 4.12 shows the data distributions for four species: Stickleback, Opossum,

Chicken from vertebrates, and C.briggsae from nematodes. The “% of nodes holding

the data (NHD)” is directly related to the parallelism that the program accessing corre-

sponding species can use. The results prove that, in most cases 4, NR is linearly related

to the parallelism of data distribution; which means a higher degree of replica in Hadoop

can mitigate the problem of unbalanced grouping-data distribution. For example, the

Stickleback data is only distributed on 44.7% of the nodes in 1-replica Hadoop; when

using 3-replica Hadoop, 81.5% of the nodes can provide Stickleback data.

Now we study the efficiency of DRAW for multiple replica Hadoop systems. We

still use the above data. Table 4.2 shows the comparison of the experimental NHD and

DRAW’s ideal NHD. The NHD difference indicates the possible improvement DRAW can

achieve. Note that for the three vertebrates, the number of blocks for each each species

is larger than the number of nodes in our test bed, hence ideally, DRAW can distributes

the grouping data on all the nodes, with 100% NHD; for the C.briggsae whose number

of blocks is smaller than 40, the ideal DRAW’s NHD is calculated as # of Blks
of nodes

, which is

shown in bold font in Table 4.2. Our experimental results show that, for the 2-replica

Hadoop, DRAW may improve the data distribution parallelism by 27.2% on average; for

the 3-replica Hadoop, DRAW is expected to improve the parallelism by 17.6% (without

considering the exception of Chicken data) on average.

4.5.4 Overhead of DRAW

The usage of the DRAW tool is similar to the Hadoop’s balancer. The Hadoop admin-

istrator may manually launch the DRAW utility, and stop it at anytime; note that the

data is not “optimal distributed” until the DRAW tool is finished. In this section, we

4There is one exception for Chicken: the data is more evenly distributed in 2-replica case than
3-replica.

74

Figure 4.12: The data distributions (NHD) of four species, on 1-replica, 2-replica and
3-replica Hadoop.

quantify the overhead of running DRAW (a complete run until it is finished) on the 40GB

genome data after 20 initial runs on our test bed cluster

The three parts of DRAW: building HDAG, building and clustering DAM, and re-

organizing the data based on ODPA, have different overheads.

Building HDAG: The first step is negligible because it only scans the customized

log files (only several kilobytes for 20 runs of the genome indexing program) once and

records pertinent information in HDAG table.

Building and Clustering DAM: 40GB data will be split into about 640 blocks,

based on our algorithm, the memory requirement is 6.7MB. The BEA algorithm takes

37 seconds to cluster the 640× 640 matrix.

Data Re-organization: This is the most time-consuming step in DRAW algorithm,

because we have to login every DataNode to migrate the data/metadata/registration

information. The data migration time is linearly related to the data size and the network

bandwidth among the nodes. In our specific case, after 20 warm-up runs, 497 out of the

640 blocks need to be re-organized. The overall run time of the DRAW tool is 4.7min.

The overall execution times of our genome indexing program on randomly placed

data and DRAW re-organized data are 33min43sec and 20min37sec, respectively. Hence

the above time costs (about 5min25s) are worthy compared to the overall performance

75

improvements, about 13min. This improvement can be expected for all the subsequent

genome indexing programs which follow the previous access patterns.

76

CHAPTER 5

MAR: A NOVEL POWER MANAGEMENT FOR CMP
SYSTEMS IN DATA-INTENSIVE ENVIRONMENT

In this chapter, we first launch extensive experiments which show that in a CMP system:

1) scaling down the core’s frequency during its I/O wait time can provide more oppor-

tunities to save power without sacrificing performance; 2) core’s waiting time for I/O

operations to complete is unpredictable, unmodel-able, and depends on several factors,

such as I/O type (sync or unsync), process or application level parallelism; 3) there is

no model we could find that accurately describes the relationship between the CPU’s

frequency and overall performance when I/O wait time exists, because CPU frequency

and I/O wait time are decoupled. As a result, power management solutions for data-

intensive applications demand that: 1) considerations of each core’s I/O wait status and

its working and idle statuses be made; 2) accurate quantification of each status (e.g.,

busy, idle, iowait) for accurate power-saving decisions; 3) precise description of the rela-

tionships among frequency, performance and power consumption when I/O wait factor

is considered.

Then we propose an empirical rule-based power management strategy named MAR

(modeless, adaptive, rule-based) for CMP systems. Our design can precisely control

the performance of a CMP chip to the desired set point while saving as much

power as possible at run-time. There are two primary contributions of this work.

• Comprehensive factors: while most existing control theory based works (close-loop

controllers) only consider incomplete CPU statistics, MAR is designed strictly based

on comprehensive experiments measuring the impacts of all the core’s working

77

status (e.g. user, nice, sys, idle, iowait, irq and soft irq), and especially the I/O

factor.

• Rule-based control: While most existing power saving works adopt model predictive

control theories, MAR applies formal rule-based control theory [AP93] because the

system (relationships among frequency, performance, and power) is too complex to

be modeled when I/O wait factor is incorporated. In addition, the model-free nature

of rule-based control method avoids the troublesome effort to develop accurate

system models, and the risk of design errors caused by statistical inaccuracies or

inappropriate approximations.

5.1 Task I: Learning the Core’s Behaviors

In this section, we exploit the behaviors of each core in a CMP processor to learn the

relationship among power consumption, performance, and frequency settings, as shown

in Figure 5.1.

As widely shown in previous works, CPU power consumption and performance are

both highly related to CPU frequency [ref04, refi]. The cubic relationship between power

consumption and processor frequency, which is CPU Power ∝ f 3 (f is the core frequen-

cy), is well-documented and shown in Figure 5.1.

However, the relationship between performance and frequency is difficult to be mod-

eled: the same frequency setting may results in different response time (rt) or execution

time (et) for different types of applications. The performance is related to both proces-

sor’s frequency and the workload characteristics. On the other hand, the behavior of the

CPU is able to illustrate the characteristics of the running workloads. More specifically,

each core in a CMP has 7 working statuses [BMK02, BC05]:

• user: normal processes executing in user mode;

78

e
 t
/
r
 t

(
s
 e
 c
)

CPU frequency

W

o
r
k

l
o

a
d

s

CPU frequency

Power consumption

Performance, e.g.

response time (rt),

execution time (et)
Cubic

relationship

Figure 5.1: The relationship among CPU’s frequency, power consumption and perfor-
mance

• nice: niced processes executing in user mode;

• system: processes executing in kernel mode;

• idle: idle times;

• iowait: waiting for I/O to complete;

• irq: servicing interrupts;

• softirq: servicing soft irqs;

The durations of the core’s 7 statuses completely exhibit the composition of the running

workload. As a result, a relationship between performance and frequency can be denoted

as Equation 5.1.

Executiontime = F (frequency, workload)

= F (freq., core′smetrics)

= F (freq., user, nice, sys, idle, iowait, irq, softirq)

(5.1)

79

Table 5.1: L1 data cache miss, L2 cache miss and mispredictions per 1000 instructions.
L1D miss L2 miss Mispredictions

gcc 14.21 3.17 5.11

mcf 130.15 36.73 15.79

We launch various applications on our test bed to learn the curve of Equation 5.1, e.g.,

I/O bomb from Isolation Benchmark Suite (IBS) [refk], gcc and mcf benchmark from

SPEC CPU 2006 suite version 1.0 [refm], TPCC running on PostgreSQL [refo]. I/O

bomb uses the IOzone benchmark tool to continuously read and write to the hard disk

(by writing files larger than main memory which ensures that we are not just testing

memory); mcf is the most memory bound benchmark in SPEC CPU2006; gcc is cpu-

intensive, as shown in Table 5.1; TPCC is a standard On-Line-Transaction-Processing

(data-intensive) benchmark. The configuration details of these benchmarks can be found

in Section 5.5. Our CPU for the experiment is the Quad-Core Intel Xeon E5345 2.27GHz

processor, with 2× 4MB L2 cache and 1.333MHz FSB. The supported frequencies are

800MHz, 1.6GHz, 2.27GHz.

5.1.1 Per-Core

Because we are using per-core level DVFS for power management, it is necessary to

know the meanings of the 7 statuses for each core. We first enable only one core in the

CMP processor and assign one process to run the benchmarks so that we can avoid the

noise from task switches among cores. Figure 5.2 shows the overall execution time (et)

of the 4 benchmarks at different frequency settings. B-I (busy-idle) model is a simple

method [CSP04, FWB07] to model the relationship between et and frequency settings.

In this model, et(new) = et(old) · (percent(busy)·f(old)
f(new)

+ percent(idle)), where percent(busy)

is the CPU busy percentage and percent(idle) is the idle percentage; f and f(new) are

80

Figure 5.2: Prediction accuracy of Busy-Idle model for different workloads

the two different versions of CPU frequency settings. The predictions are based on the

CMP behaviors when frequency is set as 800MHz.

Figure 5.2 illustrates the prediction results. It is surprisingly to find that for the

first two workloads, e.g. gcc (CPU-intensive) and mcf (memory-intensive), B-I model

is accurate enough with less than 3% deviation, which is different from some previous

works’ [WRW05, ICM06] results. We believe this is caused by different test bed and

cache-miss-penalty-reducing techniques [refe]. On the other hand, for the I/O intensive or

data-intensive workloads, e.g. I/O bomb and TPCC, B-I model which does not consider

the I/O impact will result in up to a 45% error in the model. The reason why B-I works

well for CPU-intensive and memory-intensive workloads is because of the well-developed

techniques to reduce cache miss penalty [refe]. However, the huge speed gap between

I/O devices and processors cannot be effectively eliminated [IBC06b], which leads to the

B-I model’s prediction errors for I/O bomb and TPCC benchmarks.

81

Figure 5.3: Core’s statistics for different workloads

We also show the statistics of the 7 statuses during the benchmarks’ running in

Figure 5.3. For gcc and mcf, most of the execution time is in user mode; the cache miss

and mispredictions of mcf have negligible impact on the CMP’s behavior due to the built

techniques reducing the cache miss penalty. For I/O bomb, I/O wait is the main latency;

for data-intensive benchmark TPCC, the lower frequency will hide some of the I/O wait

latency, but the latencies in both user and iowait modes can not be ignored. For all four

cases, the irq and softirq latency are negligible. As a result, “user+nice+sys”, “idle” and

“iowait” are the three most important working statuses which could describe the CMP’s

behavior. So to confirm, without considering I/O wait latency, the basic B-I model may

result in non-trivial modeling errors for data-intensive or I/O intensive applications.

82

Phase1
 Phase2
 Phase3

Frequency=2.27GHz

Frequency=800MHz

Start
 End

Start
 End

busy (U+N+S)
 busy/iowait
 idle

120%

100%

80%

60%

40%

20%

0%

150%

100%

50%

0%

Figure 5.4: Working status trace of core0; the overall execution times are comparable for
both cases.

5.1.2 Multi-Core

Due to the job scheduler in CMP processors tasks in CMP processor may be switched

among the cores during its run. In order to show whether this intra-core level task

switches and inter-core level job scheduling can eliminate I/O wait latency, we run 7

processes on all 4 cores in our testbed. Each process will randomly run one of the

benchmarks: gcc, mcf, bzip2, gap, applu, gzip and TPCC. Each core has 3 available

frequency settings: 2.27GHz, 1.6GHz and 800MHz.

We try all the possible configurations for the benchmarks 1 and record the statistics

for each core. In Figure 5.4, we show the traces for core0. We omit “irq” and “softirq”

based on the results of section 5.1.1, and we treat “user, nice, sys” as a group denoting the

real “busy” status. When the frequency is 2.27GHz, all the workloads are processed in

1core0 and core1 are on the same die so they have to be scaled together, this also applies to core2
and core3. Hence there are 3× 3 = 9 different settings in total.

83

parallel in “phase1”, the I/O wait latency could be hidden by the process-level parallelism.

However in “phase2”, when there are little available processes to schedule, the I/O wait

latency will emerge. After all work is complete, the core will stay idle in “phase3”.

The traditional B-I based power management is only able to discover the chances in

“phase3” and to save power by lowering the processor’s voltage and frequency at the

phase. However in fact, “phase2” also provides opportunities to save more power: we

can lower the frequency in order to parallelize the CPU and I/O works as much as

possible. As shown in the lower part of Figure 5.4, we can use “800MHz” to finish all the

workloads at roughly the same time while only consuming 4.4% power when compared

to the case using 2.27GHz frequency.

We admit that a heavy disk utilization may not necessarily result in I/O wait if there

are enough parallel CPU-consuming tasks. However, the new emerging data-intensive

analyses and applications lead to higher chances of having I/O latency [VBL09, KSK08,

SCK06], and high I/O wait is also common in other applications [refl, refj]. As a result,

I/O wait latency should be exploited in power-saving projects.

5.1.3 Analysis of I/O Wait

The iowait time is the duration of time when the processor is waiting for the I/O operation

to complete, however we cannot simply consider it as the sub-category of CPU idle time.

When there are only CPU idle and busy statuses, increasing the CPU frequency will

linearly decrease execution time; however when taking into account the I/O wait time we

have two new cases as shown in Figure 5.5. In case 1 where the CPU-consuming tasks

and I/O tasks are synchronous (sequential) or blocking each other [ECC04], the I/O

wait time could be treated as idle time, hence we can use the traditional B-I method, as

discussed in Section 5.1.1, to model the relation between execution time and frequency.

84

I/O wait

Time line

Execution time (T2)

I/O part

Core related

part
 Two parts are

 parallel

Core is running at a low frequency

Execution time (T2'=T2)

Two parts are

 parallel

Core is running at a high frequency

core bounded

I/O wait

core bounded

I/O wait

Time line

Execution time (T1)

I/O part

Core related

part
 Two parts are

 sequential

Core is running at a low frequency

Execution time (T1'<T1)

Two parts are

 sequential

Core is running at a high frequency

core bounded

I/O wait

core bounded

Case1: Two parts are sequential, higher frequency improves core bounded part;

the overall execution time is reduced.

Case2: Two parts are parallel, higher frequency improves core bounded part;

the overall execution time is not changed.

t
 t'(<t)

t
 t'(<t)

Figure 5.5: Two cases when I/O wait time exists. “Core bounded” area represents the
busy status.

In case 2 where the two types of workloads are running in parallel but not well aligned,

scaling CPU frequency will not affect the overall execution time 2.

Based on our comprehensive experimental results, we find that the I/O wait ratio

(iowait time
overall time

) could be used to distinguish the two cases with an about 5% error rate (for

our specific system configuration). We introduce two “thresholds” for I/O wait ratio:

thup and thdown to quantify the Equation 5.1 as the following Equation 5.2,

When scaling up freq, if I/Owait < thup; or

when scaling down freq, if I/Owait < thdown :

(Case1 :) rtnew = (1
1+(1

ξ
−1)Pcore

)rtold

Otherwise : (Case2 :) rtnew = rtold

(5.2)

rt is response time; ξ is the ratio of the new frequency to the old one, which is fnew

fold
;

Pcore is the core’s busy ratio, which is busy time
overall time

. The default vale of thup and thdown are

2Since we are discussing cases where I/O wait time exists, the I/O part lasts longer than the CPU-
consuming part; otherwise, there will be no I/O wait time.

85

based on our comprehensive experimental results. Note that these two thresholds are

affected by the throughput of I/O devices, L1/L2 cache hit rates, network traffic, etc..

A self-tuning strategy for these two thresholds are detailed in Section 5.2.3.

Equation 5.2 can be used to complete Figure 5.1. Our rule-based power management

controller MAR will be designed according to the two relationships in Figure 5.1.

5.2 Task II: A Modeless, Adaptive, Rule-based (MAR) Controller Design

In this section, we introduce the design, analysis, optimizations of our rule-based power

management.

5.2.1 MAR Control Model

In order to perform good power management, we have to know the relationships among

CPU frequency, power consumption, and overall performance. However, as we mentioned

in previous sections, after considering I/O wait factors, the relationship between the

frequencies and overall performance is too complicated to be modeled (because the CPU

frequency and I/O time is decoupled). Hence we adopt the formal rule-based, modeless,

control system to manage the power consumption in CMP systems. The rules are derived

from experimental results and could be self-tuned for different system configurations.

MAR is designed as a MIMO controller shown in Figure 5.6. Let SP denote the sam-

pling period. RRT represents the required response times and cb represents the realtime

core boundness of the workloads (core’s busy ratio, usr+nice+sys
SP

), rt is measured response

time, w is I/O wait raito (IOwait
SP

); ecb and ew are the tracking errors of core boundness

(|real cb− predicted cb|) and I/O wait ratio (|real w− predicted w|), respectively; ∆ecb

and ∆ew are the changing speeds of ecb and ew, respectively.

86

DVFS/System

Sensor

Reference

(required

response

time)
 rt

1

rt

2

...

rt

n

Response

time

ecb
1

ecb
2

...

ecb
n

f

1

f

2

...

f

n

cb

1

cb

2

...

cb

n

Interface

-mechanism

Rules

I
n
p
u
t

O

 u
 t
p
 u
 t

Controller

Core boundness

(usr+sys+nice)

w
1

w
2

...

w
n

I/O

wait

RRT

Speed

ew
1

ew
2

...

ew
n

Figure 5.6: The overall architecture of MAR power management

One basic control loop is described as follows. At the end of each SP , rt, cb and

w are fed back into the controller through the sensors. Based on the predicted version

and the fed back version of cb and w, ecb and ew could be calculated. After that, ∆ecb

and ∆ew are derived based on ecb and ew. These rt, cb, w, ecb/ew and ∆ecb/∆ew will

be processed into the arguments Pcore, I/Owait, rtnew, and rtold of Equation 5.2. Then

MAR can determine the vector for ξ = fnew

fold
, which could be used along with

the rules in Section 5.2.2 to indicate how the cores’ frequencies in next SP

should be updated. Now we show how to calculate the arguments.

1) Pcore: Based on cb, ecb and ∆ecb, MAR adopts the formal fuzzy rule-based method

proposed in [BSK10] to compute the Pcore: we first fuzzilize ecb and ∆ecb into linguis-

tic values such as negative large (NL) and positive small (PS). Then we look up the

knowledge base (shown in Table 5.2) to find the corresponding signal such as NM after

which we convert [BSK10] the linguistic signal to a crisp value next ecb. Finally, we have

Pcore = cb + next ecb. By not only measuring the error but also tracking the change in

error, MAR is highly responsive to status changes of Pcore.

2) I/Owait: Based on w, ew, and ∆ew, I/Owait is calculated in the same way of

calculating Pcore. Table 5.2 is used to derive next ew, and then I/Owait = w+next ew.

87

Table 5.2: Fuzzy Rule-Base to Calculate Pcore and I/Owait
e/∆e NL NM NS ZE PS PM PL

NL NL NL NL NL NM NS ZE

NM NL NL NL NM NS ZE PS

NS NL NL NM NS ZE PS PM

ZE NL NM NS ZE PS PM PL

PS NM NS ZE PS PM PL PL

PM NS ZE PS PM PL PL PL

PL ZE PS PM PL PL PL PL

3) rtnew & rtold: rtnew should equal to the set point we want to achieve after DVFS,

which is the required response time RRT . The rtold represents the measured response

time in current SP , so rtold = rt.

We do not consider memory boundness in MAR. The reason is the experiments from

Section 5.1.1 show that the B-I model (considering busy and idle ratio) is accurate enough

for the power prediction of both CPU-intensive and memory-intensive workloads, and it

is already incorporated in MAR. Here we want to focus on the more important factor:

I/O wait ratio.

5.2.2 Rules

In this section, we impose a set of rules for MAR by incorporating the calculated ξ as well

as the I/O wait factor. Having only ξ does not provide enough information to seize all the

opportunities of saving power. These rules will guide MAR in finding the frequencies to

be set in next SP . We denote 0 ≤ δ < 1 as the user-specified performance-loss constraint.

88

5.2.2.1 RTT · (1− δ) ≤ rt ≤ RTT · (1 + δ)

This is the ideal case from a performance perspective. Traditional solutions may not

change the core’s frequency setting, however MAR will do a further check whether

w > thdown.

• If so, the frequency can be scaled down to a lower level to save more power without

affecting rt.

• If not, scaling the frequency will result in a different rt which is deviated from

RRT , so we keep using the current frequency.

5.2.2.2 rt > RRT · (1 + δ)

If the real response time does not meet the requirement, MAR checks whether w >

thup. And thus:

• If w exceeds the scaling up threshold, changing to a higher frequency will not

improve the performance. Moreover, higher frequencies will result in a higher

I/Owait, which is a waste of core resources. So as a result, MAR will keep the

current frequency setting.

• If w is within the threshold, MAF = ξ · f , where f is the current core frequency.

A higher core frequency could improve rt in this case. Based on Equation 5.2, we

calculate the fnew by using Equation 5.3.

fnew =
cb

RRT
rt

− 1 + cb
· fold (5.3)

89

5.2.2.3 rt < RRT · (1− δ)

If the measured response time is unnecessarily better than the requirement, there is an

additional chance to scale the frequency down to save more power. And thus:

• If w > thdown, MAR will only scale down the core frequency by one level. The

reason for this “lazy” scaling is because it is difficult to know what w will be when

using lower frequencies. The new w decides whether we should further scale down

the frequency or not.

• If w ≤ thdown, we may be able to scale down the core frequency to just meet the

performance requirement while saving more power. MAR adopts aggressive scaling

by using the same method shown in Equation 5.3.

We summarize the rules of MAR in Table 5.3. The detailed rules are described in

Table 5.4.

Table 5.3: Rules in MAR to adjust the CPU frequency
rt vs. RRT iowait(w) Linguistic meaning Lable

RTT · (1− δ) ≤ w > thdown RTT is met, I/O wait is dominating #1
rt ≤ RTT · (1 + δ) w ≤ thdown RTT is met, changing frequency affects rt #2

rt > RRT · (1 + δ) w > thup RTT is not met, I/O wait is dominating #2
w ≤ thup RTT is not met, scale frequency up by using cb #3

rt < RTT · (1− δ) w > thdown RTT is over met, I/O wait is dominating #1
w ≤ thdown RTT is over met, scale frequency down by using cb #4

Table 5.4: Detailed rules description
rule #1 fnew = fold − 1

rule #2 fnew = fold
rule #3 fnew = cb

RRT
rt

−1+cb
· fold

rule #4 fnew = cb
RRT
rt

−1+cb
· fold

90

5.2.3 Self-Tuning

There are several factors affecting the thresholds thup and thdown. For example: 1)

Throughput of I/O devices. Higher I/O throughput means the same amount of data

could be transferred in less “I/Owait” jiffies. 2) On-chip L1/L2 cache hit rates. The

lower cache hit rate results in more memory accesses, which is much slower than cache

access. Therefore, the overall processing speed of core bounded part (including both

cache and memory accesses) becomes slower. 3) Noise in I/O wait time, such as network

I/O traffic, file system journaling, paging/swapping, etc. 4) Heat and heat dissipation.

When processors run too hot, they can experience errors, lock, freeze, or even burn up.

It is difficult to predict the thresholds in this case, hence we adopt self-tuning methods

based on the observed system behavior.

The process of self-tuning is shown in Figure 5.7.

th_up

rt>RRT

w<=th_up

w> th_up

rt_new

#2

#3

update th_up

if change

N/A

th_dow

n

rt<RRT

w<=th_down

w> th_down

rt_new

#1

#4

update th_down

rt_new

update th_down

N/A

Self-tuning phase

N/A

if no change

if change

if no change

if change

if no change

N/A

Figure 5.7: Self-tuning of I/O wait thresholds (“rt” is response time, “th” is threshold,
“w” is I/O wait percentage)

91

When rt > RRT and w ≤ thup, rule #3 is used to scale up the core frequency to

meet the performance requirement. However, if the rtnew after the frequency scaling is

same as the rt in last SP , we need to lower thup.

When rt < RRT , rule #1 or #4 is used to scale down the core frequency to save more

power. If rule #4 is applied and the rtnew does not change after the scaling, the thdown

should be adjusted to a lower level; if rule #1 is applied and the rtnew changes, it means

w should be lower than thdown. Hence we scale thdown to a higher level. In the design

of MAR, we adopt “lazy” update scheme as shown in Equation 5.4 in our self-tuning

method for the purpose of system stability. In Equation 5.4, “+” is used when updating

the thup or thdown to a higher level, “−” is used when updating the thdown to a lower

level.

new th = old th± w

2
(5.4)

5.3 Other design issues

5.3.1 Calculating ∆ecb

It should be noted that the fast responsiveness of MAR may overreact to some small fluc-

tuations, which will not result in real switches. We define them as “phantom”. Therefore,

a filter µ is introduced for robustness purpose: if |ecbi| < µ, the burst is phantom which

should be ignored, which means the changing speed of tracking error is 0. µ is derived

from our experimental experiences and could be automatically tuned during the runtime.

The calculation of ∆ecbi is shown in Equation 5.5.

92

Table 5.5: The Relationship Between Core Frequency and Performance in Six Hybrid
Benchmarks

Exec. I/O Core Perf. Est.Perf. Perf. Est.Perf.
Hyb Freqency time wait bds. impr. Impr. degr. Degr.

800MHz 45.45 0.14 0.85 - - 0.94 0.69
1 1.6GHz 44.25 0.57 0.43 1.03 1.27 1 0.88

2.27GHz 44.27 0.70 0.30 1 1.10 - -

800MHz 38.95 0.11 0.88 - - 0.65 0.54
2 1.6GHz 25.55 0.3 0.69 1.54 1.53 0.95 0.83

2.27GHz 24.21 0.49 0.51 1.06 1.16 - -

800MHz 35.23 0.08 0.91 - - 0.49 0.52

3 1.6GHz 17.35 0.11 0.89 2.03 1.95 0.95 0.78
2.27GHz 16.35 0.34 0.66 1.06 1.35 - -

800MHz 28.72 0 1 - - 0.48 0.5

4 1.6GHz 13.84 0 1 2.07 2 0.88 0.75

2.27GHz 12.17 0.20 0.79 1.14 1.41 - -

800MHz 32.03 0 0.98 - - 0.53 0.54

5 1.6GHz 17.27 0.25 0.74 1.88 1.96 0.95 0.78
2.27GHz 14.76 0.53 0.47 1.17 1.23 -

800MHz 31.69 0 1 - - 0.54 0.52

6 1.6GHz 16.59 0.05 0.94 1.91 2 0.71 0.77

2.27GHz 12.37 0.29 0.71 1.40 1.38 - -


∆ecbi =

ecbi
ecbi−1

|ecbi| ≥ µ

∆ecbi = 0 |ecbi| < µ

(5.5)

5.3.2 Specifying The Threshold(s)

Six hybrid benchmarks are ran on a single core in turn. The hybrid benchmarks combines

CPU bombs, memory bombs and I/O bombs [refk] with different percentages. Each of

them consists of integer and floating calculation, memory allocation as well as I/O opera-

tions. The results are shown in Table 5.5. For performance improvement/degradation, 1

means it is not changed with the scaled frequency; > 1 means performance is improved;

< 1 means degradation.

In column “perf. impr.” (performance improvement), we scale up the frequency

and calculate the numbers by old exec.time
new exec.time

, which is always ≥ 1. For example in Hyb1

93

benchmark, the performance improvement in second row is 1.03, which means the overall

execution time is not improved too much when the frequency is scaled from 800MHz

up to 1.6GHz. Similarly, in column “perf. degr.” (performance degradation), we scale

down the frequency and calculate the ratio old exec.time
new exec.time

, which is always (≤ 1).

In Table 5.5, we highlight all the cases where B-I model is applicable. For the rest

cases, the noise brought by I/O wait latency eliminates the effect of scaling core frequency.

Based on the list results, there is a “threshold” for frequency scaling up (“performance

improvement”) and another one for frequency scaling down (“performance degradation”).

If the core frequency is going to a higher level: only when the I/O wait part is less than

thup = 11%, we could use B-I model to estimate the performance with low tracking error;

otherwise, the overall performance is not going to be improved. Similarly, when trying

to use a lower frequency: only if the I/O wait part is less than thdown = 30%, B-I model

could be used.

5.4 Methodology

In this section, we show our experimental methodology and benchmarks, as well as the

implementation details of each component in our MAR controller. Processor: We

use an Quad-Core Intel Xeon E5345 2.27GHz processor, with 2 × 4MB L2 cache and

1.333MHz FSB. The four execution cores are in two sockets. Our experiments show

that core0 and core1 are in one group and core 2 and core3 are in another group. We

change the DVFS levels of the 2 cores in each group together in order to have a real

impact on the processor power consumption3. For simplicity, we treat this Quad-Core

as a Dual-core, the first group as core0 and the second group as core1. Each core in

3Experiments show that only scaling one core’s frequency in that group does not affect the overall
power consumption.

94

the processor supports 3 DVFS levels: 800 MHz, 1.6 GHz and 2.27 GHz. The operating

system is Ubuntu 9.04 (jaunty) with Linux kernel 2.6.28.

Benchmarks: We use the 3 stress tests highlighted earlier in the paper (CPU-

bomb, I/O-bomb, and memory-bomb) from the Isolation Benchmark Suite (IBS) [refk],

SPEC CPU 2006 suite version 1.0 [refm], and data-intensive benchmark: TPCC running

on PostgreSQL [refo]. TPCC incorporates five types of transactions each with different

complexity for online and deferred execution on a database system. Every transaction

consists of a computing part and an I/O part. Due to the database buffer pool, updating

of records will not be flushed until the pool is full. The flush results in a big write which

alleviates the well known small I/O problem.

Core Statistics: Various information about kernel activity is available in the /proc/-

stat file. The first three lines in this file are the CPU’s statistics, such as user, nice, sys-

tem, idle, etc.. Since the introduction of Linux 2.6 the file also includes three additional

columns: iowait, irq, and softiqr. All of these numbers together identify the amount of

time the CPU has spent performing different kinds of work. Time units are in USER HZ

or Jiffies. In our x86 system, the default value of a jiffy is 10 ms, or 1/100 of a second.

MAR needs to collect specific core boundness information as well as I/O wait latency.

Each core’s boundness is the sum of the jiffies in user, nice and sys mode divided by the

total number of jiffies in the last SP . Similarly, the I/O wait latency is calculated based

on the iowait column.

The way to measure the real-time response time depends on the benchmarks. In

the Isolation Benchmark, the response time can be monitored in I/O throughput. In

TPCC, the primary metrics, transaction rate (tpmC), can be used as the response time.

However, for the SPEC CPU2006 benchmarks, it is difficult to find any metrics to denote

response time because there is no “throughput” concept here. Our previous experiments

in Figure 5.2 show that these CPU-intensive and memory-intensive benchmarks have

roughly linear relationships with core frequency. Hence we can calculate the number of

95

instructions which have been processed in the sampling period by multiplying the CPU

time (first three fields in /proc/stat file) by the core frequency. The result can be used

as the response time metric.

DVFS Interface: We enable the Intel’s SpeedStep on the BIOS and use the cpufreq

package to implement DVFS. When using root privilege, we can echo different frequencies

into the system file /sys/devices/system/cpu/cpu[X]/cpufreq/-scaling setspeed, where [X]

is the index of the core. We test the overhead of scaling CPU frequencies in our platform,

which is only 0.12 milliseconds on average.

Power Estimation: We use the power models from Wattch [BTM00] to estimate

the processor’s power consumption. Specifically, we first calculate the capacitance C

and then calculate the power. After that, we consider the leakage power by multiplying

crossover sacling (1.2), and all other L1 data/inst cache and L2 cache’s read miss/hit

and write miss/hit power usage. Hence the power is denoted as 1.2kC · frequency ·

V oltage2 [ref04], where k is the co-efficient related to the computation intensity of work-

loads, for example, the k for computation bounded workloads is close to 1, while for I/O

intensive workloads is close to 0 [SBN09]. Since we are focusing on the comparison of

power consumption among MAR and other baselines, all these common parts such as

1.2, k, and C will be eliminated in the calculation. As a result, we simply use the cubic

relation [ref04] to do the estimation: Power ∝ frequency3.

Baselines: The baselines are three previous CPU power saving works which do

not incorporate I/O factors: Relax [GFF07], PID [AJ03], and GPHT [ICM06]. Relax

is a simple statistical predictor and used by [GFF07] to assume the next sample behav-

ior (core-boundness) is linearly related to previously monitored behaviors; we set the

relaxation factor to 0.5 and the relax window size as 2 based on the empirical value

taken from [GFF07]. PID is used in [AJ03] to predict the core’s busy/idle ratio based

on previously records by using Proportional Integral Derivative control algorithm; we

tune Kp = 0.4, Ki = 0.2, Kd = 0.4 based on [AJ03]. GPHT (Global Phase History Ta-

96

ble based) predictor observes the historical patterns of busy/idle ratios from previously

observed samples to derive the next phase’s behavior. Previously learned patterns are

recorded in a global table which is updated automatically. Based on [ICM06], we set the

GPHT depth (history window size) to 4 and the table entries (number of patterns to be

recorded) to 512. All these algorithms are implemented in RTAI3.8 [ref10] to trace the

cores’ behavior and predict the I/O wait in next SP.

5.5 Experiments

First, we show that the model-based predictors used in the baselines are not suitable for

predicting I/O wait ratio. Second, MAR is used to control the power for different types

of workloads which including the CPU-intensive, memory-intensive and I/O-intensive

benchmarks. The purpose is to show MAR’s performance under specific environments.

Third, we compare the two versions of MAR (with/without considering I/O wait) by

running the data-intensive benchmarks, in order to highlight the impact of I/O wait in

power management schemes. After that, we compare the overall efficiency of MAR and

the other baselines. And in end, we briefly show the overheads of the various investigated

power management schemes.

5.5.1 Modeless-ness of I/O wait

In this section, we prove that the model-based predictors such as Relax, PID, and GPHT

are not suitable for I/O wait trajectory learning.

First, we implement Relax, PID, and GPHT to predict the I/O wait ratio based on

their predefined models. Figure 5.8 shows their trajectories of prediction compared with

MAR. We also run the test 10 times to collect the “average detecting times”, as shown

97

MAR has the

fastest response

time for the

bounces

A

B

Figure 5.8: Comparison of the prediction accuracy of I/O wait ratio on a randomly picked
core

in the table in Figure 5.8. It can be seen that MAR has the fastest response time (as

shown in the zoomed figure in Figure 5.8). GPHT could also detect the I/Owait bounce

quickly is because of its aggressiveness: when there is no matched history pattern, GPHT

assumes the next sample behavior is identical to the last one. But GPHT may result

in some severe prediction errors like “A” and “B” spots in Figure 5.8 due to pattern

changes, and GPHT has the highest overhead as shown in Section 5.5.2.4. The table in

Figure 5.8 also shows that MAR achieves the shortest settling time after the deviation.

98

The overall response time of MAR outperforms Relax, PID, and GPHT by 2.55, 3.49,

and 1.87 times, respectively.

Second, we measure the impact of SP in the prediction accuracy. Figure 5.9 shows the

average prediction errors for all four algorithms when SP = 5s, SP = 10s, and SP = 20s.

When using a smaller SP , the trajectory of the core boundness is more unstable so all

the predictors have higher average prediction errors; when using larger SP , the core’s

behavior is more predictable due to the larger time window in each step. Slow responsive

algorithms such as PID do not work well here since they are only good for the workloads

with strong locality. GPHT could miss-predict because of few repetitive patterns in our

experiment. In summary, MAR obtains the lowest occurrence of prediction errors for

two reasons: 1) it incorporates the changing speed of the tracking error, which gives

more hints for the coming trend and high responsiveness of the core’s status switches; 2)

it adopts the noise filter µ as shown in Equation 5.5 to reduce the unnecessary abrupt

fluctuations caused by “phantom” bursty cases which is defined in our technique report.

A

v

g

.

I

O

w

a

i
t

p

r

e

d

i
c

t
i

o

n

e

r

r
o

r

Figure 5.9: Avg. Prediction errors for different SPs

99

5.5.2 Power Efficiency

This set of experiments shows the power management efficiency of MAR for different

types of benchmarks: gcc, mcf, bzip2, gap, applu, gzip and TPCC.

5.5.2.1 Running homogeneous workloads

In this section, we want to show MAR’s power control performance when homogeneous

workloads are running. For each benchmark, we use 4 threads to run 4 copies on our test

bed to evaluate the MAR’s performance for each specific type of workload. Here we show

the results of power consumption/performance loss of MAR and the baselines: Relax,

PID, GPHT and the Ideal case in Figure 5.10. In the “Ideal” case, we use the ideal

DVFS settings which were calculated offline, to achieve the best power saving efficiency

and the least performance loss.

Assuming the Ideal case saves the most power, MAR and the other baselines perform

well when the workload has no explicit I/O operations. For gcc, mcf, bzip2, gap, applu

and gzip, MAR achieves 95.4% efficiency, relative to ideal power management. The

other baselines could also achieve similar control accuracy, but when running the TPCC

benchmark the baselines can only achieve a 58.2 − 70.1% efficiency in power saving

performance, relative to the ideal case. In contrast, when considering I/O wait time as

an additional opportunity to save power, MAR can still achieve 92.5% efficiency power

management, relative to the ideal case. MAR outperforms the other baselines by 25.3−

34.3%. The performance loss of all power management strategies is between 2% − 3%.

And, although, MAR has the highest performance loss of 2.8% for the TPCC benchmark,

because of our aggressive power saving strategy, it is still in the safe zone [AJ03].

100

Figure 5.10: MAR’s performance for various benchmarks

5.5.2.2 Running heterogeneous workloads

In this section we compare MAR with the other baselines for the case when heterogeneous

workloads are running. We launch all aforementioned 7 benchmarks in parallel on our

test bed. The database for the TPCC benchmark is locally set up. Figure 5.11 shows

their overall DVFS results and power saving efficiency.

The upper two charts in Figure 5.11 show the frequency distribution of all man-

agement methods. Note that compared with SP = 5s, the trajectory of workload in

SP = 10s case has less fluctuations caused by the “phantom bursts”. The methods lack

of considering I/O factors such as Relax, PID and GPHT could not discover as many

power-saving opportunities as MAR, especially in the smaller SP case.

The lower two charts in Figure 5.11 illustrate the overall power consumptions of all

management methods. All the numbers are normalized to MAR which saves the most

101

DVFS Results of MAR and the

baselines (TPCC; SP=10s)

DVFS Results of MAR and

the baselines (TPCC; SP=5s)

Comparison of Power

Consumptions(TPCC; SP=10s)

Comparison of Power

Consumptions(TPCC; SP=5s)

Figure 5.11: Comparison of the power management efficiency of MAR with the baselines,
SP = 10s/5s

power. PID and GPHT perform very differently when SP = 10s and SP = 5s. The

reason is that more “phantom bursts” of the workloads (when SP = 5s) could affect the

control accuracy. From the power saving perspective, MAR, on average (SP = 10/5s),

saves 30.6% more than Relax, 25.9% more than PID, 21.2% more than GPHT.

5.5.2.3 The impact of I/O wait latency

In order to highlight the impact of I/O wait latency in power management, we implement

an incomplete version of MAR: MAR(-W). MAR(-W) uses the same controller as as MAR

102

does but without considering any of the I/O factors. We use 7 threads to run gcc, mcf,

bzip2, gap, applu, gzip, and TPCC in parallel. The comparison of MAR and MAR(-W)

is shown in Figure 5.12.

43.2%

17.9%

38.9%
 46.3%

27.4%

26.3%

51.4%

14.1%

34.5%
 65.5%

15.8%

18.6%

MAR
 MAR(-W)

MAR
 MAR(-W)

SP=10s

SP=5s

Figure 5.12: Running gcc, mcf, bzip2, gap, applu, gzip and TPCC, the DVFS results of
MAR/MAR(-W), SP = 10s/5s

The results show that MAR is more likely to use lower frequencies than MAR(-W).

The reason is that when the I/O wait exceeds the thresholds in the control period, even

if the response time is close to RRT , MAR still scales down the core frequency to a lower

level to save more power. Compared with MAR, MAR(-W) cannot detect the potential

I/O work which is overlapped with the computing intensive work. Based on the cubic

relation between frequency and power consumption, when SP = 10s, MAR could save

19.9% more power than MAR(-W); when SP = 5s, MAR saves 31.13% more power.

Therefore, MAR outperforms MAR(-W) by about 20− 30%.

103

5.5.2.4 Overhead

Table 5.6 shows the overhead of the tested methods. All of the methods are lightweight

and consume less than 1% of the CPU’s entire utilization for the sampling period of

10s. The GPHT controller has the highest overhead because it is indexing expensive. In

contrast, MAR executes almost 9 times faster than the GPHT controller.

Table 5.6: Comparison of the overhead of different managements
MAR Relax PID GPHT

Code
Size(lines) 150 50 135 600

CPU
Utilization 0.11% 0.05% 0.09% 0.97%

5.5.2.5 Scalability

Maximum Power Consumption (Performance-Oriented)

Best Performance (Performance-Oriented)

0

1st run
 2nd run
 3rd run
 4th run

1st run
 2nd run
 3rd run
 4th run

Figure 5.13: Scalability study of MAR and baselines under different number of cores in
simulations

In previous subsections we have tested MAR on our testbed, which only has 4 cores

and 3 available voltage-frequency settings. In order to show the scalability of MAR,

we use a cycle-accurate SESC simulator [RFT05] with modifications to support per-core

104

level DVFS. Each core is configured as Alpha 21264 [Ec]. The processor technology is

65nm, the L1 data-cache and instruction cache are set as 64K (2 way), and 2M private

L2 cache is configured. We enable wattchify and cactify [RFT05] to estimate the power

change caused by DVFS scaling. In our simulation, we scale up MAR for 8, 16, 32 core

processors each with private L1 and L2 hierarchy with cores placed in the middle of

the die. Each core in our simulation has 3 DVFS levels (3.88GHz, 4.5GHz and 5GHz).

The overhead of each DVFS scaling is set to 20µ [IBC06b]. The benchmarks we used

are randomly selected SPEC 2006 benchmarks; gcc, mcf, bzip2, and the data-intensive

TPCC benchmark. The number of processes are equal to the number for cores, e.g.,

we run 2 copies of each of the 4 benchmarks when there is 8 cores. We first record the

maximum power consumption and the best performance of the workloads by setting all

the cores to the highest DVFS level. Then we normalize the results of MAR and other

baselines to show their power management efficiency and performance losses.

Figure 5.13 plots the average power saving efficiency and the performance loss of

MAR, Relax, PID, and GPHT based per-core level DVFS controllers. All the numbers are

normalized to the “performance-oriented” case. With varying numbers of cores the CMP

processor with MAR continually saves the most power. On average, MAR outperforms

Relax, PID, and GPHT by 31.4, 32.1% and 21.3% respectively under our benchmark

configuration. Also, MAR’s and the other baseline’s performance losses are all between

2% − 3%, which confirms our observations from our test bed. Our simulation results

demonstrate that MAR can precisely and stably control power while achieving good

performance for CMPs with varying numbers of cores.

105

CHAPTER 6

RELATED WORKS

In this chapter, we will discuss the research work done in improving the transaction

processing performance, and in CPU power management.

6.1 Transaction processing efficiency

TRAID deals with the performance impacts of a large log space and log latency. Tremen-

dous amount of research has been done to improve the performance of transaction pro-

cessing system by utilizing logs and storage space efficiently. In commercial database

solutions like SQL Server 2008, techniques like log compression are used to mitigate the

log size for mirroring databases and improve the network transfer bandwidth [RL04].

Our approach also reduces the log size, but does not incur the overhead of expensive

compression algorithm.

Bulk-logged option in SQL Server reduces the penalty of logging data and metada-

ta [SIG06]. In order to get better performance, the following operations are minimally

logged and not fully recoverable: SELECT INTO, bulk-load operations, CREATE IN-

DEX as well as text and image operations. Any-point-in-time recovery is not possible

with bulk-logged option. TRAID offers partial rollback. Some other solutions include

adjusting the log file size at database or application level, running hourly backups and

truncating it nightly [JCM00], structuring the transaction into sub-transactions, allow-

ing early commit of sub-transactions, and compensating transactions are provided for

recovery purposes[KS03][ooH97].

106

To build a Database-Aware Semantically-Smart Storage (for file system [AAB06] or

for database system [SBA05]), the authors investigate two techniques: First, they explore

log snooping, in which the storage system observes the write-ahead log (WAL) [MHL92]

records to learn the static and dynamic information; second, they explore the benefits

of having the DBMS explicitly gather access statistics and write these statistics to the

lower level.

Tzi-Cker Chiueh and Lan Huang [CH] mention that performance of transaction pro-

cessing system is mostly determined by the amount of required physical disk I/O, which

is due to database table accesses or log record writes. So they provide a high-performance

transaction processing system called Charm, which aims to reduce the performance im-

pacts of disk I/O to the minimum. This motivation is similar to our TRAID, although

they focus on reducing the waiting time of conflicting transactions by making sure that

all the data pages that a transaction needs be memory-resident before it is allowed to

lock shared database pages.

Parity logging [SGH93] accumulates several parity updates into one bigger parity

update by employing journaling techniques, so that the “write penalty” for small write

can be alleviated. The XOR of the old and new block data which is being updated is

logged in the fault-tolerant memory (and log disk). TRAID5 uses the parity redundancy

of RAID5 in a similar way to improve the transaction processing performance.

Storage systems usually maintain redundant copies of data. Redundancy has been

explored to conserve energy as in EERAID [LW04] is a novel energy-efficient RAID

system architecture. With the help of redundancy, a non-blocking read of a disk can be

equally transformed to a read request of another disk without hurting the overall system

performance. In this way, the disk access distribution in a multi-disk system can be

ultimately optimized so that near-optimal energy conservation is obtained. There are

many similar works such as Diverted Accesses [PBD06], eRAID [LW06], and RIMAC

[YW06], all of which have realized the necessary and potential to employ the redundancy

107

in the storage system. But we use the redundancy to reduce the storage workload and

cost, and provide new mechanisms to make the storage system share parts of the heavy

tasks which originally belong to the upper level, as a result, we can improve the storage

efficiency, as well as the system throughput.

6.2 DAFA Data Management

There are several previous work which exploit the data affinity-like semantics; then or-

ganize the data in some specific ways to facilitate the future access or analysis programs.

Yuan [YYL10b] proposes a data dependency-based data placement for the scientific cloud

work flows, which clusters the relative data as intensively as possible hence to effective-

ly reduce data movement during the workflow’s execution. However it is different for

the parallel programming frameworks, such as MapReduce. The MapReduce job per-

formance is directly related to the data locality of each map task [refg], which in turn

is related to the parallelism of the data distribution on the data nodes in the Hadoop

cluster. In other words, the relative data should be distributed as evenly as possible to

boost the performance of MapReduce programs.

Data diffusion [RZF08] is also designed to achieve data locality, in which the resources

required for data analysis are acquired dynamically based on the demand. The required

data may be acquired either “locally” or “remotely”; and cached for some time allowing

more rapid responses to subsequent requires. This solution works well when similar data

analysis programs are continuously launched; however when various applications with

different interest localities are launched, the resources have to be dynamically distributed

for each instance. In this paper, we want to design a heuristic solution based on the

history information, so that the data is distributed in the way that benefits all the

applications whose interest localities have been learned.

108

Our previous work MRAP [SMW10] is designed as a set of MapReduce APIs for

the data providers who may be aware of the subsequent access patterns (affinity) of the

data being uploaded. By specifying the access patterns, the data will be distributed in a

corresponding way so that the best data access performance can be achieved. However

in the real world, it is very difficult to know the data access patterns beforehand.

Ko [KHC10] and Yuan [YYL10a] exploit the data provenance of intermediate data

in MapReduce framework, this type of data semantics can be used in two ways: 1) to

provide better data fault-tolerance [KHC10]: the intermediate data may have different

importance, which are quantified as the cost of reproducing them, hence they should be

granted different fault-tolerant strategies; 2) to save storage capacity [YYL10a]: some-

times storing of the intermediate data is more expensive than reproducing them, therefore

it is better to trade the computation cost with the storage capacity. However the way

of storing or reproducing the intermediate data will not affect the applications overall

performance except when a node failure happens.

6.3 Power Management

In recent years, various power management strategies have been proposed for CMP sys-

tems. From the perspective of DVFS level, previous power management schemes could

be divided into two categories: chip-level and core-level power managements.

Chip-level power management uses chip-wide DVFS. In chip-level management [WRW05,

ICM06, WB02, XMM05], the voltage and frequency of all cores are scaled to the same lev-

el during program execution by taking advantage of the application phase change. These

techniques extensively benefit from application “phase” information that can pinpoint

execution regions with different characteristics. Based on the information obtained, Can-

turk, et al [ICM06] calculate the Mem/Uop value which is quantified memory boundness

109

of that task. They define several CPU frequency phases in which every phase is assigned

to a fixed range of Mem/µop. However, these task-oriented power management schemes

do not take the advantage from per-core level DVFS.

Core-level power management means managing the power consumption of a core.

[IBC06a] and [TT08] collect performance-related information by on-core performance

monitoring counter (PMC) hardware. There are several limitations by using PMCs:

Each CPU has a different set of available performance counters, usually with different

names. Even different models in the same processor family can differ substantially in the

specific performance counters available [refh]; modern superscalar processors schedule

and execute multiple instructions at one time. These “in-flight”instructions can retire

at any time, depending on memory access, hits in cache, stalls in the pipeline and many

other factors. This can cause performance counter events to be attributed to the wrong

instructions, making precise performance analysis difficult or impossible. The metrics

used in MAR are simply read from the system monitoring file at run time.

Several recently proposed algorithms [IBC06a, TT08] are based on open-loop search

or optimization strategies, assuming the power consumption of a CMP at different DVFS

levels can be estimated accurately. This assumption may result in severe performance

degradation or even power constraint violation when the workloads vary significantly

from the one they used to do estimation. There are also some closed-loop solutions

based on feedback control theory [CDQ05, hpc08]. The key challenge for these feedback

control of power and performance is modeling, but the relationships among frequency,

performance, and power consumption are too complex to be accurately modeled when

running I/O-intensive workloads.

Some works [IBC06b, WRW05, ICM06] focus on non-I/O-intensive workloads so they

consider the memory-boundness as the scaling referece. Their solution ignored the CPU’s

I/O wait time which should not be ignored in data-intensive environment. Other work-

s [GFF07, CSP04] incorporate CPU’s I/O factor into their power management solutions.

110

They divide every workload into “on-chip” and “off-chip” parts, in which the later one is

irrelevant to CPU’s frequency, and I/O wait time is categorized into the “off-chip” part

along with the idle time. However, without considering the application level parallelism,

they simply quantify the CPU’s I/O wait latency as the application’s required I/O time.

This cannot be applied when the I/O time of one application is hidden by parallelizing

other CPU-consuming applications or other “on-chip” processes.

Some recently proposed power managements use model predictive controllers, such

as MPC, PID control models. These works are working on different levels (cluster, large

scale data center, CMP), such as DEUCON [WJL07], [hpc08] and [WMW09]. They

make an assumption that the actual execution times of real-time tasks are equal to their

estimated execution times, and their online-predictive model will cause significant error

in spiky cases due to slow-settling from deviation. Moreover, their control architecture

allows degraded performance since they do not include the performance metrics into

the feedback. [LWK05] tries to satisfy QoS-critical systems but their assumption is

maintaining the same CPU utilization guarantees the same performance. It is not true

for the CPU unrelated works, such as the data-intensive or I/O-intensive workloads.

Rule-based control theory [Wan97] is widely used in machine control [SCY09, TL09],

and it has the advantage that the solution to the problem can be cast in terms that

human operators can understand, so that their experience can be used in the design of

the controller. It also reduces the development time/cycle, simplifies design complexity

as well as implementation, and improves control performance [refq].

111

CHAPTER 7

CONCLUSION AND FUTURE WORK

In the following subsections, we describe the contributions of our work and the future

work.

7.1 Contributions of Transactional RAID

In Chapter 3, we presented the results of our Transactional RAID (TRAID) work on top

of BerkelyDB and PostgreSQL. TRAID is designed for transaction processing applica-

tions. It exploits the existing information redundancies in RAID and database systems to

minimize the log size. We have implemented TRAID5 and TRAID10 systems for erasure

coded disk array and replica based disk array, respectively.

• Transactional RAID has bridged the gap between Database systems and the un-

derlying RAID storage systems. By considering the data redundancy at both

levels (temporal redundancy at Database level, and spatial redundancy at

RAID level), TRAID eliminates the overlapped information to reduce the log la-

tency and accelerate the transaction commit. We proved Database+TRAID and

Database+RAID can obtain the same level of data reliability and data availability,

as well as the ACID requirement. At the same time, Our extensive results demon-

strate that for throughput, TRAID outperforms RAID by 43.24−69.5% for various

workloads [SSW11].

112

• We implemented TRAID5 and TRAID10 by modifying the corresponding RAID

code in Linux kernel version 2.6.11 on a Dell Precision 690 (Intel Xeon E5345 -

2.33GHz/4.0GB RAM). 5 uniform 250G SATA disk drives with 7200 rpm rotation

speed are installed. We created soft (T)RAID5 (with 4 disks – 3 data disks and 1

parity disk, another disk was used as log disk) and (T)RAID10 (with 4 disks, the

last disk is the log disk).

• In order to have a fair evaluation of TRAID, we used three benchmarks: a com-

mercial benchmark for transaction processing evaluation: TPC-C [170], and two

modified versions of TPC-C as micro benchmarks. TPCC simulates an Online

Transaction Processing (OLTP) database environment and is the standard bench-

mark to evaluate transaction processing performance. Based on the implementation

of standard TPC-C, we developed a special version of TPC-C for our test, named

BTPC-C1 (Biased TPC-C benchmark1). In BTPC-C1, the key values in the queries

and updates were changed from a uniformly random distribution to a biased dis-

tribution in the form of 90/10 rules. In this way, we increase the access locality

so that the resulting workload is more sensitive to lock content delay, and the log-

lock content delay. The third benchmark aims to test the performance of TRAID

with a write-intensive workload, called BTPC-C2 (Biased TPC-C benchmark2).

In BTPC-C2, we shield all the read-only transactions in TPC-C. Because read re-

quests in TRAID and RAID are identical, read intensive transactions may obviate

the performance improvement. Therefore, by using BTPC-C2, we can explore the

advantages of TRAID for the transactions with dominant update requests.

• We also considered the locking-level issue: it is known that there are page-level

locking and record-level locking in database. We want to show the performance

improvement of TRAID is not limited to any specific locking level. Hence the

block size of a TRAID-parity is set to 512 Bytes, which is same as the default

page size in Berkeley DB and PostgreSQL. In our experiments, the page size is 512

113

Bytes, the record size in WAREHOUSE Table is about 480 Bytes, in CUSTOMER

Table is over 700 Bytes, and in STOCK Table is about 420 Bytes; while in other 5

tables, the record sizes range from 100 Bytes to 200 Bytes. 92% of the transactions

will read/write the first three tables. For the majority of time, only 1 record can be

fit in 1 page, which means the page level locking in our experimental configuration

is comparable to record level locking.

item Our results demonstrated that TRAID performs similarly for both page-level

logging and record-level logging: for throughput, TRAID outperforms RAID by

43.24− 69.5% for various workloads; it also saves on log space by 28.57− 35.48%,

and outperforms RAID by about 20% in throughput when “Group Commit” is

enabled. Finally, we show that TRAID outperforms RAID from 28.7% to 35.7%

during the recovery.

7.2 Future Work

We have designed TRAID5 and TRAID10, in future we would like to extend this work

to the more complicated RAID levels. For example, double-parity RAID or parity-based

RAID6— such as RDP [CEG04]—maintains two parities P and P
′
. P is same as the

RAID5 parity and P
′
is used for the recovery of second disk failure. The spatial recovery

requirements are different for RAID5 and RAID6, but the temporal recovery (undo/redo

on a particular drive at time domain) provided by TRAID-parity Q is the same. Hence,

only P parity is used to calculate the TRAID-parity Q. Hence the feasibility of porting

TRAID idea to other RAID levels is proved.

114

7.3 Contribution of DRAW

The default random data placement in a MapReduce/Hadoop cluster does not take into

account data grouping semantics. This could cluster many grouped data into a small

number of nodes, which limits the data parallelism degree and results in performance

bottleneck. In order to solve the problem, a new data-grouping-aware data placement

(DRAW) scheme is developed. DRAW captures runtime data grouping patterns and

distributes the grouped data as evenly as possible. There are three phases in DRAW:

learning data grouping information from system logs, clustering the data-grouping ma-

trix, and re-organizing the grouping data. We also theoretically prove that the inefficiency

of Hadoop’s random placement method. Our experimental results show that for two rep-

resentative MapReduce applications – Genome Indexing and Astrophysics, DRAW can

significantly improve the throughput of local map task execution by up to 59.8%, and

reduce the execution time of map phase by up to 41.7%. The overall MapReduce job

response time is reduced by 36.4%.

7.4 Future Work

As we analyzed in our design, DRAW currently is designed for the single-replica per rack

Hadoop systems. Although we experimented the performance of DRAW in multi-replica

per rack Hadoop configurations, it is still necessary to theoretically quantify how the

number of replica per rack affects DRAW’s performance. Moreover, we need to find

more real applications having interest locality. In the current version, we do not quantify

how often or how many interest locality exists in real world applications.

115

7.5 Contributions of MAR

In Chapter 5, we proposed an empirical rule-based power management strategy named

MAR (modeless, adaptive, rule-based) for Chip Multi-processors. Our approach reduces

the processors’ power consumption while maintains the required performance.

• The observations from our extensive experiments provide a better understanding

of the relationship among the frequency, performance, and power consumption in a

CMP processor: 1) scaling down the core’s frequency during its I/O wait time can

provide more opportunities to save power without sacrificing performance; 2) core’s

waiting time for I/O operations to complete is unpredictable, unmodel-able, and

depends on several factors, such as I/O type (sync or unsync), instruction or process

level parallelism; 3) there is no model we could find that accurately describes

the relationship between the CPU’s frequency and overall performance when I/O

wait time exists, because CPU frequency and I/O wait time are decoupled. As a

result, power management solutions for data-intensive applications demand that:

1) considerations of each core’s I/O wait status and its’ working and idle statuses be

made; 2) accurate quantification of each status (e.g., busy, idle, iowait) for accurate

power-saving decisions; 3) precise description of the relationship among frequency,

performance and power consumption when I/O wait factor is considered be made.

• Comprehensive factors: while most existing control theory based works (close-loop

controllers) only consider incomplete CPU statistics, MAR is designed strictly based

on comprehensive experiments measuring the impacts of all the core’s working

status (e.g. user, nice, sys, idle, iowait, irq and soft irq), and especially the I/O

factor.

• Rule-based control: While most existing power saving works adopt model predictive

control theories, MAR applies formal rule-based control theory [AP93] because the

116

system (relationships among frequency, performance, and power) is too complex to

be modeled when I/O wait factor is incorporated. In addition, the model-free nature

of rule-based control method avoids the troublesome effort to develop accurate

system models, and the risk of design errors caused by statistical inaccuracies or

inappropriate approximations.

• Our MAR is a modeless, adaptive, rule-based power management scheme in multi-

core systems to manage the power consumption while maintain the required perfor-

mance. “Modeless” reduces the complexity of system modeling as well as the risk

of design errors caused by statistical inaccuracies or inappropriate approximations.

“Adaptive” allows MAR to adjust the control methods based on the real-time sys-

tem behaviors. The rules in MAR are derived from experimental observations and

operators’ experience, which provide a more accurate and practical way to describe

the system behaviors. “Rule-based” architecture also reduces the design develop-

ment cycle and control overhead, simplifies design complexity. MAR controller is

highly responsive (including short detective time and settling time) to the workload

bouncing by incorporating more comprehensive control references (e.g., changing

speed, I/O wait). Noise filters are used in MAR to reduce the unnecessary abrupt

fluctuations caused by “phantom” bursty cases. Empirical results on a physical

testbed show that our control solution can provide precise power control, as well

as high power efficiency for optimized system performance compared to four exist-

ing solutions. Based on our comprehensive experiments, MAR could outperform

the baseline methods by 22.5 − 32.5% in power saving efficiency, and maintains

comparable performance loss about 1.8%− 2.9%.

117

7.6 Future Work

• We would like to apply other modern pattern recognition technologies, such as

Support Vector Machine (SVM), Model Predictive Control (MPC) to the CMP

power management work. Because different tools have different focuses, they may

be better for different workloads or system configurations.

• We would also like to apply our modeless, rule-based idea into memory power

management, which has been proved as the most power-consuming part in computer

systems [Men06].

• We also plan to design a joint power management strategy for CPU, memory, or

even disks. There was no previous work demonstrating how each of these three

parts affects others or how they affect the overall power consumption together.

118

LIST OF REFERENCES

[170] “TPC benchmark C standard specification, revision 5.”
www.tpc.org/tpcc/spec/tpcc current.pdf.

[AAB06] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, L. N. Bairavasundaram, T. E.
Denehy, F. I. Popovici, V. Prabhakaran, and M. Sivathanu. “Semantically-
smart disk systems: past, present, and future.” SIGMETRICS Perform.
Eval. Rev., pp. 29–35, 2006.

[AAV08] S. R. Alam, P. K. Agarwal, and J. S. Vetter. “Performance characteristics
of biomolecular simulations on high-end systems with multi-core processors.”
Parallel Comput., 34(11):640–651, 2008.

[AJ03] M. S. S. R. C. L. S. A. Varma, B. Ganesh and B. Jacob. “A control-theoretic
approach to dynamic voltage scheduling.” In Proc. International Conference
on Compilers, Architectures, and Synthesis for Embedded Systems (CASES
2003), San Jose CA, 2003.

[AP93] P. J. Antsaklis and K. M. Passino, editors. An introduction to intelligent and
autonomous control. Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[BC05] D. Bovet and M. Cesati. Understanding The Linux Kernel. Oreilly & Asso-
ciates Inc, 2005.

[BDB] “Berkeley DB Documentation.” www.oracle.com/technology/documentation/berkeley-
db/db/api c/env set flags.html.

[BMK02] M. Beck, R. Magnus, and U. Kunitz. Linux Kernel Internals with Cdrom.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[BR06] A. Bhatkar and J. L. Rana. “Estimating neutral divergence amongst Mam-
mals for Comparative Genomics with Mammalian scope.” In Proceedings of
the 9th International Conference on Information Technology, pp. 3–6, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[BS04] W. Bartlett and L. Spainhower. “Commercial fault tolerance: a tale of t-
wo systems.” Dependable and Secure Computing, IEEE Transactions on,
1(1):87–96, Jan.-March 2004.

[BSK10] C. Basaran, M. H. Suzer, K.-D. Kang, and X. Liu. “Robust fuzzy CPU
utilization control for dynamic workloads.” J. Syst. Softw., 83(7):1192–1204,
2010.

[BTM00] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations.” In In Proceedings
of the 27th Annual International Symposium on Computer Architecture, pp.
83–94, 2000.

119

[Bur05] D. K. Burleson. Oracle Tuning: The Definitive Reference. Rampant Tech-
Press, North Carolina, USA, 2005.

[CDQ05] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam.
“Managing server energy and operational costs in hosting centers.” In SIG-
METRICS ’05: Proceedings of the 2005 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pp. 303–314,
New York, NY, USA, 2005. ACM.

[CEG04] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar. “Awarded Best Paper! – Row-Diagonal Parity for Double Disk
Failure Correction.” In FAST ’04: Proceedings of the 3rd USENIX Confer-
ence on File and Storage Technologies, pp. 1–14, Berkeley, CA, USA, 2004.
USENIX Association.

[CGS09] A. M. Caulfield, L. M. Grupp, and S. Swanson. “Gordon: using flash memory
to build fast, power-efficient clusters for data-intensive applications.” In AS-
PLOS ’09: Proceeding of the 14th international conference on Architectural
support for programming languages and operating systems, pp. 217–228, New
York, NY, USA, 2009. ACM.

[CH] T.-C. Chiueh and L. Huang. “Configuring the IBM Enterprise Storage Server
for Oracle OLTP Applications,.” citeseer.ist.psu.edu/197890.html.

[Che09] S. Chen. “FlashLogging: exploiting flash devices for synchronous logging per-
formance.” In SIGMOD ’09: Proceedings of the 35th SIGMOD international
conference on Management of data, pp. 73–86, New York, NY, USA, 2009.
ACM.

[CM02] A. T. Chamillard and L. D. Merkle. “Evolution of an introductory computer
science course: the long haul.” J. Comput. Small Coll., 18:144–153, October
2002.

[CSP04] K. Choi, R. Soma, and M. Pedram. “Fine-Grained Dynamic Voltage and
Frequency Scaling for Precise Energy and Performance Trade-Off Based on
the Ratio of Off-Chip Access to On-Chip Computation Times.” In DATE
’04: Proceedings of the conference on Design, automation and test in Europe,
p. 10004, Washington, DC, USA, 2004. IEEE Computer Society.

[DG08] J. Dean and S. Ghemawat. “MapReduce: simplified data processing on large
clusters.” Commun. ACM, 51:107–113, January 2008.

[DKO84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and
D. Wood. “Implementation techniques for main memory database systems.”
In SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD international con-
ference on Management of data, pp. 1–8, New York, NY, USA, 1984. ACM.

[DPJ03] C. E. Dyreson, T. B. Pedersen, and C. S. Jensen. “Incomplete information
in multidimensional databases.” pp. 282–309, 2003.

[Dum04] A. Dumitriu. “X and Y (number 5).” In ACM SIGGRAPH 2004 Art gallery,
SIGGRAPH ’04, pp. 28–, New York, NY, USA, 2004. ACM.

[Ec] O. N. Ec-Rjrza-Te. “Alpha 21264 Microprocessor Hardware Reference Man-
ual.”.

120

[ECC04] K. Elmeleegy, A. Chanda, A. L. Cox, and W. Zwaenepoel. “Lazy asyn-
chronous I/O for event-driven servers.” In ATEC ’04: Proceedings of the an-
nual conference on USENIX Annual Technical Conference, pp. 21–21, Berke-
ley, CA, USA, 2004. USENIX Association.

[FAA08a] A. Flores, J. L. Aragón, and M. E. Acacio. “An energy consumption charac-
terization of on-chip interconnection networks for tiled CMP architectures.”
J. Supercomput., 45:341–364, September 2008.

[FAA08b] A. Flores, J. L. Aragón, and M. E. Acacio. “An energy consumption charac-
terization of on-chip interconnection networks for tiled CMP architectures.”
J. Supercomput., 45(3):341–364, 2008.

[FM07] J. Fischer and R. Majumdar. “Ensuring consistency in long running trans-
actions.” In ASE ’07: Proceedings of the twenty-second IEEE/ACM interna-
tional conference on Automated software engineering, pp. 54–63, New York,
NY, USA, 2007. ACM.

[FSS07] A. Fedorova, M. Seltzer, and M. D. Smith. “Improving Performance Isolation
on Chip Multiprocessors via an Operating System Scheduler.” In PACT
’07: Proceedings of the 16th International Conference on Parallel Architecture
and Compilation Techniques, pp. 25–38, Washington, DC, USA, 2007. IEEE
Computer Society.

[FWB07] X. Fan, W. dietrich Weber, and L. A. Barroso. “Power Provisioning for a
Warehouse-sized Computer.” In In Proceedings of ISCA, 2007.

[GFF07] R. Ge, X. Feng, W.-c. Feng, and K. W. Cameron. “CPU MISER: A
Performance-Directed, Run-Time System for Power-Aware Clusters.” In
ICPP ’07: Proceedings of the 2007 International Conference on Parallel Pro-
cessing, p. 18, Washington, DC, USA, 2007. IEEE Computer Society.

[GR92] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[GSK03] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke. “Reduc-
ing Disk Power Consumption in Servers with DRPM.” Computer, 36:59–66,
December 2003.

[GZ99] N. Gorla and K. Zhang. “Deriving Program Physical Structures Using Bond
Energy Algorithm.” In Proceedings of the Sixth Asia Pacific Software En-
gineering Conference, APSEC ’99, pp. 359–, Washington, DC, USA, 1999.
IEEE Computer Society.

[HG09] R. S. Holmes and E. Goldberg. “Brief communication: Computational anal-
yses of mammalian lactate dehydrogenases: Human, mouse, opossum and
platypus LDHs.” Comput. Biol. Chem., 33:379–385, October 2009.

[HL05] Y. Hahn and B. Lee. “Identification of nine human-specific frameshift mu-
tations by comparative analysis of the human and the chimpanzee genome
sequences.” Bioinformatics, 21:186–194, January 2005.

121

[HP07] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach, 4th Edition. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2007.

[hpc08] Cluster-level feedback power control for performance optimization. IEEE Com-
puter Society, 2008.

[HRV09] V. Hanumaiah, R. Rao, S. Vrudhula, and K. S. Chatha. “Throughput optimal
task allocation under thermal constraints for multi-core processors.” In DAC
’09: Proceedings of the 46th Annual Design Automation Conference, pp. 776–
781, New York, NY, USA, 2009. ACM.

[IBC06a] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. “An
Analysis of Efficient Multi-Core Global Power Management Policies: Maxi-
mizing Performance for a Given Power Budget.” In MICRO 39: Proceedings
of the 39th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 347–358, Washington, DC, USA, 2006. IEEE Computer Society.

[IBC06b] C. Isci, A. Buyuktosunoglu, C. yong Cher, P. Bose, and M. Martonosi. “An
analysis of efficient multi-core global power management policies: Maximizing
performance for a given power budget.” In in Proc. Intl Symp. Microarch.
(MICRO, pp. 347–358, 2006.

[ICM06] C. Isci, G. Contreras, and M. Martonosi. “Live, Runtime Phase Monitoring
and Prediction on Real Systems with Application to Dynamic Power Man-
agement.” In MICRO 39: Proceedings of the 39th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pp. 359–370, Washington, DC,
USA, 2006. IEEE Computer Society.

[JCM00] S. Jones, S. J. Cunningham, R. J. McNab, and S. J. Boddie. “A transaction
log analysis of a digital library.” Int. j. on Digital Libraries, 3(2):152–169,
2000.

[Kar09] S. Karayi. “Server Energy and Efficiency Report 2009.” 2009.

[KBG08] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srinivasan, R. The-
len, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dussea. “Parity lost and parity
regained.” In FAST’08: Proceedings of the 6th USENIX Conference on File
and Storage Technologies, pp. 1–15, Berkeley, CA, USA, 2008. USENIX As-
sociation.

[KHC10] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. “Making cloud intermediate
data fault-tolerant.” In Proceedings of the 1st ACM symposium on Cloud
computing, SoCC ’10, pp. 181–192, New York, NY, USA, 2010. ACM.

[KS03] R. Karlsen and T. Strandenæs. “Trigger-Based Compensation in Web Service
Environments.” In ICEIS (1), pp. 487–490, 2003.

[KSK08] M. Kandemir, S. W. Son, and M. Karakoy. “Improving I/O performance
of applications through compiler-directed code restructuring.” In FAST’08:
Proceedings of the 6th USENIX Conference on File and Storage Technologies,
pp. 1–16, Berkeley, CA, USA, 2008. USENIX Association.

[LGC06] J. G. Liu, M. Ghanem, V. Curcin, C. Haselwimmer, Y. Guo, G. Morgan, and
K. Mish. “Achievements and Experiences from a Grid-Based Earthquake

122

Analysis and Modelling Study.” In Proceedings of the Second IEEE Interna-
tional Conference on e-Science and Grid Computing, E-SCIENCE ’06, pp.
35–, Washington, DC, USA, 2006. IEEE Computer Society.

[lla04] “TPCC-UVa: A free, open-source implementation of the TPC-C Bench-
mark.” 2004.

[LM07] S.-W. Lee and B. Moon. “Design of flash-based DBMS: an in-page logging
approach.” In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD inter-
national conference on Management of data, pp. 55–66, New York, NY, USA,
2007. ACM.

[LMP08] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim. “A case for flash
memory ssd in enterprise database applications.” In SIGMOD ’08: Proceed-
ings of the 2008 ACM SIGMOD international conference on Management of
data, pp. 1075–1086, New York, NY, USA, 2008. ACM.

[LW04] D. Li and J. Wang. “EERAID: energy efficient redundant and inexpensive
disk array.” In EW11: Proceedings of the 11th workshop on ACM SIGOPS
European workshop, p. 29, New York, NY, USA, 2004. ACM.

[LW06] D. Li and J. Wang. “eRAID: A Queueing Model Based Energy Saving Policy.”
In MASCOTS ’06: Proceedings of the 14th IEEE International Symposium
on Modeling, Analysis, and Simulation, pp. 77–86, Washington, DC, USA,
2006. IEEE Computer Society.

[LWK05] C. Lu, X. Wang, and X. Koutsoukos. “Feedback Utilization Control in Dis-
tributed Real-Time Systems with End-to-End Tasks.” IEEE Trans. Parallel
Distrib. Syst., 16(6):550–561, 2005.

[Men06] A. Mendelson. “Memory management challenges in the power-aware com-
puting era.” In Proceedings of the 5th international symposium on Memory
management, ISMM ’06, pp. 1–2, New York, NY, USA, 2006. ACM.

[MH94] C. Mohan and D. Haderle. “Algorithms for flexible space management in
transaction systems supporting fine-granularity locking.” In EDBT ’94: Pro-
ceedings of the 4th international conference on extending database technology,
pp. 131–144, New York, NY, USA, 1994. Springer-Verlag New York, Inc.

[MHL92] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. “ARIES: a
transaction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging.” ACM Trans. Database Syst., 17(1):94–
162, 1992.

[MN06] S. L. Min and E. H. Nam. “Current trends in flash memory technology:
invited paper.” In ASP-DAC ’06: Proceedings of the 2006 Asia and South
Pacific Design Automation Conference, pp. 332–333, Piscataway, NJ, USA,
2006. IEEE Press.

[MZ06] E. Malinowski and E. Zimányi. “A conceptual solution for representing time
in data warehouse dimensions.” In APCCM ’06: Proceedings of the 3rd
Asia-Pacific conference on Conceptual modelling, pp. 45–54, Darlinghurst,
Australia, Australia, 2006. Australian Computer Society, Inc.

[OH07] C. O’Hanlon. “A Conversation with John Hennessy and David Patterson.”
Queue, 4(10):14–22, 2007.

123

[ooH97] O. G. ovlen, O. T. ornsen, and S.-O. Hvasshovd. “Compensation-Based Query
Processing in On-Line Transaction Processing Systems.” In BNCOD 15:
Proceedings of the 15th British National Conferenc on Databases, pp. 38–53,
London, UK, 1997. Springer-Verlag.

[OV99] M. T. Özsu and P. Valduriez. Principles of distributed database systems (2nd
ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[PBA07] Z. N. J. Peterson, R. Burns, G. Ateniese, and S. Bono. “Design and imple-
mentation of verifiable audit trails for a versioning file system.” In FAST ’07:
Proceedings of the 5th USENIX conference on File and Storage Technologies,
pp. 20–20, Berkeley, CA, USA, 2007. USENIX Association.

[PBD06] E. Pinheiro, R. Bianchini, and C. Dubnicki. “Exploiting redundancy to con-
serve energy in storage systems.” In SIGMETRICS ’06/Performance ’06:
Proceedings of the joint international conference on Measurement and mod-
eling of computer systems, pp. 15–26, New York, NY, USA, 2006. ACM.

[PP01] A. N. Packer and S. M. Press. Configuring and Tuning Databases on the
Solaris Platform. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[PY08] L. Peng and Q. Yongfu. “Impacts of Land Surface and Sea Surface Temper-
atures on the Onset Date of South China Sea Summer Monsoon.” In Pro-
ceedings of the 2008 International Workshop on Education Technology and
Training & 2008 International Workshop on Geoscience and Remote Sens-
ing - Volume 01, pp. 277–280, Washington, DC, USA, 2008. IEEE Computer
Society.

[refa] “Bowtie: An ultrafast memory-efficient short read aligner.”.

[refb] “Burrows-Wheeler transform.”.

[refc] “The Cosmic Data ArXiv.”.

[refd] “DFS should place one replica per rack.”.

[refe] “Five Ways to Reduce Miss Penalty.”.

[reff] “The Hadoop Distributed File System: Architecture and Design.”.

[refg] “Hadoop Tutorial Introduction.”.

[refh] “Hardware Performance Counter Basics.”.

[refi] “Introducing the 45nm Next-Generation Intel Core Microarchitecture.”.

[refj] “Is I/O Wait a Measure of CPU Utilization or Idle Time?”.

[refk] “Isolation Benchmark Suite.”.

[refl] “Processor utilization and wait I/O – a look inside.”.

[refm] “SPEC CPU2006.”.

[refn] “The Terasort Benchmark.”.

[refo] “TPCC-UVa: A free, open-source implementation of the TPC-C Bench-
mark.”.

124

[refp] “UCSC Genome Bioinformatics Site.”.

[refq] “Why Use Fuzzy Logic?”.

[ref04] “Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor.”
2004.

[ref06] “AMD Cool’n’Quiet Technology.” 2006.

[ref09] “IBM EnergyScale for POWER6 Processor-Based Systems.” 2009.

[ref10] “RTAI - the RealTime Application Interface for Linux.” 2010.

[RFT05] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos. “SESC simulator.”, January 2005.
http://sesc.sourceforge.net.

[RL04] B. Rácz and A. Lukács. “High Density Compression of Log Files.” In DCC
’04: Proceedings of the Conference on Data Compression, p. 557, Washington,
DC, USA, 2004. IEEE Computer Society.

[RSG10] M. Rodriguez-Martinez, J. Seguel, and M. Greer. “Open Source Cloud Com-
puting Tools: A Case Study with a Weather Application.” In Proceedings of
the 2010 IEEE 3rd International Conference on Cloud Computing, CLOUD
’10, pp. 443–449, Washington, DC, USA, 2010. IEEE Computer Society.

[RZF08] I. Raicu, Y. Zhao, I. T. Foster, and A. Szalay. “Accelerating large-scale data
exploration through data diffusion.” In Proceedings of the 2008 international
workshop on Data-aware distributed computing, DADC ’08, pp. 9–18, New
York, NY, USA, 2008. ACM.

[SB03] D. Shasha and P. Bonnet. Database tuning: principles, experiments, and
troubleshooting techniques. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

[SBA05] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. “Database-aware semantically-smart storage.” In FAST’05:
Proceedings of the 4th conference on USENIX Conference on File and Storage
Technologies, pp. 18–18, Berkeley, CA, USA, 2005. USENIX Association.

[SBN09] H. Solar, R. Berenguer, J. de No, n. Gurutzeaga, I U. Alvarado, and J. Legar-
da. “A fully integrated 23.2dBm P1dB CMOS power amplifier for the IEEE
802.11a with 29Integr. VLSI J., 42(1):77–82, 2009.

[Sch09] M. C. Schatz. “CloudBurst.” Bioinformatics, 25:1363–1369, June 2009.

[SCK06] S. W. Son, G. Chen, M. Kandemir, and F. Li. “Energy savings through
embedded processing on disk system.” In ASP-DAC ’06: Proceedings of the
2006 Asia and South Pacific Design Automation Conference, pp. 128–133,
Piscataway, NJ, USA, 2006. IEEE Press.

[SCY09] T. Shaocheng, L. Changying, and L. Yongming. “Fuzzy adaptive observ-
er backstepping control for MIMO nonlinear systems.” Fuzzy Sets Syst.,
160(19):2755–2775, 2009.

[SG07] B. Schroeder and G. A. Gibson. “Understanding disk failure rates: What
does an MTTF of 1,000,000 hours mean to you?” Trans. Storage, 3(3):8,
2007.

125

[SGH93] D. Stodolsky, G. Gibson, and M. Holland. “Parity logging overcoming the
small write problem in redundant disk arrays.” In ISCA ’93: Proceedings
of the 20th annual international symposium on Computer architecture, pp.
64–75, New York, NY, USA, 1993. ACM.

[SHS01] C. A. Stein, J. H. Howard, and M. I. Seltzer. “Unifying File System Protec-
tion.” In Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, pp. 79–90, Berkeley, CA, USA, 2001. USENIX Association.

[SIG06] R. Sears, C. van Ingen, and J. Gray. “To BLOB or Not To BLOB: Large
Object Storage in a Database or a Filesystem?” Technical Report MSR-TR-
2006-45, University of California at Berkeley, Microsoft, April, June 2006.

[SLZ07] M. Specht, R. Lebrun, and C. P. E. Zollikofer. “Visualizing shape transforma-
tion between chimpanzee and human braincases.” Vis. Comput., 23:743–751,
August 2007.

[SMW10] S. Sehrish, G. Mackey, J. Wang, and J. Bent. “MRAP: a novel MapReduce-
based framework to support HPC analytics applications with access pattern-
s.” In Proceedings of the 19th ACM International Symposium on High Per-
formance Distributed Computing, HPDC ’10, pp. 107–118, New York, NY,
USA, 2010. ACM.

[SSW11] P. Shang, S. Serish, and J. Wang. “TRAID: Exploiting Temporal Redundan-
cy and Spatial Redundancy to Boost Transaction Processing Systems Perfor-
mance.” IEEE Transactions on Computers, 99(PrePrints), 2011.

[TG09] S. Tripathi and R. S. Govindaraju. “Change detection in rainfall and temper-
ature patterns over India.” In Proceedings of the Third International Work-
shop on Knowledge Discovery from Sensor Data, SensorKDD ’09, pp. 133–
141, New York, NY, USA, 2009. ACM.

[Tho05] A. Thomasian. “Reconstruct versus read-modify writes in RAID.” Inf. Pro-
cess. Lett., 93(4):163–168, 2005.

[TL09] S. Tong and Y. Li. “Observer-based fuzzy adaptive control for strict-feedback
nonlinear systems.” Fuzzy Sets Syst., 160(12):1749–1764, 2009.

[TPC] “HP Integrity rx6600 achieves highest 4p/8c Mi-
crosoft Windows/SQL 2005 TPC-C performance result.”
http://h71028.www7.hp.com/ERC/downloads/c00760409.pdf.

[TT08] R. Teodorescu and J. Torrellas. “Variation-Aware Application Scheduling and
Power Management for Chip Multiprocessors.” In ISCA ’08: Proceedings of
the 35th International Symposium on Computer Architecture, pp. 363–374,
Washington, DC, USA, 2008. IEEE Computer Society.

[VBL09] V. Vishwanath, R. Burns, J. Leigh, and M. Seablom. “Accelerating tropical
cyclone analysis using LambdaRAM, a distributed data cache over wide-area
ultra-fast networks.” Future Gener. Comput. Syst., 25(2):184–191, 2009.

[Wan97] L.-X. Wang. A course in fuzzy systems and control. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1997.

[WB02] A. Weissel and F. Bellosa. “Process cruise control: event-driven clock scaling
for dynamic power management.” In CASES ’02: Proceedings of the 2002 in-
ternational conference on Compilers, architecture, and synthesis for embedded
systems, pp. 238–246, New York, NY, USA, 2002. ACM.

126

[WJL07] X. Wang, D. Jia, C. Lu, and X. Koutsoukos. “DEUCON: Decentralized End-
to-End Utilization Control for Distributed Real-Time Systems.” IEEE Trans.
Parallel Distrib. Syst., 18(7):996–1009, 2007.

[WLO01] R. K. Wong, F. Lam, and M. A. Orgun. “Modelling and Manipulating Mul-
tidimensional Data in Semistructured Databases.” World Wide Web, 4(1-
2):79–99, 2001.

[WMW09] Y. Wang, K. Ma, and X. Wang. “Temperature-constrained power control for
chip multiprocessors with online model estimation.” In ISCA ’09: Proceedings
of the 36th annual international symposium on Computer architecture, pp.
314–324, New York, NY, USA, 2009. ACM.

[WRW05] Q. Wu, V. J. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks, M. Martonosi,
and D. W. Clark. “A Dynamic Compilation Framework for Controlling Mi-
croprocessor Energy and Performance.” In In MICRO 38: Proceedings of the
38th annual IEEE/ACM International Symposium on Microarchitecture, pp.
271–282. IEEE Computer Society, 2005.

[XMM05] F. Xie, M. Martonosi, and S. Malik. “Bounds on power savings using run-
time dynamic voltage scaling: an exact algorithm and a linear-time heuristic
approximation.” In ISLPED ’05: Proceedings of the 2005 international sym-
posium on Low power electronics and design, pp. 287–292, New York, NY,
USA, 2005. ACM.

[Yad07] H. Yadava. The Berkeley DB Book. Apress, Berkely, CA, USA, 2007.

[YG05] M. T. Yourst and K. Ghose. “Incremental Commit Groups for Non-
Atomic Trace Processing.” In MICRO 38: Proceedings of the 38th annual
IEEE/ACM International Symposium on Microarchitecture, pp. 67–80, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[YW06] X. Yao and J. Wang. “RIMAC: a novel redundancy-based hierarchical cache
architecture for energy efficient, high performance storage systems.” In Eu-
roSys ’06: Proceedings of the ACM SIGOPS/EuroSys European Conference
on Computer Systems 2006, pp. 249–262, New York, NY, USA, 2006. ACM.

[YXR06] Q. Yang, W. Xiao, and J. Ren. “TRAP-Array: A Disk Array Architecture
Providing Timely Recovery to Any Point-in-time.” SIGARCH Comput. Ar-
chit. News, 34(2):289–301, 2006.

[YY01] K. H. Yeung and T. S. Yum. “Dynamic Multiple Parity (DMP) Disk Array
for Serial Transaction Processing.” IEEE Trans. Comput., 50(9):949–959,
2001.

[YYL10a] D. Yuan, Y. Yang, X. Liu, and J. Chen. “A cost-effective strategy for inter-
mediate data storage in scientific cloud workflow systems.” pp. 1–12, May
2010.

[YYL10b] D. Yuan, Y. Yang, X. Liu, and J. Chen. “A data placement strategy in scien-
tific cloud workflows.” Future Gener. Comput. Syst., 26:1200–1214, October
2010.

[ZYN07] L. Q. Zhou, Z. G. Yu, P. R. Nie, F. F. Liao, V. V. Anh, and Y. J. Chen.
“Log-correlation Distance And Fourier Transform With Kullback-Leibler Di-
vergence Distance For Construction Of Vertebrate Phylogeny Using Com-
plete Mitochondrial Genomes.” In Proceedings of the Third International

127

Conference on Natural Computation - Volume 02, ICNC ’07, pp. 304–308,
Washington, DC, USA, 2007. IEEE Computer Society.

[ZZL09] B. Zhang, N. Zhang, H. Li, F. Liu, and K. Miao. “An Efficient Cloud
Computing-Based Architecture for Freight System Application in China Rail-
way.” In Proceedings of the 1st International Conference on Cloud Comput-
ing, CloudCom ’09, pp. 359–368, Berlin, Heidelberg, 2009. Springer-Verlag.

128

	Research In High Performance And Low Power Computer Systems For Data-intensive Environment
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Transaction Processing Systems (TPS) on Redundant Array of Independent Disks (TRAID)
	1.2 A New Data-gRouping-AWare Data Placement Scheme for Data Intensive Applications with Interest Locality (DRAW)
	1.3 Power Management for CMP Systems in Data-intensive Environment (MARS)

	CHAPTER 2: BACKGROUND
	2.1 Logging Methods Background
	2.2 Power Management Background
	2.2.1 CPU Frequency and Energy Consumption
	2.2.2 Workload partitioning

	CHAPTER 3: TRANSACTIONAL RAID (TRAID) DESIGN
	3.1 Parity Redundancy: TRAID5
	3.1.1 Complete Rollback
	3.1.2 Partial Rollback

	3.2 Mirroring Redundancy: TRAID10
	3.2.1 Complete Rollback
	3.2.2 Partial Rollback
	3.2.3 Other Design Issues

	3.3 Experimental Setup
	3.3.1 Testbed
	3.3.2 Implementation of TRAID5 & TRAID10
	3.3.3 Workloads

	3.4 Experimental Results
	3.4.1 Experiments on BDB
	3.4.2 Experiments on PostgreSQL
	3.4.3 TRAID & group commit
	3.4.4 Rollback Performance

	CHAPTER 4: A NEW DATA-GROUPING-AWARE DATA PLACEMENT SCHEME FOR DATA INTENSIVE APPLICATIONS WITH INTEREST LOCALITY
	4.1 Motivation
	4.2 Data-gRouping-AWare Data Placement
	4.2.1 History Data Access Graph (HDAG)
	4.2.2 Data Grouping Matrix (DGM)
	4.2.3 Optimal Data Placement Algorithm (ODPA)
	4.2.4 Exceptions

	4.3 Analysis
	4.3.1 The chance that ``random = optimal''
	4.3.2 The optimal degree of a given data distribution
	4.3.3 The ``optimal-degree'' of the random distribution
	4.3.4 Multi-replica per rack

	4.4 Methodology
	4.4.1 Test Bed and Applications
	4.4.2 Implementation

	4.5 Experimental Results and Analysis
	4.5.1 The Data Distribution
	4.5.2 Performance Improvement of MapReduce Programs
	4.5.3 Sensitivity Study: the number of replica (NR)
	4.5.4 Overhead of DRAW

	CHAPTER 5: MAR: A NOVEL POWER MANAGEMENT FOR CMP SYSTEMS IN DATA-INTENSIVE ENVIRONMENT
	5.1 Task I: Learning the Core's Behaviors
	5.1.1 Per-Core
	5.1.2 Multi-Core
	5.1.3 Analysis of I/O Wait

	5.2 Task II: A Modeless, Adaptive, Rule-based (MAR) Controller Design
	5.2.1 MAR Control Model
	5.2.2 Rules
	5.2.3 Self-Tuning

	5.3 Other design issues
	5.3.1 Calculating ecb
	5.3.2 Specifying The Threshold(s)

	5.4 Methodology
	5.5 Experiments
	5.5.1 Modeless-ness of I/O wait
	5.5.2 Power Efficiency

	CHAPTER 6: RELATED WORKS
	6.1 Transaction processing efficiency
	6.2 DAFA Data Management
	6.3 Power Management

	CHAPTER 7: CONCLUSION AND FUTURE WORK
	7.1 Contributions of Transactional RAID
	7.2 Future Work
	7.3 Contribution of DRAW
	7.4 Future Work
	7.5 Contributions of MAR
	7.6 Future Work

	LIST OF REFERENCES

