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Abstract

Enterprise Database Management Systems (DBMS) often run on computers
with dedicated storage systems. Their data access requests need to go through
two tiers of cache, i.e., a database bufferpool and a storage server cache, before
reaching the storage media, e.g., disk platters. A tremendous amount of work
has been done to improve the performance of the first-tier cache, i.e., the database
bufferpool. However, the amount of work focusing on second-tier cache management
to support DBMS workloads is comparably small. In this thesis we propose several
novel techniques for managing second-tier caches to boost DBMS performance in
terms of query throughput and query response time.

The main purpose of second-tier cache management is to reduce the I/O latency
endured by database query executions. This goal can be achieved by minimizing
the number of reads and writes issued from second-tier caches to storage devices.
The first part of our research focuses on reducing the number of read I/Os issued
by second-tier caches. We observe that DBMSs issue I/O requests for various
reasons. The rationales behind these I/O requests provide useful information to
second-tier caches because they can be used to estimate the temporal locality of
the data blocks being requested. A second-tier cache can exploit this information
when making replacement decisions. In this thesis we propose a technique to pass
this information from DBMSs to second-tier caches and to use it in guiding cache
replacements.

The second part of this thesis focuses on reducing the number of writes issued by
second-tier caches. Our work is two fold. First, we observe that although there are
second-tier caches within computer systems, today’s DBMS cannot take full advan-
tage of them. For example, most commercial DBMSs use forced writes to propagate
bufferpool updates to permanent storage for data durability reasons. We notice that
enforcing such a practice is more conservative than necessary. Some of the writes
can be issued as unforced requests and can be cached in the second-tier cache with-
out immediate synchronization. This will give the second-tier cache opportunities
to cache and consolidate multiple writes into one request. However, unfortunately,
the current POSIX compliant file system interfaces provided by mainstream oper-
ating systems (e.g., Unix and Windows) are not flexible enough to support such
dynamic synchronization. We propose to extend such interfaces to let DBMSs take
advantage of using unforced writes whenever possible.

Additionally, we observe that the existing cache replacement algorithms are
designed solely to maximize read cache hits (i.e., to minimize read I/Os). The
purpose is to minimize the read latency, which is on the critical path of query exe-
cutions. We argue that minimizing read requests is not the only objective of cache
replacement. When I/O bandwidth becomes a bottleneck the objective should be
to minimize the total number of I/Os, including both reads and writes, to achieve
the best performance. We propose to associate a new type of replacement cost, i.e.,
the total number of I/Os caused by the replacement, with each cache page; and
we also present a partial characterization of an optimal algorithm which minimizes
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the total number of I/Os generated by caches. Based on this knowledge, we extend
several existing replacement algorithms, which are write-oblivious (focus only on
reducing reads), to be write-aware and observe promising performance gains in the
evaluations.
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Chapter 1

Introduction

Enterprise computers usually have dedicated, network connected storage systems.
In such a computing environment there exist multiple tiers of cache. These cache
tiers are designed to improve the input/output (I/O) efficiency of running applica-
tions and provide several benefits. First, cache hits generated in these cache tiers
can save physical I/O operations on storage devices. For example, an input request,
which we refer to as read, can be handled by the first cache tier where the requested
data block is found. For another example, an output request, which we refer to
as write, can stop at any of the cache tiers if it is an un-forced write request (a
forced write requires the written content to be sent to persistent media immediately,
where an unforced write does not have such a requirement). These I/O requests
need not be propagated to permanent storage devices, whose operation is usually
slower than data transfer between cache tiers. Second, the presence of multiple
cache tiers provides file systems and storage systems with opportunities to do I/O
scheduling. For example, in the Linux 2.6 kernel [1], the file pages buffered in the
file system cache are always organized into batches during I/O operations if they
have adjacent file offsets. By using these cache tiers, the running application can
quickly resume work instead of waiting for I/O operations to be completed by the
storage devices. However, before a database management system (DBMS) can take
full advantage of them, some obstacles need to be addressed. In the next section
we will give a more detailed discussion.

1.1 Motivation

In Figure 1.1 we illustrate an example in which a DBMS is running in a computer
system containing two tiers of cache, namely a database bufferpool and a storage
server cache. The DBMS manages the first-tier cache, i.e., the database bufferpool.
It issues I/O requests to the second cache tier. The requests are issued for different
reasons. For example, some read requests are issued because the data blocks being
accessed by the database queries cannot be found in the bufferpool. For another
example, some read requests are issued to prefetch data blocks that probably (based
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on the DBMS’s prediction) will be accessed in the near future. In this thesis we
refer to the I/Os generated by the DBMS for the purpose of bufferpool management
as bufferpool I/Os.

Bufferpool

DBMS

Client Client Client………

Storage Server
Cache

Storage
Server

………

Queries

Database
Clients

Write RequestsRead Requests

Operating
System I/O 
Interface

SCSI

Storage
Devices

Figure 1.1: A DBMS Running With Multiple Cache Tiers

We observe that data blocks carried by bufferpool I/Os issued for different
reasons have different access patterns in the second-tier cache. For example, the
data blocks carried by one type of write request may be re-referenced sooner than
the data blocks carried by another type of write request. This information about
temporal locality is useful to the second-tier cache in helping it making replacement
decisions. In this thesis we present a novel technique to identify different types of
I/O requests and to pass this information to the second tier, where it can be used
for cache management.

We also notice that different types of bufferpool writes have different synchro-
nization requirements. In particular, some types of writes need to be synchronized
immediately to permanent storage, while other types of writes do not need im-
mediate synchronization. Their synchronization can be deferred to a later time,
and the deferral gives second-tier cache opportunities to absorb and to consolidate
write requests. Unfortunately, the current I/O interface provided by mainstream
operating systems (OS), e.g., Unix and Windows, is not flexible enough to support
such dynamic synchronization requirements. Consequently, today’s DBMS systems
pursue data durability by using forced requests for all bufferpool writes. We observe
that this practice is too conservative. It prevents DBMS systems from exploiting
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the optimization opportunities in the second-tier cache.

DBMS systems use dedicated threads to issue write requests asynchronously
with respect to query execution. This technique can effectively hide write latency
when the I/O bandwidth is not heavily utilized. In such a circumstance the write
requests are not on the critical path of query executions. On the contrary, the on-
demand read requests are typically synchronous with respect to query executions.
Therefore, in today’s second-tier cache management, the objective is to maximize
read cache hits and to reduce read latency. We observe that the above scenario
does not always prove to be true in a computer system. The storage devices can
be saturated and can become the performance bottleneck. When this happens, the
write requests, although they are issued asynchronously, will compete with read
requests for I/O bandwidth. Both read and write requests become synchronous
with respect to query executions. Consequently, maximizing read cache hits no
longer leads to optimal performance. We argue that in such a scenario the objective
of cache replacement should be minimizing the total number of I/Os, including both
reads and writes, issued by the cache.

In this thesis we focus on second-tier cache management to support DBMS
workloads. Enterprise DBMS servers usually have dedicated storage systems at-
tached to them. The DBMS can be seen as a client of the storage server. This
architecture includes two tiers of cache, i.e., the DBMS bufferpool and the storage
server cache. Managing a second-tier cache is different from managing a first-tier
cache and is more difficult in the following ways:

• Because first-tier cache management is usually based on recency and fre-
quency, it captures the application’s accesses to the hot pages. Consequently,
the temporal locality of page accesses is weak and difficult to track in the
the second-tier cache. Therefore, the cache replacement algorithms based
purely on recency, e.g., the Least Recently Used (LRU) algorithm, usually
underperform in second-tier cache management.

• Since there are two tiers of cache serving for one data set (e.g., a database),
a single page may have duplicate copies in both cache tiers. This redundancy
hurts the performance of running applications. Due to the lack of information
or collaboration, it is difficult for a second-tier cache to exclude duplicated
pages and to save cache space.

• A first-tier cache is usually located in (or close to) an application’s (e.g., a
DBMS) own memory space and is sometimes managed by the application
itself. It is easier for the first-tier cache to know or to infer the application’s
data access patterns. For example, based on a query’s execution plan, the
DBMS can predict which pages will soon be accessed. However, this type of
information is not easily available to second-tier cache management.

These difficulties encountered by second-tier cache management have been rec-
ognized in the literature [69, 29, 20, 110, 22]. Various second-tier cache man-
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agement techniques have been proposed by researchers. For example, some re-
searchers suggest the use of a unified, centralized, manager for both cache tiers
[81, 16, 18, 96, 47, 38]. For another example, some work suggests the use of hints,
such as the likelihood that the pages will be evicted, from the first-tier cache to the
second-tier cache [88, 90, 91, 11, 22, 87].

These proposed techniques may create burdens on different cache tiers. For
instance, some techniques need modifications to be made to the first-tier cache
so that it can manage the second-tier cache as well. Other techniques may need
the second-tier cache to spend extra CPU time and I/O bandwidth to infer the
content or the management of the first-tier cache. With these observations in
mind, our approaches proposed in this thesis are light-weight (in terms of resource
consumption) and easy to implement.

1.2 Contributions

Our research focuses on second-tier cache management to support DBMS work-
loads. We explore the topic from two perspectives. Our first goal is to increase
read hits (i.e., to reduce read I/Os) in the second-tier cache. We observe that a
DBMS issues bufferpool writes for different reasons and this information can be
used to improve the read hit ratio in the second-tier cache. We propose a novel
technique to pass the information as write hints from a DBMS to a second-tier
cache. We also propose techniques to use these hints in cache management. The
proposed techniques are evaluated by cache simulations and the results demonstrate
significant improvement of read hit ratios.

Our second goal is to reduce the number of write I/Os issued by second-tier
caches. Our approach consists of two parts. First, we notice that different types
of bufferpool writes have different synchronization requirements. The existing I/O
interface provided by mainstream operating systems is not flexible enough to sup-
port such dynamic requirements. Consequently, DBMS systems always issue forced
bufferpool writes to ensure data durability. We argue that this write synchroniza-
tion practice is more conservative than necessary and can waste I/O bandwidth.
We propose to extend the current I/O interface to support finer-grained and more
flexible synchronizations. We implement the proposed I/O interface extension in
an open source operating system and modify a DBMS to use it.

With the introduction of the unforced bufferpool writes, second-tier caches now
face a different workload and need to re-think their replacement decisions. Typi-
cally, second-tier cache replacement algorithms are designed to achieve a sole ob-
jective, which is to maximize the read cache hits, because all the cached pages are
clean pages and the write requests issued by DBMSs are asynchronous with respect
to query executions. However, with the introduction of unforced bufferpool writes,
a second-tier cache may contain both clean and dirty pages. Additionally, the write
requests become synchronous when the I/O bandwidth is saturated and becomes
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a performance bottleneck. We argue that under such a circumstance the objective
of cache replacement should be to minimize the total number of I/Os, including
both reads and writes. We propose novel techniques that can be used in such a
scenario. Simulation based evaluations show that by using the proposed techniques
the number of total I/Os issued by a second-tier cache can be reduced significantly.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2 we introduce
background knowledge of DBMS bufferpool management. In Chapter 3 we discuss
how write hints can be passed to second-tier caches and can be used in cache man-
agement. In chapter 4 we observe that different types of bufferpool writes have
different synchronization requirements. Also in this chapter we propose a novel
technique to let a DBMS take advantage of deferred synchronization of bufferpool
writes. In Chapter 5 we present work to minimize the total number of I/Os gen-
erated by second-tier caches. We give a survey of related work in Chapter 6 and
in Chapter 7 we conclude and discuss possible extensions to the work presented in
this thesis.
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Chapter 2

Background

In this chapter we introduce some background about DBMS bufferpool manage-
ment. Our research in this thesis focuses on second-tier cache management to
support DBMS workloads. The work presented in different chapters is based on
the behavior of the DBMS bufferpool manager. To fully understand the approaches
proposed in this thesis, the following background is needed as preliminary knowl-
edge.

2.1 DBMS Bufferpool Management

Bufferpool management is one of the key components of a DBMS. It provides
a data access service to running queries and affects both query throughput and
query response time. In this thesis we refer to the DBMS component working on
bufferpool management as the bufferpool manager. In bufferpool management the
database objects, e.g., tables and indexes, are organized into data blocks, which we
refer to as pages in this thesis. One page may contain one or multiple table records
or index entries. A page is also the smallest unit carried by an I/O request. Due
to space limitations and other reasons, a bufferpool manager needs to issue I/O
requests to the lower tier of the storage hierarchy. I/O efficiency is important to
the performance of the bufferpool and to the performance of the DBMS as a whole.

2.1.1 Bufferpool Management Architecture

We illustrate the architecture and the key components of a bufferpool manager in
Figure 2.1. Although this example does not represent all DBMSs, it is consistent
with some mainstream commercial and open source systems, e.g., DB2 [42], Oracle
[77], SQL Server [65], and MySQL [76].

There are three types of threads involved in bufferpool management. The first
type is database agents. Agents are threads working on both query executions and

6



bufferpool management. A pool of agent threads is initiated when the database
starts. Agent threads wait to serve queries from database clients. Multiple agents
can work concurrently. While a query is being executed, the agents executing it may
need to access database objects, e.g., table records and index entries. Depending on
the queries, the agents may also need to update the objects. To access data objects,
an agent makes data access requests to the bufferpool manager. The bufferpool
manager then locates the bufferpool pages containing the requested data objects
and returns the pages’ memory addresses to the agent.

If a requested page is not found in the bufferpool, then the agent must issue a
read request to bring it from the storage. While this I/O operation is in progress,
the agent will be blocked by the operating system and will wait for I/O completion.
It is worth noting that the agent is now working on bufferpool management (instead
of query execution) and that the read request is synchronous with respect to the
query execution. After the page is brought into the bufferpool, it will be pinned
and will remain there until the query execution is completed. We refer to a page
whose content has not been updated by any agent since it was last read into the
bufferpool (or since the page has been written to lower level storage) as a clean
page. On the contrary, a page whose content has been updated by an agent and
the update has not been written to storage is referred to as a dirty page.
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(storage client)
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Figure 2.1: Architecture of Bufferpool Management

The second type of thread involved in bufferpool management is prefetcher
threads. Under certain circumstances, usually based on a query’s execution plan, a

7



DBMS’s query optimization component can predict which data objects are likely to
be accessed in the near future. It issues data prefetching requests to the bufferpool
manager. Upon receiving these requests, the bufferpool manager puts them into
a waiting list, called a prefetching list. The requests will wait for their turn to be
served. A group of dedicated threads, named prefetchers, will take read requests
from the prefetching list and will bring the requested data into the bufferpool in
advance of their use. This prefetching technique is designed to reduce the latency
caused by read I/Os and thus to speed up the query execution.

There is a third type of thread, page cleaners, involved in bufferpool manage-
ment. Page cleaners are dedicated to cleaning dirty pages. Page cleaning includes
two phases of work:

• First, determine which dirty pages should be written to disks and organize
them into a list, named the flush list

• Second, issue write requests to the operating system to write the pages on
the flush list to persistent storage

Page cleaning can be triggered for two different reasons. The first reason is
for page replacement. A database bufferpool has a limited size and it is usually
smaller than the database. When the bufferpool is full, to bring a new page into
it, an existing page must be evicted to make room for the new page. If the victim
page is dirty, then before its eviction the dirty page must be written to persistent
storage to preserve data durability. In this thesis we refer to the write requests
issued by the bufferpool manager for this reason as REPLACE writes. When
making replacement decisions, i.e., when deciding which page should be evicted,
most DBMSs rely on the recency or frequency (or both) of page references. Different
replacement algorithms, such as LRU and Clock, are used by various DBMSs.

The second reason to trigger page cleaning is to limit database recovery time.
Many DBMS systems adopt the ARIES algorithm [67] to manage crash recovery.
To comply with the ARIES algorithm, the Write Ahead Logging (WAL) protocol
[10, 30] is widely implemented to preserve data durability. Each update made to
a bufferpool page by an agent will be recorded in a log entry and will be assigned
a Log Sequence Number (LSN). The LSN numbers are increased monotonically by
the DBMS and the successive updates will see larger LSNs. The log entries are
written into log files and are forced to disks when the transaction which performed
those updates is committed. In case of a system crash and recovery, the log entries
of committed transactions are safe on disks and can be used to bring the database
back to a consistent state.

This WAL logging technique also relieves the bufferpool manager from the bur-
den of synchronizing each page update to disks. Because the DBMS’s log man-
agement component takes the responsibility to ensure that the updates made by
committed transactions can survive failures, a bufferpool page can absorb multiple
updates without being written to disk.
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However, there are limitations on the number of updates that can be kept in a
bufferpool without synchronization. The first limitation is the duration of recovery.
The more updates that are kept in the bufferpool without synchronization, the
more log entries need to be replayed during a recovery. Some DBMS applications
cannot tolerate a lengthy recovery time. Therefore, the number of unsynchronized
updates that can be kept within the bufferpool must be limited.

Log space limitation is another reason to limit the number of unsynchronized
updates in a bufferpool. As the database runs, the amount of disk space consumed
by log entries increases. Since the amount of disk space that can be assigned to
log files is limited, the DBMS must recycle and reuse the space occupied by the
log entries. Before a log entry’s space can be reused, the corresponding bufferpool
update must be synchronized to disks. Otherwise a failure may cause some un-
synchronized updates to be irrecoverably lost because the space used by their log
entries has been reused by other updates.

The above limitations determine that a DBMS must write updates to disks if
the amount of unsynchronized updates exceeds a certain threshold. Usually the
threshold is a configurable database parameter which imposes an upper bound on
the gap between the following two LSN numbers:

• the LSN number assigned to the newest update made to the bufferpool

• the LSN number assigned to the oldest update that has not been synchronized
to disk

The difference between the two LSN numbers is referred to as the LSN Gap.
Once the LSN Gap threshold is reached, the bufferpool manager will trigger a page
cleaning session and write the dirty pages containing the oldest updates to disks. In
this thesis we refer to the bufferpool writes issued for recovery reasons as RECOV
writes. LSN Gap threshold is a key DBMS parameter and should be configured
carefully. On one hand, if the threshold is set to be larger than the desirable value
then the recovery time, or the log space limitation, guaranteed to the users cannot
be met. On the other hand, if the parameter is set be smaller than the desirable
value then the bufferpool manager will trigger more page cleaning sessions than
necessary and will waste I/O bandwidth.

Page cleaning, no matter when it is triggered, is performed by the bufferpool
manager asynchronously with respect to query executions. The bufferpool manager
continuously monitors the percentage of dirty pages in the bufferpool (for replace-
ment reasons) and the LSN Gap (for recovery reasons). The dirty pages whose
states triggered page cleaning will be put into the flush list and wait for their turn
to be written to disks.

A bufferpool manager maintains another auxiliary data structure, named the
free list, for page replacement. The free list keeps a number of clean pages as
replacement candidates. The pages are selected by the bufferpool manager based
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on their past references and the cache replacement algorithm. If a selected page is
dirty, then it will be put into the flush list to be written to disk. After the dirty
page is written and becomes clean it will be put into the free list. When an agent
issues a read request to bring a new page into the bufferpool, it will use the space
occupied by a clean page in the free list.

Although the bufferpool manager tries its best to keep enough clean pages in
the free list, in some circumstances it may not catch up with the consumption by
the agents. For example, when a storage device is busy and becomes a bottleneck,
the page cleaners may get stuck in the I/O traffic and therefore unable to provide
enough clean pages into the free list. In such cases an agent that needs a page space
but cannot find one in the free list may need to flush a dirty page by itself. This
is not an ideal scenario in bufferpool management because now the write request
becomes synchronous with respect to the query execution. We refer to the writes
issued synchronously by agents themselves as SYNCH writes.

2.2 Bufferpool I/O Categorization

In this section we define some fundamental concepts that are related to DBMS
bufferpool I/Os and that will be used frequently in the following parts of this
thesis. As discussed in the previous section, bufferpool I/Os can be categorized
into two different types based on how their operations are performed with respect
to query executions:

• Synchronous I/O: The I/Os whose operation is synchronous with respect to
the query executions. The DBMS agents, who are working on query exe-
cutions, must wait (e.g., be blocked by the OS) for such I/O operations to
complete before continuing with their work. It is worth noting that the I/O
completion provided by the OS can have different meanings and effects. For
example, when the OS returns a write completion to the DBMS, it can have
two different meanings:

– The written content has been copied from the DBMS’s user space to the
OS’s kernel space, but has not been propagated to disk

– The written content has been copied from the DBMS’s user space to the
OS’s kernel space and has been propagate to disk (and is persistent)

The SYNCH bufferpool writes and the bufferpool reads issued by agents them-
selves, are typically synchronous I/Os.

• Asynchronous I/O: The I/Os whose operation is asynchronous with respect
to query executions. The DBMS agents do not need to wait for these I/O
operations to be completed before continuing with their query execution work.
The REPLACE and RECOV bufferpool writes are typically implemented as
asynchronous I/Os.
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In addition to the above categorization, the bufferpool writes can also be cate-
gorized into two types based on their synchronization methods:

• Synchronized Write: The writes for which operation completion guarantees
that the written data are persistent on storage media and can survive failures
such as system crashes. For data durability reasons, some mainstream DBMS,
such as DB2 and Oracle, implement all bufferpool writes as synchronized
writes.

• Unsynchronized Write: The writes for which operation completion does not
guarantee that the written data are persistent on the storage media. The
written data may be propagated to underlying cache tiers that are volatile
and nonpersistent.

Please note that the above two bufferpool I/O categorizations are orthogonal.
A synchronous write can be unsynchronized and, similarly, an asynchronous write
can be a synchronized write.

Please also note that these terms (Synchronous, Synchronized, Asynchronous,
and Unsynchronized) are similar therefore they may cause confusion under some
circumstances. The reason for risking confusion and using them in this thesis is
that these particular terms, and their semantic interpretations, have been widely
accepted and used in the research and documentation of DBMS and OS (as we will
see in the following parts of this thesis).
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Chapter 3

Second-tier Cache Management
Using Write Hints

In this chapter we present our work on improving the read hit rate in second-tier
caches by using write type hints from first-tier caches.

3.1 Introduction

In Figure 2.1 we illustrate an example of two cache tiers coexisting in a computer
system. The storage server manages its own cache (i.e., the second-tier cache) and
provides storage service to the DBMS. In Chapter 2 we showed that the DBMS
bufferpool manager issues write requests for different reasons and that based on
these reasons the writes can be categorized into different types. We argue that this
type information can be used by second-tier caches to predict future access patterns
of the written pages.

In this chapter we are proposing a technique to improve the read hit rate in
second-tier caches. It requires cooperation between the two cache tiers. The first-
tier cache identifies the reason for which it issues each write request, and then pass
the reason as a hint to the second-tier cache. The second-tier cache exploits the
hints to manage its buffer and improve its read hit rate. To use our approach the
DBMS needs to be modified. However, the changes are simple, because the DBMS
has full knowledge of the reasons why it issues each write request. The only changes
involved are to categorize these writes into different types and to attach a hint to
each write request.

We focus our study on a common scenario in which the first-tier cache is a
database bufferpool managed by the DBMS. However, this is not the only circum-
stance where our approach can be used. Other systems with their own managed
caches, such as web servers or file systems, can potentially take advantage of our
techniques.

12



In our research, we modify two existing hint-oblivious cache replacement algo-
rithms, namely LRU and MQ [111], to be hint-aware and we observe some signif-
icant performance gains in the resulting read hit rates. In addition, we present
a new, primarily hint-based replacement algorithm, Type Queue (TQ), which can
perform twice as well as MQ.

Compared with existing second-tier cache management techniques, our ap-
proach has the following advantages:

• It is simple to implement at the DBMS and the storage server. As we have
discussed above, the DBMS needs to be modified to categorize the writes into
different types based on the reasons for which the writes are issued and to
attach a hint to each write. The storage server can then use a hint-aware
algorithm for cache replacement and does not need to simulate or to track
the content of the DBMS cache.

• It is purely opportunistic and does not require extra I/O bandwidth or device
operations. The hints are only a few bits in size and can be passed as a
parameter along with the write request to the second-tier cache. In addition,
because the data block carried by a write must be transfered from the DBMS
to the storage server, the second-tier cache does not need to fetch the block
from the device if it decides to cache it. If the cache decides not to cache
the block and to immediately propagate it to the device, it still consumes no
extra bandwidth because the block would eventually have been flushed to the
device anyways.

• Because read requests are primarily absorbed by the first-tier cache, there
is a higher percentage of writes among the second-tier cache accesses. This
provides more opportunities for the second-tier cache to exploit write hints.

The remainder of this chapter is organized as follows. In Section 3.2 we explain
how we categorize DBMS bufferpool writes into different types and how we use type
hints in second-tier cache management. In Section 3.3 we present three hint-aware
replacement algorithms. We show our evaluation methodology and experimental
results in Section 3.4, and conclude in Section 3.5.

3.2 Write Hints

In Chapter 2 we showed that a DBMS bufferpool manager issues write requests for
three different reasons. We propose to categorize the bufferpool writes into three
different types based on these reasons. The write types and the information that
can be inferred from them are:

• SYNCH writes: A SYNCH write is a write issued (synchronously with
respect to the query execution) by an agent in a situation in which the agent
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cannot find a clean page in the free list to replace, so that it must write out a
dirty page by itself to make room for a new page. It is certain that the page
being written will be evicted from the bufferpool immediately after the write
completion, and that the DBMS’s next request for this page will be a read.

• REPLACE writes: A REPLACE write is a write issued asynchronously by
a page cleaner thread for cache replacement reasons. The page being written
is selected based on the bufferpool’s replacement algorithm. After the page is
written, it will be placed into the free-list and it is likely to be evicted in the
near future. However, because an on-line replacement algorithm’s predictions
cannot be perfect, the page may be accessed again (by the agents) before its
eviction and may be removed from the free list. For the second-tier cache,
the page’s next request is probably a read. The probability is based on the
accuracy of the first-tier cache replacement algorithm’s predictions.

• RECOV writes: A RECOV write is a write issued asynchronously by a page
cleaner for recovery reasons. The page is selected to be written because it
contains an update which is old enough to cause the bufferpool’s LSN Gap to
reach its threshold. Depending on the LSN Gap threshold, which is a config-
urable database parameter, the pages being accessed by RECOV writes may
have remained in the bufferpool for various periods of time. If the thresh-
old is set to a large value, then usually the pages carried by RECOV writes
have been in the bufferpool for a long time (compared with other bufferpool
pages), and usually these pages are hot pages because otherwise they would
have been evicted and would not be able to contain old updates. On the other
hand, if the threshold is set to a small value, then every page, regardless of its
access pattern, can contain an update old enough to trigger a page cleaning
session. In this work we focus on the databases with typical configurations
(i.e., without extremely small LSN Gap threshold) and, therefore, a RECOV
write indicates that the carried page will probably stay in the first-tier cache.
Thus, this page is unlikely to be read soon by the DBMS.

From the above descriptions we can see that the types of different writes can
be used to infer future access patterns of the written pages. This type information
can be useful to second-tier cache management.

Although the write types described above are categorized based on a certain
type of bufferpool manager implemented by DBMSs (e.g., DB2 [42], Oracle [77],
SQL Server [65], and MySQL [76]), similar write types can also be found in the
cache management of other software systems, such as file systems [66, 8]. Our write
type categorization method can potentially also be used in those systems.

We propose to pass write types as hints to the storage server. In our study, we
modify the DBMS so that it tags each write request with one of the following three
types of hints: SYNCH, REPLACE, or RECOV. The required modifications in the
DBMS are simple and natural. For example, we easily instrumented DB2 Universal
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Database to label each write with one of these three types of hints. Because the
tags add only a few bits per write request, the overhead on the I/O bandwidth is
negligible. It is worth noting that when the DBMS categorizes its write types, it
does not need to understand how the storage server will use the categorizations.
It is up to the storage server to decide whether and how to use the write hints for
cache management.

3.3 Managing the Storage Server Cache

In this section we propose techniques to use write hints for storage server cache
management. We extend two existing cache replacement algorithms, LRU and
MQ, to be hint-aware and to take advantage of the write hints. We also propose a
primarily hint-based algorithm, TQ, for cache replacement.

3.3.1 Using Hints for Cache Management

The goal of second-tier cache management is to maximize the cache read hit rate.
However, as we have introduced in Chapter 2, managing a second-tier cache is more
difficult than managing a first-tier cache. For example, as some researchers have
pointed out [69, 29, 20, 110, 22], temporal locality is more difficult to exploit at the
second-tier cache. In this section we argue that the following two factors should be
taken into account by the second-tier cache manager:

• data exclusivity: the storage server needs to cache pages that are not in
the DBMS bufferpool, and to evict pages that are already in the DBMS
bufferpool. The DBMS does not issue read requests for a page already in
its cache, so caching such pages in the second-tier cache is pointless. Similar
observations have been made by other researchers [104, 23, 107, 34].

• type of the next page reference: only the read cache hits matter to the
storage server. If a page’s next reference is a write then it should not be
cached because doing so can only harm the cache performance (by consuming
cache space) and results in no benefit. If there is a read request following the
write, then the page can still be cached at the time when it is written. In
reality, a page’s next reference type is unknown to the on-line replacement
algorithms. However, the algorithms can use the write type hints passed from
the first tier to infer this information.

In the scenario that we study, where the storage client is a DBMS, these two
factors are closely related. The DBMS will only issue read requests, not write
requests, for pages that are not in its bufferpool; and it will only issue write requests,
not read requests, for pages that are already in its bufferpool. We argue that the

15



bufferpool write type hints, such as those introduced in the previous section, can
help storage servers to maintain data exclusivity.

Now we discuss in detail how different write hints can help the storage server.
Let us consider the SYNCH writes first. When a DBMS issues a SYNCH write, we
are sure that the page being written will be evicted from the DBMS’s bufferpool
immediately after the write is completed. Caching the page in the second-tier cache
will not impair data exclusiveness. We also know that the next reference of the page
will be a read. We consider a SYNCH write to be a positive hint, which means we
should keep the page being written in the storage server cache.

From a REPLACE write, the storage server can infer that the page is being
written by the DBMS for replacement reasons. It is probable (depending on the
accuracy of the bufferpool replacement algorithm’s predictions) that the page will
be evicted from the bufferpool in the near future, to make room for a new page.
If the eviction occurs, then the page’s next reference will be a read. We consider
a REPLACE write to be a positive hint, which means we should keep the written
page in the storage server cache.

As for a RECOV write, the written page probably has been in the DBMS’s
bufferpool for a period of time so that it contains an update old enough to trigger
page cleaning for recovery reasons. As we have discussed earlier, depending on
the LSN Gap threshold configuration, that period of time may vary. However,
since we focus on databases with typical configurations, usually the pages will not
be requested again to the storage server cache soon after they are written by the
RECOV writes. In our work we treat RECOV writes as negative hints, which
means we should not keep the written pages in the storage server cache.

We can also infer useful information from read requests issued by DBMSs. A
read request is issued by the DBMS because the requested page is not in its buffer-
pool. Once the page is brought into the bufferpool, it may be cached there for a
period of time, the length of which depends on a number of factors considered by
the DBMS. However, we can make the following observations:

• If the page is a hot page in the DBMS bufferpool, then probably it will stay
there and will not be read again in the near future. It is of no benefit for the
storage server to cache it.

• If the page is not hot in the DBMS bufferpool, then probably it also will not
be read again in the near future

In this work we consider a read request as a negative type hint to the storage
server cache.

3.3.2 LRU+Hints

We extended the existing LRU cache replacement algorithm, which is hint-oblivious,
to use type hints in managing the LRU list. Our extension is simple: we cache the
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pages carried by SYNCH and REPLACE writes because they are positive hints and
the pages being accessed are likely to be evicted from the DBMS bufferpool in the
near future. We do not cache READ or RECOV pages because we treat these two
request types as negative hints and the pages are not likely to be read soon.

More specifically, if page p is accessed by a SYNCH or REPLACE request, then
we add p into the cache if it is not there, and we move p to the MRU end of the
LRU list. If the cache is full then the page at the LRU end will be replaced. On the
contrary, if page p is accessed by a READ or RECOV request, we do not change
the cache content (by serving the requested page directly from the storage device to
the DBMS), except if this happens during a cold start. When the cache is cold, we
will cache the page but will put it at the LRU end of the LRU list. The hint-aware
LRU algorithm, LRU+Hint, is summarized in Algorithm 3.1.

Algorithm 3.1 LRU+Hints

LRUWithHints(p : page access)

1 if the cache is full
2 then if p is already in the cache /* cache hit */
3 then if type(p) = Synch or type(p) = Replace
4 then move p to the MRU end of the LRU list;
5 else do not change the cache content; /* this is a READ or RECOV */
6
7 else /* cache miss */
8 if type(p) = Synch or type(p) = Replace
9 then evict the page at the LRU end of the LRU queue;

10 append p to the MRU end of the LRU queue;
11 else do not change the cache content; /* this is a READ or RECOV */
12
13
14 else /* the cache is not full */
15 if p is already in the cache /* cache hit */
16 then if type(p) = Synch or type(p) = Replace
17 then move p to the MRU end of the LRU queue;
18 else do not change the cache content; /* this is a READ or RECOV */
19
20 else /* cache miss */
21 if type(p) = Synch or type(p) = Replace
22 then append p to the MRU end of the LRU queue;
23 else append p to the LRU end of the LRU queue; /* this is a READ or RECOV */
24
25
26

3.3.3 MQ+Hints

The Multi-Queue (MQ) algorithm [111] was designed and proposed specifically for
second-tier cache management. It takes both recency and frequency into account
while making replacement decisions. The authors claim that MQ can outperform
purely recency-based or purely frequency-based replacement algorithms, such as
LRU or LFU. The MQ algorithm uses multiple LRU queues and each LRU queue
contains a group of pages with similar reference frequencies. A page is promoted to
the LRU queue with higher reference frequencies if it is referenced more frequently.
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A page that has not been referenced within a certain period of time will be demoted
to a LRU queue with a lower frequency range. When a replacement is required, the
page at the LRU end of the lowest-frequency queue will be replaced. To help track
the weak temporal locality in second-tier caches, the MQ algorithm also uses an
out queue to record the reference frequencies of the pages evicted from the cache.

We extend the MQ algorithm to be hint-aware in a way similar to our extension
of the LRU algorithm. We consider the SYNCH and REPLACE write types as
positive hints and will treat their carried pages exactly as they would be treated
under the original MQ algorithm. If the request is a READ or RECOV, then we
do not change the cache except during cold start, where we treat it the same way
as it would be treated in the original MQ. Of course, if a READ request is a cache
hit then the page will be served from the cache and will be returned to the DBMS.

It is worth noting that to use MQ algorithm a few parameters need to be pre-
configured by the user. The parameters include:

• The number of LRU queues in the algorithm. Each LRU queue corresponds
to a frequency range and will contain the pages whose access frequencies fall
into the range. In our evaluations we set the number of LRU queues to 80.

• The frequency range corresponding to each LRU queue. If a page is accessed
more frequently and its access frequency reaches a threshold, it will be pro-
moted to the LRU queue with the higher frequency range. In our evaluations
we set each of the 80 LRU queues to correspond to only one access frequency
(with the bottom LRU queue corresponding to frequency 1 and the top LRU
queue corresponding to frequency 80 and above).

• The expireTime of each queue. If a page in a LRU queue is not accessed for
a period of time (i.e. the expireTime, in terms of page accesses), it will be
demoted to the LRU queue with the lower frequency range. In our evaluations
the expireTime is set to be 20 millions of page accesses, which is longer than
the workload length.

• The size of the out queue, which keeps statistics for the pages evicted from
the cache. We set the out queue size to be the same as the cache size in our
evaluations. At maximum, it keeps statistics about as many additional pages
as the cache does.

Before our evaluations, we ran some cache simulation trials to select the pa-
rameters for MQ algorithm. The parameters were varied in different runs and
the settings which gave the best performance were chosen to run the reported
evaluations. To make a fair comparison, the MQ+Hints algorithm uses the same
parameter settings.
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3.3.4 The TQ Algorithm

In addition to the hint-aware algorithms introduced above, we also propose a new
algorithm that relies primarily on request types to make replacement decisions.
We refer to this algorithm as the Type Queue (TQ) algorithm. Among our hint-
aware algorithms, TQ places the most emphasis on using request types (or hints)
for replacement. Our evaluation results presented in Section 3.4 show that TQ
outperforms other algorithms in most cases. The algorithm is summarized in Figure
3.1 and Algorithm 3.2.

SYNCH/

REPLACE

High Priority Queue

(metadata only)

Out Queue

READ

eviction
eviction

SYNCH/
REPLACE

(metadata and blocks)

Low Priority Queue

(metadata and blocks)

Figure 3.1: Structures used by TQ. Arrows show possible movements between
queues in response to cache requests

In the TQ algorithm we organize cached pages into two queues. A high priority
queue contains pages whose most recent reference is a SYNCH or REPLACE write.
These two write types are considered as positive hints because the carried pages are
likely to be evicted by the DBMS bufferpool in the near future. A low priority queue
contains pages whose last reference is a READ. We ignore the RECOV requests
except during a cold start, when the page is placed into the low priority queue if it
is not in the cache. We treat READ and RECOV hints differently in TQ because
we find that the RECOV writes do not provide negative hints as strongly as the
READ requests do. This observation is especially true in the cases when the LSN
Gap threshold (a database parameter) is set to small values, which means that
every page, regardless of its access pattern, can be written by a RECOV write for
recovery reasons.

If there is a SYNCH or a REPLACE request and the page being accessed is in
the low priority queue, then it will be moved to the high priority queue. Similarly,
if there is a READ request and the page is in the high priority queue, it will be
moved to the low priority queue. Thus the sizes of the two queues can vary from
time to time. In case of a replacement the algorithm will try to evict a page from
the low priority queue unless it is empty, in which case the eviction will happen
from the high priority queue.
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Algorithm 3.2 The TQ Algorithm

TQAccess(b : block access)

1 /* for the sake of simplicity, this assumes that the cache and the out queue are already full */
2 if type(b) = Read
3 then if b is in Qhigh /* b is in high priority queue */
4 then move b to the MRU end of Qlow; /* move b to low priority queue */
5 /* if this Read follows a Synch or Replace, update write-to-read distance */
6 if b is in cache or Qout and ∞ > lastWritePosition(b) > 0
7 then update avgWriteReadDist(b) using (currentPosition− lastWritePosition(b));
8 lastWritePosition(b) =∞;
9 elseif type(b) = Synch or type(b) = Replace

10 then if b is in Qlow

11 then nextReadPosition(b) = currentPosition + avgWriteReadDist(b);
12 move b to Qhigh; /* move b to high priority queue */
13 lastWritePosition(b) = currentPosition; /* remember when this write happened */
14 elseif b in in Qout and lastWritePosition =∞
15 then nextReadPosition(b) = currentPosition + avgWriteReadDist(b);
16 move victim from cache to Qout;
17 /* victim is LRU in Qlow, or latest nextReadPosition in Qhigh if Qlow is empty */
18 move b to Qhigh; /* put b into high priority queue */
19 lastWritePosition(b) = currentPosition; /* remember when this write happened */
20 elseif b is not in cache and b is not in Qout

21 then remove Qout entry with largest avgWriteReadDist;
22 move victim from cache to Qout;
23 /* victim is LRU in Qlow, or latest nextReadPosition in Qhigh if Qlow is empty */
24 put b into Qhigh; /* put b into high priority queue */
25 lastWritePosition(b) = currentPosition; /* remember when this write happened */
26 avgWriteReadDist(b) =∞;
27 nextReadPosition(b) =∞;

The high priority queue is managed based on a replacement algorithm that we
refer to as the Latest Predicted Read (LPR). When a page p is placed into the high
priority queue, the TQ algorithm makes a prediction of the time, nextReadPosi-
tion(p), that the page will next be READ. The pages in the high priority queue are
sorted based on their nextReadPosition values. In case the replacement happens in
the high priority queue, the page with the largest nextReadPosition(), which means
it is predicted to be read again furthest in the future, will be evicted. Several
variables used in the LPR and in Algorithm 3.2 are shown as follows:

• lastWritePosition(p): The most recent time (in terms of page accesses) when
page p was written. The initial value of this variable is infinity.

• avgWriteReadDist(p): The average distance (in terms of page accesses) be-
tween a write of page p and the next following read of p. If there are mul-
tiple writes before a read then only the first write is counted. The value
of this variable is calculated based on the page’s access history, including
lastWritePosition(p). The initial value of this variable is infinity.

• nextReadPosition(p): The predicted (by using the LPR) time of the next read
of page p. It is the sum of lastWritePosition(p) and avgWriteReadDist(p).
The initial value is infinity.

• currentPosition: The current time (in terms of page accesses).
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The LPR is similar to the off-line optimal (MIN) algorithm. However, as it is
an on-line algorithm, it relies on the observation of past, not the knowledge of the
future, to make the page access predictions. The TQ algorithm maintains a running
average value, avgWriteReadDist(), for each page in the cache. The value is the
average distance, in terms of page accesses, between a REPLACE or SYNCH write
and the next READ request to the same page. To calculate the running average
avgWriteReadDist(), TQ also needs to keep the time of the most recent SYNC or
REPLACE request for each page. In case of a READ request, TQ will update
the value of the average avgWriteReadDist() and reset the time of the last SYNC
or REPLACE to infinity, which means it will wait for the next reference of these
request types to re-start another round of calculation.

The pages in the low priority queue are most recently referenced by READ
requests, which means two of their statistics, lastWritePosition() and nextReadPo-
sition(), have been reset. The low priority queue is managed by using the LRU
algorithm, not LPR. Like the MQ algorithm, TQ also maintains an auxiliary data
structure to keep the statistics for the pages that were evicted from the cache. We
refer to this data structure as the out queue. When a page is evicted from the
cache, its statistics will be saved into the out queue. If the out queue is full, a re-
placement is required. The pages’ statistics in out queue are sorted based on their
avgWriteReadDist values. The entry with the largest avgWriteReadDist() will be
replaced. When a page is accessed and is not cached, TQ will first search the out
queue for the page. If it is found there then the stored statistics will be used to
calculate the page’s nextReadPosition(), which is the sum of currentPosition() and
avgWriteReadDist().

It worth noting that the TQ algorithm lacks an aging mechanism for the pages
in the high priority queue. More specifically, if a page is associated with a relatively
small nextReadPosition() attribute, then the page may stay in cache for a lengthy
period even though the current time has passed the page’s predicted nextReadPosi-
tion() time. The lack of an aging mechanism may result in an undesired situation
in which the pages that will never be read again may remain in cache forever. This
shortcoming should be addressed and be solved in our future work.

3.4 Evaluations

We use trace-driven simulations to evaluate the performance of the cache man-
agement techniques described in Section 3.3. The goal of our evaluation is to
determine whether the hint-aware algorithms outperform (in terms of read cache
hits) the hint-oblivious algorithms. An on-line random replacement algorithm is
also evaluated to provide a point of comparison. We also study the performance
of an off-line optimal cache replacement algorithm to determine how much room
remains for improvement.
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Parameter Our Default Value Other Values Description
bufferpool size 300000 4KB blocks 60000, 540000 blocks size of the DBMS bufferpool

softmax 400 50, 4000 recovery effort threshold
chngpgs thresh 50% - bufferpool dirtiness threshold

maxagents 1000 - maximum number of agent
threads

num iocleaners 50 - number of page cleaner
threads

Table 3.1: DB2 Parameter Settings

Trace Bufferpool Number of SYNCH REPLACE RECOV
Name Size in blocks softmax Requests Writes Writes Writes Reads

300 400 300K (1.1 GB) 400 13269706 0.00% 62.57% 3.60% 33.83%
60 400 60K (234 MB) 400 15792519 0.08% 48.89% 0.18% 50.85%
540 400 540K (2.1 GB) 400 12238848 0.00% 35.78% 49.89% 14.33%
300 4000 300K (1.1 GB) 4000 13226138 0.01% 65.37% 0.11% 34.51%
300 50 300K (1.1 GB) 50 15175377 0.00% 0.03% 74.33% 25.64%

Table 3.2: I/O Request Traces

3.4.1 Methodology

In our evaluation we use DB2 Universal Database (version 8.2) as the storage client.
We instrumented DB2 so that it would record traces of its I/O requests. We also
modified DB2 to associate an appropriate type hint with each I/O request. Each
record in the I/O request trace describes an I/O and its associated hint.

To collect I/O traces, we drive the instrumented DB2 with a TPC-C [101]
workload, with a scale factor of 25. The initial size of the database, including all
tables and indexes, is 606,317 4KB pages, or approximately 2.3 GB. The database
grows slowly during the trace collection. The I/O request trace generated by DB2
depends on the settings of a variety of database parameters. Table 3.1 shows the
settings for the most significant parameters. We study DB2 bufferpools ranging
from 10% to 90% of the (initial) database size. The softmax and chngpgs thresh

parameters are important because they control the mix of write types in the request
stream. The chngpgs thresh determines the percentage of bufferpool pages that
must be dirty to trigger the page cleaners to generate REPLACE writes to clean
them. The softmax parameter defines the threshold of LSN Gap. Larger values of
softmax allow longer recovery times and result in fewer RECOV writes. By setting
chngpgs thresh at 50% (near DB2’s default value) and varying softmax, we are
able to control the mix of REPLACE and RECOV writes generated by the page
cleaners. In addition, we set the agent thread pool size to be 1000, which is large
enough to meet the requirements of the running transactions. The number of page
cleaner threads is set to be 50, which is also adequate for the bufferpool to perform
page cleaning jobs and to issue REPLACE and RECOV write requests.

In Table 3.2 we summarize the traces collected and used in our evaluation. The
300 400 trace is the baseline trace, collected by using the default DB2 parameters.
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The remaining traces are collected using alternative bufferpool sizes and softmax

settings. Not surprisingly, increasing the size of the DB2 bufferpool decreases the
percentage of READ requests in the trace, because more data accesses can be served
by the DB2 bufferpool. Large bufferpools also tend to increase the percentage of
RECOV writes, since fewer REPLACE writes are needed for cache replacement.
As discussed above, smaller values of softmax increase the prevalence of RECOV
writes. The 300 50 trace represents a fairly extreme scenario with a low softmax

setting. This causes DB2 to issue a RECOV write soon after a page has been up-
dated, so that recovery will be extremely fast. Although these settings are unlikely
to be used in practice, we include this trace for the sake of completeness.

We use these traces to drive simulations of a storage server cache and evaluate
the algorithms described in Section 3.3. We also implement a variation of the off-
line MIN algorithm, which we refer to as OPT, to establish an upper bound on the
read hit ratio in the storage server’s cache. Suppose that a storage server cache
with capacity C receives a request for page p, the OPT algorithm will work as
follows:

• If the cache is not full, then put p into the cache.

• If the cache is full and p is in cache, then leave the cache contents unchanged.

• If the cache is full and p is not in cache, then among all the pages, including
the C pages in the cache and p, eliminate the one that will not be read for
the longest time and keep the C remaining pages in the cache.

The OPT algorithm may choose not to buffer p at all if the pages currently in
cache will be read sooner. The on-line random replacement algorithm, which we
refer to as RAND, behaves the same as the OPT algorithm when the cache is not
full or when the requested page p is already in cache. However, when the RAND
algorithm needs to replace a victim page it randomly chooses one cached page to
evict.

For the MQ, MQ+Hints, and TQ algorithms, we set the maximum size of their
out queues to be equal to the size of the cache being simulated. Thus, each of
these algorithms tracks statistics for the pages that are currently buffered, plus
an equal number of pages that have been previously evicted. We subtracted the
space required for the out queue from the available cache space for each of these
algorithms so that the comparisons with other algorithms that do not require an
out queue would be on level ground.

On each simulation run, we first allow the storage server’s cache to warm up.
Once the cache is warmed up, we then measure the read hit ratio for the cache
being simulated. The ratio is the percentage of read requests that can be served by
the cache.

To ensure the integrity of our evaluations, we conduct the following sanity checks
throughout our evaluations presented in this thesis (including the implementations
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of the simulation programs and the modifications of the operating system and the
database systems):

• Using assertions in the code. We insert assertions in the code to make sure
that the programs behave as expected.

• Additional statistics. We design and implement the experiments to output
more statistics in addition to those required by the evaluations. These ad-
ditional statistics are collected to help us understand whether the programs
behave as expected. For example, in the simulation of TQ algorithm we also
collect the sizes (in maximum and at the end of simulation) and the read
hits of the two priority queues to verify whether they are consistent with the
reported results.

By using the above techniques, we are confident that the evaluation results
presented in this thesis are integral and trustworthy.

3.4.2 Results: Baseline Case

1.00%3.43%

18.01%
23.00%

36.59%

5.61%

60.45%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
ea

d
 H

it
 R

at
io LRU

LRU+Hints

MQ

MQ+Hints

TQ

RAND

OPT

Figure 3.2: Read Hit Ratios in Storage Server Cache. Baseline (300 400) trace.
DBMS bufferpool size is 300K pages (1.1 G bytes). Storage server cache size is
120K pages (469 MB).

Figure 3.2 shows the read hit ratios of the simulated storage server cache under
each of the techniques discussed in Section 3.3, for the baseline 300 400 trace and a
storage server cache size of 120K pages (469 MB). The results show that the LRU
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algorithm has the poorest performance, which is consistent with other previous
evaluations of LRU in second-tier caches [69, 29, 110, 22]. The LRU+Hints algo-
rithm, which takes advantage of write hints, results in a hit ratio more than three
times that of LRU, but it is still low compared with other algorithms, including
the RAND. The MQ algorithm, which considers frequency as well as recency, per-
forms significantly better than LRU and RAND, and MQ+Hints further improves
the performance. The primarily hint-based TQ algorithm provides the best perfor-
mance, with a hit ratio nearly double that of MQ. TQ achieves more than half of
the hit ratio of the off-line OPT algorithm.

3.4.3 Results: Sensitivity Analysis

We evaluate the sensitivity of the baseline results in Figure 3.2 to changes in three
significant parameters: the size of the storage server cache, the size of the DBMS
bufferpool, and the value of the softmax parameter, which controls the mix of write
types among the I/O requests.
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Figure 3.3: Read Hit Ratios in the Storage Server Cache. Baseline (300 400) trace.
DBMS bufferpool size is 300K blocks, storage server cache size varies from 60K
blocks to 300K blocks.

Figure 3.3 shows the read hit ratios of the storage server cache as its size varies
from 60K pages (234 MB) to 300K blocks (1.1 GB), which is the size of the first-tier
cache in the baseline case. Several observations can be made from these results.
First, the relative advantage of the TQ algorithm persists until the server’s cache
reaches the largest size (300K blocks, 1.1 GB), at which point the advantage of
TQ begins to diminish. For this large second-tier cache size case, the improvement
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obtained by adding hints to MQ also becomes negligible. However, for large cache
sizes the performance of the simple LRU+Hints algorithm is much better than that
of the plain LRU and RAND, and is comparable to that of TQ and the MQ policies.
As the storage server cache decreases, the performance of LRU+Hints (and plain
LRU) drops off quickly.
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Figure 3.4: Read Hit Ratios in the Storage Server Cache. Traces 60 400, 300 400,
and 540 400. DBMS bufferpool size varies from 60K blocks (234 MB) to 540K
blocks (2.1 GB). Storage server cache size is 120K blocks (469 MB).

Figure 3.4 illustrates the impact of changing the DBMS bufferpool size, with
the storage server cache size fixed at 120K pages (469 MB). These results show
that management of the storage server cache becomes more difficult as the DBMS
bufferpool becomes larger. A large DBMS bufferpool absorbs most of the temporal
locality available in the request stream, leaving little for the storage server cache
to exploit. Larger DBMS bufferpools also make it more difficult to maintain exclu-
siveness between the client and server caches. For very large DBMS bufferpools,
the TQ algorithm performs more than five times better than the best hint-oblivious
algorithm. However, all of the algorithms, including TQ, have poor performance in
absolute terms, with read hit ratios far below that of the off-line OPT algorithm.
When the DBMS bufferpool is very small (60K pages), all of the algorithms provide
similar performance. This is because the temporal locality in the workload is rela-
tively good at the the storage server cache (due to the small DBMS bufferpool size).
Some of the cached pages will be read again even though the RAND algorithm is
used to manage the cache.

Finally, Figure 3.5 shows the server cache read hit ratios as the softmax pa-
rameter increases from 50 to 4000. When the softmax parameter is set to be large
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Figure 3.5: Read Hit Ratios in the Storage Server Cache as softmax is varied.
Traces 300 50, 300 400, and 300 4000. DBMS bufferpool size is 300K blocks (1.1
GB), storage server cache size is 120K blocks (469 MB).

(4000), the database administrator states that a long recovery times is acceptable.
Under those conditions (trace 300 4000), the DBMS generates almost no RECOV
writes; this is the primary difference between the baseline 300 400 trace and the
300 4000 trace. This difference has little impact on the performance of any of the
algorithms.

When the softmax is set to be 50, all of the hint-aware algorithms have sim-
ilar performance, which is better than that of MQ and much better than LRU
and RAND. When softmax is 50, almost three quarters of the I/O requests are
RECOV writes, and there are no REPLACE writes. As we discussed earlier, this
represents an extreme scenario in which bufferpool updates are flushed to the stor-
age server almost immediately. As a result, this softmax setting generally gives
poor overall system performance because the RECOV write consumes substantial
I/O bandwidth, and so it is rarely used in practice.

3.5 Summary

We observe that information about different types of writes issued by a storage
client can be useful to the storage server. We propose to pass these write types as
hints to the storage server and to use them in cache management. We focus on a
common scenario in which the storage client is a DBMS, which operates its own
bufferpool (first-tier cache) and issues I/O requests to a dedicated storage server
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managing its own cache (second-tier cache). We categorize DBMS bufferpool writes
into three different types, namely SYNCH, REPLACE, and RECOV, and conduct
an analysis of the reasons for which these types of writes are issued. We find that
the write types indicate the future access patterns of the bufferpool pages being
written.

To use the write type hints, we propose to extend two hint-oblivious replace-
ment algorithms, LRU and MQ, to be hint-aware. We also propose a new, primar-
ily hint-based algorithm, Type Queue, for second-tier cache management. Trace-
driven simulations show that the hint-aware algorithms significantly outperform
their original hint-oblivious counterparts in terms of read hit ratios. In most of our
evaluations, the new algorithm, Type Queue, performs best among the on-line algo-
rithms studied. During our evaluations, we also find that the relative performance
of the algorithms is sensitive to a few system configuration parameters, such as the
DBMS bufferpool size and the LSN Gap threshold (e.g., the softmax parameter in
DB2 configuration). When the DBMS bufferpool size is set to be small, or when
the RECOV writes dominate the I/O trace, the benefits of using write hints are
limited.

We argue that although using our approach requires minor modifications to
the DBMS, it is simple and natural to implement. The DBMS typically has full
knowledge of the reasons why it issues write requests. This fact provides us with
good opportunities to categorize the write requests into different types. In addition,
we observe that the overhead put on the CPU time and the I/O bandwidth is
negligible. The hints consist of only a few bits to be carried by each write request.

28



Chapter 4

Deferred Synchronization of Write
Requests

In Chapter 3 we propose techniques to improve second-tier cache performance by
reducing the number of read requests issued to the storage devices (i.e., by increas-
ing the read cache hit rate). In this chapter we propose a technique to reduce the
number of write requests issued by second-tier caches.

4.1 Introduction

As previously discussed, modern computer systems usually contain multiple tiers of
cache lying between applications and storage devices. For example, the file system
may have its own managed cache. At a lower level, the storage system may also
maintain its own cache. From an application’s point of view, these cache tiers lie
beneath its user level memory space. These multiple cache tiers are designed to
facilitate data input/output operations, and they provide several benefits. First,
hits in these caches save on expensive physical I/O operations performed by the
storage devices, e.g., the disks. Second, the presence of these caches provides file
systems and storage systems with opportunities to do I/O scheduling. By these
means, these caches improve I/O efficiency and hence system performance.

Although the existence of multiple cache tiers can boost performance, using
them improperly can jeopardize data integrity. One major reason is that multiple
copies of one piece of data may coexist in different cache tiers and the content of
those copies can be inconsistent. Each I/O request made by applications must go
through these cache tiers sequentially and sometimes asynchronously with regard
to the application’s execution. As a result, the copies of a single piece of data may
be inconsistent in different cache tiers. This inconsistency may ruin data integrity
during accidents, e.g., system crashes or power failures, because some cache tiers
may reside in volatile storage media, e.g., DRAM, and their content cannot persist
across such failures.
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In this study we focus on write synchronization. Applications, e.g., DBMSs,
issue write requests to update their data stored on storage devices. The data carried
by a write request is propagated through the cache tiers below the application’s user
space. The update may not be made to the bottom of the storage hierarchy, i.e,
the storage devices. Even worse, the application itself may not be aware of the
progress of its write synchronizations. To some applications, e.g., DBMS systems,
this uncertainty is unacceptable. We focus our study on a common scenario where
the application is a DBMS. The DBMS manages a bufferpool as the first-tier cache,
and the DBMS issues write requests to a lower level system, such as a file system
or a storage system, which operates its own cache as the second-tier cache.

We make several contributions in this research work. First, we observe that dif-
ferent types of DBMS bufferpool writes have different synchronization requirements.
For example, RECOV writes need to be synchronized immediately to permanent
storage devices, while synchronizations of REPLACE writes can be deferred to a
later time. The deferral of REPLACE write synchronizations can give the second-
tier cache opportunities to consolidate several write requests into one physical write
and to do better I/O scheduling. Second, we observe that the current I/O inter-
face provided by mainstream operating systems, e.g., Linux and Windows, is not
flexible enough to support these dynamic write synchronization requirements. Con-
sequently, DBMSs choose to trade off I/O efficiency for data integrity. Third, based
on the above observations we propose to extend the existing I/O interface to include
a novel I/O operation, which provides applications with a means to synchronize
specific data blocks to storage devices at any time deemed appropriate. Fourth, to
evaluate our approach we implement the proposed new I/O operation in an open
source operating system, namely Linux. We also modify an open source DBMS,
MySQL, to use the new operation. Experimental results show that by using our
techniques the DBMS can increase the transaction throughput by up to 25 percent
for an Online Transaction Processing (OLTP) workload.

The remainder of this chapter is organized as follows. In Section 4.2 we give
a more detailed discussion about the problems that we find in the current DBMS
bufferpool write synchronization scheme. In Section 4.3 we propose our approach
to solve the problems identified in the previous section. We evaluate the proposed
techniques in Section 4.4 and conclude in Section 4.5.

4.2 Research Problem

In this section we give a more detailed discussion about what the synchronization
requirements are for different types of DBMS bufferpool writes, and we explain why
the existing I/O interface does not satisfy these requirements. First, we begin our
discussion with the data integrity issue in computer systems with multiple cache
tiers.
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4.2.1 Data Integrity in Current Systems

The Portable Operating System Interface for Unix (POSIX) [41] is a set of related
standards specified by the Institute of Electrical and Electronics Engineers (IEEE)
to define and regulate the Application Programming Interface (API) between ap-
plications and Unix (and Unix-like) operating systems. The POSIX standards take
I/O synchronization into account and try to provide applications with some mech-
anisms (through the APIs) to preserve data integrity. The following concepts are
defined in the Base Definitions volume of the current POSIX standards (IEEE Std
1003.1, 2004 Edition):

• 3.373 Synchronized Input and Output: A determinism and robustness im-
provement mechanism to enhance the data input and output mechanisms, so
that an application can ensure that the data being manipulated is physically
present on secondary mass storage devices.

• 3.374 Synchronized I/O Completion: The state of an I/O operation that has
either been successfully transferred or diagnosed as unsuccessful.

• 3.375 Synchronized I/O Data Integrity Completion: For read, when the oper-
ation has been completed or diagnosed if unsuccessful. The read is complete
only when an image of the data has been successfully transferred to the re-
questing process. If there were any pending write requests affecting the data
to be read at the time that the synchronized read operation was requested,
these write requests are successfully transferred prior to reading the data. For
write, when the operation has been completed or diagnosed if unsuccessful.
The write is complete only when the data specified in the write request is
successfully transferred and all file system information required to retrieve
the data is successfully transferred. File attributes that are not necessary for
data retrieval (access time, modification time, status change time) need not
be successfully transferred prior to returning to the calling process.

• 3.376 Synchronized I/O File Integrity Completion: Identical to a synchronized
I/O data integrity completion with the addition that all file attributes relative
to the I/O operation (including access time, modification time, status change
time) are successfully transferred prior to returning to the calling process.

• 3.377 Synchronized I/O Operation: An I/O operation performed on a file
that provides the application assurance of the integrity of its data and files.

Definitions 3.373 and 3.377 require the OS implementation to include an I/O
mechanism to ensure applications that the manipulated data should be present
in persistent storage. These requirements help to preserve data integrity in the
presence of caches during failures, such as system crashes or power failures.
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Furthermore, in definitions 3.374 , 3.375, and 3.376 POSIX provides hints on
how the related mechanism can be implemented, i.e., through I/O completion no-
tification. By the time the application gets notice from the OS about the I/O
completion, the data carried by the I/O should have been successfully transfered.
This is an adequate requirement for read I/O as the term transfered means that the
application has already acquired the data in its address space. However, we find
that this term is ambiguous for write I/Os. In the presence of cache tiers below
the application’s user space, the meaning of the term, transfered, becomes critical.
To guarantee the requirements stated in definition 3.373 and 3.377, the word trans-
fered in definition 3.374 through 3.375 should be interpreted to mean transfered to
persistent storage media.

The POSIX System Interfaces also defines two mechanisms that can be used by
applications to ensure data integrity:

• File open flags: If a file is opened with some specific flags, i.e., O SYNC and
O DSYNC, then for each I/O operation on the opened file, the I/O completion
is guaranteed to indicate:

– Synchronized I/O File Integrity Completion, if the file is opened with
the O SYNC flag.

– Synchronized I/O Data Integrity Completion, if the file is opened with
the O DSYNC flag.

• Explicit system calls: An application can explicitly synchronize a file to disk
by using system calls, e.g., fsync() and fdatasync(). By the time it returns,
a fsync() system call guarantees Synchronized I/O File Integrity Completion
for all previously issued I/O requests on that file. Similarly, the return of a
fdatasync() system call guarantees Synchronized I/O Data Integrity Comple-
tion.

Although the POSIX standards and the interfaces that comply with them can
be used to preserve data integrity in systems with caches, we argue that they are not
flexible enough to meet some applications’ requirements for write synchronization.
We will discuss their shortcomings in detail in the following sections.

Most Unix or Unix-like operating systems are implemented to comply with
POSIX standards. Applications can use either of the two mechanisms, file open flags
or synchronization system calls, to achieve the goal of data integrity in a computer
system with multiple cache tiers. In addition, most Unix operating systems allow
applications to decide whether to use the underlying caches at all. A running
application can make the decision by setting the O DIRECT flag when it opens a
file. Although this functionality is not defined in POSIX, it is widely implemented in
the I/O interface of most Unix (and related) OS. Data pages carried by I/O requests
can be buffered in the underlying cache tiers only if the pages’ file was opened
without the O DIRECT flag. Based on this open flag, the OS can also indicate
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to lower tier systems, e.g. to a storage server, whether to buffer the file’s pages.
This is done through the lower level I/O interfaces, e.g., SCSI [3] or SATA [95] .
In this study we define two categories of I/O request and show their relationships
with I/O synchronization as follows:

• Unbuffered I/O, if the specified data is not to be buffered in file system
cache or other underlying cache tiers. Unbuffered I/Os must be synchronized
I/Os because all the data being read (or written) must be fetched from (or
propagated to) the bottom of the storage hierarchy, and cannot by placed
into the any lower level cache tiers.

• Buffered I/O, if the specified data is to be buffered in file system cache or
other underlying cache tiers. Buffered I/Os can be either synchronized I/Os or
unsynchronized I/Os, depending on whether or not (respectively) the carried
data must be fetched from or propagated to the persistent storage devices.
A buffered and unsynchronized I/O can be served by a underlying cache tier
rather than the persistent storage devices.

Using buffered and unsynchronized I/O can be more efficient than using un-
buffered I/O or synchronized I/O because only the former approach can benefit
from using underlying cache tiers. It can generate cache hits and save physical I/O
operations performed by storage devices. In addition, the underlying cache tiers
can provide some lower level systems, e.g., the file system and the storage system,
with opportunities to do I/O scheduling. For example, adjacent data blocks can
be accessed sequentially on a hard disk. However, as previously discussed, using
buffered and unsynchronized I/O also jeopardizes data integrity because the caches
may reside in volatile storage media (RAM, for example) and are not durable in
case of failures. In DBMS environments, data durability is a necessary condition
to ensure data integrity.

To control the tradeoff between data durability and I/O efficiency, applications
can use the synchronization system calls, e.g., fsync(), to explicitly flush buffered
data pages from underlying cache tiers to storage devices. For example, an appli-
cation may issue buffered and unsynchronized I/O requests against a file and so
benefit from underlying cache tiers. At a later time it may issue a fsync() system
call against the same file to ensure data durability. All buffered but unsynchronized
file pages will be synchronized to the storage devices. By the time the fsync() call
returns, Synchronized I/O File Integrity Completion is guaranteed.

We have described how the current POSIX-compliant I/O interface provides
applications with I/O mechanisms that allow them to utilize underlying cache tiers
and to control data durability. Now, we argue that this I/O interface is not flexible
enough to meet the requirements of some applications. The POSIX-compliant
interfaces have several weaknesses. First, the file open flags are declared at a file’s
open time. The application cannot change these flags unless it closes and opens the
file again. Therefore, all of the I/O requests issued against the same file will have the
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same buffer and synchronization requirements. It is not possible to control these
requirements on a per I/O basis. Second, the fsync() and other synchronization
system calls synchronize the data pages for the entire file. Once the call is issued,
all of the file’s buffered but unsynchronized pages will be synchronized. There is
no way to synchronize some specific data pages without synchronizing the others.

It is worth noting that some of the I/O interfaces [3, 95] underlying file systems
do provide mechanisms to support per-operation or per-block based write synchro-
nization. For example, by using the SYNCHRONIZE CACHE SCSI command and
defining the logical block address, the storage client can indicate to the SCSI de-
vice which specific block must be synchronized. For another example, the SATA
standards allow storage clients to use command WRITE BUFFER or WRITE SEC-
TOR to decide whether the written blocks should be placed into the cache or on
the persistent media, or both. However, we observe that these flexibilities are not
provided to the applications at the file system level. In the following section we
discuss the different synchronization requirements of DBMS bufferpool writes and
we argue that they are not well-served by the current POSIX-compliant file system
interface.

4.2.2 DBMS Bufferpool Write Synchronization Requirements

We observe that different types of DBMS bufferpool writes have different synchro-
nization requirements. First, we give a detailed discussion of transaction durability
in DBMS. Transaction management is one of the core components of DBMSs. To
maintain database integrity and reliability, a DBMS needs to preserve the durability
property for the transactions:

• Transaction durability: After a transaction is completed successfully, its ef-
fects on the database should be persistent and should survive failures, such
as system crashes or power outages

Most DBMSs use the write ahead logging (WAL) protocol to preserve transac-
tion durability:

• write ahead logging: Log any updates made to database objects and always
propagate the log entries to disk before the changes to the data objects are
propagated

The WAL protocol ensures that in case of crash and recovery a DBMS can redo
or undo all of the updates made by the transactions based on the log entries. Based
on the above WAL definition the DBMS must write and synchronize the log entries
to disk before the corresponding pages can be written from the bufferpool. We can
see that these Write Ahead Logging activities (i.e., the synchronized writes of the
log entries) are triggered by bufferpool writes.
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When write ahead logging is used, log entries will accumulate on disk. How-
ever, the log cannot grow forever and eventually old log entries must be deleted
or archived. Before the log entries can be deleted, the corresponding dirty buffer-
pool pages must be synchronized to disks to preserve data durability. Otherwise, a
failure may cause those updates to be lost and irrecoverable. Furthermore, forcing
the dirty bufferpool pages to disk can also reduce the time spent during recovery,
because the number of log entries that need to be replayed will be reduced. As
introduced in Chapter 2, we refer to these bufferpool writes, which are issued for
recovery reasons, as RECOV writes. We observe that RECOV writes need im-
mediate synchronization because otherwise data durability and/or recovery time
guarantee cannot be preserved in case of a crash.

We make another key observation about synchronization of REPLACE writes.
REPLACE writes, which are issued for replacement reasons, do not need immediate
synchronization because their corresponding log entries are still present in the log
files, and can be used during recovery. The synchronization of REPLACE writes
can be deferred to a later time when the corresponding log entries, which describe
the updates made to the written pages, are deleted. The same observation can also
be made on SYNCH writes.
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In Figures 4.1 to Figure 4.3 we give an example of when and why a DBMS issues
different types of bufferpool writes and why the writes have different synchroniza-
tion requirements. At the top of the diagrams are the user transactions which
access data objects stored in the database. At the lower level is a DBMS system
which includes its own bufferpool and other auxiliary data structures. Below the
DBMS is the operating system which manages the file system cache. At the bottom
level are the storage devices, e.g., disks. The database bufferpool illustrated in the
example can hold six pages. The clean pages in the bufferpool and file system cache
are marked in white while the dirty pages are marked in blue.

To track the updates made to bufferpool pages and to decide which page should
be synchronized to disk, some DBMS systems, e.g., DB2, Oracle, SQL Server,
and MySQL, record the oldest update made to each dirty page that has not been
synchronized. This is done by keeping the Log Sequence Number (LSN) of the oldest
unsynchronized update to the page in the page’s metadata. This LSN number is
called recLSN in these DBMSs and we use the same term to refer to it here. In
the diagrams the recLSN is indicated at the bottom right of each dirty bufferpool
page.

In Figure 4.1 a user transaction tries to access a data object in page P7, which
is not in the bufferpool. The bufferpool is full, therefore, an existing page must be
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evicted to make room for P7. Assume that the cache replacement policy is LRU,
and according to the LRU algorithm, the victim page should be P6. Because P6
is dirty, its content must be written to the disk before it can be evicted. This is a
REPLACE write of P6.

In Figure 4.2 a user transaction tries to update a data object in page P7. Assume
that the log space is full, or the recovery time threshold (i.e., the LSN Gap threshold
introduced in Chapter 2) is reached. In order to record the update in a new log
entry and to commit the transaction, an existing log entry, i.e., the one containing
the update made to P1, should be dropped. However, since page P1 is still dirty
and its updated contents have not been propagated to permanent storage, P1 must
be written out before the log entry is dropped. This is a RECOV write.

One observation that can be made from the above descriptions is that RE-
PLACE and RECOV writes have different synchronization requirements. RECOV
writes, such as the one illustrated in Figure 4.2, are issued due to log space pres-
sure or recovery time pressure. The corresponding log entries must be deleted soon
otherwise the recovery time threshold or the log space threshold will have been
reached. In order to preserve data integrity and durability, or to provide the recov-
ery time guarantee, RECOV writes need immediate synchronization to ensure that
the dirty pages, which contain the updates described by the victim log entries, are
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persistent on storage devices.

On the other hand, REPLACE writes, as the one illustrated in Figure 4.1,
can be issued as unsynchronized I/Os and the written pages can be buffered in
underlying cache tiers without immediate synchronization. This will not impair
data durability and integrity because the log entries corresponding to the pages
being written are still valid and have been propagated to permanent media (based
on the WAL protocol). The synchronization of REPLACE writes can be deferred
to a later time, when their corresponding log entries are deleted. We also argue
that the deferral does not increase the recovery time because these log entries
(corresponding to the unsynchronized REPLACE writes) will certainly be replayed
during a recovery.

The deferral of REPLACE writes synchronization can lead to performance gains
in two ways:

• It can save I/O bandwidth because the future write requests may access the
same pages and may generate cache hits in the underlying cache tiers. The
deferred synchronization gives file systems and storage systems opportunities
to combine several logical write requests made to the same page into one
physical write operation on the disk. For example, in Figure 4.3 the page P6
is accessed by user transactions again. If it is updated and written by the
bufferpool again then the file system can combine the two logical writes of P6
into one physical write to disk. Therefore one physical write operation can
be saved.

• It provides underlying systems, e.g., file systems and storage systems, with
opportunities to do I/O scheduling. Sequential or adjacent writes can be
organized into batches, to potentially reduce I/O service time. For example, in
Figure 4.3 both P5 and P6 are dirty pages in the file system cache. Assuming
they are in adjacent blocks on a storage device, the file system can schedule
a physical write operation to synchronize both of the pages at once.

Current POSIX-complaint I/O interfaces do not have the flexibility to sup-
port the dynamic synchronization requirements introduced above, i.e., immediate
synchronizations for RECOV writes and deferred synchronizations for REPLACE
writes. As a result, some DBMSs trade I/O efficiency and performance for data
durability and integrity. For example, the DB2 Administration Guide [42] suggests
that users use raw devices or unbuffered I/Os (by setting O DIRECT flag) to by-
pass underlying cache tiers. As another example, the MySQL [76] InnoDB storage
engine issues a fsync() system call after each write request to explicitly enforce
synchronization. Although these approaches can guarantee data durability, they
ignore or under-utilize the underlying cache tiers and thus miss an opportunity to
improve system performance. In this work we propose a novel I/O operation to
better control the tradeoff between data durability and DBMS performance.
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4.3 Proposed New I/O Operation

In the previous section we argue that the existing POSIX-compliant I/O interface
is not flexible enough to meet the write synchronization requirements of some ap-
plications, such as DBMSs. Now we propose to extend the existing I/O interface
to include a new I/O operation, so that it can satisfy these requirements.

4.3.1 Introducing New I/O Operation

We propose to extend the existing I/O interface and provide the applications with
the following functionalities:

• Applications can choose a synchronization method, either synchronized or
unsynchronized, for each individual write request without opening and closing
the file again

• An application can explicitly synchronize specific file pages to disk at any
time it wishes

To achieve the above functionalities, we propose to add a new I/O operation
to the current I/O interface. This I/O operation is used to synchronize a specific
set of pages from file system cache to disks, if the pages are still in the cache
and unsynchronized. The application is responsible for providing the OS with the
following arguments when it invokes the new I/O operation:

• The descriptor of the file that it wishes to synchronize

• An array of offsets and ranges that defines the data blocks to be synchronized

After the application submits the new I/O request it will be blocked by the OS
until the specified portions of the file have been synchronized. Upon completion,
the OS guarantees that the specified ranges and file metadata are propagated to
disk, as defined by the POSIX Synchronized I/O File Integrity Completion.

We implemented the proposed I/O operation in Linux and added a new system
call for applications to invoke it. The new system call is named dsync and the
prototype is:

int dsync(int fd, int nr, struct offsete *offsetp)

The new system call carries three arguments from the application:

• fd, the file descriptor

• nr, number of entries in the file offset array
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• offsetp, a pointer to the address of the offset array in the application’s user
space

Each entry in the offset array is a data structure defined as follows:

struct offsete

{

long long offset; /* offset of the data */

long long length; /* length of the data range */

}

Algorithm 4.1 dsync I/O operation

for each file offset range in the offset array do
if the offset range is valid for the file then

search the file system cache for pages that overlap with the specified offset
range
if such pages are found in the file system cache and are marked dirty then

write the pages to the device
end if

end if
end for
synchronize the file metadata to the device
wait for completion of all writes issued to the device
return to the calling application

Upon receiving the system call, the OS conducts the operations shown in Al-
gorithm 4.1. The algorithm is conceptual and the real implementations may be
different. However, once the I/O request returns successfully, the calling applica-
tion knows that the file ranges and the file metadata have been synchronized to
disk and are persistent.

4.3.2 Exploiting the New I/O Operation

Applications can use the proposed I/O operation, dsync, along with the existing
operations, to achieve flexible write synchronizations. The applications can:

• Open the file without the un-buffer and synchronization flags. Therefore their
write requests can be buffered in the file system cache and in other underlying
cache tiers without synchronization.

• Writes that require no immediate synchronization, such as the REPLACE
write illustrated in Figure 4.1, can be issued by using the existing unsynchro-
nized I/O operations, e.g., by using write() or pwrite() system calls.
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• Writes that require immediate synchronization, such as the RECOV write
illustrated in Figure 4.2, can also be issued using the existing unsynchronized
I/O operations, but are followed immediately by our newly proposed I/O
system call, dsync(). The latter system call explicitly synchronizes the pages
written by the write() or pwrite() call to disk. After the dsync() call returns, it
is guaranteed that the pages have been propagated to disk and are persistent.

• For writes that require deferred synchronizations, the application must take
the responsibility to keep some information, i.e., the file descriptors, the off-
sets, and the lengths of the data blocks that have been written. That infor-
mation can be stored in data structures in user space. At the time of the
deferred write synchronization, the application can use the recorded informa-
tion to issue the dsync() system call.

By using the proposed I/O operation, applications can utilize the underlying
caches more effectively and improve I/O performance. At the same time, the syn-
chronization of write I/O requests can be done whenever necessary to preserve data
durability.

To evaluate the effects of the proposed approach, we modified the MySQL Inn-
oDB storage engine to use the new I/O operation. InnoDB uses the WAL protocol
and asynchronous page cleaning techniques (as introduced in Chapter 2) in its log
and bufferpool management. It regularly writes a batch of dirty pages that carry
the oldest updates (made to the data objects by user transactions) to disks. These
writes are RECOV writes. Each time such a page cleaning session is triggered
for recovery reasons, the InnoDB issues RECOV writes to flush bufferpool pages
with small recLSNs to disks so as to reduce the LSN Gap. It ensures that those
updates are safe on disk. After the page cleaning session is completed, the log
entries describing those updates can be deleted and their space can be reused by
new updates.

Because the existing POSIX-compliant I/O interfaces are not flexible enough to
support the synchronization requirements of both REPLACE and RECOV writes,
the InnoDB storage engine was implemented to be conservative in doing write
synchronizations. It issues a fsync() system call after each bufferpool write to
synchronize the pages explicitly. As discussed earlier, this approach is safe but less
efficient, and we will show an example in Figure 4.4.

In Figure 4.4 we illustrate a small log with 16 log entries and each entry contains
its own LSN. From the legend we can see that there three types of entries in the
log:

• the entries whose corresponding updates carried by bufferpool pages have
been written and synchronized to disk. To guarantee recovery time and/or
log space limitation, the DBMS needs to issue (RECOV) writes and to enforce
synchronization when the Log Gap reaches its threshold. These log entries,
with their LSNs being from 11 to 15, are illustrated in blue color. They can
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Figure 4.4: Example of Log Entries and Bufferpool Writes/Synchronizations

be deleted without jeopardizing data durability. In addition, these log entries
do not need to be replayed in case of a crash and recovery.

• the entries whose corresponding updates carried by bufferpool pages have
been written, but have not been synchronized to disk. Under bufferpool
space pressure, the DBMS issued write requests (REPLACE writes) for these
pages and may have evicted them from its bufferpool. However, it need not
ensure that these writes are synchronized, since the updates can be recovered
from the DBMS log in case of a failure. These type of entries (with their
LSNs being 16, 17, 20, 23, 24, and 26) are illustrated in green color. They
cannot be deleted from the log because their corresponding updates may not
be persistent. In case of a crash and recovery, these log entries will be used
to bring the database to a consistent state.

• the entries whose corresponding updates carried by bufferpool pages have not
been written to disk. These entries (with their LSNs being 18, 19, 21, 22, and
25) are illustrated in white color. These entries also cannot be deleted and
will be used during a recovery.

Under the current InnoDB implementation, each bufferpool write is followed
by a fsync() system call to explicitly enforce synchronization. However, from the
above example we can see that this approach is more conservative than necessary.
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Some of the writes, i.e., to write the updates described by the green log entries, do
not need to be synchronized immediately, because their corresponding log entries
are still present in the log. Their synchronization can be deferred to a later time,
when their corresponding log entries are deleted.

With the above observations in mind, we made the following changes to the
InnoDB code to let it use our approach:

• Eliminate the fsync() system call after each bufferpool write request. Thus
the data pages being written can be buffered in the file system cache without
immediate synchronizations to disk.

• Create a new data structure, called synchronization list, in InnoDB The el-
ements in the list contain the metadata of buffpool writes, e.g., the page
number, the file id, the file offset, and the recLSN number of the written
pages. The list is sorted by the pages’ recLSN values. We illustrated this
synchronization list as Sync List in Figure 4.1. The metadata stored in this
list will be used to synchronize the written pages to disk.

• For each bufferpool write, either a REPLACE or a RECOV, we check whether
the bufferpool page’s metadata exists in the Sync List. If not, then we add
the metadata as a new element into the list. If yes, then we only issue the
write and do not update the Sync List.

• As originally implemented, the InnoDB bufferpool manager keeps monitoring
the LSN Gap. If it reaches the LSN Gap threshold, which is a database
parameter, then InnoDB triggers a page cleaning session for recovery reasons.
However, because of our approach, there may be unsynchronized updates
(such as the ones described by LSNs 16 and 17 in Figure 4.4) carried by
bufferpool pages in the lower cache tiers. We changed InnoDB to let the
bufferpool manager also monitor the Sync List to determine the LSN number
which describes the oldest unsynchronized updates (described by LSN 16 in
Figure 4.4) made to the database objects.

• Each time InnoDB triggers a page cleaning session for recovery reasons, it
issues a batch of RECOV writes. We modify InnoDB so that, after issuing the
RECOV write batch, it checks the newly implemented Sync List to search for
the elements with their recLSN earlier than the LSN Gap threshold. It then
issues a dsync() system call to ensure that these updates are synchronized.

• Upon the completion of the dsync() system call we notify InnoDB that the
the synchronizations (of the pages in the RECOV batch and the Sync List)
have been completed and that the corresponding log entries can be deleted or
reused. We also delete the elements synchronized by the dsync() system call
from the Sync List.
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By changing the InnoDB we make it stop doing explicit write synchronizations,
i.e., issuing fsync() after each bufferpool write. We change it to take advantage
of the new I/O operation. The experimental results show significant performance
gains and we will discuss them in the following section.

4.4 Evaluations

We implemented the proposed new I/O operation in a Linux kernel and evaluated its
effects by running synthetic workloads. The goal of our evaluations is to determine
whether, and to what extent, the number of physical writes can be reduced because
of the additional flexibility provided to the second-tier cache by dsync(), which
allows applications to be less conservative with write synchronization. We expect
to see a significant drop on the numbers of physical writes required to support
the applications, and a significant improvement on applications’ performance, e.g.,
DBMS transaction throughput.

A Dell Poweredge 2850 server was used to run our experiments. The server
has two 3.0GHZ Intel Xeon CPUs (each with two Hyper Threading cores) and
4GB physical memory. There are six SCSI hard drives attached through a disk
controller. The installed operating system is the Ubuntu Linux distribution with
kernel 2.6.26 (with SMP support), updated to include the proposed dsync() I/O
operation. During the evaluations we created the data files on an ext2 [1] file
system. The file system page size is the default 4KB.

In these experiments, the Linux file system buffer cache acts as the second-tier
cache. Other than the addition of dsync(), we did not modify the file system’s buffer
manager in any way. Thus, any reductions in the number of physical writes are
the result of the existing buffer manager’s ability to exploit weaker application syn-
chronization requirements. In Chapter 5, we will consider whether any additional
performance can be gained by using a second-tier cache manager that is explicitly
designed to exploit the weaker synchronization requirements that are enabled by
dsync().

4.4.1 Evaluations Using Synthetic Workloads

We run two different types of workloads against the extended I/O interface. The
first one is generated by a small program which issues write requests with different
synchronization requirements against a file in the ext2 file system. The second
workload is generated by another program which issues SQL UPDATE commands
against a MySQL database.
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4.4.1.1 Synthetic Workload Program Issuing Write Requests

In this evaluation the synthetic workload program issues two million write requests
against an ext2 file, which is composed of 1 million 4KB pages, on a single SCSI
disk. The file system cache is configured to be 200MB in size and the data accesses
are exponentially distributed across the entire file with the distribution parameter
set to 1.0.

The program generates two kinds of writes: immediately synchronized and
deferred-synchronized. Immediately synchronized writes are followed immediately
by a dsync() operation. Deferred synchronized writes are followed by a dsync()
operation that occurs after a delay. We measure the delay in terms of the number
of intervening writes that occur between the write and its dsync() operation. We
vary two important parameters in the evaluations:

• The percentage of immediately synchronized writes in the I/O workload. We
vary the parameter to be 10, 50, and 90 percent in different runs.

• The delay, measured as the number of intervening I/Os, between the deferred-
synchronized writes and the corresponding dsync() operations. We vary the
parameter from 5K, 10K, and to 200K in different runs.

Figure 4.5: Synthetic Workload Program Issuing Writes

While the workload program is running we measure the number of physical
writes issued from the OS to the disk. The results are shown in Figure 4.5. Since
the program issues 2 million logical writes to the OS, we should observe the same

45



number of physical writes if they are issued as synchronized writes using the existing
I/O interface. As expected, by using the extended I/O interface, some of the
physical writes are saved. We observe two different trends from the results:

• The more deferred-synchronized writes in the workload the more physical
writes can be saved. This is reasonable because a synchronized write needs
immediate synchronization (by issuing the dsync() call after the write) and
will definitely generate a physical write. Fewer synchronized writes means
there is a higher probability to have write cache hits in the file system cache
and to consolidate multiple logical writes into one physical write.

• The longer the deferral between an unsynchronized write and the correspond-
ing dsync() operation, the more physical writes can be saved. This is also a
reasonable result. When the file page carried by an unsynchronized write
stays longer in the file system cache without synchronization, the probability
that the same file page will be written again becomes higher. This is espe-
cially true for the runs with less synchronized writes (e.g., the 10% cases).
The number of physical writes is reduced to less than one third of the num-
ber of logical writes when the deferral length is increased from 50K to 200K
operations. However, if there is a high percentage of synchronized writes in
the workload (e.g., the 90% cases), then the benefit of using our proposed
approach becomes insignificant.

4.4.1.2 Synthetic Workload Program Issuing SQL UPDATEs

As introduced in Section 4.3, we modified MySQL InnoDB storage engine to use our
proposed approach. After the modification the InnoDB no longer relies on fsync()
calls to explicitly enforce write synchronizations and it issues REPLACE writes as
unsynchronized requests. To determine the effect of this change we ran a synthetic
workload program against a MySQL database. The database contains only one
table holding 240K records. Each record is about 4KB size and the table is stored
in a 1GB ext2 file on a single SCSI disk. The log files of the database is located on
another dedicated SCSI disk. We configured both the database bufferpool and the
file system cache to be 240MB in size. In addition, the log file size, which controls
the LSN Gap threshold, is set to be 200MB. This is a reasonable value corresponding
to the database size and the workloads. The synthetic workload program issues 2.4
million single record SQL UPDATE commands against the table. The access to
the table records is exponentially distributed with the distribution parameter set
to 1.0

The MySQL InnoDB storage engine originally (without our modification) issues
a fsync() system call after each bufferpool write, but we have changed it to use the
proposed dsync() operation only when necessary (i.e., when it needs to synchronize
writes). To fully evaluate the effects of our proposed approach, we also include an
additional version of InnoDB in our experiments. Unlike the original InnoDB, this
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version is changed to use the fsync() calls cleverly, i.e., not after each bufferpool
write, but only when it is necessary (when InnoDB decides to trigger page cleaning
for recovery reasons and issues a batch of RECOV writes). Therefore we have three
versions of MySQL code to compare in our evaluations:

• org: The InnoDB code using the original approach to do write synchroniza-
tion. It issues a fsync() system call after each bufferpool write.

• rec: The InnoDB code is changed to issue fsync() call only when necessary.
When InnoDB decides to do page cleaning for recovery reasons, it issues a
fsync() system call after each RECOV write.

• nio: The code is changed to use the proposed new I/O operations, dsync(),
when necessary, as described in Section 4.3.
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Figure 4.6: Synthetic Workload Program Issuing SQL UPDATE Queries, Sectors
Physically written

Figure 4.6 shows the number of sectors physically written to the disk (which
contains the database) by MySQL. From the results we can see that in terms
of sectors physically written the nio version performs the best. It eliminates 30
percent of the written sectors compared with the org version. The rec version also
saves some written sectors but not as many. Under the rec version, the REPLACE
writes can be cached in the file system cache. However, because it uses fsync() for
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Figure 4.7: Synthetic Workload Program Issuing SQL UPDATE Queries, Program
Execution Time

synchronization, it synchronizes pages of the entire file to disk, and is less efficient
than the nio version, which only synchronizes the necessary pages to disk.

In terms of workload execution time, which is shown in Figure 4.7, the rec
version is slightly faster than the nio version, even though the latter writes fewer
sectors to disk. To explain this, we monitored the average I/O service time. The
result is shown in Figure 4.8. The I/O service time shown includes both read and
write requests. We can see that the rec version has shorter I/O service time than
that of the proposed nio version.

We reviewed the Linux implementation of the fsync() I/O operation, which is
used by the rec version to do write synchronizations when necessary. First, the
fsync() searches the file system cache for the dirty pages from the target file. The
offsets of the dirty pages are recorded in a sorted list based on their offset values.
After the search is completed Linux issues a batch of writes to the device according
to the sorted offset list. In our evaluations the file offsets are in the same order in
which the data blocks are physically located on the disk. Since on average each
fsync() call flushes a large amount of data (more than 100MB) from the file system
cache, some of the physical writes are performed sequentially on the disk.

On the other hand, in the nio case (which uses the proposed dsync() operation)
there are far fewer sectors being written by each dsync() operation (less than 10MB
on average). The probability to have sequential I/Os on the disk is much lower.
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Figure 4.8: Synthetic Workload Program Issuing SQL UPDATE Queries, I/O Ser-
vice Time

As discussed earlier, the performance gains obtained by deferring write synchro-
nizations (by using either fsync() or dsync()) come from two factors: better I/O
scheduling and more write cache hits. However, these two factors may contradict
with each other. Our evaluation shows that writing larger batches of sectors may
result in better I/O scheduling. For the same reason, in the org version case we
monitored the longest I/O service time. This version of InnoDB issues a fsync()
system call after each bufferpool write to explicitly synchronize the write to disk
and, therefore, cannot benefit from either of the two factors.

4.4.2 Evaluations Using TPC-C Workload

In addition to the synthetic workload programs, we also use a TPC-C workload kit
to conduct our evaluations. The goal is to determine how the proposed techniques
can effect a DBMS application’s performance, in terms of transaction throughput.
It gives us insight on the effectiveness of the proposed approach in a more realistic
scenario. The TPC-C workload kit issues a pre-generated workload of SQL queries
against the three versions (i.e., org, rec, and nio) of MySQL. The Transactions
Per Minute Type C (tpmC), which is the standard throughput metric for TPC-
C workloads [101], and other I/O statistics are collected after the warmup of the
database bufferpool and the file system cache.

Because the results may vary in different runs, we repeat each evaluation five
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InnoDB read sector write sector I/O service % disk transaction per
version per second per second time utilization minute type C
org 2756.03 2178.24 3.57 96.77 1134.20
rec 4395.03 3740.54 2.23 98.35 1936.87
nio 4161.58 2762.89 2.41 92.60 1822.17

Table 4.1: TPC-C Workload, MySQL Database on Single Disk

times and report the median value collected. Before each run, the computer, the
operating system, and the MySQL database server, are rebooted. We observe that
the variance in the results collected in different runs is trivial, with the differences
(including the ones between the maximum/minimum and the median) in less than
0.5% of the median value. This is because in each run the workload is exactly the
same and the computational environment remains almost the same. The trivial
variance in the results is caused by different thread scheduling (among the multiple
CPUs) in different runs. That results in different I/O scheduling at the file system,
the disk controller, and the disk levels in different runs.

4.4.2.1 TPC-C Workload, MySQL Database on Single Disk

In this experiment we place the database file (ext2) on a single SCSI disk as we
did in the synthetic workload evaluations. The TPC-C workload is configured to
include 10 warehouses (SF=10) and 10 connections running against the database.
The database size is about 1GB and both the bufferpool size and the file system
cache size are set to be the same at 240MB. We keep the log file size at 200MB,
which is same as that in the previous synthetic workload evaluations. The results
are shown in Table 4.1.

From Table 4.1 we can make following observations:

• In terms of Transactions Per Minute Type C (tpmC), the relative performance
of the three MySQL versions is similar to that observed in the synthetic
workload evaluations. The rec and the nio versions perform much better than
the org version. At the same time the rec version still performs somewhat
(6.3%) better than the nio.

• In all the runs of the three versions the disk utilization is more than 90 percent,
which means the system is I/O bound.

• The nio version, which uses our proposed approach, eliminates a significant
number of physical writes. In the nio case the ratio of the average written
sectors per second to the average read sectors per second ratio is 1.51, where
the same ratios for the org and rec cases are 1.27 and 1.17, respectively. This
means to complete the same amount of transactions, which issues a fixed
number of read sectors, the nio version generates the fewest written sectors.
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InnoDB read sector write sector I/O service % disk transaction per
version per second per second time utilization minute type C
org 5324.32 4738.52 1.63 93.62 2511.20
rec 5649.03 5164.61 1.60 96.94 2698.83
nio 7007.84 4641.97 1.49 97.37 3194.03

Table 4.2: TPC-C Workload, MySQL Database on RAID-5 Disk Array

• The rec version has the shortest average I/O service time (2.23 ms). It also
writes many more sectors (3740.54) per second than either the org or the nio
version does. This is consistent with our previous observations made in the
synthetic workload evaluations. Once again, we argue that this is because
in the rec version, the fsync() system calls flush large chunks of dirty pages
of the entire database file to the single disk, and therefore, it benefits from
sequential disk operations.

4.4.2.2 TPC-C Workload, MySQL Database on RAID-5 Disk Array

As discussed earlier, sequential write operations on a single disk favor the rec version
which uses fsync() calls when synchronizations are necessary. However, this is
not the only physical design of database systems. In some other circumstances
the reduction of physical writes can become more important. We set up another
experiment in which we place the database file on a RAID-5 disk array, which is
composed of 4 SCSI disks. The other experimental settings remain the same as
those of the previous TPC-C evaluations and the configurations of the RAID-5
array is shown as follows:

• The stripe size is the default 64KB

• The battery-backed cache on the disk controller is 256MB

• The write policy is write-back, the default

Under this physical design the database file is striped across the 4 SCSI disks.
We assume that sequential writes operations will no longer be the dominant factor
to impact the database performance, and that the reduction of physical writes will
become more important. We expect to see that the nio version can take advan-
tages of using the proposed approach and can outperform the rec version. The
experimental results are shown in Table 4.2.

We can make the following observations from the results:

• The disk array remains more than 90 percent busy on average in all the three
cases, which means the system is I/O bound.
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• The average I/O service time values are much shorter than those of the pre-
vious TPC-C evaluations on the single disk (shown in Table 4.1). With the
presence of the 4 disks and the controller cache, this is a reasonable result. We
can also observe that the rec version no longer achieves shorter I/O service
time compared the nio version.

• The nio version still eliminates a significant number of physical writes. The
reads sectors to write sectors ratios for the nio, the rec, and the org versions
are 1.51, 1.10, and 1.12, respectively.

• The nio version outperforms the rec version in terms of tpmC (with 18.3%
more transactions per minute on average), which is consistent with our expec-
tation. With the striped database file and the the controller cache, sequential
I/O operations are no longer the dominant factor to impact the database
performance. Reducing the number of physical writes is more important.

4.5 Summary

In this research we make the following contributions:

• We observe that DBMS bufferpool writes have different synchronization re-
quirements. REPLACE writes, unlike RECOV writes, do not need immediate
synchronization. Synchronization can be deferred to a later time and this de-
ferral will generate several benefits, such as write cache hits and better I/O
scheduling.

• We also observe that the current POSIX-compliant I/O interface is not flexible
enough to support the synchronization requirements of DBMSs. We propose
to extend the current interface to include a novel I/O operation, dsync, which
synchronizes only specific parts of a file. It gives applications more flexi-
bility and more control over their write synchronizations, and it will bring
several benefits, such as reduced numbers of physical writes and better I/O
scheduling.

• To evaluate the effects of our approach, we implement the proposed new
I/O operation in Linux and modify MySQL InnoDB storage engine to use
it. By running synthetic workloads and a TPC-C workload against the mod-
ified MySQL, which works on the extended I/O interface, we observe that
the number of physical writes caused by bufferpool writes are significantly
reduced (compared with the cases that use original MySQL working on the
POSIX-compliant I/O interface). The transaction throughput of MySQL is
also significantly improved.

Based on the evaluations we conclude that by using the proposed approach,
some applications, such as a DBMS, can reduce their physical write rates and can
achieve better I/O scheduling.
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Chapter 5

Write-Aware Replacement For
Second-Tier Cache

In Chapter 3 we propose a technique to use write hints in second-tier cache man-
agement to reduce the number of read requests issued by the cache. In Chapter 4
we propose another technique to defer synchronization of bufferpool writes so that
the cache can reduce the number of writes. In this chapter we propose that under
some circumstances, the second-tier cache manager should take the total I/O cost
associated with a cache replacement (i.e., the cost to synchronize the victim page
to disk and the cost to bring it back into the cache when the page is referenced
next time) into account while making replacement decisions. We argue that under
these circumstances, reducing the total number of I/Os, including both reads and
writes, leads to better DBMS performance than reducing only the read requests.

5.1 Introduction

The replacement algorithm is the core of second-tier cache management. In today’s
DBMS environments, where there exist both read and write requests and multiple
cache tiers, various second-tier cache replacement algorithms, such as ARC [64],
MQ [111], and Type Queue (introduced in Chapter 3), have the sole objective of
maximizing the number of read hits. The reasons behind the decision to ignore
write cache hits are:

• The write requests issued by database bufferpools are asynchronous with re-
gard to query executions (except the SYNCH writes). The latency of the write
requests can be hidden from the DBMS clients by using dedicated threads,
e.g., the page cleaners. In contrast, many read requests are issued on demand
and are on the critical path of query executions. Thus, for a second-tier
cache, serving the read requests, which are synchronous, is more important
than serving the write requests, which are asynchronous.
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• The write requests issued by database bufferpools are synchronized writes,
which means that the second-tier cache must issue a write to the storage
device for each write request that it receives. Therefore, having write hits is
of no benefit to the cache or to DBMS performance.

Similar observations can also be made for other types of storage clients, such as
file systems [66, 8], in which the reads are often issued to lower level storage on de-
mand from the running applications and the writes are issued asynchronously with
respect to the applications’ executions. These observations lead second-tier cache
replacement algorithms, such as ARC, MQ, and TQ to focus only on maximizing
read cache hit rates and to ignore the writes.

However, these observations do not always hold. First, with the introduction
of the deferred synchronization mechanism (by using the dsync request), which is
introduced in Chapter 4, the REPLACE bufferpool writes become unsynchronized.
This technique gives second-tier caches opportunities to optimize write performance
(through write cache hits and better I/O scheduling). Second, it is not always true
that writes are asynchronous with respect to query executions. We observe that
this assumption does not hold when the storage devices are saturated by the I/O
loads. In particular, when the storage devices become bottlenecked, both read and
write requests are blocked in I/O traffic and compete for I/O bandwidth. In such a
scenario, the writes become synchronous with respect to the query executions even
though they are issued asynchronously.

We argue that under such circumstances, maximizing read cache hits is no longer
in the best interest of DBMS performance. The objective of cache replacement
should be to minimize the total number of I/Os, including both reads and writes,
issued from the second-tier cache to the storage devices. Reducing the total number
of I/Os saves I/O bandwidth and allows more read requests, which are on the critical
path of query executions, to be served within the same amount of time. It also helps
the read requests (waiting in the queue) to be served sooner and faster.

In this work we propose new cache replacement algorithms which focus on reduc-
ing the total number of I/Os (including both reads and writes). We refer to them
as write-aware algorithms. We use the term write-oblivious to describe algorithms
designed to minimize only read requests.

Our contributions in this research are threefold. First, we present a partial
characterization of an optimal, off-line, and write-aware replacement algorithm. In
doing so, we state several lemmas which describe the characteristics of the optimal
algorithm. Second, based on the above knowledge, we propose a write-aware off-line
cache replacement algorithm and extend several write-oblivious on-line algorithms
to be write-aware. Third, we evaluate the effects of the proposed write-aware
algorithms by trace-driven cache simulations. The experimental results show that
by using the extended write-aware algorithms the second-tier cache can reduce
the total number of I/Os by up to 50%, compared with using the write-oblivious
algorithms to manage the cache.
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The remainder of this chapter is organized as follows. In Section 5.2 we give
several preliminary definitions required in our research. In Section 5.3 we give a
detailed definition of the research problem on which we focus. In Section 5.4 we
present the partial characterization of an optimal cache replacement algorithm. We
propose several write-aware algorithms in Section 5.5. Our evaluations are shown
in Section 5.6 and we conclude in Section 5.7.

5.2 Read-Write Workload Model and Cache Model

In this section we give some preliminary definitions. First, we make the following
assumptions about the second-tier caches in our study:

• The pages are brought into the cache on-demand, which means that a page
is brought into the cache only when the page is requested (read or write) by
the first-tier

• All the pages being requested (read or write) by the first-tier must be placed
into the cache

These assumptions are made for simplicity reasons. The second-tier cache con-
tent is determined only by the page requests received by the cache and by the
replacement algorithm used to manage the cache. Other cache management re-
lated policies, such as pre-fetching policies and policies to decide whether to bypass
the cache (by serving the requested page directly from the storage device to the
first-tier), are not taken into account in this research.

5.2.1 Read-Write Workload Model

In this work we focus on cache replacement algorithms that are write-aware and
reduce the total number of I/Os generated by the cache. We begin with some
observations about write-oblivious replacement algorithms:

• The MIN algorithm, proposed by Belady [9], is an optimal off-line algorithm
which maximizes the number of read cache hits. The MIN algorithm always
evicts the page with the lowest replacement cost, i.e., the page being refer-
enced furthest in the future, during cache replacement.

• Other cache replacement algorithms, such as ARC, MQ, and TQ, follow a
common approach, which is to imitate the replacement decisions of the MIN
algorithm. Based on various techniques (e.g., by using recency, frequency,
and I/O types), these algorithms attempt to identify the ideal victim page,
i.e., the page being referenced furthest in the future, as accurately as possible,
and to evict it in the next cache replacement.
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In addition, we also observe that the existing write-oblivious algorithms, such as
MIN, ARC, and MQ do not differentiate among the different types (e.g., read and
write) of request received by the cache. They treat all the requests as if they are
of the same type, and make replacement decisions accordingly. These algorithms
also do not recognize the clean or dirty states of the cache pages. In their model of
the page request workload, all requests are treated as reads, and the replacement
algorithm’s objective is maximizing the number of read cache hits. We refer to this
workload model as a read-only workload model.

However, as we have discussed in Section 5.1, minimizing the number of reads is
not always in the best interest of DBMS performance. Under some circumstances,
the second-tier cache should be managed to minimize the total number of I/Os,
including both reads and writes. To do this, it is necessary to distinguish read and
write requests in the workload. Thus we define a read-write workload model as
follows:

• A = a, b, c, ... is a finite set of pages being requested by the first-tier

• There are three different types of request issued by the first-tier: read, write,
and dsync

• Page request trace X = x1, x2, ..., xL is a finite sequence of L elements, where
xt denotes the request received by the cache at time t; and xt = (yt, zt) where
yt ∈ A is the page being requested at time t (in terms of page requests), and
zt ∈ {read, write, dsync} is the request type at time t.

5.2.2 Read-Write Cache Model

Under the read-only workload model, the cache does not distinguish different re-
quest types and different page states (e.g. dirty or clean). However, under the
read-write workload model, the cache will behave differently. We define a read-
write cache model as follows:

• Page states: at any given time each page in A must be in one of the following
states:

– Initial state: this is the state that the page has not been requested yet
and therefore is not in the cache

– Clean state: this is the state that the page is in the cache (brought into
the cache by a read or write request) and its content is consistent with its
copy on the lower level storage. The page either has not been updated
(by a write request) since it was read into the cache, or the updates
made to it have been synchronized to the lower level storage.
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– Pre-clean state: this is the state that the page is in the cache and is
dirty, which means that the page’s content has been updated by a write
request and that the update has not been synchronized to the lower
level storage. However, there is no write request of the page in the trace
before its next dsync request.

– Dirty but not pre-clean state: this is the state to describe the other dirty
cached pages that are not in the pre-clean state

– Evicted state: this is the state to represent that the pages have been
evicted from the cache and remain out of the cache

• State transitions: After the cache receives a request, the page being requested
will transit from its current state to another state. If a cache replacement is
required, the replaced page will also transit from its current state to the
Evicted state. In summary, there are five different types of state transition:

– transition r, indicates that the cache receives a read request of the page

– transition ww, indicates that the cache receives a write request of the
page and there exists at least another write request of the page before
the page’s next dsync request (or there is no more dsync request of the
page in the trace)

– transition wd, indicates that the cache receives a write request of the
page and there exists no write request of the page, before the page’s
next dsync request

– transition d, indicates that the cache receives a dsync request and the
requested page will be synchronized to lower level storage if it is dirty

– transition e, indicates that, based on the replacement algorithm used to
manage the cache, the page is chosen as the victim and is evicted from
the cache

• I/Os generated by the cache: During a state transition, the cache may gen-
erate an I/O request issued to the lower level storage. The I/Os include two
types: read and write.

We illustrate the page states, states transitions, and the I/Os generated by
the cache in Figure 5.1. The Initial, Clean, Pre-clean, Dirty but not pre-clean,
and Evicted states are illustrated in ovals and labeled as Init, C, P, D, and E
respectively. The state transitions are illustrated as directed arcs that connect the
states. For example, if a page is in Pre-clean state and is evicted from the cache
(the page is chosen as the victim page by the replacement algorithm) then the page
will transit from P state to E state through a directed arc.

If an I/O is generated during a state transition then we associate it with the
specific arc (as a number after the transition label, separated from the label by a
slash). A read I/O is labeled as number 10 and a write I/O is labeled as number
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Figure 5.1: States, Transitions, and I/Os of Cache Pages

01. For example, the directed arc from P state to E state is associated with a
number 01 because there must be a write I/O generated by synchronizing the dirty
pre-clean page to disk.

5.3 Research Problems

Under the read-only workload model the MIN algorithm is optimal [62] in minimiz-
ing the reads issued by the cache. However, a similar approach does not minimize
the total number of I/O operations under a read-write workload. In particular, we
can extend the MIN algorithm to work under the read-write workload model, and
we refer to the extended algorithm as MIN-RW. MIN-RW still uses the same ap-
proach used by the MIN to make replacement decisions, which is always to evict the
page being read again furthest in the future. We argue that the MIN-RW algorithm
does not minimize the total number of I/Os under the read-write workload model.
It fails to recognize the following two factors while making replacement decisions:

• there exist different request types, e.g., read and write, in the workload re-
ceived by second-tier caches. These different types of requests have different
impacts on the total number of I/Os generated by the cache. For example, a
cache miss of a read will definitely generate a read request to the lower level
storage to fetch the missing page. However, a cache miss of a write request
does not guarantee that a write will be issued to the lower lever storage.
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• there exist different page states, clean and dirty, for the cache pages. These
different states have different impacts on the total number of I/Os generated
by the cache. For example, evicting a dirty page requires a write to be issued
to the lower level storage, while evicting a clean page does not have such a
requirement.

In Figure 5.2 and Figure 5.3 we give an example to show that the MIN-RW
algorithm does not minimize the total number of I/Os under a read-write workload.
In the figures, we illustrate a small cache of three pages and a workload trace
including read and write requests. For example, Rx refers to a read request for
page x. Similarly, Wy refers to a write request for page y. A request illustrated in
red color represents a cache miss, indicating that the requested page is not in the
cache and that a cache replacement is needed.
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Figure 5.2: Using the MIN-RW Algorithm, Total Number of I/Os: 3

The cache states before and after a request are shown at the upper left and
upper right of each request, respectively. After a clean page has been updated by
a write request, we mark it as a dirty page by changing its color from white to
blue. Beneath the request trace, we also show the I/O requests generated by the
cache. To determine the total number of I/Os by the cache during the sequence
of requests, we can simply sum the number of reads and writes listed in the two
bottom rows.

In Figure 5.2 we illustrate a cache managed by using the MIN-RW algorithm.
The total number of I/Os generated by the cache is three. In Figure 5.3, the
cache is managed by using another replacement algorithm and the total number
of I/Os generated is one. We notice that the MIN-RW algorithm is outperformed
by the other algorithm in terms of the new metric, the total number of I/Os. The
example shows that the MIN-RW algorithm is not optimal with respect to the
new cache management objective under the read-write workload model. To achieve
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the objective, the existing MIN and other write-oblivious algorithms should be
re-studied and be extended to be write-aware.

The research problems we address can be summarized as follows:

• Problem 1: derive an off-line, optimal algorithm O, such that, for any given
cache C and any page request trace X corresponding to C, using O to manage
C generates no more I/Os, including both reads and writes, than any other
algorithm for managing C

• Problem 2: given some on-line, write-oblivious algorithms, such as LRU and
ARC, extend them to be write-aware, such that, for any given cache C and any
page request trace X corresponding to C, using the extended write-aware al-
gorithms to manage C generates fewer I/Os, including both reads and writes,
than the original write-oblivious algorithms.

To solve the above research problems, we decide to adopt the same strategy
used in developing the write-oblivious algorithms under the read-only workload
model. First we characterize an off-line, optimal algorithm, which minimizes the
total number of I/Os under the read-write workload model, then we extend some
write-oblivious algorithms to be write-aware by imitating the replacement decisions
of the optimal algorithm.

5.4 Partial Characterization of an Optimal Algo-

rithm

In this section, we give a partial characterization of an optimal algorithm under
the read-write workload model, with the objective of minimizing the total number
of I/Os. First we give some preliminary definitions.

60



5.4.1 Preliminary Definitions

We give some preliminary definitions which are used in the characterization of an
optimal cache replacement algorithm.

5.4.1.1 Cache Replacement Policy

We define a cache replacement policy as follows:

Definition 5.1 Given a cache C and a request trace X received by C, a cache
replacement policy P = p1, p2, ..., pL is a finite sequence of elements with the same
length L as trace X, and with element pt being the page replaced (evicted) by the
cache at time t. pt is determined by the cache size, trace X, and the replacement
algorithm used to manage C. pt = φ if the cache does not replace a page at time t,
otherwise pt ∈ A.

We define a cache state as follows:

Definition 5.2 We denote the state of cache C serving request trace X at time
t as Bt, Bt ⊆ A, and we define it as the content of the cache at time t after the
request xt has been served and the cache replacement pt has been made.

We define a valid cache replacement policy as follows:

Definition 5.3 A cache replacement policy P is valid if and only if (pt 6= φ) ⇒
(pt ∈ Bt−1), for all 1 ≤ t ≤ L.

We define a demand cache replacement policy as follows:

Definition 5.4 A cache replacement policy P is a demand policy if and only if the
following requirements are satisfied:

• (zt 6= dsync)⇒ (yt ∈ Bt)

• (a ∈ Bt)⇒ (a ∈ Bt−1) or (a = yt), for any page a ∈ A

• (pt = φ)⇔ (yt ∈ Bt−1) or (zt = dsync)

• (pt 6= φ)⇔ (yt /∈ Bt−1) and (zt 6= dsync) and the cache is full at time t− 1

for all 1 ≤ t ≤ L.

Typically, a cache replacement policy is the realization of a replacement algo-
rithm and a particular page request trace received by the cache. All the cache
replacement policies discussed in this research are valid demand policies unless it
is stated otherwise.
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5.4.1.2 I/Os Generated by a Page Request

Given a cache C, which is managed by using replacement policy P , and a read-write
workload X received by C, we denote the I/Os generated by request xt as nX,P (xt)
and calculate it as follows:

• if the request type zt = dsync and the requested page yt is dirty, then a write
I/O is needed to synchronize the page to lower level storage and nX,P (xt) = 1.
These are the writes labeled on the arc from state P to state C in Figure 5.1.

• if the request type zt = read or zt = write and the requested page yt is not
in cache, then nX,P (xt) equals the sum of the following I/Os:

– the I/O required to bring the requested page, yt, to the cache. If zt =
read then a read I/O is required to bring the page into the cache, else
no I/O is required. These are the reads labeled on the arc leading to
state C in Figure 5.1.

– the I/O to synchronize the replaced page pt to lower level storage. If pt

is dirty then a write I/O is required, else no I/O is required. These are
the writes labeled on the arc from state D and P to state E in Figure
5.1.

• in all other cases nX,P (xt) = 0

In addition, we denote the total number of I/Os generated by the cache, which
is managed by policy P , as NX,P , and calculate it as follows:

NX,P =
L∑

t=1

nX,P (xt) (5.1)

5.4.1.3 Avoidable I/Os and Unavoidable I/Os

Among the total number of I/Os issued by a second-tier cache, we observe that
some of the I/Os can be avoided by using replacement algorithms, but the other
I/Os are not avoidable regardless of which algorithm is used to manage the cache.
Under the read-write workload model, the I/Os generated by a second-tier cache
can be categorized into two separate sets, avoidable I/Os and unavoidable I/Os,
based on their avoidability and their definitions are given as follows:

Definition 5.5 We define avoidable I/Os and unavoidable I/Os as:

• unavoidable I/Os: some of the I/O requests generated by a second-tier cache
are unavoidable regardless of which replacement algorithm is used to manage
the cache. These I/Os include:
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– first time reads: when a page is accessed for the first time in the request
trace, and the request type is a read, then the requested page needs to be
fetched from the lower level storage by a read I/O.

– writes to synchronize pre-clean pages to lower level storage

• all other I/Os issued by a second-tier cache are categorized as avoidable I/Os

In Lemma 5.1 we claim that the unavoidable I/Os categorized above are inde-
pendent of the cache replacement algorithm and thus are unavoidable.

Lemma 5.1 The unavoidable I/Os, which include first time reads and writes of
pre-clean pages, are independent of the cache replacement algorithm. They will
occur regardless of which algorithm is used to manage the cache.

The proof of the correctness of Lemma 5.1 can be found in Appendix A.

5.4.1.4 Total I/O Cost of a Page Replacement

We observe that during a page replacement there are two factors determining the
number of I/Os generated by the cache. These factors are:

• The clean or dirty state of the page being replaced: Replacing a dirty page
generates one write I/O because the content of the dirty page needs to be
synchronized to the lower level storage before its space can be used by a new
page. In contrast, replacing a clean page does not need such a write.

• The type of the request being served by the cache: A cache replacement
means there is a cache miss occurring. In such a case, a read request received
by the cache causes a read I/O to be issued to the lower level storage to fetch
the missing page. In contrast, a write request does not cause an I/O to fetch
the page because the page content is carried from the first-tier cache.

Based on these observations we conclude that replacing a single page generates
the following I/O costs at two different time points:

• The I/O cost to synchronize the evicted page to disk, at the time of the page’s
replacement. It can be either zero or one, depending on whether the page is
clean or dirty, respectively.

• The I/O cost to bring the replaced page back into the cache, at the time
when the page is next referenced (if applicable). It can be either zero or one,
depending on whether the page’s next request is a write or a read, respectively.
If the page is not being referenced again, then it requires zero I/O to bring it
back into the cache.
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Now we give the definition of the total I/O cost of a page replacement:

Definition 5.6 Given a cache C, page request trace X, and a cache replacement
policy P , we define the total I/O cost to replace page p at time t to be the sum of the
number of I/Os required to synchronize the page to disk and the number of I/Os to
bring the page back into the cache when it is referenced next time by a read or write
request (if applicable). The total I/O cost to replace page p at time t is denoted as
cX(p, t) and is calculated as:

• if p is clean or is in pre-clean state

– if the next non-dsync request to p is a read, then the total I/O cost to
replace the page is one, which is caused by the next read request. (Clause
1)

– if the next non-dsync request to p is a write or null (i.e., no more read
or write requests to the page), then the total I/O cost to replace the page
is zero (Clause 2)

• if p is in dirty but not pre-clean state

– if the next non-dsync request to p is a read, then the total I/O cost to
replace the page is two, which is caused by both synchronizing the dirty
page to disk and reading it back into the cache. (Clause 3)

– if the next non-dsync request to p is a write or null (i.e., no more read
or write requests to the page), then the total I/O cost to replace the page
is one, which is caused by synchronizing the dirty page to disk. (Clause
4)

If there is no replacement at time t then pt = φ. We define cX(φ, t) = 0. (Clause
5)

We denote the sum of the total I/O cost generated at each page replacement
(by using policy P to manage the cache) as OP and calculate it as:

OP =
L∑

t=1

cX(pt, t) (5.2)

where L is the length of the request trace and pt is the victim page (which is φ
in case of a cache hit) being evicted at time t according to the replacement policy
P . We denote OP as the total number of avoidable I/Os generated by the cache
and make the following claim:

Lemma 5.2 The result of Equation 5.2, OP , is equal to the total number of avoid-
able I/Os generated by a cache which is managed using policy P .
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The proof of the correctness of Lemma 5.2 can be found in Appendix B.

The result of Equation 5.2 (i.e., OP ) includes only a portion of the total number
of I/Os generated by the cache (which is denoted as NX,P and introduced earlier).
However, because OP takes all the I/Os dependent on the cache replacement al-
gorithm into account, it can be used as a metric to evaluate the performance of
different algorithms.

5.4.2 Partial Characterization of an Optimal Algorithm

In this section we present several lemmas that describe the characteristics of an
optimal algorithm and give their proofs in the appendices. First, we give some
preliminary definitions:

Definition 5.7 We denote the re-reference distance of page a at time t in trace X
as dX(a, t), and define it as the distance, in terms of page requests, between time t
and the time when the page a is next referenced by a read or write request. If the
page will not be read or written again then the distance is defined to be infinite.

We propose a lemma, Lemma 5.3, to characterize an optimal cache replacement
algorithm and give the proof of the lemma in Appendix C.

Lemma 5.3 Let X be a page request trace, B0 and B′0 be two different initial cache
states where:

B′0 = T0 + {a}
B0 = T0 + {b}
for T0 ⊆ A, a, b /∈ T0, cX(a, 0) > 0, and cX(b, 0) = 0. We claim that for any

demand policy P , corresponding to X and B0, there must exist a demand policy P ′,
corresponding to X and B′0, such that OP ′ ≤ OP .

Based on Lemma 5.3 we propose Theorem 5.1 as follows:

Theorem 5.1 Let C be a cache, X be a page request trace received by C, B0 be
an initial state of C, P be a valid demand policy for C,X, and B0. Suppose at
time t the policy P makes a decision to replace page a with cX(a, t) > 0, and at the
same time there is another cached page b with cX(b, t) = 0. Then there must exist
another valid demand policy P ′ such that p′t = b and OP ′ ≤ OP .

The proof of Theorem 5.1 can be found in Appendix D. Based on the theorem
we can conclude that it is always an optimal decision to replace a page p at time t
with cX(p, t) = 0, rather than a page with positive total I/O cost.

We propose another lemma, Lemma 5.4, to characterize an optimal cache re-
placement algorithm. The proof of Lemma 5.4 highly resembles the proof of Lemma
5.3 (which is presented in Appendix C) and thus is omitted in this thesis.
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Lemma 5.4 Let X be a page request trace, B0 and B′0 be two different initial cache
states where:

B′0 = T0 + {a}
B0 = T0 + {b}
for T0 ⊆ A, a, b /∈ T0, cX(a, 0) = 0, and cX(b, 0) = 0. We claim that for any

demand policy P , corresponding to X and B0, there must exist a demand policy P ′,
corresponding toX and B′0, such that OP ′ = OP .

Similar to Theorem 5.1, we propose another theorem, Theorem 5.2, based on
Lemma 5.4. Also, because the proof of the theorem is trivial and highly resembles
the proof of Theorem 5.1, it is omitted in this thesis. Based on Theorem 5.2 and
Theorem 5.1, we can conclude that if there are several pages with zero total I/O
cost, it does not matter which of these pages is replaced.

Theorem 5.2 Let C be a cache, X be a page request trace received by C, B0 be an
initial state of C, P be a valid demand policy for C,X, andB0. Suppose at time t
the policy P makes a decision to replace page a with cX(a, t) = 0, and at the same
time there is another cached page b with cX(b, t) = 0. Then there must exist another
policy P ′ such that p′t = b and OP ′ = OP .

The last lemma proposed by us to characterize an optimal algorithm is Lemma
5.5. Its proof can be found in Appendix E.

Lemma 5.5 Let X be a page request trace, B0 and B′0 be two different initial cache
states where:

B′0 = T0 + {a}
B0 = T0 + {b}
for T0 ⊆ A, a, b /∈ T0, dX(a, 0) < dX(b, 0), and cX(a, 0) ≥ cX(b, 0) > 0. For any

demand policy P , corresponding to X and B0, there must exist a demand policy P ′,
corresponding to X and B′0, such that OP ′ ≤ OP .

We propose another theorem, Theorem 5.3, based on Lemma 5.5. Because the
proof of the theorem is trivial and highly resembles the proof of Theorem 5.1, it is
omitted in this thesis.

Theorem 5.3 Let C be a cache, X be a page request trace received by C, B0

be an initial state of C, P be a valid demand policy for C,X, andB0. Suppose
that at time t the policy P makes a decision to replace page a with cX(a, t) > 0,
and at the same time there is another cached page b with dX(a, 0) < dX(b, 0) and
cX(a, 0) ≥ cX(b, 0) > 0. Then there must exist another policy P ′ such that p′t = b
and OP ′ ≤ OP .
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Based on Theorem 5.3, we can conclude that when a valid demand policy makes
replacement decisions between two cached pages, it is always an optimal decision
to replace the page with longer re-reference distance and equal or lower total I/O
cost.

Based on the lemmas and theorems we can conclude how an optimal algorithm
behaves in many cases. At any given time t, assuming that the cached page with
the longest re-reference distance is page x (if there are multiple pages with infinite
re-reference distance then choose either one of them as x), the cache must be in
one of the following four states:

• Case A: There is a set of cached pages with the same total I/O cost of zero.
In this case the optimal algorithm evicts one of the pages in the set during
the next replacement. The replaced page can be any one of the pages in the
set. (based on Lemma 5.3 and Lemma 5.4)

• Case B: All the cached pages have positive total I/O cost

– Case B1: The total I/O cost of page x is cX(x, t) == 1, then the optimal
algorithm evicts x (based on Lemma 5.5)

– Case B2: It must be cX(x, t) == 2

∗ Case B2a: All the pages in cache have the same I/O cost, which
is two, then the optimal algorithm evicts page x (based on Lemma
5.5)

∗ Case B2b: else this is the difficult case, which is not described by
the lemmas. We do not have the knowledge about how an optimal
algorithm behaves in this case.

Thus, the lemmas can determine the behavior of an optimal off-line algorithm
in all of the cases, except Case B2b. Please note that we will continue to discuss the
above cases in the following sections. In the next section we present the design of
write-aware algorithms that imitate the behavior of an optimal off-line algorithm.

5.5 Write-aware Replacement Algorithms

In this section we present how to use an optimal replacement algorithm’s charac-
teristics presented in the previous section to design write-aware algorithms.

5.5.1 A Write-aware Off-line Algorithm

First, we present a write-aware off-line replacement algorithm, which is illustrated
in Algorithm 5.1 and is referred to as PRO-IO. The PRO-IO algorithm makes

67



replacement decisions primarily based on the total I/O cost associated with cached
pages. Since the behavior of an optimal algorithm is partially characterized in the
previous section, we let the PRO-IO algorithm behave optimally whenever possible.
In the difficult case, Case B2b, we let the PRO-IO algorithm imitate the original
MIN algorithm, which evicts the page referenced furthest in the future by a read or
write request. Although this particular replacement decision may not be optimal, it
is used by the MIN to maximize the total number of cache hits under the read-only
workload model, and is a reasonable choice in this difficult case.

Algorithm 5.1 The PRO-IO Cache Replacement Algorithm

1: /*assume the cache is full at time t and a cache replacement is required */
2: if there is a page y in the cache and cX(y, t) == 0 then
3: evict page y /* evict either of the pages with zero total I/O cost */
4: else
5: evict the cached page with the longest re-reference distance
6: end if

Please note that for the entire Case B, the PRO-IO algorithm evicts the same
victim page, which is the page being read or written furthest in the future. However,
the decision is based on different rationales for different sub-cases. In Case B1 and
B2a, the decision is based on Lemma 5.5. In Case B2b, which is the difficult case,
the decision is based on our choice to let the PRO-IO algorithm imitate the existing
MIN algorithm.

In the next section we will show empirically that the PRO-IO algorithm out-
performs the MIN-RW algorithm in terms of minimizing the total number of I/O
operations.

5.5.2 Write-aware On-line Algorithms

In reality, only on-line algorithms can be used to manage the caches. In this section
we show how several existing write-oblivious on-line algorithms can be extended to
be write-aware. We consider the following three write-oblivious algorithms:

• LRU, which is a purely recency-based algorithm

• ARC, which uses both recency and frequency to make replacement decisions

• TQ, which is proposed in Chapter 3 and uses I/O types to make replacement
decisions

The current clean/dirty state of each cached page is known to an on-line al-
gorithm. However, the type and the time of a page’s next reference is unknown.
To extend on-line replacement algorithms to be write-aware, we need to rely on
some technique to predict the next reference type of the pages being accessed in
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the workload. We have used the technique presented in Chapter 3 (Sections 3.2
and 3.3), which uses the type of a page’s most recent request to predict the type of
the page’s next request. We also extend each on-line algorithm using its original
technique, (based on recency, frequency, or I/O types) to predict the pages’ next
reference time.

In many cases (Case A and CaseB1), the total I/O cost to replace a page
is a more important factor than the next reference time of the page in making
replacement decisions. The next reference time is only used to break ties if multiple
pages have the same positive total I/O cost (Case B2a) or in the difficult case (Case
B2b).

Write-aware LRU

With the above observations in mind, we extend the existing write-oblivious LRU
algorithm to include additional data structures, i.e., four sorted lists that contain
the clean pages currently in cache. After the extension, the LRU list contains only
the dirty pages. Each of the four lists being added corresponds to a particular
request type, and the clean pages are placed into one of the lists according to the
type of their most recent non-dsync requests. Within each type list, the pages are
sorted based on the time of their most recent non-dsync requests and are organized
in a tree-structure. The computational complexity is O(logN) where N is the
number of pages in the list. The reason to use a tree structure to sort the pages
is that the pages may move between the lists when they are requested, and the
sorting is based on each page’s exact request time (not the relative order). The
four request types are:

• READ, which predicts that the page’s next request is probably a write

• RECOV write, which also predicts that the page’s next request is probably a
write, but with a probability lower than that indicated by a READ

• REPLACE write, which also may be followed by a write request, but with a
probability lower than that indicated by a RECOV write

• SYNCH write, which also may be followed by a write request, but the prob-
ability is the lowest among those of the four request types

The rationales behind these predictions are based on our knowledge of DBMS
bufferpool management, which have been introduced in Chapter 2 and Chapter 3.
As we will see in the evaluation section, the accuracy of these predictions may vary
according to database configurations and, of course, this is not the only approach
to make these predictions. Other techniques can also be used to achieve the same
functionality.

We show the detail of the write-aware LRU algorithm, which is referred to as
LRU-IO, in Algorithm 5.2. The LRU-IO algorithm searches and evicts clean pages
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in the four type lists in the following order: READ list, RECOV list, REPLACE
list, and SYNCH list. Because the pages in these lists are clean pages, therefore,
the total I/O cost of replacement for these pages is zero or one. The decision to
evict the clean pages (in the four type-based clean lists) before dirty pages, and in
the above order, is consistent with the behavior of the optimal algorithm described
by Lemma 5.3 and Lemma 5.4 (to evict zero-cost pages whenever possible).

We can see that the LRU-IO algorithm favors clean pages over dirty pages
in page replacement (by evicting clean pages first). As a result, it may evict a
clean page with its next request as read (therefore the page’s total I/O cost is
one) before a dirty page with its next request as write (the page’s total I/O cost
is one, too). Making such a replacement may be inconsistent with the optimal
algorithm’s behavior described in Lemma 5.5, which is, if all the cached pages have
the same positive total I/O cost, then the optimal algorithm must evict the one
being referenced furthest in the future (which may not be a dirty page). However,
we argue that for the following reasons the LRU-IO’s decision to favor clean pages
is reasonable:

• We observe that it is rare for a second-tier cache to enter the state described
by Lemma 5.5, in which all the cached pages have the same positive total I/O
cost. Typically, a second-tier cache contains both clean and dirty pages, and
the cached page’s next request type can be either read, write, or dsync. In
such a common scenario the cached pages have different total I/O costs.

• LRU-IO is an on-line algorithm thus it cannot determine the total I/O cost
for the cached pages. When there is a clean page in the cache, we decide to
use a greedy approach, which evicts the clean pages (with zero or one total
I/O cost) before the dirty pages (with one or two total I/O cost), for LRU-IO
to make replacement decisions.

Based on the above observations we design the LRU-IO algorithm to emphasize
the optimal algorithm’s behavior described by Lemma 5.3 and to favor clean pages
in replacement. If the LRU-IO algorithm cannot find a clean page in the cache,
then it replaces the page at the LRU end of the LRU list (holding the dirty pages),
which, according to the LRU algorithm, will be accessed furthest in the future. This
decision is consistent with the optimal algorithm’s behavior described by Lemma
5.5 (in Cases B1 and B2a, to evict the page with the longest re-reference distance).

Write-aware ARC

We extend the ARC algorithm [64] to be write-aware by using a similar methodol-
ogy. The reason that we choose ARC rather than MQ (used in the evaluations of
Chapter 3) is that the MQ algorithm, as we have introduced in Chapter 3, requires
users to pre-configure a few important parameters. Furthermore, once those pa-
rameters are set, they do not automatically adapt to the changing workloads. On
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Algorithm 5.2 LRU-IO Algorithm

LRU-IO(p : page access)

1 /* assume the cache is full and it receives a request accessing page p */
2 if this is a dsync request of p
3 then if p is in the LRU list /* p is in cache and dirty */
4 then move p to one of the four type-based clean lists based on p.lastRequestType
5 and insert it at the right position based on p.lastRequestT ime
6 /* the pages are sorted based on their p.lastRequestT ime in each clean list */
7
8 return /* nothing more to be done */
9

10 /* this is a read or write request of p */
11 reset p.lastRequestT ime = currentT ime and p.lastRequestType = currentRequestType
12 if p is in cache /* cache hit */
13 then if p is in one of the four type-based clean lists /* p is clean */
14 then if this is a read request /* p remains clean */
15 then move p to the right position in the READ clean list
16 according to p.lastRequestT ime
17 else /* this is a write and p becomes dirty */
18 remove p from the clean list and add it to the MRU end of the LRU list
19
20 else /* p is dirty and currently in the LRU list */
21 move p to the MRU end of the LRU list
22
23 else /* cache miss, need a cache replacement */
24 search a clean page in the four type-based clean lists in the following order:
25 READ list, RECOV list, REPLACE list, and SYNCH list
26 if a clean page is found in a clean list
27 then remove the page with the oldest lastRequestT ime from the
28 clean list and the cache
29 else /* no clean page found in the cache, fall back to LRU */
30 synchronize the page at the LRU end of the LRU list to disk and
31 remove the page from the LRU list and the cache
32
33 /* now add p into the cache */
34 if this is a read request /* p is a clean page */
35 then insert p into the right position in the READ clean list
36 according to p.lastRequestT ime
37 else /* this is a write request and p is dirty */
38 add p to the MRU end of the LRU list
39
40
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the contrary, ARC algorithm does not have parameters and it can adapt itself (as
we will see in the following paragraph) based on the data access patterns in the
changing workloads.

Originally, ARC uses two separate queues, a recency based queue and a fre-
quency based queue, to manage the cached pages. The cache space allocation (i.e.,
the sizes of the two queues) are dynamically adjusted based on the workload. If the
re-reference distances of the pages are relatively short, which means a strong tem-
poral locality in the workload, the size of the recency based queue will be increased.
In contrast, if the temporal locality is hard to exploit the size of the frequency based
queue will be increased.

In ARC, the recency queue, as well as the frequency queue, are both LRU
queues. For each of these two queues, we add four I/O type-based clean page lists
as we did to the LRU algorithm, and move the clean pages into these lists according
to the pages’ most recent non-dsync requests. The two original LRU queues, i.e.,
the recency queue and frequency queue, contain only dirty pages. While making a
replacement decision, the extended ARC algorithm, which we refer to as ARC-IO,
will search for a clean page, first in the recency queue, then in the frequency queue.
The searches are conducted in the same order among the type lists as that described
in Algorithm 5.2. If no clean page is found in the cache, the ARC-IO algorithm
will fall back to the original ARC and will make replacement decisions accordingly.
The detail of ARC-IO is shown in Algorithm 5.3.

Write-aware TQ

The TQ algorithm, as proposed in Chapter 3, makes replacement decisions primar-
ily based on the I/O types of the pages’ most recent references. This fact makes
our extension work easier because we do not need to create clean list for each of
the request types. The extended write-aware TQ algorithm, which we refer to as
TQ-IO, searches for a clean page starting from the high priority queue, and then
from the low priority queue. We create a clean page list for each of the two priority
queues. The pages in the clean list are sorted based on the same method used to
sort the pages in the corresponding priority queue (i.e., using the LPR algorithm
for the high priority queue and using the LRU algorithm for the low priority queue).
If no clean page is found in the cache, the algorithm will fall back to the original
TQ and will make replacement decisions accordingly.

In the following section we evaluate the performance of the extended write-aware
algorithms and compare them with their original write-oblivious counterparts.

5.6 Evaluations

In the previous section we presented extensions to write-oblivious replacement al-
gorithms to make them write-aware. The objective is to reduce the total number
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Algorithm 5.3 ARC-IO Algorithm

1: /*assume the cache is full and requires a page replacement */
2: if there is a clean page in the recency based queue then
3: if there is a page in the READ clean list of the recency based queue then
4: evict page that has been read or written least recently
5: else if there is a page in the RECOV clean list of the recency based queue

then
6: evict page that has been read or written least recently
7: else if there is a page in the REPLACE clean list of the recency based queue

then
8: evict page that has been read or written least recently
9: else

10: /* there must be a page in the SYNCH clean list */
11: evict page that has been read or written least recently
12: end if
13: else if there is a clean page in the frequency based queue then
14: if there is a page in the READ clean list of the frequency based queue then
15: evict page that has been read or written least recently
16: else if there is a page in the RECOV clean list of the frequency based queue

then
17: evict page that has been read or written least recently
18: else if there is a page in the REPLACE clean list of the frequency based

queue then
19: evict page that has been read or written least recently
20: else
21: /* there must be a page in the SYNCH clean list */
22: evict page that has been read or written least recently
23: end if
24: else
25: /* there is no clean page in the cache */
26: evict a page according to the original ARC algorithm
27: end if
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Parameter Value Default Value Description

innodb file io threads 4 4 number of threads working on bufferpool page
cleaning

innodb buffer pool size 480MB 384MB bufferpool size
innodb log file size 60MB total log space be 25%-

100% of bufferpool size
single log file size

innodb log files in group 2 - number of log files, works together with inn-
odb log file size to determine the total log
space size

Table 5.1: MySQL Database Configuration Parameters

of I/Os generated by the second-tier cache. In this section, we evaluate the ef-
fectiveness of the write-aware algorithms in achieving the objective. We expect to
see that, compared with their original write-oblivious counterparts, the write-aware
algorithms can significantly reduce the total number of I/Os.

We conduct our evaluations by cache simulations. The extended algorithms, as
well as their original write-oblivious counterparts, are used to manage the simulated
second-tier cache, which is driven by a page request trace issued from a database
bufferpool. The total number of I/Os generated by the second-tier cache (including
both avoidable and unavoidable I/Os) is monitored for performance comparison.

5.6.1 Evaluations by Using MySQL Bufferpool I/O Traces

As described in Chapter 4, we modified the MySQL InnoDB storage engine to use
deferred synchronization of REPLACE bufferpool writes. With this modification,
the REPLACE writes issued by MySQL become unsynchronized. We collect several
bufferpool I/O traces issued to the lower level storage and use them to drive the
cache simulations. The traces include different types of requests, such as reads,
RECOV writes, REPLACE writes, and dsync requests.

5.6.1.1 Setup of Experiments

To collect the bufferpool I/O traces, we run a TPC-C workload kit against the
modified MySQL. The scale factor of the workload is set to be 10 (SF=10) and the
number of simulated users is set to be 100. The database size is about 1 GB and
it increases (between 10% to 50% depending on the database configuration) while
the workload is running. The bufferpool I/Os issued by MySQL are recorded in a
trace file after the bufferpool is warmed up. Some important database configuration
parameters are shown in Table 5.1, and a summary of the trace files is shown in
Table 5.2.

5.6.1.2 The Baseline Case

In Figure 5.4 we show the results of the baseline case, in which we use the MySQL
trace file 480mbuf 120mlog. In this case, the bufferpool size is set to be about 50%
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Trace Bufferpool Number of SYNCH REPLACE RECOV
Name Size Requests Writes Writes Writes Reads Dsyncs

120mbuf 120mlog 120 MB 47786295 0.00% 13.22% 0.00% 85.15% 1.63%
240mbuf 120mlog 240 MB 50176851 0.00% 26.77% 0.01% 68.23% 4.99%
480mbuf 120mlog 480 MB 17679140 0.00% 36.49% 8.64% 26.08% 28.79%
960mbuf 120mlog 960 MB 19498505 0.00% 0.82% 48.83% 0.71% 49.64%

Table 5.2: MySQL Bufferpool I/O Request Traces

of the initial database size.

MySQL Trace File 480mbuf_120mlog, Vary Second-tier Cache Size
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Figure 5.4: The Baseline Case, Vary Second-tier Cache Size

We can make the following observations from the results:

• As the second-tier cache size increases, the total number of I/Os generated
by the cache decreases, which is a reasonable result

• The PRO-IO offline algorithm, although not necessarily optimal, outperforms
other off-line and on-line algorithms. It shows the potential room for perfor-
mance gains by the other replacement algorithms.

• By using the proposed approach, the extended write-aware on-line algorithms
outperform their write-oblivious counterparts in most of the cases. However,
the difference is not as significant as we expected. In some cases, e.g., when the
simulated cache sizes are set to 40k and 50k, the extended ARC-IO algorithm
underperforms the write-oblivious original ARC. We will discuss this further
in the next part of this section.
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5.6.1.3 Sensitivity Analysis, Varying MySQL Bufferpool Size

We conduct a sensitivity analysis by varying the size of the first-tier cache, i.e., the
database bufferpool, to be about 12%, 24%, 48%, and 96% of the initial database
size. We use several MySQL trace files, namely 120mbuf 120mlog, 240mbuf 120mlog,
480mbuf 120mlog, and 960mbuf 120mlog. The evaluation results are presented in
Figure 5.5.
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Figure 5.5: Sensitivity Analysis, Vary MySQL Bufferpool Size

We can make the following observations from the results:

• As the the bufferpool size increases, the total numbers of I/Os generated by
the cache decreases. This is a reasonable result because the bufferpool can
absorb more page accesses when its size enlarges. Consequently, fewer pages
will need their requests to be served by the second-tier cache, and the cache
will generate fewer I/Os.

• As in the baseline evaluation, the PRO-IO algorithm outperforms other algo-
rithms, including the MIN-RW algorithm, in all the cases

• When the bufferpool size reaches an extreme large value, i.e., 960MB (about
96% of the initial database size), all the algorithms being studied have simi-
lar performance. This is because in this extreme case the database bufferpool
captures most of the page accesses. Consequently, most of the I/Os received
by the second-tier cache are unavoidable I/Os (i.e., first time reads and RE-
COV writes).
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trace file read rd rd rd rec rd rep replace rep rd rep rec rep rep

120mbuf 40690598 39706684 5 956206 6318625 956977 34 5234219
240mbuf 34236419 31412376 150 2788925 13434720 2791728 884 10362467
480mbuf 4610302 2233690 59121 2286694 6451274 2313573 122498 3577523
960mbuf 137631 13202 120092 115 160794 3467 105801 45361

Table 5.3: MySQL Trace Analysis

• Using the proposed approach does not bring significant benefits to the write-
aware on-line algorithms. In some cases, for example, when the bufferpool size
is set to be comparably small (120MB or 240MB), the write-oblivious LRU
and ARC algorithm even outperform their extended write-aware counterparts.

To explain why using the proposed approach (i.e., to imitate the optimal al-
gorithm) does not improve cache performance as expected, or even hurts it, we
conduct another analysis on the MySQL traces. The results are summarized in
Table 5.3.

In Table 5.3, we show the numbers of the READs and REPLACE writes, in
columns read and replace, respectively, for each trace. The number of times that a
READ request is followed by another request type, namely READ, RECOV, and
REPLACE, are shown in columns rd rd, rd rec, and rd rep, respectively. Similar
statistics for REPLACE writes can also be found in the table.

From these statistics we can see that the technique adopted by us to predict a
page’s next reference’s type (by using the page’s previous request type, which is
proposed in Chapter 3) does not work well for the MySQL traces. For example,
according to the technique, the next reference type following a READ request is
probably a write. However, in the 120mbuf case, that particular probability is only
2.35%. For another example, according to the technique, the next reference type
following a REPLACE write is probably a read. However, in the 240mbuf case, this
particular probability is only 20.78%. To summarize, the adopted technique fails
to predict the pages’ next reference types for these MySQL traces. Consequently,
without reasonably accurate predictions, the write-aware on-line algorithms cannot
determine the total I/O cost for the cached pages, and their imitations of the
optimal algorithm are based on the inaccurate information. In such a scenario,
using the proposed approach cannot generate performance gains.

The above observations contradict those we made in the research presented in
Chapter 3, in which the proposed technique is used to predict the next reference
types for the cached pages and the evaluations show promising performance gains.
Those experiments used traces from DB2, rather than MySQL. We conduct a sim-
ilar analysis for a group of DB2 traces and show the results in Table 5.4 and Table
5.5. Based on these statistics, we can see that although the request type predic-
tions are not completely accurate for these traces, the accuracy is much improved
compared to that of the MySQL traces. For example, in all five DB2 trace files, a
READ request predicts that there is at least a 63% possibility (in the 540k 4000
case) that the following request to the same page is a write (either a RECOV or a
REPLACE).
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Trace Bufferpool Number of SYNCH REPLACE RECOV
Name Size in blocks softmax Requests Writes Writes Writes Reads

60k 4000 300K (234 MB) 4000 42097520 0.05% 47.61% 0.00% 49.99%
300k 4000 300K (1.1 GB) 4000 43894440 0.00% 59.70% 0.57% 32.55%
540k 4000 300K (2.1 GB) 4000 72019329 0.03% 70.66% 0.55% 16.26%
300k 40 300K (1.1 GB) 40 56214748 0.00% 0.00% 42.89% 14.21%
300k 400 300K (1.1 GB) 400 43894440 0.00% 45.44% 2.21% 24.96%

Table 5.4: DB2 Bufferpool I/O Request Traces

trace file read rd rd rd rec rd rep replace rep rd rep rec rep rep

60k 4000 21045911 3097939 78 17534944 20042022 17409695 5 2035818
300k 4000 11155825 1437187 85592 9046763 20458269 9188692 52237 10607453
540k 4000 11711097 2543566 34961 7391702 50889685 8579872 60877 40546534
300k 40 7990047 898921 6652061 15 144 33 111 0
300k 400 10954211 1383230 188565 8808869 19943738 8974373 143084 10231643

Table 5.5: DB2 Trace Analysis

We reviewed the MySQL InnoDB storage engine code to find why the approach
proposed in Chapter 3 does not accurately predict request types in above eval-
uations. We found that, compared with DB2, MySQL behaves differently in its
bufferpool management:

• MySQL InnoDB storage engine uses the original LRU algorithm, which is
purely based on recency, to manage page replacement. Compared with a
generalized Clock algorithm, which is used by DB2 and is based on both
recency and frequency, the LRU algorithm is disadvantaged and makes more
wrong replacement decisions (i.e., evicts the pages being accessed sooner). Its
disadvantage is especially true when the bufferpool size is small, such as in
the 120mbuf 120mlog and 240mbuf 120mlog trace cases. This explains why
in such traces a large percentage of REPLACE writes are followed by another
REPLACE write. This is because the written pages are wrongly chosen as
replacement candidates and are accessed again by the queries soon after they
are written.

• MySQL InnoDB implements a mechanism to aggressively perform read-ahead
operations. It monitors page access patterns and makes read-ahead decisions
more frequently than necessary. In contrast, DB2 implements more sophisti-
cated read-ahead policies and only initiates the operations when necessary. A
TPC-C workload rarely needs the DBMS to initiate read-ahead operations.
This explains why we observe such a high percentage of READ request fol-
lowed by another READ for the same pages in the MySQL traces. This is
because the pages being read-ahead and put into the bufferpool are rarely ac-
cessed by the queries, and therefore will be replaced as clean pages (without
writes) before their next read request (accessed by queries or being read-ahead
again). This problem is especially severe when the bufferpool size is small,
because the read-ahead pages cannot stay for long in the bufferpool, and will
be evicted soon after they are brought into the bufferpool.
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• MySQL also issues bufferpool writes more aggressively than DB2 does. When
a page is chosen to be synchronized for either RECOV or REPLACE reasons,
its neighbors, i.e., pages with adjacent logical page ids, are also synchronized
to disk, regardless of their current states. In DB2 code, only the pages having
reached the page cleaning threshold are synchronized to disk.

Based on the above observations, we can conclude that although MySQL and
DB2 are designed based on similar principles, (e.g., ARIES algorithm [67], WAL
protocol [10, 30], asynchronous page cleaning mechanism), their different imple-
mentations make them behave differently in issuing bufferpool I/Os. Compared
with DB2, MySQL’s implementation is immature and it wastes I/O bandwidth by
issuing unnecessary read and write requests. This fact makes it difficult to use the
approach proposed in Chapter 3 to predict the future I/O types for the bufferpool
pages. In the following section we will show the evaluations based on DB2 traces.

5.6.2 Evaluations by Using DB2 Bufferpool I/O Traces

In addition to the evaluations using MySQL traces, we also used DB2 traces to
drive the simulated second-tier cache. The experimental setup and the results are
as follows.

5.6.2.1 Setup of Experiments

While working on the technique presented in Chapter 3, we collected I/O request
traces issued by the DB2 database bufferpool, which is driven by a TPC-C workload.
We used some of those traces to conduct our current evaluations. The configurations
of the DB2 database and the TPC-C workload are introduced in Section 3.4 and
in Table 3.1. The statistics of the DB2 traces can be found in Table 5.4 and Table
5.5.

However, because we did not modify the DB2 code to use our deferred write
synchronization approach (presented in Chapter 4), these traces need to be modified
to include dsync operations. DB2 issues all bufferpool writes as synchronized writes.
In the DB2 manual [42], users are recommended to use raw devices to bypass lower
level cache tiers in order to preserve data durability. Therefore, all bufferpool writes
issued by DB2 are synchronized writes.

Each entry of the DB2 I/O trace records the metadata of an I/O request issued
by the database bufferpool. The information includes the I/O types, the requested
page number, and a group of Log Sequence Numbers (LSN) associated with the
I/O and the requested page:

• dbLSN, which describes the most recent update made to the database buffer-
pool at the time the I/O request is issued
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• recLSN, which describes the oldest unsynchronized update carried by the
requested page, if the request is a write

• pageLSN, which describes the newest unsynchronized update carried by the
requested page, if the request is a write

During our modification of the DB2 traces, we assume that the bufferpool writes
are not synchronized writes. We instrument the traces by adding a set of dsync
requests immediately after each RECOV write to synchronize the following pages
to disks:

• the page carried by the RECOV write itself, because the pages carried by
the RECOV writes need to be synchronized to disks immediately after they
are issued, to guarantee the recovery time or the log space limitations to the
database users

• the pages carried by previously issued REPLACE writes, that have recLSNs
older than the recLSN of the page carried by the current RECOV write, and
have not yet been synchronized to disk

By adding the above dsync requests, we guarantee that, even though the RE-
PLACE writes are treated as unsynchronized writes by the second-tier cache, data
durability is still preserved in case of failure.

The above trace modification procedure is not perfect. To use the deferred write
synchronization approach, DB2 needs to be modified to record and to monitor the
previously issued REPLACE writes, in order to track the LSN Gap between the
oldest and the newest unsynchronized updates made to the bufferpool pages. This
requirement was discussed in Chapter 4. This is because a page cleaning session can
be triggered by an old recLSN of a page carried by a previously issued REPLACE
write (instead of the recLSNs carried by the bufferpool pages). In our modification
of the DB2 traces, we ignored this requirement for simplicity reasons.

However, we argue that this omission will only have a trivial impact on the
placement of dsync requests in the DB2 traces. The reason is that, for a database
driven by a TPC-C workload (which makes frequent updates to the data objects),
the updates made to the bufferpool are distributed across a large number of pages.
Therefore, the recLSNs of the pages in the bufferpool, and the recLSNs of the
pages carried by the previously issued REPLACE writes, are closely interleaved
in sequence. The omission of the recLSNs of the pages carried by the REPLACE
writes, while monitoring the LSN Gap, will not significantly delay the synchroniza-
tions of pages.

5.6.2.2 The Baseline Case

We use the trace file 300k 4000, which is collected by setting the bufferpool size to
be 50% of the initial database size and with a relatively large LSN Gap threshold.
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DB2 Trace File 300k_4000, Vary Second-tier Cache Size
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Figure 5.6: The Baseline Case, Vary Second-tier Cache Size

This means that there is a considerable percentage of unsynchronized REPLACE
writes (59.7%) in the trace. The results are shown in Figure 5.6. Based on the
results we can make the following observations:

• The extended write-aware on-line algorithms outperform their respective write-
oblivious counterparts. The improvements (in terms of the total numbers of
I/Os reduced) for the LRU, ARC, and TQ algorithms are as high as 41%,
26%, and 59%, respectively.

• The write-aware off-line algorithm, PRO-IO, outperforms all other on-line
and off-line algorithms (as expected). It shows potential performance gains
for other algorithms.

• As the second-tier cache size increases, the total number of I/Os generated
by the cache decreases. This is reasonable because the cache can avoid more
avoidable I/Os as its size gets larger.

• When the second-tier cache is extremely small, for example, 100K pages, the
proposed approach is of little help. This is because most of the pages need
to be evicted from the cache soon after they are cached, regardless of their
replacement costs, due to the extremely small cache size. There are fewer
opportunities for the proposed approach to help in this extreme scenario.

• When the cache size is extremely large, for example, 600K pages, all the
algorithms perform almost the same, except for the original TQ. This is also
a reasonable result. When the cache size is extremely large, most avoidable
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I/Os can be saved by the algorithms, with or without using the proposed
approach.

• In most of the cases (between the cases in which the second-tier cache size is
extremely small or large), the write-aware algorithms outperform their write-
oblivious counterparts.

• The TQ and TQ-IO algorithm perform badly in some cases (e.g. when the
cache size is set to 400K pages). We analyzed the results and found that in
these cases the TQ and TQ-IO algorithms generate many more eviction writes
than the other algorithms do. The statistics are shown in Figure 5.7. Similar
statistics that show TQ and TQ-IO generating large numbers of eviction
writes can also be observed in the results of the MySQL evaluations. Because
TQ algorithm was designed solely to maximize read hit ratio, it tends to
evict the pages whose next request type is probably a write. This practice
effectively decreases the ratio of write hits and results in more writes due to
dirty page evictions. However, when the cache size is extremely large (500K
and 600K pages), the TQ-IO algorithm can always find clean pages to evict
and it generates small numbers of evictions writes in these cases.

DB2 Trace File 300k_4000, Vary Second-tier Cache Size
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Figure 5.7: The Baseline Case, Vary Second-tier Cache Size

5.6.2.3 Sensitivity Analysis

We evaluated the sensitivity of the performance of the proposed approach to several
configurable parameters. First, we vary the size of the first-tier cache, the database
bufferpool, to be 10%, 50%, and 90% of the original database size, by choosing
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Figure 5.8: Sensitivity Analysis, Vary Bufferpool Size

specific traces corresponding to different bufferpool sizes. The simulated second-
tier cache size remains at 300K pages. The results are shown in Figure 5.8. We can
make the following observations based on the results:

• For on-line algorithms, the performance gaps between the write-aware and
the write-oblivious algorithms (e.g., ARC/ARC-IO and TQ/TQ-IO )are not
sensitive to the bufferpool size changes, except for the LRU and LRU-IO algo-
rithms. When bufferpool size gets larger (300K and 540K), the performance
gap between the write-aware LRU-IO and the write-oblivious LRU widens.
This is because these two algorithms are recency-based and when the buffer-
pool size is extreme small (60K), the temporal locality in the request trace
received by the second-tier cache can be used by both the algorithms to re-
duce the avoidable I/Os. However, when the bufferpool size gets larger and
the temporal locality in the request trace becomes more difficult to exploit,
using the proposed approach saves more I/Os for the write-aware LRU-IO.

• When the bufferpool size increases, the total number of I/Os generated by the
algorithms (managing the second-tier cache) also increases in most cases. This
is reasonable because as the bufferpool size increases, the DB2 database im-
proves its performance and can process more transactions in the same amount
of time. It issues more I/O requests to the trace file (the numbers are shown
in Table 5.4).

• One unexpected result is that the MIN-RW algorithm performs badly in the
540k 4000 trace case. It generates more I/Os than some on-line algorithms.
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OPT-IO MIN-RD LRU-IO LRU ARC-IO ARC TQ-IO TQ

TOTAL I/Os 15848056 36138625 25553429 36949588 23227747 26638983 24507090 26551668
READs 5412495 3046110 9286523 11087166 8268670 9104213 7745172 7419261

WRITEs 10435561 33092515 16266906 25862422 14959077 17534770 16761918 19132407

Table 5.6: DB2 540K 4000 Trace Case, Decomposed I/O Numbers

To find the explanation, we conduct an analysis on the results and show the
statistics in Table 5.6. The table shows the total numbers of I/Os, and the the
decomposed numbers of reads and writes, generated by different algorithms.
We can see that, although the MIN-RW algorithm performs the best in re-
ducing the reads, which is as expected, it generates a large number of writes
which hurts its performance. The result shows that to achieve the objective
of maximizing the read cache hits, the victim pages selected by the MIN-RW
algorithm are mostly dirty pages. This is reasonable because the DB2 page
cleaning threads are working actively to search for candidate victim pages in
the bufferpool and to place them into the flush list, even though the space
pressure is minimal in this case (with extreme large bufferpool size). These
pages are written out to the storage as REPLACE writes (composed of 71%
of the total I/O requests). However, due to the extremely large bufferpool
size, most of these would-be victim pages will not be evicted from the cache
and thus do not need to be READ again. In the second-tier cache, the off-
line MIN-RW algorithm knows the future and tends to evict these (not read
again) dirty pages for replacement.

We vary another important database parameter, the LSN Gap threshold, by
choosing different trace files (300k 40, 300k 400, and 300k 4000). The traces are
collected as the DB2 LSN Gap threshold parameter, i.e., softmax, is set to different
values. The larger the threshold, the less frequently DB2 will trigger a page cleaning
session for recovery reasons. As a result, the pages with old updates can stay dirty
in the bufferpool for a longer period of time.

The results are shown in Figure 5.9 and we can make the following observations:

• As that shown in the base-line case, the write-aware on-line algorithms out-
perform their respective write-oblivious counterparts in most of the cases
(with the only exception in the 300k 40 case for the ARC algorithm). The
improvements (in terms of the total numbers of I/Os reduced) for the LRU,
ARC, and TQ algorithms can be up to 36%, 26%, and 12%, respectively.

• The write-aware off-line algorithm, PRO-IO, still outperforms all other algo-
rithms.

• When the LSN Gap threshold value increases, the total number of I/Os gener-
ated by the algorithms decreases. This is because the bufferpool manager trig-
gers page cleaning sessions less aggressively for recovery reasons. Therefore,

84
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Figure 5.9: Sensitivity Analysis, Vary LSN Gap Threshold

it reduces the number of RECOV writes and the number of dsync requests.
At the same time, the REPLACE write synchronizations are deferred for a
longer period of time, and the dirty pages can stay longer in the second-tier
cache. This gives the write-aware algorithms more opportunities to reduce
the number of writes (because of more avoidable writes), and hence the total
number of I/Os. For this reason, we can see that the performance gains by
using the proposed approach become more significant.

• On the other hand, when the LSN Gap threshold becomes extremely small
(the 300k 40 trace case), the performance gaps between the write-aware and
the write-oblivious algorithms are not significant. The reason is that in such
an extreme case the bufferpool manager aggressively triggers page cleaning
sessions for recovery reasons, and generates a larger percentage of RECOV
writes (43% in the 300k 40 trace case). Because the updated bufferpool pages
are almost immediately written out (by RECOV writes) and become clean,
REPLACE writes are rarely needed in this case(less than 1% in the trace).
The write-aware algorithms cannot do much to reduce the total number of
I/Os if most of the writes are synchronized RECOV writes.

5.7 Summary

Our contributions in this research are three fold. First, we present a partial char-
acterization of an off-line, write-aware optimal replacement algorithm which min-
imizes the total number of I/Os, including both reads and writes, generated by
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second-tier caches. In doing so, we propose three lemmas to describe the optimal
algorithm’s behavior under many possible cache states. Second, based on the above
knowledge of the optimal algorithm, we propose to extend several write-oblivious
on-line replacement algorithms to be write-aware. An off-line, primarily total I/O
cost based replace algorithm is also proposed to show possible performance gains
for other algorithms. Third, we evaluated the effects of the proposed write-aware al-
gorithms by trace-driven cache simulations and discussed the experimental results.
The results show that by using the write-aware algorithms a second-tier cache can
reduce up to 50% of the total number of I/Os.
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Chapter 6

Related Work

In this thesis we focus on second-tier cache management to support DBMS work-
loads. As pointed out by other researchers [69, 29, 20, 110, 22], second-tier cache
management faces a different set of problems than those of the management of top-
tier caches. For example, second-tier caches usually find weak temporal localities
to exploit in their received requests. For another example, second-tier caches need
to be managed to achieve data exclusivity, which is not an issue in the first-tier
cache.

We observe two different trends in the proposed techniques for second-tier cache
management. The first trend is towards unified, or aggressively collaborative man-
agement of different cache tiers [81, 38]. The advantage is obvious. The cache
space, as a whole, can be allocated efficiently to avoid data redundancy; and the
temporal localities can be revealed and be exploited by all cache tiers. However,
there are expenses associated with the close collaboration among the cache tiers in
that it consumes resources, such as CPU time and I/O bandwidth.

The other trend is to manage different cache tiers independently, or using a
loosely collaborative approach [88, 91, 11]. Although the decentralized manage-
ment reduces the requirements of system resources, it is usually less efficient than
organizing multiple cache tiers as a whole. In this thesis we study second-tier cache
management from several different angles; and we survey the related work in the
following sections.

6.1 Increasing the Read Cache Hit Rate

As introduced earlier, the read requests issued by bufferpool managers are usually
synchronous with respect to the query executions; and the write requests are usually
issued asynchronously. This difference has been noted in the literature [69, 29, 20,
110, 22]. Consequently, various techniques have been proposed to increase the read
cache hits in the first-tier cache (i.e., the database bufferpool), as well as in the
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second-tier cache. The objective is to reduce the I/O latency endured by query
executions.

Chou et al. [24] observe that the data access patterns of database operations
are limited and are predictable. They argue that the bufferpool replacement algo-
rithm can take advantage of this observation. Bonilla-Lucas et al. [12] find that
under a TPC-C workload the references of the database pages are non-uniformly
distributed. On average, index pages are accessed more frequently than are the
table pages. Also, among all the pages, a small percentage (11.1%) of pages receive
about half (45.2%) of the total references. These facts indicate that bufferpool
managers have ample opportunities to take advantage of the temporal localities in
the page references.

However, as discovered in [69, 29, 20, 110, 22], it is a different scenario in the
second-tier cache. It is often difficult for the cache managers in the second-tier to
identify temporal locality in their workload. The reason is that the re-reference
distances of the data blocks cached in a second-tier cache are longer than those
of the blocks cached by the first-tier cache. To overcome this obstacle, different
techniques are proposed. One solution is to use frequency, as well as recency, to
capture the locality information [75, 51, 111, 48, 64, 7, 108, 43].

Zhou et al. [111] propose the MQ algorithm, which is specifically designed
for second-tier cache management. In MQ, the blocks are organized into multiple
queues based on their reference frequencies; and recency is only used to break the tie
within each individual frequency queue. Megiddo and Modha [64] present the ARC
algorithm, which partitions the cache space into two separate parts (recency-based
and frequency-based, respectively) and dynamically adjusts their sizes according to
the received workload.

Another technique, using a ghost cache, is also commonly adopted [111, 64, 57]
in second-tier cache management. Because the re-reference distances are usually
longer than those observed in the first-tier cache, the second-tier cache needs to
memorize a lengthy reference history, which usually contains a number of blocks
larger than the cache size. The ghost cache, a facilitating data structure, is set up
to catch the locality information for the pages that are out of cache.

The same problem also exists in processor research. To effectively identify the
temporal locality information in the L2 cache of processors, some researchers pro-
pose to use data mining techniques. Wong and Baer [105] propose that, because the
locality information is hard to identify in the L2 cache, extra data structures, such
as a locality table, are needed in addition to the LRU list. Li et al. [59] propose
to use data mining techniques to reveal the correlations among the requested data
blocks and to use the derived information to guide caching, prefetching, and data
layout.

Preserving data exclusiveness is another challenge for second-tier cache manage-
ment. Some researchers suggest unified or aggressively collaborative management
of the multiple cache tiers. Pai et al. [81] argue that operating systems can be
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modified to unify all the caching and buffing operations within the system. Ap-
plications, inter-process communication, file systems, and networks can therefore
share a single copy of data safely and concurrently. A similar approach is also
proposed by He et al. [38].

Cao et al. [16, 15] suggest giving the applications direct control over the file
system cache, for example, for deciding the replacement algorithms. The authors
claim that the applications can improve the overall cache hit rates based on their
knowledge of their own data access patterns. With the same consideration, Carrera
and Bianchini [18] propose to give file systems direct control over the disk controller
cache.

Jiang et al. [47] argue that in a client-server system the temporal locality of
data references is often analyzed by different clients or by different cache tiers
independently. This practice results in suboptimal placement and replacement of
data blocks. The authors propose a generalized protocol to facilitate global and
consistent locality quantification. Jiang and Zhang [49] propose to let the storage
client indicate to the storage server the temporal locality of the data blocks such
that the storage server cache can improve its hit rate. Sivathanu et al. [96] argue
that DBMSs can be instrumented to explicitly gather data access statistics and
then to pass these statistics to the storage systems. The authors claim that such
DBMS amendment is natural and simple to implement, and that it can help storage
systems in data placement and replacement.

While the above unified,or aggressively collaborative approaches can effectively
achieve data exclusiveness and identify temporal locality, some researchers argue
that the resource costs, in terms of CPU time and I/O bandwidth, are expensive
[88, 90, 22]. They propose to use lightweight, loosely collaborative techniques to
achieve the same performance goals. For example, Richardson et al. [88] propose a
hint-based lower tier cache management strategy, in which the files’ names, types,
and other attributes can be used as hints by the lower tier storage systems. The
authors observe that such attribute hints can provide useful information about data
reference patterns. A similar approach is proposed by Phunchongharn et al. [87],
who suggest to use the file metadata as hints to guide the caching policies and data
allocations on storage systems.

Sarkar and Hartman [90, 91] propose that, in a distributed client-server system,
the clients can use the approximate location information as hints to infer where to
look for the missed data blocks. Using such an approach reduces the load on the
network and the CPU usage on the server. The same hint-based cache coordination
is also found in processor architecture research. Source and target hints are attached
to the instructions to indicate the source and the destination cache levels where the
data being accessed is likely to reside. Beyls and D’Hollander [11] argue that the re-
reference distances of instructions can be used to determine the appropriate location
hint values. Arpaci-Dusseau et al. [4] propose that because the operating systems
are rigidly designed and implemented, the applications can take advantage of their
knowledge of the OS and can infer the content of the file system cache. Similar

89



approaches are also proposed in other work [13].

Our work, presented in Chapter 3 and published as [57], belongs to this hint-
based, decentralized cache management category. We argue that the types of the
I/Os issued by DBMS bufferpool managers can be used as hints to guide second-
tier cache replacement. As an extension, Liu et al. [61] propose a generic hint-
based algorithm for managing storage server caches. It automatically interpret
hints generated by storage clients and translates them into server caching policies.

In addition to using hints, other hierarchy-aware techniques have been proposed
by researchers. For example, some researchers [104, 23, 107, 34] propose demote or
promote based approaches to migrate blocks among the cache tiers and to achieve
data exclusiveness. In other work [97, 6], the storage servers are implemented
to infer the contents of upper level cache tiers to guide the servers’ cache replace-
ment. The authors claim that these lightweight and loosely collaborative techniques
can achieve similar performance without much consumption of CPU time and I/O
bandwidth.

6.2 Deferring Write Synchronization

To achieve concurrency and data consistency, most modern DBMS systems, such as
DB2 [42, 103, 102], Oracle [77], and SQL Server [65], use the ARIES algorithm [67]
to manage concurrency control, crash and recovery. To comply with the ARIES
algorithm, Write Ahead Logging (WAL) protocol [10, 30] is widely adopted by
DBMS implementations. However, in case of a crash and recovery, it is not feasible
to replay all the log entries previously recorded. To limit recovery time, and log
space consumption, most commercial DBMS, such as DB2, Oracle, and SQL Server,
apply the fuzzy checkpointing technique [66] to synchronize the aged updates from
bufferpools to permanent storage. By doing this, the numbers of log entries that
need to be replayed during recoveries can be reduced.

As presented in Chapter 4, we find that the current implementations of buffer-
pool write synchronization are more conservative than necessary and therefore waste
I/O bandwidth. We propose to extend the current file system interface to let DBMS
defer synchronizations of some bufferpool writes. By using our approach the second-
tier cache can reduce the number of writes issued to storage devices.

Write optimization has long been a topic in caching research, and various tech-
niques have been proposed by researchers. Log-structured file systems [80, 89, 54,
44], are proposed to reduce the number of writes. The idea is that the updates
made to a file system can be written to a log structure on disk sequentially, and
then be synchronized to the data and metadata blocks at a later time. Therefore,
some blocks can be written at once sequentially. It also reduces the number of seeks
and rotations performed by the disk and allows for fast crash recovery.

Soft update [33, 63, 32], is another technique designed to reduce the number
of writes issued by file systems. Ganger et al. [33, 32] observe that the writes of
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metadata issued to storage devices need not be synchronized immediately. Their
synchronization can be deferred to a later time when the corresponding data blocks
are flushed to disks. By using soft update, the number of writes to update the
on-disk metadata can be reduced significantly.

Carson and Setia [19] observe that bulk arrivals of the writes generated by pe-
riodic synchronizations of file system caches may cause I/O traffic jams. Mogul
[66] proposes to use the fuzzy checkpointing in file systems to avoid the peak con-
sumption of I/O bandwidth caused by periodic flushes of dirty blocks. In such
an approach, each dirty block in the cache is associated with an age attribute to
describe the time when the oldest unsynchronized update is made to the block.
When the gap between the age and the current time reaches a certain threshold,
the block will be flushed to disk. To address the same problem, i.e., bulk arrivals
of cache synchronization writes, Batsakis et al. [8] suggest flushing dirty pages
opportunistically when the I/O bandwidth is not saturated.

Wu et al. [107] propose that while using the DEMOTE approach [104], the
writes of the blocks being demoted should be deferred and the blocks should be
cached in a specific buffer in the storage client. This gives the client cache oppor-
tunities to achieve higher hit rates and to do better I/O scheduling. Olston and
Widom [74] propose that, when the I/O bandwidth is a bottleneck, the synchro-
nization of the cached data should be performed with a finer granularity. Only a
selected few objects should be refreshed under such a situation to save I/O band-
width. The selection of the objects to refresh should be based on their importance
and the deviations between their in-cache and on-disk copies.

Flash drives are being used more widely as their price drops and their perfor-
mance increases. Because their operations do not include seeks and rotations, the
flash drives are usually exploited to reduce read and write latencies endured by the
applications. Debnath et al. [26] suggest to defer the writes issued to spinning hard
disks and detour them to dedicated flash drives where the writes can be performed
sequentially. At a later time, multiple updates can be applied in bulk to the hard
disks. A similar approach is presented by Li et al. [58], in which flash drives are
used as buffers for DBMS writes. Based on the same observation, but in a quite
opposite approach, Soundararajan et al. [98] suggest using a hard disk tier as a
write cache to log the updates made to flash drives.

A similar idea, which uses solid state storage to cache writes, is proposed by
Chen and Ng et al. [21, 71]. The authors propose to integrate non-volatile storage
into a file system cache so that the writes can be buffered there to reduce the number
of physical writes performed by disks. Data durability can be guaranteed in case
of a system crash or a power failure. With the same consideration, Akyürek and
Salem [2] suggest integration of non-volatile RAM into DBMS bufferpools, where
it can be used to cache dirty blocks. The synchronizations of the dirty blocks can
be deferred without jeopardizing data durability.

Some research discusses the desired time length for which writes should be
deferred. Chen [21] determines an optimal value for the deferral intervals. Muntz et
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al. [70] propose that the writes should be deferred until the I/O bandwidth becomes
idle and should yield to other I/O requests with higher priorities. Nightingale et
al. [72] suggest that write synchronizations can be deferred until the write effects
need to be exposed to the users.

In Chapter 4, we argue that the bufferpool writes are synchronized more conser-
vatively than necessary and we propose to defer synchronization of the REPLACE
writes to a later time. Dhamankar et al. [28, 27] make the same observations during
their study of commodity disk caches. They propose using the existing Windows
system call, FLUSH CACHE (whose Unix counterpart is fsync), to synchronize the
entire disk caches only when it is necessary. Their approach is similar to the rec
test case studied by us in Chapter 4.

We make another observation that the current POSIX-compliant file system in-
terfaces are not flexible enough to perform fine-grained synchronizations for buffer-
pool writes. Other researchers also identify weaknesses of the POSIX standards
for supporting DBMS workloads. One argument [106, 99] is that the POSIX stan-
dards do not offer transaction guarantees to applications and therefore cannot pre-
serve consistency for database transactions. The proposed solution is to extend
the POSIX-compliant file system interface to be transaction-aware and to provide
applications with additional functions, such as concurrency control and write or-
dering. Similar ideas can also be found in other work [94, 25, 92, 31]. Hall and
Bonnet [37] observe that read and write requests issued by bufferpool managers
should be given different properties in caching and I/O scheduling in lower cache
tiers. Read requests, because they are on the critical path of query executions,
should be given priorities higher than those of the writes. The authors also suggest
to modify operating systems to include prioritized I/O operations.

Guo [36] observes that the concurrency and consistency requirements of the ap-
plications may vary under different scenarios. The author proposes to implement
a more flexible caching scheme in which the applications can explicitly express
their concurrency and consistency requirements. The use of these requirements
will reduce resource consumption at storage servers. Sears and Brewer [93], pro-
pose another approach regarding concurrency and consistency control. Instead of
page-oriented management, they propose a finer-grained concurrency control mech-
anism, which is object-oriented. They claim that the new technique reduces com-
munication costs among applications, log managers, and buffpool managers. Our
approach differs from these in that it does not relax the requirements of transaction
consistency, yet still saves I/O bandwidth.

6.3 Reducing Total Number of I/Os

In Chapter 5, we argue that maximizing read cache hits is not the sole objective
of second-tier cache management. When I/O bandwidth becomes a performance
bottleneck, the goal should be changed to minimizing the total number of I/Os,
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including both reads and writes. In addition, under such a situation the cache
replacement algorithm should take all the I/O related factors, such as clean or dirty
page states and read or write request types, into account while making replacement
decisions.

Similar observations have been made by other researchers. Jeong and Dubois
[45] notice that cache misses can generate different types of costs, such as time
latency, power consumption, bandwidth consumption, or any other properties at-
tached to a cache miss. Also, the costs may be non-uniformly distributed across
cached blocks. In practice, the replacement algorithms should take asymmetric cost
distributions into account when doing replacements.

Lee et al. [55] make the same observations during their study on non-volatile
RAM (NVRAM). They note that the read hit ratio, which has been a commonly
adopted metric to measure cache performance, is no longer adequate for caching
with NVRAM. Instead of using the read hit ratio, the total number of disk accesses
should be counted to assess user perceived cache performance. Lee et al. also argue
that because of the changed performance objective, the existing MIN algorithm [9]
may no longer be optimal.

Flash drives, as they are being used more widely, are attracting more research
effort due to their asymmetric read and write performance. To write a single block
to a flash drive, a contiguous area of blocks needs to be erased in advance. This
characteristic makes random writes more expensive than sequential writes or read
operations. Much work has been proposed to reduce random writes issued to flash
drives. Park et al. [85] suggest dividing the cache space into separate partitions
to serve reads and writes respectively. The write cache size can be dynamically
adjusted according to access patterns to effectively absorb logical writes. Similar
ideas are proposed by other researchers. Jin et al. [50] suggest that the pages being
updated most frequently should be kept in cache to reduce the number of physical
writes performed by flash drives. Moshnyaga et al. [68] notice that mobile devices,
such as cell phones, rely on a DRAM cache tier, between the processor and the
flash drive, to buffer data blocks and instructions. The authors suggest to keep the
updated blocks in the DRAM as long as possible to reduce the number of writes
issued to the underlying flash drive.

Lee, Koh, and Bahn [56] propose detecting access patterns of data blocks and
placing them accordingly to different types of storage media. For example, blocks
with frequent random writes should be migrated from flash drives to hard disks,
where they can be served more efficiently. He and Veeraraghavan [39] present a
similar technique, in which the columns of database tables are organized into groups,
according to their update frequencies, and are stored separately. Therefore, a single
bufferpool page can contain more updates and the updates can be synchronized to
flash drives simultaneously. In general, the total number of random writes can be
reduced.

Kim, Whang, and Song [52] suggest writing only page-differentials as logs into
flash drives. The writes can be organized into sequences and the page synchroniza-
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tions can be performed later in bulk. Zhou and Meng [109] present a novel idea
to convert random writes into sequential operations. The authors suggest inserting
unmodified clean blocks into dirty blocks of a write sequence so that the writes
can be performed sequentially. Hu et al. [40] argue that applications could be
re-designed to minimize the intermediate data, such as temporary database tables,
to reduce unnecessary writes issued to flash drives.

Park et al. [84, 83] propose exploring read and write access histories separately,
so that future references of each I/O type can be predicted more precisely. Canim
et al. [14] observe that high-end Solid State Disks (SSD) being marketed today do
not show noticeable performance penalties for random versus sequential writes due
to their internal write buffering. Therefore, the costs of read and write operations
become symmetric. However, these high-end devices are more expensive and are
not widely used.

Asymmetric costs of cache misses are also recognized in the studies of object-
oriented database systems (OODB). Due to the variable sizes of data objects, the
cost of replacing an object varies. Park et al. [82] propose extending the previous
page-based replacement algorithms to include the asymmetric costs of objects. The
authors propose a new metric, the I/O cost per unit time and unit space, to quantify
the replacement costs of cached objects. Norvag and Bratbergsengen [73] propose
using log-structured file systems to write only the delta-object, a piece of data
which contains only the changes from the last version of the object, to disks. Thus,
I/O bandwidth can be saved and the disk service time can also be improved due
to the reduction of seeks and rotations. Similar approaches are also found in Web
caching research [17, 5], where the Web documents also vary in size.

Due to the asymmetric costs of cache misses, cost-aware replacement algorithms
have been proposed [35, 46, 53, 100, 78]. Gill and Modha [35] observe that there are
two factors determining the cost of write caching. The first factor is the write hit
rate and the second factor is the spatial locality of the written blocks. The higher
the write hit rate, the fewer number of writes are issued by the cache. The better the
spatial locality, the shorter the service time is for the writes. The authors propose
a cache replacement algorithm that dynamically adapts the balance between the
temporal and spatial localities of the cached blocks to improve write efficiency.

Some researchers [46, 86, 53, 60, 100, 78] observe that evicting clean pages is
less expensive than evicting dirty pages, because the clean pages can be discarded
immediately without writes. Tang and Meng [100] propose a replacement algorithm
that dynamically selects clean or dirty pages to evict according to page access pat-
terns. The key idea is that if the number of clean (dirty) pages in the cache exceeds
a particular threshold, then the next victim should be a clean (dirty) page. A
similar approach is taken by Ou and Härder [78], who propose making replacement
trade-offs between clean and dirty pages in a controlled fashion, i.e., depending on
the read to write cost ratio and on the data access patterns.

Beside I/O bandwidth utilization, power consumption is another type of cost
generated by cache misses. Zhu and Zhou [112] propose a novel approach to min-
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imize power consumption of storage systems. The authors argue that the overall
disk idle time can be raised if the frequently accessed data blocks are organized
and are placed on a dedicated set of disks (the cold blocks are placed on remaining
disks). Ou et al. [79] observe that due to the expensiveness of the random writes, an
ideal strategy to reduce the power consumption of flash drives is to reduce writes,
especially random writes, issued from the cache. The authors argue that the exist-
ing write-oblivious replacement algorithms should be modified to defer the writes
of dirty blocks.

Koltsidas and Viglas [53] claim that the replacement cost for a cached block
should take into account both the clean or dirty block state and the I/O costs of
different types of storage device (such as magnetic disk or flash drive, on which the
block is stored). The authors propose a replacement algorithm which divides the
cache into two separate parts, i.e., a recency based segment, which is managed by
LRU; and a I/O cost based segment, which is managed according to the blocks’
I/O costs on their respective storage medias. The victim page will be selected
dynamically from the two segments based on the segments’ sizes.

With the presence of different cost types and asymmetric cost distribution
among cache misses, maximizing read cache hits no longer guarantees optimal cache
performance. Some research has been done to pursue new optimal algorithms under
such scenarios. Jeong and Dubois [46] propose an off-line, cost-sensitive replace-
ment algorithm in the context of non-uniformly distributed miss costs. The main
idea is to express all possible replacement sequences (for a particular request trace)
in a huge tree structure. The size of the tree exponentially increases at each level
(i.e., each request) and the optimal replacement algorithm is represented by the
branch with the smallest accumulated cost. To deal with the huge search space,
the authors provide several techniques to prune the unnecessary branches. The
authors admit that this tree search approach is not guaranteed to find the optimal
replacement policy, but the resulting off-line policy can be used to provide a lower
bound on the achievable costs of realistic on-line algorithms. They also argue that
the derived policy outperforms the existing MIN algorithm in terms of the new
replacement metric.

Our research presented in Chapter 5 is based on similar observations, namely
that cached pages have different replacement costs. However, our work is different
from the related work in the following ways:

• In our research we proposed a read-write cache model which generalizes the
cache behavior under a read-write workload. Other related work does not
adopt the same (or similar) approach to give a complete cache model to
describe the cache behavior under a read-write workload.

• We characterized the behavior of an optimal, off-line algorithm in many cases
(except the difficult case B2b). To the best of our knowledge, this is the first
work to describe the characteristics of an optimal cache replacement algorithm
under the read-write workload/cache model.
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Chapter 7

Conclusions and Future Work

In this thesis we present our work on second-tier cache management to support
DBMS workloads. Our research focuses on increasing the read hit ratio in second-
tier caches, which directly shortens I/O latency endured by query executions; and
on reducing the number of writes issued by the cache, which relieves I/O bandwidth
contentions between reads and writes.

We make novel observations about DBMS systems and second-tier cache man-
agement. Based on these observations, we propose several techniques to improve
cache performance. Our evaluations show promising performance gains and some
of the proposed techniques have been implemented in an open source operating
system and in an open source DBMS.

7.1 Summary of Contributions

The ultimate goal of our research on second-tier cache management is to minimize
the I/O latency endured by query executions, such that the DBMS performance
can be improved in terms of both query response time and query throughput. We
conduct our research from two particular angles: the rationale behind different
types of bufferpool I/Os and the relationship between bufferpool reads and writes.

First of all, we find that the types of DBMS bufferpool I/Os indicate different
bufferpool states, and states of the pages carried by the I/Os. Furthermore, the I/O
type information can be used by second-tier caches as hints to infer the future access
patterns of the pages being accessed. The cache then can adjust its caching policy
based on these access patterns. Accordingly, we make the following contributions:

• We observe that the different bufferpool I/O types indicate different buffer-
pool states (e.g., whether the bufferpool is under space pressure or whether
there is a page cleaning session being performed) and different states of the
pages carried by the I/Os (e.g., whether the page is going to be evicted by
the bufferpool). This type information can be used by second-tier caches as
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hints to predict the future access patterns of the pages and to guide their
cache replacements.

• We propose extend the current hint-oblivious replacement algorithms to be
hint-aware. We also present a new, primarily hint-based algorithm, Type
Queue. Our trace-driven (DB2 I/O traces collected by running a TPC-C
workload) evaluations show that the hint-aware algorithms perform signifi-
cantly better than the hint-oblivious algorithms.

In addition, our research also focuses on the relationship between bufferpool
reads and writes. Although DBMS bufferpool writes are usually issued asyn-
chronously with respect to query executions, they still compete with reads for I/O
bandwidth. Therefore, the contention for I/O bandwidth still exist between reads
and writes, and by reducing writes we can shorten the read latency endured by
query executions. Our first effort to reduce writes can be summarized as follows:

• We observe that current bufferpool write synchronizations are performed more
conservatively than necessary. REPLACE writes, unlike RECOVER writes,
do not need immediate synchronizations and their synchronizations can be
deferred to a later time. The deferral leads to more write cache hits, which
can save I/O bandwidth and result in better I/O scheduling.

• Current POSIX-compliant file system interfaces implemented by operating
systems, such as Unix and Windows, are not flexible enough to support dy-
namic requirements of bufferpool write synchronizations. We extend the in-
terfaces to include a finer-grained, page-based synchronization operation to
provide applications with more flexibilities in controlling their write synchro-
nizations.

• The proposed new I/O operation is implemented in Linux and we also modify
the MySQL InnoDB storage engine to use it. Our evaluations show promis-
ing performance gains in terms of increased transaction throughput, with
increases up to 27% for a TPC-C workload.

While we study the relationship between bufferpool reads and writes, we make
the following observation: maximizing read hit ratios should not be the sole ob-
jective of cache management. Under some circumstances, for example when I/O
bandwidth becomes the performance bottleneck for a DBMS, reducing the total
number of I/Os issued by the cache can lead to better database performance. Our
contributions in this part of work are:

• We present a partial characterization of an off-line, write-aware optimal re-
placement algorithm which minimizes the total number of I/Os, including
both reads and writes, issued by second-tier caches. In doing so, we propose
several lemmas to describe the optimal algorithm’s behavior under many pos-
sible cache states.
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• Based on our knowledge of the optimal algorithm, we extend several write-
oblivious on-line replacement algorithms to be write-aware. We also propose
an off-line, primarily total I/O cost based replacement algorithm. These
write-aware algorithms are designed to imitate the optimal algorithm’s be-
havior whenever possible.

• We evaluated the effects of the proposed write-aware algorithms by trace-
driven (DB2 and MySQL I/O traces collected by running TPC-C workloads)
cache simulations. The results show that by using the write-aware algorithms
a second-tier cache can reduce the total number of I/Os by as much as 50%.

7.2 Future Work

Our work can be extended in the following directions:

• In Chapter 5 we present a partial characterization of an off-line optimal al-
gorithm which minimizes the total number of I/Os generated by second-tier
caches. Possible future work in this direction is to extend the partial char-
acterization to a fully described optimal algorithm. The key is to solve the
difficult case (Case B2b) that we encounter. In doing so, the current replace-
ment cost (i.e., the total I/O cost), which is associated with each cached page
and which is used in making replacement decisions, need to be rethought.

• In Chapter 4 we implement our proposed technique (i.e., deferring synchro-
nization of writes by using dsync operations) in Linux and in the MySQL Inn-
oDB storage engine. As possible future work, the other approaches proposed
by us, such as the hint-based replacement algorithms (proposed in Chapter
3) and the write-aware replacement algorithms (proposed in Chapter 5), can
also be implemented in second-tier caches, such as a file system cache or a
storage server cache, and be evaluated accordingly. This will give us insight
on the effectiveness of these approaches in more realistic scenarios.

• Several approaches have been proposed in this thesis to improve second-tier
cache performance. However, they are presented and evaluated individually.
Possible future work should conduct a study on the interaction and collab-
oration of these approaches. For example, in Chapter 3, we propose that a
page whose most recent request is a REPLACE write has a higher priority to
be cached than a page whose most recent reference is a read does. However,
quite likely, the page being read recently is a clean page, which, according to
the approach proposed in Chapter 5, should be kept in cache at the expense of
the dirty pages (such as the one recently accessed by a REPLACE write). As
a possible future work, such contradicting factors should be studied and even-
tually a unified second-tier cache management scheme should be developed
for practical use.
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Appendix A

Proof of the Correctness of
Lemma 5.1

We adopt the same assumptions and definitions made in Chapter 5 and restate the
Lemma 5.1 as follows:

• The unavoidable I/Os, which include first time reads and writes of pre-clean
pages, are independent of the cache replacement algorithm. They will occur
regardless of which algorithm is used to manage the cache.

Also, in Figure A.1 we re-draw the diagram presented in Figure 5.1, which will
be used in the proof.

Proof:

By definition the unavoidable I/Os include the following two types of I/Os. We
prove that each of these two types of I/Os is generated independently of the cache
replacement algorithm:

• first time reads: In Figure A.1, this type of I/O is associated with the tran-
sition arc, which is generated by a read request, from the Init (initial) State
to the C (Clean) state. For the following reasons, these read I/Os are deter-
mined by the request trace and are unavoidable regardless of which algorithm
is used to mange the cache:

– all pages being requested in the trace start from the Init state in Figure
A.1

– by the definition of the Read-Write Cache Model (in Section 5.2), a page
whose first request is a read will transit from Init state to Clean state,
which results in one read I/O.
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Figure A.1: States, Transitions, and I/Os of Cache Pages

• writes to synchronize pre-clean pages: In Figure A.1, this type of I/Os is
associated with the following two transition arcs:

– the transition arc from the P (Pre-clean) state to the E (Evicted) state,
which is generated by a cache replacement. It indicates the page is
chosen by the replacement algorithm as the victim page and is evicted
from the cache. Because the page is dirty, a write I/O is required to
synchronize its content to lower level storage.

– the transition arc from the P (Pre-clean) state to the C (Clean) state,
which is generated by a dsync request in the trace. It indicates the
page is synchronized to the lower level storage by a dsync operation and
becomes clean.

Intuitively, it seems that the write associated with the former transition,
from the P (Pre-clean) state to the E (Evicted) state, is dependent on the
replacement algorithm. However, from Figure A.1 we can observe that once a
page enters the pre-clean state, it will stay there until it is evicted (from P to
E) or it is synchronized by a dsync request (from P to C). By the definition
of the pre-clean state, a dsync request of the page must be in the trace.
Assuming the time of the next dsync request is t then:

– if the page is chosen as a victim page and be replaced before time t then
a write must be issued to synchronize the page to lower level storage at
the replacement time
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– otherwise the page will be synchronized to lower level storage at time t
by the dsync request

We can conclude that a write I/O for a pre-clean page is unavoidable and
that the write is independent of the replacement algorithm.

The proof has been completed.
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Appendix B

Proof of the Correctness of
Lemma 5.2

We adopt the same assumptions and definitions made in Chapter 5 and restate
Equation 5.2 and Lemma 5.2 as follows:

• Equation 5.2: OP =
L∑

t=1

cX(pt, t)

• Lemma 5.2: The result of Equation 5.2, OP , is equal to the total number of
avoidable I/Os generated by the cache, which is managed by using replace-
ment policy P .

Also, in Figure B.1 we re-draw the diagram presented in Figure 5.1, which will
be used in the proof.

Proof:

We discuss read I/Os and write I/Os separately in the following sections.

Read I/Os

In Figure B.1 it is seen that the read I/Os can only be generated by two state
transitions:

• From state I to state C

• From state E to state C
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Figure B.1: States, Transitions, and I/Os of Cache Pages

The read I/O associated with the state transition from I to C is a first time
read and by Definition 5.5 is unavoidable. In the definition of cX(p, t) (Definition
5.6) this unavoidable read I/O is not counted in any of the clauses.

The read I/O associated with state transition from E to C indicates that the
page was evicted from the cache and now it is being referenced again by a read
request. This read I/O is dependent on the caches replacement algorithm because
the page was chosen as a victim by the algorithm and was evicted from the cache.
The read is an avoidable I/O and is counted in Clause 1 and Clause 3 of Definition
5.6. The above two clauses cover all the three states (i.e., Clean, Pre-clean, and
Dirty but not pre-clean) of cached pages.

Write I/Os

In Figure B.1 it is seen that the write I/Os can only happen when the page is dirty
(i.e., in either D or P state) and it is to be evicted (during the transitions to E
state) or to be synchronized (during the transitions to C state). Therefore, a write
I/O can only be associated with the following arcs (state transitions):

• From state D to state E

• From state P to state E

• From state P to state C
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The write I/O associated with the state transition from P to C or from P to
E is the write to synchronize a pre-clean page. By Definition 5.5 such writes are
unavoidable. In the definition of cX(p, t) (Definition 5.6) this unavoidable write
I/O is not counted by any of the clauses.

The write I/O associated with state transition from D to E indicates that the
page was evicted from the cache. The write is an avoidable I/O and is counted in
Clause 4 of Definition 5.6.

Based on the definition of the Read-Write Cache Model (in Section 5.2), there
is no other types of I/Os (other than avoidable read, unavoidable read, avoidable
write, and unavoidable write) generated by the cache. We have shown that Equa-
tion 5.2:

• only counts avoidable I/Os

• does not count unavoidable I/Os

In addition, by definition the equation only counts each avoidable I/O generated
by the cache once.

We have proved that the result of Equation 5.2, OP , is equal to the total number
of avoidable I/Os generated by the cache, which is managed by using replacement
policy P .
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Appendix C

Proof of the Correctness of
Lemma 5.3

We adopt the same assumptions and definitions made in Chapter 5 and restate the
Lemma 5.3 as follows:

Let X be a page request trace, B0 and B′0 be two different initial cache states
where:

B′0 = T0 + {a}
B0 = T0 + {b}
for T0 ⊆ A, a, b /∈ T0, cX(a, 0) > 0, and cX(b, 0) = 0. We claim that for any

demand policy P , corresponding to X and B0, there must exist a demand policy
P ′, corresponding to X and B′0, such that OP ′ ≤ OP .

Before starting the formal proof of Lemma 5.3, we give some intuitions about
the basic ideas used in the proof:

• The two different initial cache states, namely B0 and B′0, can be seen as two
possible states of one cache, after the cache makes two different replacement
decisions (evicting page a, which leads to cache state B0, or evicting page b,
which leads to cache state B′0). Except for this one page difference (caching
page a or page b), other cache contents (which are denoted as set T0) in the
two possible cache states are the same. The request trace received by the
cache after it makes this particular replacement decision (evicting a or b) is
denoted as X.

• The basic idea used in the proof is that, given an initial state B0 and a
request trace X, no matter which valid demand replacement policy one can
devise (denoted as P ), we can always construct another valid demand policy
(denoted as P ′ and based on B′0 and X), which performs at least as well as
P . Therefore we can claim that evicting page b, which has a zero total I/O
cost, is always an optimal replacement decision.
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Our proof is based on a case by case analysis. To help readers better understand
it, we also show a diagram for each case derived in the proof. The diagrams show
that at some important time points, the total I/O costs of the replacement decisions
made by the two different policies (P and P ′). They help the readers to conclude
that policy P ′ always generates less or equal total number of avoidable I/Os than
policy P does.

Proof:

Given P , we construct P ′. Suppose page a first occurs in the request trace X at
time ia, and b at ib. If either page a or b does not occur in X, then set ia or ib equal
to L+ 1. We consider the following three cases:

Case A. ia < ib. In this case we consider the following three subcases:

Case A1. pj = b where pj is the first occurrence of b in P , and 1 ≤ j < ia. Here
we set p′k = pk, for 1 ≤ k ≤ L and k 6= j, and p′j = a. This results in Bt = Tt + {b}
and B′t = Tt + {a}, for 0 ≤ t ≤ j− 1 and Bt = B′t, for j ≤ t ≤ L. Since pages a and
b are both not referenced up to time j, it should be clear that P ′ is a valid demand
policy.

Also, since in P we have costs cX(a, 0) and cX(b, j), and in P ′ we have costs
cX(b, 0) and cX(a, j). We also know that cX(a, 0) = cX(a, j) and cX(b, j) = cX(b, 0),
therefore OP ′ = OP . The above total I/O costs of page replacements made by policy
P and P ′ are illustrated in Figure C.1.

cX(a,0)P

cX(b,0)P’

0 j ia ib

cX(b,j)

cX(a,j)

Case A1

time

cX(a,0) = cX(a,j) and cX(b,0) = cX(b,j)

Figure C.1: Total I/O Costs of Page Replacements in Policy P and P’

Case A2. pia = b where pia is the first occurrence of b in P . In this case we set
p′k = pk, for 1 ≤ k ≤ L and k 6= ia. We also set p′ia = φ. As in Case A1, P ′ is a
valid demand policy.

Also, since in P we have costs cX(a, 0) and cX(b, ia), and in P ′ we have costs
cX(b, 0) and c(φ, ia), we also know that cX(a, 0) > c(φ, ia) and cX(b, ia) = cX(b, 0),
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therefore OP ′ < OP . The above total I/O costs of page replacements in policy P
and P ′ are illustrated in Figure C.2.

cX(a,0)P

cX(b,0)P’

0 ia ib

cX(b,ia)

cX(ø,ia)

Case A2

time

cX(a,0) > cX(ø,ia) and cX(b,0) = cX(b,ia)

Figure C.2: Total I/O Costs of Page Replacements in Policy P and P’

Case A3. pk 6= b, for 1 ≤ k ≤ ia. Then we must have pia = c where c is a page
other than a or b. At time t = ia the states of the caches are given by:

B′ia = Tia + {a}
Bia = Tia + {b}+ {a} − {c}
which can also be written as follows:

B′ia = [Tia + {a} − {c}] + {c}
Bia = [Tia + {a} − {c}] + {b}
We consider the following two sub-subcases:

Case A3A. If dX(c, ia + 1) < dX(b, ia + 1). Let ic be the time of the first
occurrence of c in X, then ic < ib. In this sub-subcase we consider three more
sub-sub-subcases.

Case A3A1. If pj = b where pj is the first occurrence of b in P and l < ic, then
we set p′k = pk, for ia + 1 ≤ k ≤ L where k 6= j and p′j = c.

Since in P we have costs cX(a, 0), cX(c, ia), and cX(b, j), and in P ′ we have costs
cX(b, 0), c(φ, ia), and cX(c, j), therefore OP ′ < OP . The above total I/O costs of
page replacements in policy P and P ′ are illustrated in Figure C.3.

Case A3A2. If pj = b where pj is the first occurrence of b in P and j = ic, then
we set p′k = pk, for ia + 1 ≤ k ≤ L where k 6= j and p′j = φ.

Also, since in P we have costs cX(a, 0), cX(c, ia), and cX(b, ic), where in P ′ we
have costs cX(b, 0), c(φ, ia), and c(φ, ic), therefore OP ′ < OP . The above total I/O
costs of page replacements in policy P and P ′ are illustrated in Figure C.4.

Case A3A3. If pj = b where pj is the first occurrence of b in P and j > ic, we
must have pic = d, where d is a page other than b, or c (it could be a, because
ia < ic). At time t = ic the states of the caches are given by:
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cX(a,0)P

cX(b,0)P’

0 ia ic ib

cX(c,ia)

cX(ø,ia)

Case A3A1

j

cX(b,j)

cX(c,j)

time

cX(a,0) > cX(ø,ia), cX(c,ia) = cX(c,j), and cX(b,j) = cX(b,0) 

Figure C.3: Total I/O Costs of Page Replacements in Policy P and P’

cX(a,0)P

cX(b,0)P’

0 ia ib

cX(c,ia)

cX(ø,ia)

Case A3A2

j=ic

cX(b,ic)

cX(ø,ic)

time

cX(a,0) > cX(ø,ia), cX(c,ia) > cX(ø,ic), and cX(b,ic) = cX(b,0) 

Figure C.4: Total I/O Costs of Page Replacements in Policy P and P’

B′ic = Tic + {c}
Bic = Tic + {b}+ {c} − {d}
Which can also be written as follows:

B′ic = [Tic + {c} − {d}] + {d}
Bic = [Tic + {c} − {d}] + {b}
Please note that this is the same case as we met at Case A3. Since ic is strictly

larger than ia, and the length of trace X is finite, thus this situation can only occur
a finite number of times.

Also note that P ′ is valid as far as it is specified and that p′1, ..., p
′
ic generates

fewer I/Os than p1, ..., pic . Some of the total I/O costs of page replacements in
policy P and P ′ are illustrated in Figure C.5.

Case A3B. If dX(c, ia + 1) > dX(b, ia + 1), we set p′k = pk for 1 < k < ia− 1 and
p′ia = φ and consider two more sub-sub-subcases:

Case A3B1. If pj = b, where pj is the first occurrence of b in P and j < ib, we
set p′k = pk, for ia + 1 ≤ k ≤ L, and k 6= j and p′j = c. Here B′t = Bt, for j < t < L,
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cX(a,0)P

cX(b,0)P’

0 ia ib

cX(c,ia)

cX(ø,ia)

Case 3A3

ic

cX(d,ic)

cX(ø,ic)

time

cX(a,0) > cX(b,0), cX(c,ia) > cX(ø,ia), and cX(d,ic) > cX(ø,ic)

Figure C.5: Total I/O Costs of Page Replacements in Policy P and P’

and as in Case A1, we see that OP ′ < OP still holds. Some of the total I/O costs
of page replacements in policy P and P ′ are illustrated in Figure C.6.

cX(a,0)P

cX(b,0)P’

0 ia ib ic

cX(c,ia)

cX(ø,ia)

Case A3B1

j

cX(b,j)

cX(c,j)

time

cX(a,0) > cX(ø,ia), cX(c,ia) = cX(c,j), and cX(b,j) = cX(b,0) 

Figure C.6: Total I/O Costs of Page Replacements in Policy P and P’

Case A3B2. If pj 6= b, for j < ib, we set p′k = pk, for ia + 1 ≤ k ≤ L, and
k 6= ib and p′ib = c. Again we have B′t = Bt , for ib < t < L, and we note that
pib = φ, whereas p′ib = c. However, since pia = c and p′ia = φ, therefore in P we
have costs cX(a, 0), cX(c, ia), and c(φ, ib), and in P ′ we have costs cX(b, 0), c(φ, ia),
and cX(c, ib). The relation OP ′ < OP still holds. The above total I/O costs of page
replacements in policy P and P ′ are illustrated in Figure C.7.

Case B: ib < ia. In this case we consider the following two subcases:

Case B1. pj = b where pj is the first occurrence of b in P , and 1 ≤ j < ib. Here
we set p′k = pk, for 1 ≤ k ≤ L and k 6= j, and p′j = a. This results in Bt = Tt + {b}
and B′t = Tt + {a}, for 0 ≤ t ≤ j− 1 and Bt = B′t, for j ≤ t ≤ L. Since pages a and
b are both not referenced up to time j, it should be clear that P ′ is a valid demand
policy.

Also, since in P we have costs cX(a, 0) and cX(b, j), and in P ′ we have costs
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cX(a,0)P

cX(b,0)P’

0 ia ic

cX(c,ia)

cX(ø,ia)

Case A3B2

j=ib

cX(ø,ib)

cX(c,ib)

time

cX(a,0) > cX(b,0), cX(c,ia) = cX(c,ib), and cX(ø,ib) = cX(ø,ia)

Figure C.7: Total I/O Costs of Page Replacements in Policy P and P’

cX(b, 0) and cX(a, j), therefore OP ′ = OP . The above total I/O costs of page
replacements in policy P and P ′ are illustrated in Figure C.8.

cX(a,0)P

cX(b,0)P’

0 j ib ia

cX(b,j)

cX(a,j)

Case B1

time

cX(a,0) = cX(a,j) and cX(b,0) = cX(b,j)

Figure C.8: Total I/O Costs of Page Replacements in Policy P and P’

Case B2. pj 6= b, for j < ib. In this case we set p′k = pk, for 1 ≤ k ≤ L and
k 6= ib. We also set p′ib = a. As in Case B1, P ′ is a valid demand policy.

Also, since in P we have costs cX(a, 0) and c(φ, ib), and in P ′ we have costs
cX(b, 0) and cX(a, ib), therefore OP ′ = OP . The above total I/O costs of page
replacements in policy P and P ′ are illustrated in Figure C.9.

Case C: ib = ia = L+ 1. Here we consider the following two sub-cases:

Case C1. pj = b where pj is the first occurrence of b in P . We set p′k = pk,
for 1 ≤ k ≤ L and k 6= j; and set p′j = a. This results in Bt = Tt + {b} and
B′t = Tt + {a}, for 0 ≤ t ≤ j − 1; and Bt = B′t, for j ≤ t ≤ L.

Also, since in P we have costs cX(a, 0) and cX(b, j), and in P ′ we have costs
cX(b, 0) and cX(a, j), therefore OP ′ = OP . The above total I/O costs of page
replacements in policy P and P ′ are illustrated in Figure C.10.
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cX(a,0)P

cX(b,0)P’

0 ib ia

cX(ø,ib)

cX(a,ib)

Case B2

time

cX(a,0) = cX(a,ib) and cX(ø,ib) = cX(b,0)

Figure C.9: Total I/O Costs of Page Replacements in Policy P and P’

cX(a,0)P

cX(b,0)P’

0 j

cX(b,j)

cX(a,j)

Case C1

time

cX(a,0) = cX(a,j) and cX(b,j) = cX(b,0)

Figure C.10: Total I/O Costs of Page Replacements in Policy P and P’

Case C2. b does not occur in P . We set p′k = pk, for 1 ≤ k ≤ L. This results in
Bt = Tt + {b} and B′t = Tt + {a}, for 0 ≤ t ≤ L.

Also, since in P we have cost cX(a, 0) and in P ′ we have cost cX(b, 0), therefore
OP ′ < OP . The above total I/O costs of page replacements in policy P and P ′ are
illustrated in Figure C.11.

To summarize, the above cases are complete to describe the states of the cache
managed by policy P . In all the cases we can construct a demand policy P ′ such
that OP ′ ≤ OP .

Proof of Lemma 5.3 has been completed.
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cX(a,0)P

cX(b,0)P’

0

Case C2

time

cX(a,0) > cX(b,0)

Figure C.11: Total I/O Costs of Page Replacements in Policy P and P’
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Appendix D

Proof of the Correctness of
Theorem 5.1

We adopt the same assumptions and definitions made in Chapter 5 and restate the
Theorem 5.1 as follows:

• Let C be a cache, X be a page request trace received by C, B0 be an initial
state of C, P be a valid demand policy for C,X, andB0, and at time t the
policy P makes a decision to replace page a with cX(a, t) > 0, and at the
same time there is another cached page b with cX(b, t) = 0, then there must
exist another policy P ′ such that OP ′ ≤ OP .

Proof:

Given P we construct P’ corresponding to C,X, andB0, such that p′i = pi for
1 ≤ i ≤ t. We know that the two policies, P and P ′ generate the same number of
I/Os during the time period from 1 to t:∑t

i=1 cX(pi, i) =
∑t

i=1 cX(p′i, i)

Treat Bt and B′t as the two initial cache states in Lemma 5.3, treat the remaining
trace xt+1, xt+2, ..., xL as the request trace in Lemma 5.3, and treat the remaining
policy pt+1, pt+2, ..., pL as the given policy in in Lemma 5.3, then based on Lemma
5.3, we can always find another policy P ′′ such that∑L

i=t+1 cX(p′′i , i) ≤
∑L

i=t+1 cX(pi, i)

Let p′i = p′′i for t + 1 ≤ i ≤ L, then the construction of policy P ′ has been
completed and we have:∑L

i=0 cX(p′i, i) ≤
∑t

i=0 cX(pi, i)

The proof has been completed.
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Appendix E

Proof of the Correctness of
Lemma 5.5

We adopt the same assumptions and definitions made in Chapter 5 and restate the
Lemma 5.5 as follows:

Let X be a page request trace, B0 and B′0 be two different initial cache states
where:

B′0 = T0 + {a}
B0 = T0 + {b}
for T0 ⊆ A, a, b /∈ T0, dX(a, 0) < dX(b, 0), and cX(a, 0) ≥ cX(b, 0) > 0. For any

demand policy P , corresponding to X and B0, there must exist a demand policy
P ′, corresponding to X and B′0, such that OP ′ ≤ OP

Proof:

Given P , we construct P ′. Suppose page a first occurs in the request trace X at
time ia, and b at ib. Thus,ia < ib ≤ L is assumed. If either page a or b does not
occur in X, then set ia or ib equal to L+ 1. We consider following three cases:

Case 1. pj = b where pj is the first occurrence of b in P , and 1 ≤ j < ia. Here
we set p′k = pk, for 1 ≤ k ≤ L and k 6= j, and p′j = a. This results in Bt = Tt + {b}
and B′t = Tt + {a}, for 0 ≤ t ≤ j− 1 and Bt = B′t, for j ≤ t ≤ L. Since pages a and
b are both not referenced up to time j, it should be clear that P ′ is a valid demand
policy.

Also, since in P we have costs cX(a, 0) and cX(b, j), and in P ′ we have costs
cX(b, 0) and cX(a, j), therefore OP ′ = OP . The above total I/O costs of page
replacements in policy P and P ′ are illustrated in Figure E.1.

Case 2. pia = b where pia is the first occurrence of b in P . In this case we set
p′k = pk, for 1 ≤ k ≤ L and k 6= ia. We also set p′ia = φ. As in Case 1, P ′ is a valid
demand policy.
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cX(a,0)P

cX(b,0)P’

0 j ia ib

cX(b,j)

cX(a,j)

Case 1

time

cX(a,0) = cX(a,j) and cX(b,j) = cX(b,0)

Figure E.1: Total I/O Costs of Page Replacements in Policy P and P’

Also, since in P we have costs cX(a, 0) and cX(b, ia), and in P ′ we have costs
cX(b, 0) and c(φ, ia), therefore OP ′ < OP . The above total I/O costs of page
replacements in policy P and P ′ are illustrated in Figure E.2.

cX(a,0)P

cX(b,0)P’

0 ia ib

cX(b,ia)

cX(ø,ia)

Case 2

time

cX(a,0) > cX(ø,ia) and cX(b,ia) = cX(b,0)

Figure E.2: Total I/O Costs of Page Replacements in Policy P and P’

Case 3. pj 6= b, for 1 ≤ j ≤ ia. Then we must have pia = c where c is a page
other than a or b. At time t = ia the states of the caches are given by:

B′ia = Tia + {a}

Bia = Tia + {b}+ {a} − {c}

which can also be written as follows:

B′ia = [Tia + {a} − {c}] + {c}

Bia = [Tia + {a} − {c}] + {b}

We consider the following two subcases:

Case 3A. If dX(c, ia +1) < dX(b, ia +1). Let ic be the time of the first occurrence
of c in X, then ic < ib. In this subcase we consider three more sub-subcases.
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Case 3A1. If pj = b where pj is the first occurrence of b in P and j < ic, then
we set p′k = pk, for ia + 1 ≤ k ≤ L where k 6= j and p′j = c.

Since in P we have costs cX(a, 0), cX(c, ia), and cX(b, j), and in P ′ we have costs
cX(b, 0), c(φ, ia), and cX(c, j), therefore OP ′ < OP . The above total I/O costs of
page replacements in policy P and P ′ are illustrated in Figure E.3.

cX(a,0)P

cX(b,0)P’

0 ia ib

cX(c,ia)

cX(ø,ia)

Case 3A1

j

cX(b,j)

cX(c,j)
ic

time

cX(a,0) > cX(ø,ia), cX(c,ia) = cX(c,j), and cX(b,j) = cX(b,0) 

Figure E.3: Total I/O Costs of Page Replacements in Policy P and P’

Case 3A2. If pj = b where pj is the first occurrence of b in P and j = ic, then
we set p′k = pk, for ia + 1 ≤ k ≤ L where k 6= j and p′j = c.

Also, since in P we have costs cX(a, 0), cX(c, ia), and cX(b, ic), where in P ′ we
have costs cX(b, 0), c(φ, ia), and c(φ, ic), therefore OP ′ < OP . The above total I/O
costs of page replacements in policy P and P ′ are illustrated in Figure E.4.

cX(a,0)P

cX(b,0)P’

0 ia ib

cX(c,ia)

cX(ø,ia)

Case 3A2

j=ic

cX(b,ic)

cX(ø,ic)

time

cX(a,0) > cX(ø,ia), cX(c,ia) > cX(ø,ic), and cX(b,ic) = cX(b,0) 

Figure E.4: Total I/O Costs of Page Replacements in Policy P and P’

Case 3A3. If pj = b where pj is the first occurrence of b in P and j > ic, we
must have pic = d, where d is a page other than b, or c (it could be a, because
ia < ic). At time t = ic the states of the caches are given by:

B′ic = Tic + {c}
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Bic = Tic + {b}+ {c} − {d}

Which can also be written as follows:

B′ic = [Tic + {c} − {d}] + {d}

Bic = [Tic + {c} − {d}] + {b}

Please note that this is the same case as we met at Case 3. Since ic is strictly
larger than ia, and the length of trace X is finite, thus this situation can only occur
a finite number of times. Also note that P ′ is valid as far as it is specified and that
p′1, ..., p

′
ic generates less I/O cost than p1, ..., pic . Some of the total I/O costs of page

replacements in policy P and P ′ are illustrated in Figure E.5.

cX(a,0)P

cX(b,0)P’

0 ia ib

cX(c,ia)

cX(ø,ia)

Case 3A3

ic

cX(d,ic)

cX(ø,ic)

time

cX(a,0) > cX(b,0), cX(c,ia) > cX(ø,ia), and cX(d,ic) > cX(ø,ic)

Figure E.5: Total I/O Costs of Page Replacements in Policy P and P’

Case 3B. If dX(c, ia + 1) > dX(b, ia + 1), we set p′k = pk for 1 < k < ia − 1 and
p′ia = φ and consider two more sub-subcases:

Case 3B1. If pj = b, where pj is the first occurrence of b in P and j < ib, we set
p′k = pk, for ia + 1 ≤ k ≤ L, and k 6= j and p′j = c. Here B′t = Bt, for j ≤ t ≤ L,
and as in Case 1, we see that OP ′ < OP still holds. Some of the total I/O costs of
page replacements in policy P and P ′ are illustrated in Figure E.6.

Case 3B2. If pj 6= b, for j < ib, we set p′k = pk, for ia+1 ≤ k ≤ L, and k 6= ib and
p′ib = c. Again we have B′t = Bt , for ib < t < L, and we note that pib = φ, whereas
p′ib = c. However, since pia = c and p′ia = φ, therefore in P we have costs cX(a, 0),
cX(c, ia), and c(φ, ib), and in P ′ we have costs cX(b, 0), c(φ, ia), and cX(c, ib). The
relation OP ′ ≤ OP still holds. The above total I/O costs of page replacements in
policy P and P ′ are illustrated in Figure E.7.

To summarize, the above cases are complete to describe the states of the cache
managed by policy P . In all the cases we can construct a demand policy P ′ such
that OP ′ ≤ OP .

Proof of Lemma 5.5 has been completed.

117



cX(a,0)P

cX(b,0)P’

0 ia ic

cX(c,ia)
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Case 3B1

j

cX(b,j)

cX(c,j)
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time

cX(a,0) > cX(ø,ia), cX(c,ia) = cX(c,j), and cX(b,j) = cX(b,0) 

Figure E.6: Total I/O Costs of Page Replacements in Policy P and P’

cX(a,0)P

cX(b,0)P’

0 ia ic

cX(c,ia)

cX(ø,ia)

Case 3B2

ib

cX(ø,ib)

cX(c,ib)

time

cX(a,0) > cX(b,0), cX(c,ia) = cX(c,ib), and cX(ø,ib) = cX(ø,ia)

Figure E.7: Total I/O Costs of Page Replacements in Policy P and P’
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[2] Sedat Akyürek and Kenneth Salem. Management of partially safe buffers.
IEEE Trans. Comput., 44(3):394–407, March 1995. 91

[3] American National Standards Institute (ANSI). ANSI SCSI Standard, x3.131
- 1994 (r1999) edition, 1999. 33, 34

[4] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Information and
Control in Gray-Box Systems. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01), pages 43–56, October 2001. 89

[5] O. Bahat and A.M. Makowski. Optimal replacement policies for nonuniform
cache objects with optional eviction. In INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications. IEEE
Societies, pages 427 – 437 vol.1, 2003. 94

[6] Lakshmi N. Bairavasundaram, Muthian Sivathanu, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. X-RAY: A Non-Invasive Exclusive
Caching Mechanism for RAIDs. In Proceedings of the 31st Annual Interna-
tional Symposium on Computer Architecture (ISCA ’04), June 2004. 90

[7] Sorav Bansal and Dharmendra S. Modha. CAR: Clock with adaptive re-
placement. In Proc. of the 3nd USENIX Symposium on File and Storage
Technologies (FAST’04), March 2004. 88

[8] Alexandros Batsakis, Randal Burns, Arkady Kanevsky, James Lentini, and
Thomas Talpey. AWOL: an adaptive write optimizations layer. In Proceedings
of the 6th USENIX Conference on File and Storage Technologies, FAST’08,
pages 67 – 80, 2008. 14, 54, 91

[9] L. A. Belady. A study of replacement algorithms for a virtual-storage com-
puter. IBM Systems Journal, 5(2):78–101, 1966. 55, 93

[10] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency
control and recovery in database systems. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1987. 8, 79, 90

119



[11] Kristof Beyls and Erik H. D’Hollander. Reuse distance-based cache hint
selection. In Proceedings of the 8th International Euro-Par Conference, pages
265–274, 2002. 4, 87, 89

[12] R. Bonilla-Lucas, P. Plachta, A. Sachedina, D. Jimenez-Gonzalez, C. Zuzarte,
and J.-L. Larriba-Pey. Characterization of the data access behavior for TPC-
C traces. In Proceedings of the 2004 IEEE International Symposium on Per-
formance Analysis of Systems and Software, pages 115–122, 2004. 88

[13] Nathan C. Burnett, John Bent, Andrea C. Arpaci-dusseau, and Remzi H.
Arpaci-dusseau. Exploiting gray-box knowledge of buffer-cache management.
In Proceedings of the USENIX Annual Technical Conference (USENIX 02),
pages 29–44, 2002. 90

[14] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Kenneth A.
Ross, and Christian A. Lang. SSD bufferpool extensions for database systems.
Proc. VLDB Endow., 3(1-2):1435–1446, September 2010. 94

[15] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Implementation
and performance of integrated application-controlled file caching, prefetching,
and disk scheduling. ACM Trans. Comput. Syst., 14(4):311–343, November
1996. 89

[16] Pei Cao, Edward W. Felten, and Kai Li. Implementation and performance
of application-controlled file caching. In PROCEEDINGS OF THE FIRST
SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMEN-
TATION, pages 165–178, 1994. 4, 89

[17] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy Caching Algorithms.
In PROCEEDINGS OF THE 1997 USENIX SYMPOSIUM ON INTERNET
TECHNOLOGY AND SYSTEMS, pages 193–206, 1997. 94

[18] Enrique V. Carrera and Ricardo Bianchini. Improving Disk Throughput in
Data-Intensive Servers. In Proceedings of the 10th International Symposium
on High Performance Computer Architecture, HPCA ’04, pages 130–141,
2004. 4, 89

[19] Scott D. Carson and Sanjeev Setia. Analysis of the periodic update write
policy for disk cache. IEEE Transactions on Software Engineering, 18(1):44–
54, January 1992. 91

[20] Kerhong Chen, Richard B. Bunt, and Derek L. Eager. Write caching in
distributed file systems. In Proccedings of the 15th IEEE International Con-
ference on Distributed Computing Systems, pages 457–466, 1995. 1. 3, 15, 87,
88

[21] Peter M. Chen, Wee Teck Ng, Gurushankar Rajamani, and Christopher M.
Aycock. The Rio File Cache: Surviving Operating System Crashes. In Proc.

120



7th Intl. Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 74–83, 1996. 91

[22] Zhifeng Chen, Yan Zhang, Yuanyuan Zhou, Heidi Scott, and Berni Schiefer.
Empirical evaluation of multi-level buffer cache collaboration for storage sys-
tems. In Proceedings of the International Conference on Measurements and
Modeling of Computer Systems (SIGMETRICS’05), pages 145–156, 2005. 3,
4, 15, 25, 87, 88, 89

[23] Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction based cache placement
for storage caches. In Proceedings of the USENIX 2003 Annual Technical
Conference, pages 269–282, June 2003. 15, 90

[24] Hong-Tai Chou and David J. DeWitt. An evaluation of buffer management
strategies for relational database systems. In Proceedings of the 11th Interna-
tional Conference on Very Large Data Bases (VLDB), pages 127–141, August
1985. 88

[25] Andrew de los Reyes, Christopher Frost, Eddie Kohler, Mike Mammarella,
and Lei Zhang. The KudOS architecture for file systems. In Proceedings of
the twentieth ACM symposium on Operating systems principles, SOSP ’05,
pages 1–14, 2005. 92

[26] Biplob Debnath, Mohamed F. Mokbel, David J. Lilja, and David Du. De-
ferred updates for flash-based storage. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), MSST ’10,
pages 1–6, 2010. 91

[27] Robin Dhamankar and Hanuma Kodavalla. InProcDiskSim: testing database
recovery on commodity disk drives. In Proceedings of the Second International
Workshop on Testing Database Systems, DBTest ’09, pages 1:1–1:6, 2009. 92

[28] Robin Dhamankar, Hanuma Kodavalla, and Vishal Kathuria. Enforcing
Database Recoverability on Disks that Lack Write-Through. Technical Re-
port MSR-TR-2008-36, Microsoft, March 2008. 92

[29] Michael J. Franklin, Michael J. Carey, and Miron Livny. Global memory
management in client-server database architectures. In Proc. International
Conference on Very Large Data Bases (VLDB’92), pages 596–609, 1992. 3,
15, 25, 87, 88

[30] Michael J. Franklin, Michael J. Zwilling, C. K. Tan, Michael J. Carey, and
David J. DeWitt. Crash recovery in client-server exodus. In Proceedings of
the 1992 ACM SIGMOD international conference on Management of data,
SIGMOD ’92, pages 165–174, 1992. 8, 79, 90

121



[31] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew Reyes, Shant
Hovsepian, Andrew Matsuoka, and Lei Zhang. Generalized file system depen-
dencies. In Proc. of ACM Symposium on Operating System Principles, pages
307–320, 2007. 92

[32] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules, and Yale N.
Patt. Soft updates: a solution to the metadata update problem in file systems.
ACM Trans. Comput. Syst., 18(2):127–153, May 2000. 90

[33] Gregory R. Ganger and Yale N. Patt. Metadata update performance in file
systems. In Proceedings of the 1st USENIX conference on Operating Systems
Design and Implementation, OSDI ’94, pages 49–60, 1994. 90

[34] Binny S. Gill. On multi-level exclusive caching: offline optimality and why
promotions are better than demotions. In Proceedings of the 6th USENIX
Conference on File and Storage Technologies, FAST’08, pages 49–65, 2008.
15, 90

[35] Binny S. Gill and Dharmendra S. Modha. Wow: wise ordering for writes -
combining spatial and temporal locality in non-volatile caches. In Proceedings
of the 4th conference on USENIX Conference on File and Storage Technolo-
gies - Volume 4, pages 129–142, 2005. 94

[36] Hongfei Guo. ”Good Enough” Database Caching. PhD thesis, University of
Wisconsin at Madison, 2005. 92

[37] Christoffer Hall and Philippe Bonnet. Getting priorities straight: improving
Linux support for database I/O. In Proceedings of the 31st international
conference on Very large data bases, VLDB ’05, pages 1116–1127, 2005. 92

[38] Xubin He, Li Ou, Martha J. Kosa, Stephen L. Scott, and Christian En-
gelmann. A unified multiple-level cache for high performance storage sys-
tems. International Journal of High Performance Computing and Networking,
5(1/2):97–109, November 2007. 4, 87, 89

[39] Zhen He and Prakash Veeraraghavan. Fine-grained updates in database man-
agement systems for flash memory. Information Sciences, 179(18):3162–3181,
August 2009. 93

[40] Jingtong Hu, Chun Jason Xue, Wei-Che Tseng, Qingfeng Zhuge, and Edwin
H. M. Sha. Minimizing write activities to non-volatile memory via scheduling
and recomputation. In Proceedings of the 2010 IEEE 8th Symposium on
Application Specific Processors (SASP), SASP ’10, pages 101–106, 2010. 94

[41] IEEE Computer Society and The Open Group. Portable Operating System
Interface (POSIX) System Interfaces, ieee std 1003.1, 2004 edition edition,
2004. 31

122



[42] International Business Machines Corporation. IBM DB2 Universal Database
Administration Guide: Performance, version 8.2 edition. 6, 14, 38, 79, 90

[43] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. High
performance cache replacement using re-reference interval prediction (rrip).
In Proceedings of the 37th annual international symposium on Computer ar-
chitecture, ISCA ’10, pages 60–71, 2010. 88

[44] Martin Jambor, Tomas Hruby, Jan Taus, Kuba Krchak, and Viliam Holub.
Implementation of a Linux log-structured file system with a garbage collector.
ACM SIGOPS Operating Systems Review, 41(1):24–32, January 2007. 90

[45] Jaeheon Jeong and Michel Dubois. Cost-sensitive cache replacement al-
gorithms. In Proceedings of the 9th International Symposium on High-
Performance Computer Architecture, HPCA ’03, pages 327–337, 2003. 93

[46] Jaeheon Jeong and Michel Dubois. Cache replacement algorithms with
nonuniform miss costs. IEEE Transactions on Computers, 55(4):353–365,
April 2006. 94, 95

[47] Song Jiang, Kei Davis, and Xiaodong Zhang. Coordinated multilevel buffer
cache management with consistent access locality quantification. IEEE Trans-
actions on Computers, 56(1):95–108, January 2007. 4, 89

[48] Song Jiang and Xiaodong Zhang. Lirs: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance. In Proceedings
of the International Conference on Measurements and Modeling of Computer
Systems (SIGMETRICS’02), pages 31–42, June 2002. 88

[49] Song Jiang and Xiaodong Zhang. ULC: A file block placement and replace-
ment protocol to effectively exploit hierarchical locality in multi-level buffer
caches. In Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS 2004), pages 168–177, March 2004. 89

[50] Xin Jin, Sanghyuk Jung, and Yong Ho Song. Write-aware buffer management
policy for performance and durability enhancement in NAND flash memory.
Consumer Electronics, IEEE Transactions on, 56(4):2393–2399, 2010. 93

[51] Theodore Johnson and Dennis Shasha. 2Q: A Low Overhead High Perfor-
mance Buffer Management Replacement Algorithm. In Proc. International
Conference on Very Large Data Bases (VLDB’94), pages 439–450, 1994. 88

[52] Yi-Reun Kim, Kyu-Young Whang, and Il-Yeol Song. Page-differential log-
ging: an efficient and dbms-independent approach for storing data into flash
memory. In Proceedings of the 2010 international conference on Management
of data, SIGMOD ’10, pages 363–374, 2010. 93

123



[53] Ioannis Koltsidas and Stratis D. Viglas. Flashing up the storage layer.
Proceedings of the International Conference on Very Large Databases
2008(PVLDB’08), 1(1):514–525, August 2008. 94, 95

[54] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara,
and Satoshi Moriai. The linux implementation of a log-structured file system.
SIGOPS Oper. Syst. Rev., 40(3):102–107, July 2006. 90

[55] Kyu Hyung Lee, In Hwan Doh, Jongmoo Choi, Donghee Lee, and Sam H.
Noh. Write-aware buffer cache management scheme for nonvolatile ram. In
Proceedings of the third conference on IASTED International Conference:
Advances in Computer Science and Technology, ACST’07, pages 29–35, 2007.
93

[56] Sehwan Lee, Kern Koh, and Hyokyung Bahn. Unifying buffer replacement
and prefetching with data migration for heterogeneous storage devices. In
Proceedings of the 2010 IEEE 16th International Conference on Parallel and
Distributed Systems, ICPADS ’10, pages 330–337, 2010. 93

[57] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sachedina, and Shaobo
Gao. Second-tier cache management using write hints. In Proceedings of the
4th conference on USENIX Conference on File and Storage Technologies -
Volume 4, pages 115–128, 2005. 88, 90

[58] Yu Li, Jianliang Xu, Byron Choi, and Haibo Hu. StableBuffer: optimizing
write performance for DBMS applications on flash devices. In Proceedings of
the 19th ACM international conference on Information and knowledge man-
agement, CIKM ’10, pages 339–348, 2010. 91

[59] Zhenmin Li, Zhifeng Chen, and Yuanyuan Zhou. Mining block correla-
tions to improve storage performance. ACM Transactions on Storage (TOS),
1(2):213–245, May 2005. 88

[60] Zhi Li, Peiquan Jin, Xuan Su, Kai Cui, and Lihua Yue. CCF-LRU: a new
buffer replacement algorithm for flash memory. Consumer Electronics, IEEE
Transactions on, 55(3):1351 –1359, august 2009. 94

[61] Xin Liu, Ashraf Aboulnaga, Kenneth Salem, and Xuhui Li. CLIC: client-
informed caching for storage servers. In Proccedings of the 7th conference on
File and storage technologies, pages 297–310, 2009. 90

[62] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques
for storage hierarchies. IBM Systems Journal, 9(2):78–117, June 1970. 58

[63] Marshall Kirk Mckusick and Gregory R. Ganger. Soft updates: A technique
for eliminating most synchronous writes in the fast filesystem. In Proceedings
of 1999 USENIX Annual Technical Conference, pages 1–17, 1999. 90

124



[64] Nimrod Megiddo and Dharmendra S. Modha. Arc: A self-tuning, low over-
head replacement cache. In Proceedings of the Second USENIX Symposium
on File and Storage Technologies (FAST ’03), pages 115–130, March 2003.
53, 70, 88

[65] Microsoft Corporation. Microsoft SQL Server 2000 Books Online. 6, 14, 90

[66] Jeffrey C. Mogul. A better update policy. In Proceedings of the USENIX
Summer 1994 Technical Conference, USTC’94, pages 99–111, 1994. 14, 54,
90, 91

[67] C. Mohan and Inderpal Narang. ARIES/CSA: a method for database recovery
in client-server architectures. In Proceedings of the 1994 ACM SIGMOD
international conference on Management of data, SIGMOD ’94, pages 55–66,
1994. 8, 79, 90

[68] V.G. Moshnyaga, Hua Vo, G. Reinman, and M. Potkonjak. Reducing Energy
of DRAM/Flash Memory System by OS-controlled Data Refresh. In Proceed-
ings IEEE International Symposium on Circuits and Systems - ISCAS, pages
2108 –2111, May 2007. 93

[69] D. Muntz and P. Honeyman. Multi-level caching in distributed file systems -
or - your cache ain’t nuthin’ but trash. In Proceedings of the USENIX Winter
Conference, pages 305–313, January 1992. 3, 15, 25, 87, 88

[70] D.A. Muntz, P. Honeyman, and C.J. Antonelli. In In Proc. of IFIP/IEEE
Intl. Conf. on Distributed Platforms, pages 415 –429, 1996. 92

[71] Wee Teck Ng and Peter M. Chen. Integrating reliable memory in databases.
The VLDB Journal, 7(3):194–204, August 1998. 91

[72] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason
Flinn. Rethink the sync. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’06, pages 1–14, 2006.
92

[73] K. Norvag and K. Bratbergsengen. Write optimized object-oriented database
systems. In Proceedings of the 17th International Conference of the Chilean
Computer Science Society, SCCC ’97, pages 164–173, 1997. 94

[74] Chris Olston and Jennifer Widom. Best-effort cache synchronization with
source cooperation. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, SIGMOD ’02, pages 73–84, 2002. 91

[75] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K
page replacement algorithm for database disk buffering. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIG-
MOD’93), pages 297–306, 1993. 88

125



[76] Oracle Corporation. MySQL 5.1 Reference Manual. 6, 14, 38

[77] Oracle Corporation. Oracle Database Concepts, version 10g release 2 (10.2)
edition, June 2005. 6, 14, 90

[78] Yi Ou and Theo Härder. Clean first or dirty first?: a cost-aware self-
adaptive buffer replacement policy. In Proceedings of the Fourteenth Inter-
national Database Engineering, Applications Symposium, IDEAS ’10, pages
7–14, 2010. 94

[79] Yi Ou, Theo Härder, and Daniel Schall. Performance and power evaluation
of flash-aware buffer algorithms. In Proceedings of the 21st international
conference on Database and expert systems applications: Part I, DEXA’10,
pages 183–197, 2010. 95

[80] John Ousterhout and Fred Douglis. Beating the I/O bottleneck: a case for log-
structured file systems. ACM SIGOPS Operating Systems Review, 23(1):11–
28, January 1989. 90

[81] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Io-lite: a unified i/o
buffering and caching system. ACM Transactions on Computer Systems
(TOCS), 18(1):37–66, February 2000. 4, 87, 88

[82] Chong-Mok Park, Kyu-Young Whang, Jeong-Joon Lee, and Il-Yeol Song. A
cost-based buffer replacement algorithm for object-oriented database systems.
Information Sciences, 138(1-4):99–118, August 2001. 94

[83] Junseok Park, Hyunkyong Choi, Hyokyung Bahn, and Kern Koh. Buffer
Caching Algorithms for Storage Class RAMs. International Journal of Com-
puters, 3(1):41–52, 2009. 94

[84] Junseok Park, Kern Koh, Hyunkyoung Choi, and Hyokyung Bahn. NBM:
an efficient cache replacement algorithm for nonvolatile buffer caches. In
Proceedings of the 8th conference on Applied computer scince, pages 320–325,
2008. 94

[85] Junseok Park, Hyejeong Lee, Seunghwan Hyun, Kern Koh, and Hyokyung
Bahn. A cost-aware page replacement algorithm for NAND flash based mo-
bile embedded systems. In Proceedings of the seventh ACM international
conference on Embedded software, EMSOFT ’09, pages 315–324, 2009. 93

[86] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joonwon
Lee. CFLRU: a replacement algorithm for flash memory. In Proceedings of
the 2006 international conference on Compilers, architecture and synthesis
for embedded systems, CASES ’06, pages 234–241, 2006. 94

[87] P. Phunchongharn, S. Pornnapa, and T. Achalakul. File type classification
for adaptive object file system. In TENCON 2006. 2006 IEEE Region 10
Conference, pages 1–4, 2006. 4, 89

126



[88] K.J. Richardson and M.J. Flynn. Strategies to improve i/o cache performance.
In Proceeding of the Twenty-Sixth Hawaii International Conference on System
Sciences, pages 31 – 39, January 1993. 4, 87, 89

[89] Mendel Rosenblum and John K. Ousterhout. The design and implementation
of a log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52,
February 1992. 90

[90] Prasenjit Sarkar and John Hartman. Efficient cooperative caching using hints.
In Proceedings of the second USENIX symposium on Operating systems design
and implementation, OSDI ’96, pages 35–46, 1996. 4, 89

[91] Prasenjit Sarkar and John H. Hartman. Hint-based cooperative caching. ACM
Transactions on Computer Systems, 18(4):387–419, 2000. 4, 87, 89

[92] Russell Sears and Eric Brewer. Stasis: flexible transactional storage. In
Proceedings of the 7th symposium on Operating systems design and imple-
mentation, OSDI ’06, pages 29–44, 2006. 92

[93] Russell Sears and Eric Brewer. Segment-based recovery: write-ahead logging
revisited. Proc. VLDB Endow., 2(1):490–501, August 2009. 92

[94] Margo Seltzer and Michael Olson. Libtp: Portable, modular transactions for
unix. In Proceedings of the 1992 Winter Usenix, pages 9–25, 1992. 92

[95] Serial ATA International Organization. Serial ATA Revision 3.0 Specification,
revision 3.0 edition, 2009. 33, 34

[96] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Database-aware semantically-smart
storage. In Proceedings of the 4th conference on USENIX Conference on File
and Storage Technologies, pages 239–252, 2005. 4, 89

[97] Muthian Sivathanu, Vijayan Prabhakaran, Florentina Popovici, Timo-
thy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Semantically-smart disk systems. In Proceedings of the Second USENIX Sym-
posium on File and Storage Technologies (FAST ’03), pages 73–88, March
2003. 90

[98] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted
Wobber. Extending SSD lifetimes with disk-based write caches. In Proceedings
of the 8th USENIX conference on File and storage technologies, FAST’10,
pages 101–114, 2010. 91

[99] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, Erez Zadok, and
Charles P. Wright. Enabling transactional file access via lightweight kernel
extensions. In Proccedings of the 7th conference on File and storage technolo-
gies, pages 29–42, 2009. 92

127



[100] Xian Tang and Xiaofeng Meng. ACR: An Adaptive Cost-Aware Buffer Re-
placement Algorithm for Flash Storage Devices. In Proceedings of the 2010
Eleventh International Conference on Mobile Data Management, MDM ’10,
pages 33–42, 2010. 94

[101] Transaction Processing Performance Council. TPC Benchmark C, revision
5.4 edition, 2005. 22, 49

[102] W. Wang and R. Bunt. A self-tuning page cleaner for db2. In Proceedings of
the 10th IEEE International Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunications Systems, MASCOTS ’02, pages
81–89, 2002. 90

[103] Wenguang Wang and Richard B. Bunt. Simulating db2 buffer pool man-
agement. In Proceedings of the 2000 conference of the Centre for Advanced
Studies on Collaborative research, CASCON ’00, pages 13–22, 2000. 90

[104] Theodore M. Wong and John Wilkes. My cache or yours? making storage
more exclusive. In USENIX Annual Technical Conference (USENIX 2002),
pages 161–175, June 2002. 15, 90, 91

[105] W. A. Wong and J.-L. Baer. Modified LRU policies for improving second-
level cache behavior. In Proceedings of 6th Intl. Symp. on High-Performance
Comp. Arch. (HPCA), pages 49–60, 2000. 88

[106] Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez Zadok.
Extending ACID semantics to the file system. ACM Transactions on Storage
(TOS), 3(2):1–42, June 2007. 92

[107] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. Demotion-based
exclusive caching through demote buffering: design and evaluations over dif-
ferent networks. In Proceedings of the international workshop on Storage
network architecture and parallel I/Os, SNAPI ’03, pages 73–80, 2003. 15,
90, 91

[108] Yingjie Zhao and Nong Xiao. 2c: A new approach to design the second level
buffer cache. In PROCEEDINGS Of the Seventh International Conference
on Grid and Cooperative Computing, GCC ’08., pages 56–61, 2008. 88

[109] Da Zhou and Xiaofeng Meng. A flash-aware random write optimized
database. In Proceedings of the 2010 Eleventh International Conference on
Mobile Data Management, MDM ’10, pages 276–278, 2010. 94

[110] Yuanyuan Zhou, Zhifeng Chen, and Kai Li. Second-level buffer cache manage-
ment. IEEE Transactions on Parallel and Distributed Systems, 15(6):505–519,
July 2004. 3, 15, 25, 87, 88

128



[111] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-queue replacement
algorithm for second level buffer caches. In Proceedings of the USENIX 2001
Annual Technical Conference, pages 91–104, June 2001. 13, 17, 53, 88

[112] Qingbo Zhu and Yuanyuan Zhou. Power-aware storage cache management.
IEEE Transactions on Computers, 54(5):587–602, 2005. 94

129


	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Thesis Organization

	Background
	DBMS Bufferpool Management
	Bufferpool Management Architecture

	Bufferpool I/O Categorization

	Second-tier Cache Management Using Write Hints
	Introduction
	Write Hints
	Managing the Storage Server Cache
	Using Hints for Cache Management
	LRU+Hints
	MQ+Hints
	The TQ Algorithm

	Evaluations
	Methodology
	Results: Baseline Case
	Results: Sensitivity Analysis

	Summary

	Deferred Synchronization of Write Requests
	Introduction
	Research Problem
	Data Integrity in Current Systems
	DBMS Bufferpool Write Synchronization Requirements

	Proposed New I/O Operation
	Introducing New I/O Operation
	Exploiting the New I/O Operation

	Evaluations
	Evaluations Using Synthetic Workloads
	Evaluations Using TPC-C Workload

	Summary

	Write-Aware Replacement For Second-Tier Cache
	Introduction
	Read-Write Workload Model and Cache Model
	Read-Write Workload Model
	Read-Write Cache Model

	Research Problems
	Partial Characterization of an Optimal Algorithm
	Preliminary Definitions
	Partial Characterization of an Optimal Algorithm

	Write-aware Replacement Algorithms
	A Write-aware Off-line Algorithm
	Write-aware On-line Algorithms

	Evaluations
	Evaluations by Using MySQL Bufferpool I/O Traces
	Evaluations by Using DB2 Bufferpool I/O Traces

	Summary

	Related Work
	Increasing the Read Cache Hit Rate
	Deferring Write Synchronization
	Reducing Total Number of I/Os

	Conclusions and Future Work
	Summary of Contributions
	Future Work

	Appendices
	Proof of the Correctness of Lemma 5.1
	Proof of the Correctness of Lemma 5.2
	Proof of the Correctness of Lemma 5.3
	Proof of the Correctness of Theorem 5.1
	Proof of the Correctness of Lemma 5.5
	References

