
Optimizing Hierarchical Storage
Management For Database System

by

Xin Liu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Xin Liu 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Caching is a classical but effective way to improve system performance. To improve
system performance, servers, such as database servers and storage servers, contain signif-
icant amounts of memory that act as a fast cache. Meanwhile, as new storage devices
such as flash-based solid state drives (SSDs) are added to storage systems over time, using
the memory cache is not the only way to improve system performance. In this thesis, we
address the problems of how to manage the cache of a storage server and how to utilize
the SSD in a hybrid storage system.

Traditional caching policies are known to perform poorly for storage server caches.
One promising approach to solving this problem is to use hints from the storage clients
to manage the storage server cache. Previous hinting approaches are ad hoc, in that a
predefined reaction to specific types of hints is hard-coded into the caching policy. With
ad hoc approaches, it is difficult to ensure that the best hints are being used, and it is
difficult to accommodate multiple types of hints and multiple client applications. In this
thesis, we propose CLient-Informed Caching (CLIC), a generic hint-based technique for
managing storage server caches. CLIC automatically interprets hints generated by storage
clients and translates them into a server caching policy. It does this without explicit
knowledge of the application-specific hint semantics. We demonstrate using trace-based
simulation of database workloads that CLIC outperforms hint-oblivious and state-of-the-
art hint-aware caching policies. We also demonstrate that the space required to track and
interpret hints is small.

SSDs are becoming a part of the storage system. Adding SSD to a storage system
not only raises the question of how to manage the SSD, but also raises the question of
whether current buffer pool algorithms will still work effectively. We are interested in
the use of hybrid storage systems, consisting of SSDs and hard disk drives (HDD), for
database management. We present cost-aware replacement algorithms for both the DBMS
buffer pool and the SSD. These algorithms are aware of the different I/O performance of
HDD and SSD. In such a hybrid storage system, the physical access pattern to the SSD
depends on the management of the DBMS buffer pool. We studied the impact of the
buffer pool caching policies on the access patterns of the SSD. Based on these studies, we
designed a caching policy to effectively manage the SSD. We implemented these algorithms
in MySQL’s InnoDB storage engine and used the TPC-C workload to demonstrate that
these cost-aware algorithms outperform previous algorithms.

iii

Acknowledgments

I would not have been able to complete my Ph.D. dissertation without the support of
many people. First, I owe my deepest gratitude and respect to my supervisor Kenneth
Salem. His scholarship, attention to detail, enthusiasm, and immense knowledge have
helped me in all stages of my doctoral studies. His continues encouragement and positive
attitude made it not only possible to earn my PhD degree but also a delightful experience.

My thanks are also due to my committee members for their numerous insightful sugges-
tions for the final revision of this dissertation. I would like to thank my thesis committee
at the University of Waterloo, Tamer Ozsu, Ashraf Aboulnaga, and Ladan Tahvildari, and
my external examiner Bettina Kemme from University of McGill.

Last but not least, I would like to thank my family for their support, constant love,
understanding, and care.

iv

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Cache Hierarchies . 2

1.2 Hybrid Storage . 3

1.3 Contributions . 4

1.4 Organization of the Thesis . 5

2 Related Work 7

2.1 Second-Tier Cache Management . 7

2.1.1 Hierarchy-aware Approaches . 8

2.1.2 Aggressively Collaborative Approaches 8

2.2 Solid State Disks . 11

3 CLIC: Client-Informed Caching for Storage Servers 15

3.1 Generic Framework for Hints . 16

3.2 Hint Analysis . 18

3.2.1 Hint Benefit/Cost Analysis . 20

3.2.2 Tracking Hint Set Statistics . 23

3.2.3 Time-Varying Workloads . 24

3.2.4 Cache Management . 24

3.3 Handling Large Numbers of Hint Sets . 25

3.3.1 Frequently-Occurring Hint Sets . 27

3.4 Experimental Evaluation . 29

v

3.4.1 Comparison to Other Caching Policies 32

3.4.2 Limiting the Outqueue Size . 34

3.4.3 Tracking Only Frequent Hint Sets 35

3.4.4 Increasing the Number of Hints . 36

3.4.5 Multiple Storage Clients . 42

3.5 Conclusion . 43

4 Dynamic Priority CLIC 45

4.1 Re-reference Histogram of Hint Sets . 47

4.2 Dynamic Benefit/Cost Model . 47

4.3 Tracking Hint Statistics . 49

4.4 Cache Management . 50

4.5 DP-CLIC Priority vs. CLIC Priority . 51

4.6 Experimental Evaluation . 55

4.6.1 Evaluation with TPC-C Traces . 57

4.6.2 Evaluation with TPC-H traces . 59

4.6.3 Limiting the Histogram Size . 60

4.6.4 Tracking Only Frequent Hint Sets for DP-CLIC 61

4.6.5 Increasing the Number of Hints for DP-CLIC 65

4.7 Conclusion . 66

5 Classification of Hint Sets 69

5.1 Hybrid Algorithms . 71

5.2 Impurity of Hint Types . 72

5.3 Experimental Evaluation . 74

5.4 Conclusion . 79

6 Hybrid Storage Management for Database Systems 80

6.1 System Overview . 83

6.2 Buffer Pool Management . 85

6.2.1 Implementation of GD2L on MySQL 86

6.3 The Impact of Cost-aware Caching . 89

vi

6.4 SSD Management . 90

6.4.1 CAC: Cost-Adjusted Caching . 91

6.4.2 The Miss Rate Expansion Factor 94

6.4.3 Sequential I/O . 96

6.4.4 Implementation of SSD Management on MySQL 96

6.4.5 Failure Handling . 98

6.5 Evaluation . 98

6.5.1 Methodology . 100

6.5.2 Cost Parameter Calibration . 101

6.5.3 Analysis of GD2L and CAC . 101

6.5.4 Comparison with LRU2 and MV-FIFO 106

6.5.5 Impact of the Eviction Zone . 108

6.6 Conclusion . 109

7 Conclusion and Future Work 111

7.1 Future Work . 112

References 114

vii

List of Figures

1.1 Prices and Performance of SSDs and HDDs
Data are from Graefe [27] in 2007. 2

1.2 Architecture of Multi-tier Caches . 3

2.1 Trend of HDD and SSD Price [59] . 10

2.2 FTL and NAND Flash Memory
FTL emulates sector read/write functionalities of a hard disk to use conventional

disk file systems in NAND flash memory . 11

3.1 System Architecture . 17

3.2 Types of Hints in the DB2 I/O Request Traces 18

3.3 Types of Hints in the MySQL I/O Request Traces 19

3.4 Hint Set Priorities for the DB2 C60 Trace
Each point represents a distinct hint set. All hint sets are shown. 22

3.5 Priority Calculation Timeline . 24

3.6 Structures Used by CLIC
Arrows show possible movements among queues in response to I/O requests . . 25

3.7 Hint-Based Server Cache Replacement Policy
This pseudo-code shows how the server handles a request for page p with hint set

H and request sequence number s. 26

3.8 Cumulative Hint Set Frequency in the DB2 C300 400 Trace 27

3.9 I/O Request Traces.
The page sizes for the DB2 and MySQL databases were 4KB and 16KB, respec-

tively. For the TPC-C workloads, the table shows the initial database size. The

TPC-C database grows as the workload runs. 31

3.10 Read Hit Ratio of Caching Policies for the DB2 TPC-C Workloads 33

3.11 Read Hit Ratio of Caching Policies for the DB2 TPC-H Workloads 35

viii

3.12 Read Hit Ratio of Caching Policies for the MySQL Workloads 36

3.13 Effect of Outqueue Size on Read Hit Ratio
Each bar represents a different outqueue size. 37

3.14 Effect of Top-K Hint Set Filtering on Read Hit Ratio 38

3.15 Effect of Top-K Hint Set Filtering on Read Hit Ratio with TPC-C Workload
Traces . 40

3.16 Effect of Top-K Hint Set Filtering on Read Hit Ratio with TPC-H Workload
Traces . 41

3.17 Read Hit Ratio with Three Clients
Read hit ratio is near zero for the DB2 C300 and DB2 C540 traces in the 180K

page shared cache, so bars are not visible. 43

4.1 Temporal Locality of Upper-tier and Lower-tier Cache Accesses Using Reuse
Distance Histograms. (a) Auspex Client Trace and (b) Auspex Server
trace[76]. 46

4.2 Read Reference Distance Histograms of DB2 TPC-C Workload Traces . . . 47

4.3 Illustration of Read Reference Histogram 48

4.4 Hint Set Priority Produced by Dynamic Benefit/Cost Model of DB2 TPC-C
Workload Traces . 50

4.5 The DP-CLIC Cache Replacement Policy
This pseudo-code shows how the server handles a request for page p with hint set

H and request sequence number s. 52

4.6 Hint Set Priorities for the DB2 C60 400 Trace
Each point represents a distinct hint set. All hint sets are shown. 54

4.7 Hint Set Statistics for the DB2 C60 400 Trace
Each bubble represents a distinct hint set - not all hint sets in the trace are shown.

Each bubble’s radius is proportional to the frequency of its hint set. 54

4.8 DP-CLIC Priority vs. CLIC Priority . 55

4.9 Read Hit Ratio of Caching Policies for the DB2 TPC-C Workloads 56

4.10 DP-CLIC Priority vs. CLIC Priority . 57

4.11 DP-CLIC Priority vs. CLIC Priority . 58

4.12 Read Hit Ratio of Caching Policies for the DB2 TPC-H Workloads 59

4.13 CLIC priority vs. DP-CLIC priority of DB2 H80 400 trace 60

4.14 Effect of Width of Buckets on Read Hit Ratio (number of bucket = 3000) . 62

4.15 Effect of Numbers of Buckets on Read Hit Ratio (width of bucket = 50000) 62

ix

4.16 Effect of Numbers of Buckets on Read Hit Ratio (width of bucket = 10000) 62

4.17 Effect of Width of Buckets on Read Hit Ratio (number of bucket = 3000) . 63

4.18 Effect of Number of Buckets on Read Hit Ratio (width of bucket = 100000) 63

4.19 Effect of Top-K Hint Set Filtering on Read Hit Ratio (DP-CLIC) 64

4.20 Effect of Top-K Hint Set Filtering on Read Hit Ratio with TPC-C Workload
Traces . 67

4.21 Effect of Top-K Hint Set Filtering on Read Hit Ratio with TPC-H Workload
Traces . 68

5.1 Architecture of Data Center . 70

5.2 Parameters of the Hybrid Algorithm . 72

5.3 CLIC Read Hit Ratio . 75

5.4 CLIC Read Hit Ratio . 76

5.5 DP-CLIC Read Hit Ratio . 77

5.6 DP-CLIC Read Hit Ratio . 78

6.1 System Architecture (the arrows represent read/write requests) 81

6.2 The Management of the Buffer Pool and the SSD 84

6.3 Storage Device Parameters . 86

6.4 The GD2L Algorithm
This pseudo-code shows how GD2L handles a request for page p. L is initialized

as 0 . 87

6.5 Buffer Pool Managed by GD2L on MySQL 88

6.6 Miss Rate/Write Rate While on HDD vs. Miss Rate/Write rate while on
SSD.
Each point represents one page . 90

6.7 The Measured and Estimated Statistics of a Page
Note that tS and tD represent the total time that the page is on the SSD and not

on the SSD. 92

6.8 Summary of Notation . 93

6.9 Miss Rate Expansion Factor for Pages from Three TPC-C tables. 95

6.10 The Data Structures Used by the SSD Manager 97

6.11 TPC-C Throughput . 102

x

6.12 Performance Statistics (DB size=30GB)
I/O is reported as ms. per New Order transaction. 103

6.13 Performance Statistics (DB size=15GB)
I/O is reported as ms. per New Order transaction. 103

6.14 Performance Statistics (DB size=8GB)
I/O is reported as milliseconds of device time per New Order transaction. . . . 104

6.15 TPC-C Throughput . 107

6.16 Performance Statistics (DB size=30GB)
I/O is reported as ms. per New Order transaction. 108

6.17 Performance Statistics (DB size=15GB)
I/O is reported as milliseconds of device time per New Order transaction. . . . 108

6.18 Performance Statistics (DB size=8GB)
I/O is reported as milliseconds of device time per New Order transaction. . . . 109

6.19 Throughput of TPC-C Runs in term of Eviction Zone Size 109

xi

Chapter 1

Introduction

In computing systems, one of the most serious performance bottlenecks is accessing data
on the hard disk drive (HDD). For example, in a database system, much of a transaction’s
lifetime is spent on waiting to access data on disks. The time required to access data on the
HDDs is determined by the mechanical nature of the rotating disks and by the moving disk
arms. Caching is a classical but effective way to improve system performance. The purpose
of caching is to keep frequently accessed data in a faster media, and thus, to reduce disk
I/O traffic. Consequently, conventional storage systems consist of two levels: the memory
and HDDs. As the memory is significantly faster and significantly more expensive than
the HDD, a larger memory means more performance gains but more cost to the system.
In 1987, Gray, et al. [29], argued that data accessed every five minutes or more should be
resident in memory. The “five-minute rule” is based on the trade-off between the dollar
cost of accessing data in the memory versus using HDD.

Over the past decades, the access time gap and cost gap between the memory and
HDDs have continued to increase. Meanwhile, new storage devices have been introduced.
Figure 1.1 lists prices and performance of RAM, flash-based Solid State Drives (SSDs) and
HDDs presented by Graefe [27] in 2007, from which we see that the performance of HDDs
largely lags behind the memory. As the price of flash memory has fallen dramatically, it
has made inroads into the laptop market, desktop storage market and the enterprise server
market. Currently, SSDs are about 17−32× more expensive per GB, but about 50−150×
less expensive per random I/O per second than are hard disks. Graefe [27] reviewed the
five-minute rule for trading off memory and I/O capacity based on prices and performance
of SSDs and HDDs current at that time. He pointed out that the five-minute rule still
held if flash-based Solid State Drives (SSDs) were introduced to fill the gap between RAM
and HDDs. Flash can accordingly augment the system to form a new tier in the storage
hierarchy.

As new storage devices, e.g. SSDs, are added to storage systems over time, using the
memory cache is not the only way to improve system performance. On the storage side,
although the cost of flash per gigabyte is falling quickly, it is still expensive to replace

1

RAM Flash disk SATA disk

Price and capacity $3 for 8x64 Mbit $999 for 32GB $80 for 250GB

Access latency 0.1ms 12ms average

Transfer bandwidth 66MB/s API 300 MB/s API

Active power 1W 10W

Idle power 0.1W 8W

Sleep power 0.1W 1W

Figure 1.1: Prices and Performance of SSDs and HDDs
Data are from Graefe [27] in 2007.

all hard disks with SSDs. Hence, rather than as a replacement for HDDs, SSDs should
be viewed as a means to enhance them. Hard disks are cost-effective and better suited
for sequential accesses, while SSDs can be targeted for high throughput of small random
I/O requests, as SSDs will have significantly better performance on random data accesses.
Heterogeneous storage systems have been investigated inside and outside of industry. For
example, OCZ launched a hybrid PCIe SSD (the RevoDrive Hybrid) [56] which integrates
100GB SSD capacity along with an onboard tegabyte HDD. Heterogeneous storage systems
are designed to balance performance and storage capacity on a limited budget.

1.1 Cache Hierarchies

In this thesis, we address two challenges in the storage hierarchy: First, how to manage
the lower-tier cache in a multi-tier cache system? Multi-tier block caches arise in many
situations in modern computing systems. One scenario is illustrated in Figure 1.2. Most
DBMS have their own buffer pool for various reasons. At the same time, the applications
may store their data in a file system, which also manages a cache. Besides this, if the
storage is provided by a dedicated storage server, the storage server also uses its memory
for data caching. When applications issue I/O requests, the requested data may go through
all tiers of these caches before it reaches its destination. Management of these caches has
a significant impact on overall system performance.

In Chapter 3 and Chapter 4, we discuss how to manage the lower-tier cache. As
illustrated in Figure 1.2, whether it is over a network or used for local access, running a
database management system (DBMS) on top of a storage server results in at least two
tier caches. The challenges of making effective use of caches below the first-tier are well
known [54, 70, 76]. Zhou et al. [76], investigated the access patterns of second-tier caches
and found that they are different from those at the first-tier caches. Filtered by the upper-
tier cache, the request streams to the lower-tier cache have poor temporal locality. Thus,
locality-based replacement policies, such as Least Recently Used (LRU), and CLOCK, do
not work well for the second-tier cache. Another difficulty in managing multiple tiers of
caches is the inclusiveness problem [70]. Multi-tier caches do not lead to performance in

2

DBMS Buffer Pool

Storage Server Cache

...

HDDs

I/O requests

Figure 1.2: Architecture of Multi-tier Caches

proportion to their aggregate cache size, since caches fail to maintain exclusive content.
Duplicated content in both the first-tier and second-tier caches result in wasting available
cache space. To address these problems, many techniques have been proposed for improving
the performance of second-tier caches. One promising class of techniques relies on hinting:
the application that manages the first-tier cache generates hints and attaches them to the
I/O requests that it directs to the second-tier. The cache at the second-tier then attempts
to exploit these hints to improve its performance. Previous work has taken an ad hoc
approach to hinting.

We provide two generic techniques for exploiting application hints to manage the
second-tier cache. The first one, Client-informed Caching (CLIC), is discussed in Chap-
ter 3. Unlike ad hoc techniques, CLIC does not hard-code responses to any particular type
of hint. Instead, it is an adaptive approach that attempts to learn to exploit any type of
hint supplied to it. Applications in the upper-tier cache are free to supply any hints that
they believe to be of value to the lower-tier cache.

The second technique is dynamic priority CLIC (DP-CLIC), introduced in Chapter 4,
which is an extension of CLIC. Both techniques analyze available hints and determine
which can be exploited to improve performance. As any hints are allowed to pass to the
lower-tier cache, tracking all hint sets may cause space and time overhead. Our techniques
learn to ignore hints that do not help using a top-k algorithm (in Chapter 3) and a feature
selection algorithm (in Chapter 5),

1.2 Hybrid Storage

The second question addressed in this thesis is how to place data in the memory and the
SSD in a hybrid storage system. As SSDs become a new tier of the storage hierarchy, it is
not uncommon for servers to consist of a memory cache and hybrid storage devices. For

3

example, a database server may use a hybrid storage system including a SSD and a HDD
to improve performance while saving cost. Thus, besides managing its own buffer pool,
the database server also needs to make data placement and replacement decisions for the
SSD. The use of hybrid storage devices raises the question of how to make efficient use of
both the memory and the SSD.

In Chapter 6, we are concerned with the use of hybrid (SSD and HDD) storage systems
for database management. The promise of good performance for database workloads with
SSDs [40] suggests that storage systems will likely continue to include SSDs and cost-
effective HDDs. We consider hybrid storage systems in which the HDD and the SSD are
both visible to the database management system (DBMS) buffer manager. As all data are
stored in the HDD, the SSD forms a new tier between the buffer pool and the HDD. Thus,
the DBMS buffer manager can use both the buffer pool and the SSD to improve system
performance. However, managing both the buffer pool and SSD effectively is more difficult
than managing one alone. The challenges arise from the impact of the buffer pool and the
SSD on each other.

The hybrid storage management problem is different from the multi-tier cache problem.
First, in the multi-tier cache problem, the upper-tier cache and the lower-tier cache belong
to different servers, and are managed separately. Hints are passed for helping the lower-tier
cache to understand the management of the upper-tier cache. However, the management
of the lower-tier cache has no impact on the management of the upper-tier cache. In the
hybrid storage management problem, the memory and the hybrid storage system belong to
the same server. The buffer manager can make data placement and replacement decisions
for both the memory and the SSD. Second, one key feature of flash memories is non-
volatility, i.e. data stored on flash memory will not be lost even without power. Thus, the
SSD can be also viewed as a part of the permanent storage. Unlike the memory cache in the
storage server, dirty pages in the SSD do not need to be flushed to the HDD immediately.

We present cost-based caching algorithms for both the buffer pool and the SSD cache.
To make replacement decisions for the buffer pool, the cost-aware algorithm considers not
only page recency but also future retrieval costs. Correspondingly, the responsibility of the
SSD caching algorithm is to identify pages with the largest access cost savings and place
them in the SSD. As a characteristic of SSD is that it has fast random I/Os, caching hot
pages in the SSD reduces the overall I/O access cost and improves the system performance.

1.3 Contributions

This thesis addresses the problems of two-tier cache management and hybrid storage man-
agement in database systems. In the area of two-tier cache management, it makes the
following contributions:

• We define an on-line cost/benefit analysis of I/O request hints that can be used to

4

determine which hints provide potentially valuable information to the second-tier
cache.

• We define an adaptive, priority-based cache replacement policy for the second-tier
cache. This policy exploits the results of the hint analysis to improve the hit ratio of
the second-tier cache.

• We extend CLIC’s cost/benefit model to a dynamic cost/benefit model, on which
dynamic priority CLIC (DP-CLIC) is based. The caching policy of DP-CLIC is
priority-based, but DP-CLIC’s priorities vary with reference distances.

• We propose to reduce the overhead of tracking hint set statistics using a frequency
selection algorithm and a feature selection algorithm.

• We use trace-based simulation to provide a performance analysis of CLIC. Our results
show that CLIC outperforms ad hoc hinting techniques and that its adaptivity can
be achieved with low overhead. We also evaluate DP-CLIC by comparing it with
CLIC. Our results show that DP-CLIC performs at least as well as CLIC in all cases,
and outperforms CLIC for some traces.

In the area of hybrid storage management, it makes the following contributions:

• We present GD2L, a cost-aware algorithm for buffer pool management in DBMS with
hybrid storage systems. GD2L takes the usual concerns of DBMS buffer management
(exploiting locality, scan resistance) into account, but also considers the fact different
devices in a hybrid storage system perform differently.

• We present CAC, an anticipatory cost-based technique for managing the SSD. Unlike
previous techniques, CAC is intended to work together with a cost-aware buffer
manager such as GD2L. The technique expects that moving a page into or out of the
SSD will change the access pattern for that page, and it anticipates these changes
when making SSD placement decisions.

• We present an empirical evaluation of GD2L and CAC. We have implemented both
techniques in MySQL’s InnoDB storage engine. We compare the performance of
GD2L with of InnoDB’s native buffer manager, which is oblivious to the location
of pages in a hybrid storage system. We compare CAC to several alternatives, in-
cluding a non-anticipatory cost-based technique and LRU2. Our evaluation uses
transactional workloads.

1.4 Organization of the Thesis

The remainder of this thesis is structured as follows. Chapter 3 discusses Client-Informed
Caching for Storage Servers. Chapter 4 introduces Dynamic Priority CLIC, an extension

5

of CLIC. Chapter 5 introduces how to classify hint sets with the feature selection algorithm
to reduce the overhead for tracking hint set statistics. Chapter 6 presents the data man-
agement for hybrid database storage. Chapter 2 discusses the existing work related to the
management of the lower-tier cache and the management of the SSD. Finally, Chapter 7
concludes the thesis.

6

Chapter 2

Related Work

Chapter 1 introduces two problems: the management of second-tier caches, and manage-
ment of hybrid storage which includes SSD and HDD. In this chapter we survey other work
related to these two problems.

2.1 Second-Tier Cache Management

Compared to other general-purpose replacement algorithms, e.g. Least Frequently Used
(LFU), First In First Out (FIFO), and Most Recently Used (MRU), Least Recently Used
(LRU) is the most widely used in practice. Based on these classical replacement algo-
rithms, many general-purpose algorithms, such as 2Q [34], Adaptive Replacement Cache
(ARC) [52], Clock with Adaptive Replacement (CAR) [4], and Multi-Queue (MQ) [76],
have been proposed recently. Among them, ARC considers both recency and frequency
in making replacement decisions, and adapts to changing workloads by automatically bal-
ancing recency and frequency. While any of the general-purpose algorithms can be used
at any level of a cache hierarchy, researchers have recognized that cache management at
lower-tiers of a hierarchy poses particular challenges. Many techniques have been proposed
specifically for second (or lower) tier caches. For example, MQ was developed specifically
for second-tier caches based on the access patterns of second-tier caches observed by Zhou
et al. [76]. Since the requests to the second-tier cache have little temporal locality avail-
able, studies [52, 76] have shown that these new proposed algorithms (e.g. MQ, ARC) had
better performance than LRU. ACME [1] is a mechanism that can be used to automatically
and adaptively choose a good policy from among a pool of candidate policies, based on
the recent performance of the candidates. Other approaches for second-tier cache manage-
ment, presented in the following two subsections, have been classified by Chen et al. [13]
as either hierarchy-aware or aggressively collaborative based on whether the approaches
require changes to the first-tier.

7

2.1.1 Hierarchy-aware Approaches

Hierarchy-aware approaches, including eviction-based cache placement [14], X-RAY [3], and
semantically-smart disks [2], exploit knowledge of the existence of the upper-tier cache, but
they are transparent to it. An example of a hierarchy-aware technique is quick eviction of
read pages from a second-tier cache, under the assumption that such pages are likely to
remain in the first-tier cache. Eviction-based cache placement [14] was developed in the
context of database systems. The storage server cache manager maintains a Client Content
Track (CCT) table to estimate eviction information (which blocks have been evicted) for
the storage client (DBMS) cache by monitoring the target memory location of each block
request from the storage client. Instead of managing its cache in an on-demand fashion,
which leads to cache misses. The storage server cache manager preloads the blocks evicted
from the first-tier cache to the second-tier cache. Semantically-smart disks and X-RAY
are related techniques which use gray-box methods [15], and they both assume the first
tier is a file system. Semantically-smart disks [2] can exploit layout information (e.g. to
categorize disk blocks as data blocks, inodes blocks, or superblocks) and extract semantic
information for file systems that are similar to the Berkeley Fast File System. With this
semantic information, it is able to infer higher-level file system behavior and improve
caching performance by avoiding duplicating the contents of the file system cache. X-RAY
[3] tracks the file system cache using a recency list. Like a semantically-smart disk, X-RAY
can identify inode blocks (file meta-data) when they are flushed to the storage server cache,
and can extract information (e.g. access and update timestamp) to update its recency list.
Using the recency list, it can predict which blocks are likely to be in the first-tier cache,
and which ones have been evicted. Like eviction-based cache replacement, X-RAY needs
extra disk bandwidth to preload blocks evicted from the first-tier cache to the second-tier
cache. X-RAY has also been used for DBMS clients [63].

2.1.2 Aggressively Collaborative Approaches

Aggressively collaborative approaches [13] require some modification to the first-tier. Wong
et al. [70] observed the wasteful inclusiveness of second-tier caches. To maintain exclusivity
among caches, they suggested adding a DEMOTE I/O operation to the SCSI command set
in order to send blocks evicted from the first-tier to the second-tier cache. In contrast to
the DEMOTE technique, which moves blocks down the cache hierarchy, PROMOTE [26]
transfers blocks with high hit ratio from the lower-tier cache to the upper-tier cache grad-
ually as they are read. Gill et al. [26] claimed that PROMOTE outperformed DEMOTE,
especially in limited bandwidth scenarios as it avoided the bandwidth overheads caused
by DEMOTE. PROMOTE must be used by all tiers, including the first-tier. This may
be undesirable if the first-tier cache is managed by a database system or other application
that prefers an application-specific policy for cache management.

Unified and Level-aware Caching (ULC) [33] uses a centrally-controlled cache placement
and replacement protocol for multi-tier buffer caches. It gives complete responsibility for

8

management of the lower-tier caches to the first-tier cache manager, which moves blocks
up or down the cache hierarchy using RETRIEVE or DEMOTE commands. Karma [72]
relies on application hints to group blocks into “ranges”, and then calculates the priority
of each range based on its access pattern and replacement algorithm (e.g. LRU for random
access pattern). Ranges with higher priorities will be maintained in the upper-tier cache.
Each range is managed separately and exclusiveness is maintained by using DEMOTE and
READ-SAVE commands. MC2 [71] applies Karma for managing multi-tier caches shared
by multiple clients. Multiple clients raise another problem: the goal of the cache manager
is not only to improve the overall system performance (e.g. latency, hit ratio), but also to
consider the performance of each client. To achieve the goal of reducing I/O response time
for all clients, MC2 tries to allocate cache space fairly among clients.

Several hint-based techniques have been proposed, including importance hints [13] and
write hints [44]. The Type-Queue (TQ) algorithm, which exploits I/O type hints (read-
/write) for cache management, has been proposed by Li et al. [44]. They distinguished
different kinds of write requests (e.g. synchronous write, asynchronous replacement write)
that provide clues about future data access by storage clients. Thus, these hints can be
used by the storage server to maintain data exclusiveness. In their work on informed
prefetching and caching, Patterson et al. [58] distinguished hints that disclose from hints
that advise, and advocated the former. Most subsequent hint-based techniques, including
CLIC [45], use hints that disclose. Informed prefetching and caching rely on hints that
disclose sequential access to entire files or to portions of files. Unlike CLIC, all of these
techniques are designed to exploit specific types of hints. As was discussed in Chapter 1,
this makes them difficult to generalize and combine.

Content-aware caching [13], instead of piggybacking simple hints onto each I/O request,
sends a summary of the storage client cache content periodically to the storage server. The
storage server cache manager can then use the summary to avoid duplicating the contents
of the upper-tier cache.

Although all aggressively collaborative techniques require changes to the first-tier, they
vary considerably in the intrusiveness of the changes required. ULC [33] requires all tiers to
understand the new protocol, and thus extensive code update in each tier is needed. Hint-
based techniques are arguably the least costly. Hints are small and can be piggybacked
onto regular I/O requests. More importantly, hint-based techniques do not require any
changes to the policies used to manage the upper-tier cache.

A previous study [13] suggested that aggressively collaborative approaches provided
little benefit beyond that of hierarchy-aware approaches and thus, the loss of transparency
implied by collaborative approaches was not worthwhile. However, that study only consid-
ered one ad hoc hint-based technique. Li et al. [44] found that the hint-based TQ algorithm
could provide substantial performance improvements in comparison to hint-oblivious ap-
proaches (LRU and MQ) as well as simple hint-aware extensions of those approaches.

There has also been work on the problem of sharing a cache among multiple competing
client applications [8, 51, 65, 71]. Often, the goal of these techniques is to achieve specific

9

Figure 2.1: Trend of HDD and SSD Price [59]

quality-of-service objectives for the client applications, and the method used is to somehow
partition the shared cache. This work is largely orthogonal to CLIC, in the sense that CLIC
can be used, like any other replacement algorithm, to manage the cache contents in each
partition. CLIC can also be used to directly control a shared cache, as in Section 3.4.5, but
it does not include any mechanism for enforcing quality-of-service requirements or fairness
requirements among the competing clients.

The problem of identifying frequently-occurring items in a data stream occurs in many
situations [50, 53, 15]. Metwally et al. [53] classify solutions to the frequent-item problem
as counter-based techniques or sketch-based techniques. The former maintain counters for
certain individual items, while the latter collect information about aggregations of items.
For CLIC, we have chosen to use the Space-Saving algorithm [53] as it is both effective
and simple to implement. A recent study [15] found the Space-Saving algorithm to be one
of the best overall performers among frequent-item algorithms.

In machine learning and statistics, feature selection has been widely studied [30, 60].
Guyon and Elisseeff [30] provide an excellent overview of feature selection for the particular
problem, e.g., classification, clustering. In feature selection, the important features are
determined as an useful preprocessing step before building the classifier (and this is usually
done by selecting attributes that are highly correlated with the class attribute). Yang and
Pederson [73] discusse feature selection for text classification. Das et al. [16] propose rank-
based attribute selection which is related to feature selection to select attributes that best
distinguish tuples of a query. In our work, we use feature selection to select important hint
types and thus to reduce the number of hint sets CLIC has to track.

10

Page
Read

Page
Write

Block
Erase

Flash Translation Layer

Page
Page
...

Page ...

Page
Page
...

Page

Page
Page
...

Page

NAND Flash Memory

File System

Logical
Sector Read

Logical
Sector Write

Figure 2.2: FTL and NAND Flash Memory
FTL emulates sector read/write functionalities of a hard disk to use conventional disk file systems
in NAND flash memory

2.2 Solid State Disks

The flash memory disk has been widely used for portable computing devices, such as PDAs,
MP3 plays, and mobile phones. As its price drops and capacity increases (Figure 2.1)
[59], some recent studies have proposed that flash memory disk might be an attractive
alternative for non-volatile data storage in desktop systems [36] and lower-level storage
systems [38, 39, 40]. The Flash Translation Layer (FTL) [32], which is the driver to make
linear flash memory appear to the OS like a disk drive, makes it easy to replace magnetic
disks with flash disks in most applications (Figure 2.2).

Unlike DRAM, one key feature of flash memories is non-volatility, i.e. data stored
on flash memory will not be lost even without power. This feature makes flash memories
suitable for use as a consistent cache or for persistent storage. If flash memory is introduced
to fill the gap between RAM and traditional rotating disks, a common question is whether
it should work as a special part of main memory or a special part of persistent storage.

Placing hot data in fast storage (e.g. hard disks) and cold data in slow storage (e.g.
tapes) is not a new idea. Hierarchical storage management (HSM) is a data storage tech-
nique which automatically moves data between high-cost and low-cost storage media. It

11

uses fast storage as a cache for slow storage [31]. The performance and price of SSDs
suggests that “Tape is dead, disk is tape, flash is disk” [28] seems to have come true.

Some research has focused on how to partially replace hard disks with SSDs in database
systems. Koltsidas, et al. [38] assumed that random reads from SSD are ten times faster
than random reads from HDD, while random writes to SSD are ten times slower than
random writes to HDD. They designed an algorithm to place read-intensive pages on
the SSD and write-intensive pages on the HDD. Canim et al. [10] introduced an object
placement advisor for DB2. Using run-time statistics about I/O behavior gathered by the
buffer manager, the advisor helps the database administrator make decisions about SSD
sizing, and about which database objects, such as tables or indices, should be placed on
limited SSD storage. Ozmen et al. [57] presented a database layout optimizer which places
database objects to balance workload and to avoid interference. It can generate layouts
for heterogeneous storage configurations that include SSDs.

Flash memory has been used as cache for extending DRAM. Examples include ZFS
[42], FlashCache [22], XtremSW Cache [21], and ioTurbine [25]. The flash memory cache
sits between DRAM and the disks and is populated as entries are evicted from the DRAM
cache. These flash-based caches are designed as write-through caches, which means dirty
pages are written to both the flash-based cache and the HDD. Thus, all pages in the flash-
based cache are consistent with these in the HDD. The main purpose of the flash-base cache
is to offload the read workload from the underlying HDD. Recent studies [9, 11, 62] also
propose to use SSD as a write through cache. For example, Canim et al. [11] investigated
the use of SSD as a second-tier cache. The most-frequently read pages, identified by run-
time I/O statistics gathering, are moved into the SSD. Reads are served from the SSD if
the page is in the SSD, but writes need to go to the hard disks immediately.

Unlike DRAM, flash memory is non-volatile, i.e. data stored on flash memory will not
be lost in case of a loss of power. As its persistence enables cache contents to survive
crashes or power failures, recent studies have argued to use SSDs as write-back caches.
Unlike a write-through cache, a write-back cache maintains dirty pages and writes are
acknowledged immediately after the write to the cache. Koller et al. [37] has argued that
write-back caching policy offers critical performance benefits as it reduces write latencies
and write I/O traffic to the storage. Recent studies [41, 55] report a trend of increasing
write/read ratios in production workloads as newer systems with larger DRAM caches
filter more reads. Koller et al. [37] propose journaled write-back flash-based cache to
offload the write workload from the storage devices. Do et al. [20] propose lazy cleaning,
an eviction-based mechanism for managing an SSD as a second-tier write-back cache for
database systems. Dirty pages are written to the SSD first, and are later copied to the
HDD in batch mode. FlashStore [17] uses SSDs as a write-back cache between RAM and
the HDD. It organizes data as key-value pairs, and writes the pairs in a log-structure on
flash to improve the write performance. Kang et al. [35] proposed FaCE, an alternative
write-back design. FaCE is based on the FIFO replacement algorithm. FaCE invalidates
stale pages on the SSD and writes new versions to the end of the FIFO queue. Therefore,

12

FaCE always writes pages sequentially to the SSD, improving the performance by avoiding
random writes. hStorage-DB [47] extracts semantic information from the query optimizer
and query planner and passes it with I/O requests to the SSD manager. The semantic
information includes hints about the request type, e.g, random or sequential. hStorage-DB
associates a priority with each request type, and the SSD manager uses these priorities
when making placement and replacement decisions. SSD can also be exploited to save
energy for RAID systems consisting of hard disks. Snyder et al. [64] propose QMD which
saves energy by using SSD as a write buffer.

As a write-back cache maintains dirty pages, it introduces data staleness and inconsis-
tency at the storage devices. Thus, it needs to be recovered after a system crash. As the
SSD is non-volatile, a naive way to restore the data in the SSD is to scan the whole SSD.
However, scanning a whole SSD cache is time consuming if the SSD size is large. Do et al.
[20] and Koller et al. [37] set checkpoints to flush dirty pages in the SSD to the storage
devices. Debnath et al. [17] address this problem by checkpointing the hash map of the
SSD and logging all writes to the SSD. As an extension to the work of Do et al. [20],
DeWitt et al. [19] revisit the failure recovery problem of the SSD cache. They propose to
flush the SSD buffer table during the DBMS checkpoint operation, and to log the updates
made to the SSD buffer table in the regular database transactional log. Upon restart, the
SSD buffer table can be reconstructed from the log. They also propose another method to
restore the the SSD buffer table using the log. During a restart, the contents of the SSD
buffer table are lazily verified on demand by checking the version in the SSD against that
in the storage devices.

Most previous work focuses on the caching policy of the SSD and leaves DBMS buffer
pool management unchanged. In addition to the placement policy for the SSD, Koltosidas,
et al. [38] designed a cost-aware replacement algorithm for the buffer pool. The page I/O
access cost is the I/O performance of the storage device that the page is on. For example,
it considers the cost of writing a dirty page to SSD to be the highest and the cost of reading
a page from SSD the lowest, and it always evicts the page with the lowest I/O access cost.
One drawback of this algorithm is that it does not combine recency with the I/O access
cost properly. Assume that a page in the SSD has been modified in the buffer pool, and
then it is one of the pages with the highest cost. As long as there is a page with a lower
cost, this dirty page will be kept in the buffer pool even if there are no further references to
it. However, multiple reads may cost more than a single write. Another potential problem
with this algorithm is that it delays the flushing of dirty pages.

Most replacement policies for the buffer cache, such as LRU and ARC, are cost-
oblivious. Existing cost-aware algorithms for heterogeneous storage systems, e.g. balance
algorithm [49] and GreedyDual, were proposed for file caching. Cao et al. [12] extended
GreedyDual to handle cached objects of varying size, with application to web caching.
Forney et al. [24] revisited caching policies for heterogeneous storage systems. They sug-
gest partitioning the cache for different classes of storage according to the workload and
performance of each class. Lv, et al. [48] designed another “cost-aware” replacement algo-

13

rithm for the buffer pool. However, it is designed for storage systems that only have SSD,
not for heterogeneous storage systems. The algorithm is aware that SSD read costs and
write costs are different and tries to reduce the number of writes to the SSD. Thus, it is
“cost-aware” in a different sense than GD2L.

Our work, GD2L and CAC [46], builds upon previous studies [11, 12, 20, 49]. The
GD2L algorithm for managing the buffer pool is a restricted version of GreedyDual [49],
which we have adapted for use in database systems. Our CAC algorithm for managing the
SSD is related to the previous cost-based algorithm of Canim et al. [11]. CAC is aware
that the buffer pool is managed by a cost-aware algorithm and adjusts its cost analysis
accordingly when making replacement decisions.

14

Chapter 3

CLIC: Client-Informed Caching for
Storage Servers

The challenges of making effective use of caches below the first tier are well known [54, 70,
76]. Poor temporal locality in the request streams experienced by the second-tier caches
reduces the effectiveness of recency-based replacement polices [76], and failure to maintain
exclusivity among the contents of the caches in each tier leads to wasted cache space [70].

One promising approach is hint-based: let each individual sub-system manage its own
cache, but with more information - hints. Specifically, hints are I/O related information
carried from an upper-tier cache [70, 44, 72]. The system that manages the upper-tier
cache generates hints and attaches them to individual I/O requests in order to provide
some information about the request. The lower-tier cache then is able to exploit these
hints to improve its performance. For example, hints can be used to pass data access and
eviction predictions from an upper-tier to a lower-tier. A write hint [44] indicates whether
the upper tier cache is writing a page to ensure recoverability of the page, or to facilitate
replacement of the page. The lower-tier cache then may infer that replacement writes
are better candidates for caching than the recovery writes, since they indicate pages that
are eviction candidates in the upper-tier cache. Furthermore, hints can pass application
semantics [13]. An importance hint indicates the priority of a particular page to the buffer
cache manager in the upper-tier application. Given such hints, the lower-tier cache can
infer that pages having higher priority in the upper-tier cache are likely to be retained
there, and thus give these pages lower priority in the lower-tier cache.

Hinting is valuable because it is a way of making additional information available to
the second (or lower) tier, which needs a good basis on which to make its caching decisions.
However, previous work has taken an ad hoc approach to hinting. The general approach is
to identify a specific type of hint that can be generated from the first-tier, e.g., a DBMS.
A replacement policy that knows how to take advantage of this particular type of hint is
then designed for the second-tier cache. For example, the TQ algorithm [44] is designed

15

specifically to exploit write hints. The desired response to each possible write hint is
hard-coded into the TQ algorithm.

Ad hoc algorithms can significantly improve the performance of the second-tier cache
when the necessary type of hint is available. However ad hoc algorithms also have some
significant drawbacks. First, because the response to hints is hard-coded into an algorithm
at the second-tier, any change to the hints requires changes to the cache management policy
at the second-tier server. Second, even if change is possible at the server, it is difficult to
generalize ad hoc algorithms to account for new situations. For example, suppose that
applications can generate both write hints and importance hints. Clearly, a low-priority (to
the first tier) replacement write is probably a good caching candidate for the second-tier,
but what about a low-priority recovery write? In this case, the importance hint suggests
that the page is a good candidate for caching in the second-tier, but the write hint suggests
that it is a poor candidate. One response to this might be to hard code into the second-
tier cache manager an appropriate behavior for all combinations of hints that might occur.
However, each new type of hint will multiply the number of possible hint combinations,
and it may be difficult for the policy designer to determine an appropriate response for
each one. A related problem arises when multiple first-tier caches are served by a single
cache in the second-tier. If the first-tier caches generate hints, how is the second-tier cache
to compare them? Is a write hint from one first-tier cache more or less significant than an
importance hint from another?

In this chapter, we propose CLient-Informed Caching (CLIC), a generic technique for
exploiting application hints to manage a second-tier cache, such as a storage server cache.
Unlike ad hoc techniques, CLIC does not hard-code responses to any particular type of
hint. Instead, it is an adaptive approach that attempts to learn to exploit any type of hint
that is supplied to it. Caches in the first-tier are free to supply any hints that they believe
may be of value to the second-tier. CLIC analyzes the available hints and determines
which can be exploited to improve second-tier cache performance. Conversely, it learns
to ignore hints that do not help. Unlike ad hoc approaches, CLIC decouples the task of
generating hints (done by the first-tier) from the task of interpreting and exploiting them.
CLIC naturally accommodates multiple hint types, as well as scenarios in which multiple
first-tier caches share a second-tier cache.

3.1 Generic Framework for Hints

We assume a system in which multiple storage server clients in the first-tier cache generate
requests to a storage server, as shown in Figure 3.1. We are particularly interested in
clients that cache data, since it is such clients that give rise to multi-tier caching.

There is a variety of realistic scenarios that fit the general architecture shown in Fig-
ure 3.1. For example, client application may be a database system accessing a shared

16

storage client

cache

storage client

cache

storage client

cache

storage server

cache

…

Figure 3.1: System Architecture

storage system through a storage area network. Alternatively, the storage server could
represent a local file system serving a set of clients running on the same machine.

The storage server’s workload is a sequence of block I/O requests from the various
clients. When a client sends an I/O request (read or write) to the server, it may attach
hints to the request. Specifically, each storage client may define one or more hint types
and, for each such hint type, a hint value domain. When the client issues an I/O request, it
attaches a hint set to the request. Each hint set consists of one hint value from the domain
of each of the hint types defined by that client. For example, we used IBM DB2 Universal
Database1 as a storage client, and we instrumented DB2 so that it would generate five types
of hints, as described in Figure 3.2. Thus, each I/O request issued by DB2 will have an
attached hint set consisting of five hint values: a pool ID, an object ID, an object type ID,
a request type, and a DB2 buffer priority. Together, a pool ID, object ID and object type
ID uniquely identify a specific database object, such as a table or an index. The request
type flag indicates whether a particular request was generated asynchronously (e.g., by a
DB2 prefetch or page cleaning thread) and, for write requests, whether the request was
generated for recoverability or buffer cache replacement purposes. (These are essentially
write hints [44].) Finally, the DB2 buffer priority hint indicates the priority given to the
requested page by DB2’s buffer cache manager.

We also instrumented MySQL InnoDB the same way DB2 was instrumented, and Fig-
ure 3.3 shows the hint types in the MySQL InnoDB I/O request stream. From the two
figures we see that the hint types of DB2 are different from that of MySQL. This is because
the two database systems have different storage engines, and manage data differently.

CLIC does not require these specific hint types. We chose these particular types of
hints because they could be generated easily from DB2 and MySQL InnoDB, and because

1DB2 Universal Database is a registered trademark of IBM.

17

Value Value
Hint Domain Domain

DBMS Type Cardinality Cardinality Description
(TPC-C [67]) (TPC-H [68])

DB2 pool ID 2 5 Identifies which DB2 buffer pool generated
the I/O request.

DB2 object ID 21 23 Identifies a group of related database ob-
jects, such as a table and its associated in-
dices.

DB2 object type ID 6 9 Identifies object type, such as table or index.
Together, a pool ID, object ID and object
type ID uniquely identify a database object.

DB2 request type 5 5 For read requests, distinguishes regular
reads from prefetch reads. For writes,
provides write hints ([44]), which distin-
guish between recovery writes, replacement
writes, and synchronous writes. Syn-
chronous writes are replacement writes that
are not performed by an asynchronous page
cleaning thread.

DB2 buffer priority 4 1 Identifies the priority of the page in its DB2
buffer cache.

Figure 3.2: Types of Hints in the DB2 I/O Request Traces

we believed that they might prove useful to the underlying storage system. Each client
can generate its own types of hints. CLIC itself only assumes that the hint value domains
are categorical. It neither assumes nor exploits any ordering on the values in a hint value
domain. Each storage client may have its own hint types. In fact, even if two storage
clients are instances of the same application (e.g., two instances of DB2) and use the same
hint types, CLIC treats each client’s hint types as distinct from the hint types of all other
clients.

3.2 Hint Analysis

When a storage client issues a read request for a page that is not in the server’s cache, the
server obtains the page from persistent storage and returns it to the client. At this time,
storage server also has an opportunity to place the page into its cache. Similarly, when a
storage client issues a write request, it supplies a page to the server, which then has the
opportunity to cache the page. For each such opportunity, the storage server must decide
whether to take advantage of it by caching the page. If it chooses to cache, it must also
choose which page to evict from its cache to make room for the newcomer. Our approach

18

Value
Hint Domain

DBMS Type Cardinality Description
(TPC-H)

MySQL thread ID 5 ID of server thread that issued the request.

MySQL request type 6 Read, read ahead, replacement write, or recovery write.
For read ahead, provides read ahead linear, read ahead
random, and read ahead merge. Read ahead linear is a
read request for pages before or after a page that is a bor-
der in a linear read-ahead area. Read ahead random is
a read request for all pages in a random read-ahead area
when a number of pages in this area has been accessed re-
cently. Read ahead merge is a read request for pages which
the ibuf module wants to read in, in order to contract the
insert buffer tree.

MySQL file ID 9 MySQL is configured so that each table is stored in a sep-
arate file, together with any indexes defined on that table,
so this hint distinguishes groups of database objects.

MySQL fix count 9 indicates how many MySQL threads are have currently
fixed (pinned) this page in the buffer pool

Figure 3.3: Types of Hints in the MySQL I/O Request Traces

is to base these caching decisions on the hint sets supplied by the client applications with
each I/O request. CLIC associates each possible hint set H with a numeric priority, Pr(H).
When an I/O request (read or write) for page p with attached hint set H arrives at the
server, the server uses Pr(H) to decide whether to cache p. Cache management at the
server will be described in more detail in Section 3.2.4, but the essential idea is simple:
the server caches p if there is some page p′ in the cache that was requested with a hint set
H ′ for which Pr(H ′) < Pr(H). In other words, the priority of a page in the server cache is
equal to the priority of the most recent hint set with which that page was requested.

We expect that some hint sets may signal pages that are likely to be re-used quickly,
and thus are good caching candidates. Other hint sets may signal the opposite. Intuitively,
we want the priority of each hint set to reflect these signals. But how should priorities be
chosen for each hint set? One possibility is to assign these priorities, in advance, based
on knowledge of the client application that generates the hint sets. Most existing hint-
based caching techniques use this approach. For example, the TQ algorithm [44], which
exploits write hints, understands that replacement writes likely indicate evictions in the
client application’s cache, and so it gives them high priority, which are essentially the same
as the request type hints shown in Figure 3.2. Based on knowledge of the storage client
(the DB2 relational DBMS, in this case), the TQ algorithm gives higher priority to pages
that are requested with the replacement write tag than those that are requested with
the recovery write tag. TQ understands how the client works, and knows that pages

19

written as replacement writes are more likely to be needed again soon than those that are
written with recovery writes. Similarly, quick eviction [13], gives low priority to any
page in a read request, under the assumption that the storage client application is using
a recency-based caching policy and is thus unlikely to need that page again soon.

This way of assigning priorities has been shown to be effective, when it can be applied.
However, it has some significant disadvantages. Since the priority of each possible hint
value is predefined and hard-coded into the storage server’s cache management policy,
incorporating new types of hints involves changing the server’s cache management policy.
New hint types can manifest themselves in two different ways. One is through new types of
storage clients. It may be clear that DB2’s replacement writes should have higher priority
than DB2’s recovery writes, but how does a DB2 replacement write compare to a write
issued by another relational database system, or by a file system, that is sharing the same
storage server? For that matter, how does a replacement write from one instance of DB2
compare to a replacement write from another instance of DB2 sharing the same storage
server? A similar complication arises when a single application attaches more than one type
of hint to each request. For example, our DB2 traces include both request type hints and
DB2 buffer priority hints. Previous work has shown that recovery writes are poor server
caching candidates and that pages with low DB2 buffer priority are good candidates. What
should the server do with a recovery write that has low DB2 buffer priority?

3.2.1 Hint Benefit/Cost Analysis

CLIC takes a different approach to this problem. Instead of predefining hint priorities based
on knowledge of the storage client applications, CLIC assigns a priority to each hint set by
monitoring and analyzing I/O requests that arrive with that hint set. Next, we describe how
CLIC performs its analysis. With CLIC, each storage client is responsible for classifying its
I/O requests by attaching hint sets to them. Clients may generate any types of hints that
are feasible to generate and that might prove valuable for cache management at the server.
The storage server is responsible for assigning a priority to each hint set (class of requests)
through its monitoring and analysis process. CLIC is adaptive, so adding new hint types
and new storage client applications is easy. As new hints arrive, CLIC begins monitoring
them and assigns priorities to them. To simplify the presentation, we will ignore, for now,
the cost (in time and space) of performing the analysis.

We will assume that each request that arrives at the server is tagged (by the server)
with a sequence number. Suppose that the server gets a request (p,H), meaning a request
(read or a write) for a page p with an attached hint set H, and suppose that this request
is assigned sequence number s1. CLIC is interested in whether and when page p will be
requested again after s1. There are three possibilities to consider:

write re-reference: The first possibility is that the next request for p in the request
stream is a write request occurring with sequence number s2 (s2 > s1). In this case,

20

there would have been no benefit whatsoever to caching p at time s1. A cached
copy of p would not help the server handle the subsequent write request any more
efficiently. A cached copy of p may be of benefit for requests for p that occur after
s2, but in that case the server would be better off caching p at s2 rather than at s1.
Thus, the server’s caching opportunity at s1 is best ignored.

read re-reference: The second possibility is that the next request for p in the request
stream is read request at time s2. If the server caches p at time s1 and keeps p in
the cache until s2, it will benefit by being able to serve the read request at s2 from
its cache. For the server to obtain this benefit, it must allow p to occupy one page
“slot” in its cache during the interval s2 − s1.

no re-reference: The third possibility is that p is never requested again after s1. In this
case, there is clearly no benefit to caching p at s1.

Of course, the server cannot determine which of these three possibilities will occur for any
particular request, as that would require advance knowledge of the future request stream.
Instead, we propose that the server base its caching decision for the request (p,H) on an
analysis of previous requests with hint set H. Specifically, CLIC tracks three statistics for
each hint set H:

N(H): the total number of requests with hint set H.

Nr(H): the total number requests with hint set H that result in a read re-reference (rather
than a write re-reference or no re-reference).

D(H): for those requests (p,H) that result in read re-references, the average number of
requests that occur between the request and the read re-reference. These requests
will be requests for pages other than p.

Using these three statistics, CLIC performs a simple benefit/cost analysis for each hint
set H, and assigns higher priorities to hint sets with higher benefit/cost ratios. Suppose
that the server receives a request (p,H) and that it elects to cache p. If a read re-reference
subsequently occurs while p is cached, the server will have obtained a benefit from caching
p. We arbitrarily assign a value of 1 to this benefit (the value we use does not affect the
relative priorities of pages). Among all previous requests with hint set H, a fraction

fhit(H) = Nr(H)/N(H) (3.1)

eventually resulted in read re-references, and would have provided a benefit if cached. We
call fhit(H) the read hit rate of hint set H. Since the value of a read re-reference is 1,
fhit(H) can be interpreted as the expected benefit of caching and holding pages that are
requested with hint set H. Conversely, D(H) can be interpreted as the expected cost of

21

STOCK table replacement writes

ORDERLINE table reads

Figure 3.4: Hint Set Priorities for the DB2 C60 Trace
Each point represents a distinct hint set. All hint sets are shown.

caching such pages, as it measures how long such pages must occupy space in the cache
before the benefit is obtained. We define the caching priority of hint set H as:

Pr(H) =
fhit(H)

D(H)
(3.2)

which is the ratio of the expected benefit to the expected cost.

Figure 3.4 illustrates the results of this analysis for a trace of I/O requests made by DB2
during a run of the TPC-C [67] benchmark. Our workload traces will be described in more
detail in Section 3.4. Each point in Figure 3.4 represents a distinct hint set that is present
in the trace, and describes the hint set’s caching priority and frequency of occurrence. All
hint sets with non-zero caching priority are shown. Clearly, some hint sets have much
higher priorities, and thus much higher benefit/cost ratios, than others. For illustrative
purposes, we have indicated partial interpretations of two of the hint sets in the figure.
For example, the most frequently occurring hint set represents replacement writes to the
STOCK table in the TPC-C database instance that was being managed by the DB2 client.
We emphasize that CLIC does not need to understand that this hint represents the STOCK
table, nor does it need to understand the difference between a replacement write and a
recovery write. Its interpretation of hints is based entirely on the hint statistics that it
tracks, and it can automatically determine that a request with the STOCK table hint set
is a better caching opportunity than a request with the ORDERLINE table hint set.

22

3.2.2 Tracking Hint Set Statistics

To track hint set statistics, CLIC maintains a hint table with one entry for each distinct
hint set H that has been observed by the storage server. The hint table entry for H
records the current values of the statistics N(H), Nr(H) and D(H). When the server
receives a request (p,H), it increments N(H). Tracking Nr(H) and D(H) is somewhat
more involved, as CLIC must determine whether a read request for page p is a read re-
reference. To determine this, CLIC records two pieces of information for every page p that
is cached: seq(p), which is the sequence number of the most recent request for p, and
H(p), which is the hint set that was attached to the most recent request for p. In addition,
CLIC records seq(p) and H(p) for a fixed number (Noutq) of additional, uncached pages.
This additional information is recorded in a data structure called the outqueue. Noutq is a
CLIC parameter that can be used to bound the amount of space required for tracking read
re-references. When the server receives a read request for page p with sequence number s,
it checks both the cache and the outqueue for information about the most recent previous
request, if any, for p. If it finds seq(p) and H(p) from a previous request, then it knows
that the current request is a read re-reference of p. It increments Nr(H(p)) and it updates
D(H(p)) using the re-reference distance s− seq(p).

When a page p is evicted from the cache, an entry for p is inserted into the outqueue.
The entry records the hint H with which p was last requested as well as seq(p). An entry is
also placed in the outqueue for any requested page that CLIC elects not to cache. (CLIC’s
caching policy is described in Section 3.2.4.) When an outqueue page is inserted into the
cache, the page’s entry is removed from the outqueue. If the outqueue is full when a new
entry is to be inserted, the least-recently inserted entry is evicted from the outqueue to
make room for the new entry.

Since CLIC only records seq(p) and H(p) for a limited number of pages, it may fail to
recognize that a new read request (p,H) is actually a read re-reference for p. Some error
is inevitable unless CLIC were to record information about all requested pages. However,
CLICs approach to tracking page re-references has several advantages. First, since CLIC
tracks the most recent reference to all pages that are in the cache, we expect to have
accurate re-reference distance estimates for hint sets that are believed to have the highest
priorities, since pages requested with those hint sets will be cached. If the priority of such
hint sets drops, CLIC should be able to detect this. Second, by evicting the oldest entries
from the outqueue when eviction is necessary, CLIC will tend to miss read re-references
that have long re-reference distances. Conversely, read re-references that happen quickly
are likely to be detected. These are exactly the type of re-references that lead to high
caching priority. Thus, CLIC’s statistics tracking is biased in favor of read re-references
that are likely to lead to high caching priority.

23

requests

W W

Points of calculating priority

Figure 3.5: Priority Calculation Timeline

3.2.3 Time-Varying Workloads

To accommodate time-varying workloads, CLIC divides the request stream into non-
overlapping windows, with each window consisting of W requests, as shown in Figure 3.5.
At the end of each window, CLIC adjusts the priority for each hint set using the statistics
collected during that window. The adjusted priority will be used to guide the caching
policy during the next window. It then clears the statistics (N(H), Nr(H), D(H)) for all
hint sets in the hint table so that it can collect new statistics during the next window.

Let Pr(H)i represent the priority of H that is calculated after the ith window, and that
is used by CLIC’s caching policy during window i + 1. Priority Pr(H)i is calculated as
follows

Pr(H)i = rP̂r(H)i + (1 − r)Pr(H)i−1 (3.3)

where P̂r(H)i represents the priorities that were calculated using the statistics collected
during the ith window (and Equation 3.2), and r (0 < r ≤ 1) is a CLIC parameter.
The effect of Equation 3.3 is that the impact of statistics gathered during the ith window
decays exponentially with each new window, at a rate that is controlled by r. Setting
r = 1 causes CLIC to base its priorities entirely on the statistics collected during the
most recently completed window. Lower values of r cause CLIC to give more weight to
older statistics. For all of the experiments reported for CLIC and DP-CLIC, we have set
W = 106 and r = 1.

3.2.4 Cache Management

In Section 3.2.1 , we described how CLIC assigns a caching priority to each hint set H. In
this section, we describe how the server uses these priorities to manage the contents of its
cache. Structures used by CLIC are summarized in Figure 3.6 and CLIC cache policy is
described in Figure 3.7.

Figure 3.7 describes CLIC’s priority-based replacement policy. This policy evicts a
lowest priority page from the cache if the newly requested page has higher priority. The
priority of a page is determined by the priority Pr(H) of the hint set H with which that

24

Out Queue
(Metadata only)

Highest priority list

List of hint set H1
(Metadata & blocks)

Lowest priority list
List of hint set H2

(Metadata & blocks)
List of hint set Hn

(Metadata & blocks)

Page
requested
with H2

Page requested with H1

eviction

Page requested with Hn

Figure 3.6: Structures Used by CLIC
Arrows show possible movements among queues in response to I/O requests

page was last requested. Note that if a page that is cached after being requested with
hint set H is subsequently requested with hint set H ′, its priority changes from Pr(H)
to Pr(H ′). The most recent request for each cached page always determines its caching
priority.

The policy described in Figure 3.7 can be implemented to run in constant expected
time. To do this, CLIC maintains a heap-based priority queue of the hint sets. For each
hint set H in the heap, all pages with H(p) = H are recorded in a doubly-linked list that
is sorted by seq(p). This allows the victim page to be identified (Figure 3.7, lines 7-11)
in constant time. CLIC also maintains a hash table of all cached pages so that it can
tell which pages are cached (line 1) and find a cached page in its hint set list in constant
expected time. Finally, CLIC implements the hint table as a hash table so that it can look
up Pr(H) (line 12) in constant expected time.

As described in Section 3.2.3, CLIC adjusts hint set priorities after every window of W
requests. When this occurs, CLIC rebuilds its hint set priority queue based on the newly
adjusted priorities. Hint set priorities do not change except at window boundaries.

3.3 Handling Large Numbers of Hint Sets

As described in Section 3.2.2, CLIC’s hint table records statistical information about every
hint set that the server has observed. Although the amount of statistical information

25

if p is not cached then1�
if the cache is not full then2�
cache p3�
set seq(p) = s4�
set H(p) = H5�

else6�
let m be the minimum priority7�
of all pages in the cache8�

let v be the page with the9�
minimum sequence number seq(v)10�
among all pages with priority m11�

if Pr(H)>m then12�
evict v from the cache13�
add entry for v (with seq(v)14�

and H(v)) to the outqueue15�
cache p16�
set seq(p) = s17�
set H(p) = H18�

else /* do not cache p */19�
add entry for p to the outqueue20�
set seq(p) = s21�
set H(p) = H22�

else /* p is already cached */23�
seq(p) = s24�
H(p) = H25�

Figure 3.7: Hint-Based Server Cache Replacement Policy
This pseudo-code shows how the server handles a request for page p with hint set H and request
sequence number s.

26

8 32 56 80 104 128 152

rank

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Figure 3.8: Cumulative Hint Set Frequency in the DB2 C300 400 Trace

tracked per hint set is small, the number of distinct hit sets from each client might be as
large as the product of the cardinalities of that client’s hint value domains. In our traces,
the number of distinct hit sets is small. For other applications, however, the number of
hint sets could potentially be much larger. In this section, we propose one technique for
restricting the number of hint sets that CLIC must consider, so that CLIC can continue
to operate efficiently as the number of hint sets grows. The technique is based on hint set
frequency. We describe another technique, which is based on hint set generalization, in
Chapter 5.

3.3.1 Frequently-Occurring Hint Sets

All of the hint types in our workload traces exhibit frequency skew. That is, some values
in the hint domain occur much more frequently than others. As a result, some hint sets
occur much more frequently than others. One way to cope with large numbers of hint sets
is to reduce the number of hints that CLIC must consider. We propose to exploit this skew
by tracking statistics for the hint sets that occur most frequently in the request stream and
ignoring those that do not. Ignoring infrequent hint sets may lead to errors. In particular,
we may miss a hint set that would have had high caching priority. However, since any such
missed hint set would occur infrequently, the impact of the error on the server’s caching
performance is likely to be small.

For example, Figure 3.8 shows the cumulative frequency of hint sets in the DB2 300 400
trace, one of the traces we used in our evaluation of CLIC (see Figure 3.9). The figure
shows that a few hint sets account for most of the I/O requests in the trace. While it is
possible that this is merely an artifact of our traces, we expect that many application hints
will exhibit skew.

The problem with this approach is that we must determine, on the fly, which hint sets

27

occur frequently, without actually maintaining a counter for every hint set. The simple way
to do this is to count the number of requests with each hint set and then choose those hints
sets with the most requests. However, this requires space proportional to the number of
distinct hint sets, which is exactly what we are trying to avoid. What we need is a means
of determining the frequently occurring hint sets without maintaining counts for every
hint. Fortunately, this frequent item problem arises in a variety of settings, and numerous
methods have been proposed to solve it. We have chosen one of these methods: the so-
called Space-Saving algorithm [53], which has recently been shown to outperform other
frequent item algorithms [15]. Given a parameter k, this algorithm tracks the frequency
of k different hint sets, among which it attempts to include as many of the actual k most
frequent hint sets as possible. It is an on-line algorithm which scans the sequence of
hint sets attached to the requests arriving at the server. Although k different hint sets are
tracked at once, the specific hint sets that are being tracked may vary over time, depending
on the request sequence.

After each request has been processed, the algorithm can report the k hint sets that it is
currently tracking, as well as an estimate of the frequency (total number of occurrences) of
each hint set and an error indicator which bounds the error in the frequency estimate. By
analyzing the frequency estimates and error indicators, it is possible to determine which
of the k currently-tracked hint sets are guaranteed to be among the actual top-k most
frequent hint sets and which are not. However, for our purposes this is not necessary.

We adapted the Space-Saving algorithm slightly so that it tracks the additional infor-
mation we require for our analysis. Specifically:

N(H): For each hint set H that is tracked by the Space-Saving algorithm, we use the
frequency estimate produced by the algorithm, minus the estimation error bound
reported by the algorithm, as N(H).

Nr(H): We modified the Space-Saving algorithm to include an additional counter for each
hint set H that is currently being tracked. This counter is initialized to zero when the
algorithm starts tracking H, and it is incremented for each read re-reference involving
H that occurs while H is being tracked. We use the value of this counter as Nr(H).

D(H): We track the expected re-reference distance for all read re-references involving H
that occur while H is being tracked, i.e., those read re-references that are included
in Nr(H).

For all hint sets H that are not currently tracked by the algorithm, we take Nr(H) to be
zero, and hence Pr(H) to be zero as well.

In general, N(H) will be be an underestimate of the true frequency of hint set H. Since
Nr(H) is only incremented while H is being tracked, it too will in general underestimate
the true frequency of read re-references involving H. As a result of these underestimations,

28

fhit(H), which is calculated as the ratio of the Nr(H) to N(H), may be inaccurate. How-
ever, because we take the ratio of N(H) to Nr(H), the two underestimations may at least
partially cancel one another, leading to a more accurate fhit(H). In addition, the higher
the true frequency of H, the more time H will spend being tracked and the more accurate
we expect our estimates to be.

To account for time-varying workloads, we restart the Space-Saving algorithm from
scratch for every window of W requests. Specifically, at the end of each window we use the
Space-Saving algorithm to estimate N(H), Nr(H), and D(H) for each hint set H that is
tracked by the algorithm, as described above. These statistics are used to calculate P̂r(H),
which is then used in Equation 3.3 to calculate the hint set’s caching priority (Pr(H))
to be used during the next request window. Once the P̂r(H) have been calculated, the
Space-Saving algorithm’s state is cleared in preparation for the next window.

The Space-Saving algorithm requires two counters for each tracked hint-set, and we
added several additional counters for the sake of our analysis. Overall, the space required
is proportional to k. Thus, this parameter can be used to limit the amount of space
required to track hint set statistics. With each new request, the data structure used by
the Space-Saving algorithm can be updated in constant time [53], and the statistics for the
tracked hint sets can be reported, if necessary, in time proportional to k.

3.4 Experimental Evaluation

Objectives: We used trace-driven simulation to evaluate our proposed mechanisms. The
goal of our experimental evaluation is to answer the following questions:

1. Can CLIC identify good caching opportunities for storage server caches, and thereby
improve the cache hit ratio in compared to other caching policies? (Section 3.4.1)

2. How effective are CLIC’s mechanisms for reducing the number of hint sets that it
must track (Sections 3.4.3 and 3.4.4).

3. Can CLIC improve performance for multiple storage clients by prioritizing the caching
opportunities of the different clients based on their observed reference behavior?
(Section 3.4.5)

Simulator: To answer these questions, we implemented a simulation of the storage server
cache. In addition to CLIC, the simulator implements the following caching policies for
purpose of comparison:

OPT: This is an implementation of the well-known optimal off-line MIN algorithm [6].
It replaces the cached page that will not be read for the longest time. This algo-
rithm requires knowledge of the future so it cannot be used for cache replacement in

29

practical systems, but its hit ratio is optimal so it serves as an upper bound on the
performance of any caching algorithm.

LRU: This algorithm replaces the least-recently used page in the cache. Since temporal
locality is often poor in second-tier caches, we expect CLIC to perform significantly
better than LRU.

ARC: ARC [52] is a hint-oblivious caching policy that considers both recency and fre-
quency of use in making replacement decisions.

TQ: TQ is a hint-aware algorithm that was proposed for use in second-tier caches [44].
Unlike the algorithms proposed here, it works only with one specific type of hint
that can be associated with write requests from database systems. We expect our
proposed algorithms, which can automatically exploit any type of hint, to do at least
as well as TQ when the write hints needed by TQ are present in the request stream.

The TQ algorithm has previously been compared to a number of other second-tier caching
policies that are not considered here. These include MQ [76], a hint-oblivious policy, and
write-hint-aware variations of both MQ and LRU [44]. TQ was shown to be generally
superior to those alternatives when the necessary write hints are present [44], so we use it
as our representative of the state of the art in hint-aware second-tier caching policies.

The simulator accepts a stream of I/O requests with associated hint sets, as would be
generated by one or more storage clients. It simulates the caching behavior of one of the
five supported cache replacement policies (CLIC, OPT, LRU, ARC and TQ) and computes
the read hit ratio for the storage server cache. The read hit ratio is the number of read
hits divided by the number of read requests.

Workloads: We use DB2 Universal Database (version 8.2) and the MySQL2 database
system (Community Edition, version 5.0.33) as our storage system clients. DB2 is a widely-
used commercial relational database system to which we had access to source code, and
MySQL is a widely-used open source relational database system. We instrumented DB2
and MySQL so that they would generate I/O hints and dump them into an I/O trace file.
The types of hints generated by these two systems are described in Figure 3.2.

To generate our traces, we ran TPC-C and TPC-H workloads on DB2 and a TPC-H
workload on MySQL. TPC-C and TPC-H are well-known on-line transaction processing
(TPC-C) and decision support (TPC-H) benchmarks. We ran TPC-C at scale factor 25.
At this scale factor, the TPC-C database initially occupied approximately 600,000 4KB
blocks, or about 2.3 GB, in the storage system. The TPC-C workload inserts new items into
the database, so the database grows during the TPC-C run. For the TPC-H experiments,
the database size was approximately 3.2 GB for the DB2 runs, and 5 GB for the MySQL
runs. The DB2 TPC-H workload consisted of the 22 TPC-H queries and the two refresh

2MySQL is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

30

T
ra

ce
D

B
S

iz
e

D
B

M
S

B
u

ff
er

D
B

M
S

D
is

ti
n

ct
D

is
ti

n
ct

N
a
m

e
D

B
M

S
W

k
L

oa
d

(p
ag

es
)

S
iz

e
(p

ag
es

)
so

ft
m

ax
R

eq
u

es
ts

H
in

t
S

et
s

P
ag

es

D
B

2
C

60
4
0

D
B

2
T

P
C

-C
60

0K
60

K
40

38
10

18
51

16
9

91
92

15
D

B
2

C
6
0

4
0
0

D
B

2
T

P
C

-C
60

0K
60

K
40

0
37

69
90

91
16

4
93

06
88

D
B

2
C

3
00

40
D

B
2

T
P

C
-C

60
0K

30
0K

40
32

10
24

29
12

8
11

30
92

5
D

B
2

C
3
0
0

4
00

D
B

2
T

P
C

-C
60

0K
30

0K
40

0
31

86
93

77
15

4
13

20
88

2
D

B
2

C
5
40

40
D

B
2

T
P

C
-C

60
0K

54
0K

40
49

27
95

89
10

5
16

84
87

8
D

B
2

C
5
4
0

4
00

D
B

2
T

P
C

-C
60

0K
54

0K
40

0
21

86
37

19
14

0
18

07
43

1
D

B
2

H
8
0

5
0

D
B

2
T

P
C

-H
80

0K
80

K
50

65
07

13
76

2
13

6
73

28
03

D
B

2
H

80
4
0
0

D
B

2
T

P
C

-H
80

0K
80

K
40

0
63

53
75

70
1

13
4

73
29

05
D

B
2

H
40

0
50

D
B

2
T

P
C

-H
80

0K
40

0K
50

62
84

26
65

13
5

73
29

31
D

B
2

H
40

0
4
0
0

D
B

2
T

P
C

-H
80

0K
40

0K
40

0
65

67
52

04
12

9
73

27
23

D
B

2
H

72
0

50
D

B
2

T
P

C
-H

80
0K

72
0K

50
26

79
45

6
12

8
73

27
64

D
B

2
H

72
0

4
0
0

D
B

2
T

P
C

-H
80

0K
72

0K
40

0
29

73
79

2
12

8
73

26
90

M
Y

H
6
5

M
y
S

Q
L

T
P

C
-H

32
8K

65
K

n
/a

36
26

67
35

21
16

75
02

M
Y

H
9
8

M
y
S

Q
L

T
P

C
-H

32
8K

98
K

n
/a

16
56

13
46

21
16

75
01

F
ig

u
re

3.
9:

I/
O

R
eq

u
es

t
T

ra
ce

s.
T

h
e

p
ag

e
si

ze
s

fo
r

th
e

D
B

2
a
n

d
M

y
S

Q
L

d
at

ab
as

es
w

er
e

4K
B

an
d

16
K

B
,

re
sp

ec
ti

ve
ly

.
F

or
th

e
T

P
C

-C
w

or
k
lo

ad
s,

th
e

ta
b
le

sh
ow

s
th

e
in

it
ia

l
d
at

ab
as

e
si

ze
.

T
h

e
T

P
C

-C
d

at
ab

as
e

gr
ow

s
as

th
e

w
or

k
lo

ad
ru

n
s.

31

updates. The workload for MySQL was similar except that it did not include the refresh
updated and we skipped one of the 22 queries (Q18) because of excessive run-time on our
MySQL configuration.

On each run, we controlled the size of the first-tier cache, which in our case is the
database system’s internal buffer cache. We collected traces using a variety of different
buffer cache sizes for each DBMS. We expect the buffer cache size to be a significant
parameter because it affects the temporal locality in the I/O request stream that is seen
by the underlying storage server. The larger DBMS buffer cache, the less temporal locality
we expect to be available at the storage server. Since TPC-C is write-intensive, we also
varied softmax when running TPC-C workloads on DB2. This parameter controls the
urgency with which DB2 forces dirty pages from its buffer cache to disk for recoverability
reasons. Smaller values of softmax result in more (and more frequent) write requests in
the request stream. Figure 3.9 summarizes the I/O request traces that were used for the
experiments reported here.

3.4.1 Comparison to Other Caching Policies

In our first experiment, we compare the cache read hit ratio of CLIC to that of other
replacement policies that we consider (LRU, ARC, TQ, and OPT). We varied the size
of the storage server buffer cache, and we present the read hit ratio as a function of the
server’s buffer cache size for each workload. For these experiments, we set r = 1.0 and the
size of CLIC’s outqueue (Noutq) to 5 entries per page in the storage server’s cache. If the
cache holds C pages, this means that CLIC tracks the most recent reference for 6C pages,
since it tracks this information for all cached pages, plus those in the outqueue. For each
tracked page, CLIC records a sequence number and a hint set. If each of these is stored as
a 4-byte integer, this represents a space overhead of roughly 1%. To account for this, we
reduced the server cache size by 1% for CLIC only, so that the total space used by CLIC
would be the same as that used by other policies. ARC also employs a structure similar to
CLIC’s outqueue for tracking pages that are not in the cache. However, we did not reduce
ARC’s cache size. As a result, ARC has a small space advantage in these experiments.

Figure 3.10 shows the results of this experiment for the DB2 TPC-C traces. All of the
algorithms have similar performance for the DB2 C60 traces. These two traces come from
the DB2 configuration with the smallest buffer cache, and there is a significant amount
of temporal locality in the traces that was not “absorbed” by DB2 buffer pool. This
temporal locality can be exploited by the storage server cache. As a result, even LRU
performs reasonably well. Both of the hint-based algorithms (TQ and CLIC) also do well.

The performance of LRU is significantly worse on the other TPC-C traces, as there
is very little temporal locality. ARC performs better than LRU, as expected, though
substantially worse than both of the hint-aware policies. CLIC, which learns how to exploit
the available hints, does about as well as TQ, which implements a hard-coded response

32

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_C60_400

(a)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_C60_40

(b)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_C300_400

(c)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_C300_40

(d)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

OPT TQ LRU
ARC CLIC

DB2_C540_400

(e)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

OPT TQ LRU
ARC CLIC

DB2_C540_40

(f)

Figure 3.10: Read Hit Ratio of Caching Policies for the DB2 TPC-C Workloads

to one particular hint type on the DB2 C300 400 trace, and both policies’ performance
approaches that of OPT.

CLIC outperforms TQ on the DB2 C300 40 trace and CLIC’s performance is closer to
that of OPT. As the value of softmax is small, the DB2 C300 40 trace has more RECOV
write requests and fewer REPLACE write requests. Under TQ, pages with REPLACE
write hint are good candidates for caching at the storage server, but TQ ignores the RECOV

33

write hint. Thus, pages with read hints and pages with RECOV write hint are treated the
same. CLIC exploits the available hints and determines that the RECOV write hint, in
combination with other hint types, is also a good hint for caching. CLIC also outperforms
TQ on the DB2 C540 trace, though it is also further from OPT. The DB2 C540 traces come
from the DB2 configuration with the largest buffer cache, so they have the least temporal
locality of all traces and therefore present the most difficult cache replacement problem.
By analyzing these two traces, we note that DB2 C540 400 has much fewer REPLACE
writes and DB2 C540 400 has no REPLACE writes. Thus, CLIC outperforms TQ because
of its ability to learn that there is some value in the RECOV write hints in these traces.

Figures 3.11 and 3.12 show the results for the TPC-H traces from DB2 and MySQL,
respectively. Again, CLIC generally performs at least as well as the other replacement
policies that we considered. In some cases, e.g., for the DB2 H400 50 and DB2 H400 400
traces, CLIC’s read hit ratio is more than twice the hit ratio of the best hint-oblivious
alternative.

In one case, for the DB2 H80 50 and DB2 H80 400 traces with a server cache size of
300K pages, both LRU and ARC outperformed both TQ and CLIC. In this scenario, there
is a relatively large amount of residual locality in the workload because the DB2 buffer
cache is small. When the storage server cache is large enough (300K) to capture it, LRU
and ARC have good performance.

3.4.2 Limiting the Outqueue Size

In this experiment, we study the effect of limiting the size of the outqueue that CLIC
uses to track the sequence number of each page’s most recent reference. If no limit were
imposed, the outqueue could potentially have one entry for every page in the underlying
storage system. In the previous section, we showed the performance of CLIC with the
outqueue size equals to five times cache size, and in this section we show that the limited
size of the outqueue does not have a large penalty on the performance.

We tested CLIC with the outqueue size equals to the server cache size, five times
server size cache, and unlimited size. With unlimited outqueue, CLIC was given unlimited
space for tracking page references and for recording hint statistics, and this space was not
subtracted from the server cache size.

Figure 3.13 shows the results of this experiment for all six traces and a server cache size
of 60K, 180K and 300K pages, respectively. In most cases, an outqueue limit of 5 entries
per server cache page (the middle bar in each group in Figure 3.13) results in a server cache
read hit ratio very close to what was obtained with CLIC with an unlimited outqueue. In
most cases, an outqueue with only one entry per server cache page also does well (with
some exceptions for the DB2 C540 40 trace). Similar experiments with server cache sizes
of 60K pages and 300K pages resulted in identical conclusions. Thus, we can see that
limiting the outqueue size saves space without degrading the performance of CLIC. For all
of our remaining experiments, we use an outqueue limit of 5 entries per server cache page.

34

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d
 H

it
 R

a
ti

o

DB2_H80_50

(a)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d
 H

it
 R

a
ti

o

DB2_H80_400

(b)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d
 H

it
 R

a
ti

o

DB2_H400_50

(c)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d
 H

it
 R

a
ti

o

DB2_H400_400

(d)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d
 H

it
 R

a
ti

o

OPT TQ LRU ARC
CLIC

DB2_H720_50

(e)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d
 H

it
 R

a
ti

o

OPT TQ LRU ARC
CLIC

DB2_H720_400

(f)

Figure 3.11: Read Hit Ratio of Caching Policies for the DB2 TPC-H Workloads

3.4.3 Tracking Only Frequent Hint Sets

In this experiment, we study the effect of tracking only the most frequently occurring hint
sets using the top-k algorithm described in Section 3.3.1. In our experiment we vary k, the
number of hint sets tracked by CLIC, and measure the server cache hit ratio.

Figure 3.14 shows some of the results of this experiment. The left side graphs (a) (c)

35

50K 75K 100K

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%
S

e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o

OPT TQ LRU ARC CLIC

MY_H65

(a)

50K 75K 100K

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o

OPT TQ LRU ARC CLIC

MY_H98

(b)

Figure 3.12: Read Hit Ratio of Caching Policies for the MySQL Workloads

(e) in Figure 3.14 show the results for the DB2 TPC-C traces, with a server cache size of
60K, 180K, and 300K pages respectively. We obtained similar results with the DB2 TPC-C
traces for other server cache sizes. In all cases, tracking the 20 most frequent hints (i.e.,
setting k = 20) was sufficient to achieve a read hit ratio close to what we could obtain by
tracking all of the hints in the trace. In many cases, tracking fewer than 10 hints sufficed.
The curve for the DB2 C540 400 trace shows that the Space Saving algorithm that we use
to track frequent hint sets can sometimes suffer from some instability, in the sense that
larger values of k may result in worse performance than smaller k. This is because hint sets
reported by the Space Saving algorithm when k = k1 are not guaranteed to be reported
by the space saving algorithm when k > k1. We only observed this problem occasionally,
and only for very small values of k.

The right side graphs (b) (d) (f) in Figure 3.14 show the results for the DB2 TPC-H
traces, with a server cache size of 60K, 180K and 300K pages respectively. For all of the
DB2 TPC-H traces and all of the cache sizes that we tested, k = 10 was sufficient to obtain
performance close to that obtained by tracking all hint sets. Overall, we found the top-k
approach to be very effective at cutting down the number of hints to be considered by
CLIC.

3.4.4 Increasing the Number of Hints

In the previous experiment, we studied the effectiveness of the top-k approach at reducing
the number of hints that must be tracked by CLIC. In this experiment, we consider a
similar question, but from a different perspective. Specifically, we consider a scenario in
which CLIC is subjected to useless “noise” hints, in addition to the useful hints that it
has exploited in our previous experiments. We limit the number of hint sets that CLIC
is able to track and increase the level “noise”. Our objective is to determine whether the

36

DB2_C60_40 DB2_C300_40 DB2_C540_40
0%

5%

10%

15%

20%

25%

Se
rv

er
 c

ac
he

 h
it

ra
tio

(a) 60K page server cache size

DB2_C60_400 DB2_C300_400 DB2_C540_400
0%

5%

10%

15%

20%

25%

Se
rv

er
 c

ac
he

 h
it

ra
tio

(b) 60K page server cache size

DB2_C60_40 DB2_C300_40 DB2_C540_40
0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 c

ac
he

 h
it

ra
tio

(c) 180K page server cache size

DB2_C60_400 DB2_C300_400 DB2_C540_400
0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 c

ac
he

 h
it

ra
tio

(d) 180K page server cache size

DB2_C60_40 DB2_C300_40 DB2_C540_40
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 c

ac
he

 h
it

ra
tio

outQueue = cache size outQueue = 5*cache size
unlimited outQueue

(e) 300K page server cache size

DB2_C60_400 DB2_C300_400 DB2_C540_400
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 c

ac
he

 h
it

ra
tio

outQueue = cache size outQueue = 5*cache size
unlimited outQueue

(f) 300K page server cache size

Figure 3.13: Effect of Outqueue Size on Read Hit Ratio
Each bar represents a different outqueue size.

top-k approach is effective at ignoring the noise, and focusing the limited space available
for hint-tracking on the most useful hints.

In practice, we hope that storage clients will not generate lots of useless hints. However,
in general, clients will not be able to determine how useful their hints are to the server,
and some hints generated by clients may be of little value. By deliberately introducing
a controllable level of useless hints in this experiment, we hope to test CLIC’s ability to
tolerate them without losing track of those hints that are useful.

To study the effectiveness of these techniques, we added synthetic “noise” hints to our

37

1 10 100

k

0%

5%

10%

15%

20%

25%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2 TPC-C Traces, 60K Page Storage Server Cache

(a)

1 10 100

k

10%

11%

12%

13%

14%

15%

16%

17%

18%

19%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2 TPC-H Traces, 60K Page Storage Server Cache

(b)

1 10 100

k

0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2 TPC-C Traces, 180K Page Storage Server Cache

(c)

1 10 100

k

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2 TPC-H Traces, 180K Page Storage Server Cache

(d)

1 10 100

k

0%

10%

20%

30%

40%

50%

60%

70%

80%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_C60_400 DB2_C300_400
DB2_C540_400

DB2 TPC-C Traces, 300K Page Storage Server Cache

(e)

1 10 100

k

0%

10%

20%

30%

40%

50%

60%

70%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_H80_400 DB2_H400_400
DB2_H720_400

DB2 TPC-H Traces, 300K Page Storage Server Cache

(f)

Figure 3.14: Effect of Top-K Hint Set Filtering on Read Hit Ratio

existing traces in addition to the original hints. In this experiment we consider how these
techniques will perform as the number of distinct hint sets in the input trace is increased.
Since each of our workload traces has a fixed number of distinct hint sets, we increased the
number of hints by injecting additional synthetic hints into our traces.

For this experiment we used our DB2 TPC-C and TPC-H traces, each of which contains
5 real hint types, and added T additional synthetic hint types. In other words, each request

38

will have 5 + T hints associated with it, the five original hints plus T additional synthetic
hints. Each injected synthetic hint is chosen randomly from a domain of D possible hint
values. A particular value from the domain is selected using a Zipf distribution with skew
parameter z = 1. When T > 1, each injected hint value is chosen independently of the
other injected hints for the same record. Since the injected hints are chosen at random, we
do not expect them to provide any information that is useful for server cache management.
This injection procedure potentially increases the number of distinct hint sets in a trace
by a factor DT . For our experiments, we chose D = 10, and we varied T , which controls
the amount of “noise”.

First, we evaluate the effectiveness of top-k approach when noise hint types are added
to the DB2 TPC-C workload traces. Figure 3.15 shows the read hit ratios in a server cache
of size 60K, 180K and 300K pages as a function of T . We fixed k = 100 and k = 200 for
the top-k algorithm. With k = 100, the number of hints tracked by CLIC remains fixed
at 100 as the number of useless hints increases. As T goes from 0 to 3, the total number
of distinct hint sets in each trace increases from just over 100 (the number of distinct hint
sets each TPC-C trace), to about 1000 when T = 1, and to more than 50000 when T = 3.

Ideally, the server cache read hit ratio would remain unchanged as the number of “noise”
hints is increased. In practice, however, this is not the case. As shown in Figure 3.15, CLIC
fares reasonably well for the DB2 C60 400 trace, suffering mild degradation in performance
for T ≥ 2. However, for the other two traces, CLIC experienced more substantial degra-
dation, particularly for T ≥ 2. The cause of the degradation is that high-priority hint sets
from the original trace get “diluted” by the additional noise hint types. For example, with
D = 10 and T = 2, each original hint set is split into as many as DT = 100 distinct hint
sets because of the additional noise hints that appear with each request. Since CLIC has
limited space for tracking hint sets, the dilution eventually overwhelms its ability to track
and identify the useful hints. Even when k is increased from 100 (the left side graphs of
Figure 3.15) to 200 (the right side graphs of Figure 3.15), the read hit ratios have not been
improved.

Secondly, we evaluate the effectiveness of top-k approach when noise hint types are
added to the DB2 TPC-H workload traces. Figure 3.16 shows the read hit ratios in a
server cache of size 60K, 180K and 300K pages as a function of T . Similarly, we fixed
k = 100 and k = 200 for the top-k algorithm. For the DB2 H400 400 trace, CLIC fares
reasonably well, suffering mild degradation in performance for T ≥ 2. This is because
for the original DB2 H400 400 trace, CLIC only needs to track k = 2 hint sets to obtain
performance close to that obtained by tracking all hint sets (Shown in Figure 3.14). Even
though the original hint sets have been diluted by the noise, the performance of CLIC
does not degrade much. However, for the DB2 H720 400 trace, CLIC experienced more
substantial degradation, particularly for T ≥ 2. One interesting observation is made on
DB2 H80 400. When T is increased, CLIC’s performance actually increases in some cases.
By analyzing the original hint sets of DB2 H80 400, we found that one hint set has the
highest caching priority and frequency, and pages with this hint set occupy all of the server

39

0 1 2 3

T

0%

5%

10%

15%

20%

25%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o
DB2 TPCC traces, 60K Page Storage Server Cache

(a) k=100

0 1 2 3

T

0%

5%

10%

15%

20%

25%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2 TPCC traces, 60K Page Storage Server Cache

(b) k=200

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2 TPCC traces, 180K Page Storage Server Cache

(c) k=100

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2 TPCC traces, 180K Page Storage Server Cache

(d) k=200

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_C60_400 DB2_C300_400
DB2_C540_400

DB2 TPCC traces, 300K Page Storage Server Cache

(e) k=100

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_C60_400 DB2_C300_400
DB2_C540_400

DB2 TPCC traces, 300K Page Storage Server Cache

(f) k=200

Figure 3.15: Effect of Top-K Hint Set Filtering on Read Hit Ratio with TPC-C Workload
Traces

40

0 1 2 3

T

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%
Se

rv
er

 C
ac

he
 R

ea
d

H
it

R
at

io

DB2 TPCH traces, 60K Page Storage Server Cache

(a) k=100

0 1 2 3

T

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2 TPCH traces, 60K Page Storage Server Cache

(b) k=200

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2 TPCH traces, 180K Page Storage Server Cache

(c) k=100

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2 TPCH traces, 180K Page Storage Server Cache

(d) k=200

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_H80_400 DB2_H400_400
DB2_H720_400

DB2 TPCH traces, 300K Page Storage Server Cache

(e) k=100

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_H80_400 DB2_H400_400
DB2_H720_400

DB2 TPCH traces, 300K Page Storage Server Cache

(f) k=200

Figure 3.16: Effect of Top-K Hint Set Filtering on Read Hit Ratio with TPC-H Workload
Traces

41

cache. The problem with this hint set is that some pages with this hint set have very
long read re-reference distances, and CLIC is unable to evict any of these pages because
they all have the highest caching priority. When noise hints are added, this hint set has
been diluted into several hint sets with difference caching priorities. Thus, pages that once
had the highest caching priority now have different caching priorities and some of them
can be evicted from the cache. However, when more noise hints are added (T = 3), the
performance starts to drop because k is not large to enough to collect all higher-priority
hint sets.

This experiment suggests that it may be necessary to tune or modify CLIC to ensure
that it operates well in situations in which the storage clients provide too many low-value
hints. One way to address this problem is to increase k as the number of hints increases, so
that CLIC is not overwhelmed by the additional hints. Controlling this trade-off of space
versus accuracy is an interesting tuning problem for CLIC. (We address this problem in
Chapter 5).

3.4.5 Multiple Storage Clients

One desirable feature of CLIC is that it should be capable of accommodating hints from
multiple storage clients. The clients independently send their different hints to the storage
server without any coordination among themselves, and CLIC should be able to effectively
prioritize the hints to get the best overall cache hit ratio.

To test this, we simulated a scenario in which multiple instances of DB2 share a storage
server. Each DB2 instance manages its own separate database, and represents a separate
storage client. All of the databases are housed in the storage server, and the storage server’s
cache must be shared among the pages of the different databases. To create this scenario,
we create a multi-client trace for our simulator by interleaving requests from several DB2
traces, each of which represents the requests from a single client. We interleave the requests
in a round robin manner, one from each trace. We truncate all traces to the length of the
shortest trace being interleaved to eliminate bias towards longer traces. We treat the hint
types in each trace as distinct, so the total number of distinct hint sets in the combined
trace is the sum of the number of distinct hint sets in each individual trace.

Figure 3.17 shows results for the trace generated by interleaving the DB2 C60, DB2 C400,
and DB2 C540 traces. The server cache size is 180K pages, and CLIC uses top-k filtering
with k = 100. The figure shows the read hit ratio for the requests from each individual
trace that is part of the interleaved trace. The figure also shows the overall hit ratio for the
entire interleaved trace. For comparison, the figure shows the hit ratios for the full-length
(untruncated) traces when they use independent caches of size 60K pages each (i.e., the
storage server cache is partitioned equally among the clients). The figure shows a dramatic
improvement in hit ratio for the DB2 C60 trace and also an improvement in the overall hit
ratio as compared to equally partitioning the server cache among the traces. CLIC is able

42

DB2_C60 DB2_C300 DB2_C540 overall

trace

0%

10%

20%

30%

40%

50%

60%

S
er

ve
r

C
ac

he
 R

ea
d

H
it

 R
at

io

180K page shared cache 3 x 60K page private cache

Figure 3.17: Read Hit Ratio with Three Clients
Read hit ratio is near zero for the DB2 C300 and DB2 C540 traces in the 180K page shared
cache, so bars are not visible.

to identify that the DB2 C60 trace presents the best caching opportunities (since it has
the most temporal locality), and to focus on caching pages from this trace. This illustrates
that CLIC is able to accommodate hints from multiple storage clients and prioritize them
so as to maximize the overall hit ratio.

Note that it is possible to consider other objectives when managing the shared server
cache. For example, we may want to ensure fairness among clients or to achieve certain
quality of service levels for some clients. This may be accomplished by statically or dy-
namically partitioning the cache space among the clients. In CLIC, the objective is simply
to maximize the overall cache hit ratio without considering quality of service targets or
fairness among clients. This objective results in the best utilization of the available cache
space. Our experiment illustrates that CLIC is able to achieve this objective, although the
benefits of the server cache may go disproportionately to some clients at the expense of
others.

3.5 Conclusion

We have presented CLIC, a technique for managing a storage server cache based on hints
from storage client applications. CLIC provides a general, adaptive mechanism for incorpo-
rating application-provided hints into cache management. We used trace-driven simulation
to evaluate CLIC, and found that it was effective at learning to exploit hints. In our tests,
CLIC learned to perform as well as or better than TQ, an ad hoc hint based technique. In
many scenarios, CLIC also performed substantially better than hint-oblivious techniques
such as LRU and ARC. Our results also show that CLIC, unlike TQ and other ad hoc
techniques, can accommodate hints from multiple client applications.

A potential drawback of CLIC is the space overhead that is required learning which hints

43

are valuable. We considered a simple technique for limiting this overhead, which involves
identifying frequently-occurring hints and tracking statistics only for those hints. In many
cases, we found that it was possible to significantly reduce the number of hints that CLIC
had to track with only minor degradation in performance. However, although tracking
only frequent hints is a good way to reduce overhead, the overhead is not eliminated and
the space required for good performance may increase with the number of hint types that
CLIC encounters. In Chapter 5, we apply a feature selection technique to generalize hint
sets by grouping related hint sets together into a common class. We expect that this
approach, together with the frequency-based approach, can enable CLIC to accommodate
a large number of hint types.

44

Chapter 4

Dynamic Priority CLIC

As discussed in Chapter 3, the lower-tier cache is hard to manage because the temporal
locality in the request streams has been filtered by the upper-tier cache. Zhou et al. [76]
use reuse distance (the same as re-reference distance defined in Chapter 3) histograms to
observe the temporal locality of several traces of requests to the lower-tier cache. They
point out that the reuse distance histograms of these traces exhibit two common patterns.
First, all histograms are hill-shaped, which is not true of reuse histograms for the upper-
tier cache. For example, Figure 4.1 shows the histograms obtained by grouping reuse
distances by powers of two. Compared to the upper-tier cache (Figure 4.1(a)), in which
74 percent of references have a reuse distance less than or equal to 16, of the references
to the lower-tier cache have 99 percent reuse distance is greater than 512 (Figure 4.1(b)).
Thus, recency-based replacement algorithms, which work well for the upper-tier cache,
do not work well for the lower-tier cache. Second, the beginning, peak and end of the
“hill” region, while different, all depend on the size of the upper-tier cache and workload
characteristics. Because most references occur in the hill portion, Zhou et al. [76] argue that
a good algorithm for the lower-tier cache should retain blocks in the cache long enough
to reach the hill. By examining block access frequency, they find that blocks accessed
more frequently contribute more access in the hill region. Thus, they propose a cache
replacement policy called MQ to combine the temporal locality and access frequency to
make replacement decisions.

While it is clear that re-reference distance histograms for all requests to the lower-tier
cache are hill-shaped, the re-reference distance histograms for requests with the same hint
set have not been examined. Our hint-based replacement algorithm – CLIC (in Chapter 3)
is based on the hint benefit/cost model. For each hint set passed by the storage clients,
CLIC calculates the hint caching priority using the overall read hit rate and the mean
re-reference distance of each hint set. All pages with the same hint set have the same
caching priority, and are managed in one LRU list. However, if the re-reference distance
histograms of each hint set are hill-shaped, LRU, which is designed to take advantage of
temporal locality, may not be a good way for CLIC to manage pages with the same hint

45

beginning

peak

end

Figure 4.1: Temporal Locality of Upper-tier and Lower-tier Cache Accesses Using Reuse
Distance Histograms. (a) Auspex Client Trace and (b) Auspex Server trace[76].

set.

Our hypothesis is that the re-reference distance histograms of requests with the same
hint set exhibit an access pattern similar to that of all requests. In CLIC, the page
priority is assigned as the priority (Pr(H)) of the hint set H with which that page was last
requested. The page priority will not change until the page is requested again. Intuitively,
as the read hit rates do not distribute evenly and vary with the re-reference distance, the
page caching priority should also depend on how long the page has stayed in the cache.
Thus, we propose to collect re-reference histograms for each hint set so that read hit rates
can be calculated based on re-reference distance. Then we propose to perform a dynamic
benefit/cost analysis for each hint set. Since CLIC manages pages with fixed caching
priorities, we address the following questions in this chapter:

• Are the re-reference distance histograms of requests with the same hint set also hill-
shaped?

• Can the performance of CLIC be improved by considering how long a page has been
in the cache?

We also extend CLIC to provide a new algorithm – dynamic priority CLIC (DP-CLIC),
which is based on a dynamic benefit/cost model. Unlike the page caching priority in CLIC,
the page caching priority of DP-CLIC not only depends on the hint sets attached to the
most recent request for the page, but also on how long the page has been in the cache. DP-
CLIC further improves the lower-tier cache performance by making replacement decision
using dynamic caching priority.

46

38 114 190 266 342 418 494 570 646 722

Re-reference distance (X5000)

0

20000

40000

60000

80000

100000
N

um
be

r
of

 r
ea

ds

hint set A hint set B hint set C

DB2_C300_400

(a)

50 150 250 350 450 550 650 750 850 950

Re-reference distance (X5000)

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

re
a
d
s

hint set A hint set B hint set C

DB2_C540_400

(b)

Figure 4.2: Read Reference Distance Histograms of DB2 TPC-C Workload Traces

4.1 Re-reference Histogram of Hint Sets

In order to understand the access pattern in terms of hint sets, we collected re-reference
histograms for each hint set from the DB2 traces, using the approach described in Sec-
tion 3.2.2. Figure 4.2 shows read reference histograms of several sample hint sets from the
DB2 traces. We see that the read reference histograms are all hill-shaped, which correspond
to that of all requests to lower-tier caches. Different hint sets’ re-reference histograms have
different peaks and hill shapes. After pages are placed in the cache, they are most likely
to be read during the hill region. In each histogram, after the end of the hill region, there
is a long “tail” which has lower read probability with longer distances. Intuitively, the
caching priority should drop after the hill region because the benefit is lower and the cost
is higher compared to that in the hill region. However, the benefit/cost model of CLIC
cannot detect the hill region. Instead, it keeps the page caching priority unchanged until
the page is requested again. In the worst case, a page which is requested with a high
priority hint set may stay in the cache forever without any benefit.

4.2 Dynamic Benefit/Cost Model

To take into account the impact of hill-shaped access pattern on the caching priority of
hint sets, in this section, we discuss a dynamic benefit/cost model for hint analysis. The
purpose of this model is to calculate the dynamic caching priority for each hint set as a
function of re-reference distance.

Besides the total count of requests with hint set H (N(H) introduced in Section 3.2.1),
DP-CLIC tracks read-reference and write-reference histograms for each hint set. Figure 4.3
illustrates the histogram and some notation used by the dynamic benefit/cost model with

47

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21 26 31 36 41 46

number of requests (X5000)

Re
ad
 r
e-
re
fe
re
nc
e
co
un
t

Nr
(H
,d)

d

Mean read-
reference distance

Figure 4.3: Illustration of Read Reference Histogram

a read-reference histogram of a sample hint set. The two histograms are collected based
on the re-reference distance:

Nr(H, d): the total number of requests in the input which have hint set H and for which
the next request for the same page is a read that occurs at re-reference distance d.
Note that the total number of read re-references equals to the sum of read references
at each re-reference distance.

Nw(H, d): the total number of requests in the input which have hint H and for which the
next request for the same page is a write that occurs at re-reference distance d.

The sum of Nr(H, d) and Nw(H, d) may be less than N(H) because some requests’
pages may never be re-referenced in the input sequence:

∞∑
d=1

Nr(H, d) +
∞∑
d=1

Nw(H, d) ≤ N(H) (4.1)

Suppose that page P was last referenced d requests ago with hint set H. The idea of
DP-CLIC is to use re-reference histogram of H, plus d, to determine the cache’s priority
for page P . DP-CLIC estimates the conditional probability of a read request for P , given
that d requests have occurred since P was last referenced. To do this, DP-CLIC defines
two other statistics:

N(H, d): the total number of re-references in the histogram forH with re-reference distance
larger than d. As illustrated by Figure 4.3, this number does not include reads and

48

writes re-references at distance d or less:

N(H, d) = N(H) −
d∑

d′=0

(Nr(H, d
′) +Nw(H, d′)) (4.2)

Pr(H, d
′, d): the probability that a page with hint set H will be read at re-reference distance

d′, given that there have been d requests since the page was last referenced (d′ ≥ d).

Pr(H, d
′, d) = Nr(H, d

′)/N(H, d) (4.3)

At each re-reference distance d′ (d′ ≥ d), Pr(H, d
′, d) represents a probability that the

server may obtain a benefit if it keeps caching p from d to d′. As defined in Section 3.2.1, the
benefit of a read re-reference is 1. Hence, Pr(H, d

′, d) can be interpreted as the conditional
expected benefit of continuing to cache the page.

benefit(H, d′, d) = Pr(H, d
′, d) (4.4)

The cost of caching that page until d′ cost(H, d′, d) is

cost(H, d′, d) = d′ − d (4.5)

We define the caching priority pages with hint set H and distance d to their previous
request as the sum of the expected benefit/cost at each re-reference distance d′ (d′ ≥ d):

Pr(H, d) =
∞∑

d′=d

benefit(H, d′, d)

cost(H, d′, d)
(4.6)

Figure 4.4 shows the priority curves of the same example hint sets shown in Figure 4.2
(a priority curve is priority as a function of d). Like the curves of read-reference histogram
in Figure 4.2, the priority curves are also hill-shaped. The priority curves start at a lower
value. Following the increasing of the benefit (read hit ratio), the priority curves reach
their peak points at the similar peak points of the read curves.

4.3 Tracking Hint Statistics

To track hint set statistics for the dynamic benefit/cost model, DP-CLIC maintains the
same hint table as CLIC (Section 3.2.2). The dynamic benefit/cost model requires the
read and write distributions based on re-reference distance for each hint set. Thus, besides
the statistics N(H), the hint table entry for H maintains two histograms: a read-reference
histogram and a write-reference histogram. When the server receives a request for page p,
with sequence number s, it checks both the cache and the outqueue for information about

49

38 114 190 266 342 418 494 570 646 722

Re-reference distance (X5000)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
H

in
t p

rio
rit

y

hint set A hint set B hint set C

DB2_C300_400

(a)

75 225 375 525 675 825 975 1125 1275 1425

Re-reference distance (X5000)

0

0.005

0.01

0.015

0.02

0.025

0.03

H
in

t p
rio

rit
y

hint set A hint set B hint set C

DB2_C540_400

(b)

Figure 4.4: Hint Set Priority Produced by Dynamic Benefit/Cost Model of DB2 TPC-C
Workload Traces

the most recent previous request, if any, for p. If it finds seq(p) and H(p) from a previous
request, then it knows that the current request is a re-reference of p. If the request is a
read request, DP-CLIC increments the read count in bucket s − seq(p) (the re-reference
distance) of H(p). If the request is a write request, DP-CLIC increments the write count
in bucket s− seq(p) of H(p).

The range of the histograms is determined by the number of buckets (Nbucket) per
histogram and the width of the buckets (Wbucket), which are parameters of DP-CLIC.
These two parameters control a trade off between the space consumption and the accuracy
of the histograms. As shown in Figure 4.2, the most important portion of the histogram is
the hill portion. Thus, the overall reference distance (Nbucket ×Wbucket) of the histogram
should be able to cover the hill portions of all higher-priority hint sets. If Wbucket is small,
the histograms are more accurate but a large Nbucket is needed to cover the hill portions. If
Wbucket is large, the histograms have a coarse granularity but a small Nbucket is enough to
cover the hill portions, and thus, space overhead can be reduced. However, the benefit/cost
model may not be accurate because the histograms have a coarse granularity.

4.4 Cache Management

Section 3.2.4 describes how CLIC uses the hint set priorities to manage the contents of its
cache. The cache management of DP-CLIC, described in Figure 4.5 is similar to that of
CLIC. They both are priority-based replacement policies. However, the page priority in
CLIC only depends on which hint set the page was requested with while the page priority
in DP-CLIC also depends on how long the page has stayed in the cache. For each hint
set, DP-CLIC maintains a dynamic caching priority in terms of re-reference distance. To

50

determine the caching priority for page p, Pr(H, d), DP-CLIC needs the hint set H that p
has been most recently requested with, and d, which indicates how long p has been cached.

The difference between CLIC and DP-CLIC is on the setting of page caching priority
and on how they identify the page with the minimum priority in the cache. We explain
the cache management of DP-CLIC using the algorithm in Figure 4.5. When the server
receives a request (p,H), with sequence number s, the caching priority that DP-CLIC
assigns to page p is set to the initial priority Pr(H, 0) (in line 31). For a page v in the
cache, DP-CLIC calculates its d (how long it has stayed in the cache) as s − seq(v), and
then sets the priority of page v to Pr(H(v), s − seq(v)). Theoretically, to find the page
having the minimum priority, DP-CLIC needs to calculate and compare the priority of all
pages in the cache.

In our implementation of the DP-CLIC cache management, we take advantage of the
fact that the priority curves of hint sets are hill-shaped (from line 12 to line 30). When a
page has just arrived in the cache, it has a lower priority, then its priority gradually grows
until it reaches its peak point. After then, the priority decreases. DP-CLIC maintains
a peak point for each hint set H(peak) to record the re-reference distance at which the
priority reaches the maximum. Like CLIC, DP-CLIC maintains a queue of the hint sets.
For each hint set H in the queue, all pages with H(p) = H are recorded in a doubly-linked
list that is sorted by seq(p). Based on the hill-shaped priority curves, the page with the
minimum priority may be the MRU page or the LRU page in the list. DP-CLIC calculates
the distance for both MRU and LRU pages, and there are three cases:

• Both MRU page and LRU page have not passed the peak point H(peak). In this
case, the MRU page has the minimum priority.

• Both MRU page and LRU page have passed H(peak). In this case, the LRU page
has the minimum priority.

• MRU page has not passed the peak point but LRU page has passed H(peak). In this
case, DP-CLIC compares the priority of the two pages and identifies the one with
the minimum priority.

After identify the page with the minimum priority of each hint set, DP-CLIC identifies the
minimum priority page in the cache among these pages. The run time is O(n), in which n
is the number of the hint sets.

4.5 DP-CLIC Priority vs. CLIC Priority

As discussed in Section 3.2.1, CLIC’s benefit/cost model does not consider the variation
of the benefit and cost, and hint set priorities of CLIC do not vary with the re-reference
distance. Thus, the disadvantage of CLIC is that pages with high CLIC priority cannot

51

if p is not cached then1�
if the cache is not full then2�
cache p3�
set seq(p) = s4�
set H(p) = H5�

else6�
let m be the minimum priority7�
of all pages in the cache8�

let v be the page with the9�
minimum sequence number seq(v)10�
among all pages with priority m11�

for H’ in all hint sets in the cache12�
let pm be the MRU page of H’13�
let pl be the LRU page of H’14�
if s-seq(pm) > H’(peak)15�

if m > Pr(H’, s-seq(pl))16�
m= Pr(H’, s-seq(pl))17�
v=pl18�

else if s-seq(pl) < H’(peak)19�
if m > Pr(H’, s-seq(pm))20�
m= Pr(H’, s-seq(pm))21�
v=pm22�

else23�
if Pr(H’, s-seq(pm)) < Pr(H’, s-seq(pl))24�
if m > Pr(H’, s-seq(pm))25�

m= Pr(H’, s-seq(pm))26�
v=pm27�

else if m > Pr(H’, s-seq(pl))28�
m= Pr(H’, s-seq(pl))29�
v=pl30�

if Pr(H,0)>m then31�
evict v from the cache32�
add entry for v (with seq(v)33�
and H(v)) to the outqueue34�

cache p35�
set seq(p) = s36�
set H(p) = H37�

else /* do not cache p */38�
add entry for p to the outqueue39�
set seq(p) = s40�
set H(p) = H41�

else /* p is already cached */42�
seq(p) = s43�
H(p) = H44�

Figure 4.5: The DP-CLIC Cache Replacement Policy
This pseudo-code shows how the server handles a request for page p with hint set H and request
sequence number s. 52

be evicted from the cache even there is no further benefit to keep them in the cache.
The purpose of DP-CLIC is to improve performance by detecting the variation (with
time) of the caching priority and evicting pages from the cache when their priority is low.
Intuitively, how much DP-CLIC can further improve performance depends on the read and
write distributions of hint sets. In this section, we investigate CLIC priority and DP-CLIC
priority based on hint sets that have different types of read and write distributions, with
the goal of identifying types of reference distribution DP-CLIC may provide the greatest
improvement relative to CLIC.

In CLIC’s benefit/cost model, the benefit is the read hit rate and the cost is the average
read re-reference distance of the hint set. Thus, the caching priority of a hint set (H) relies
on its read hit rate (fhit(H)) and the mean read-reference distance (D(H)). A higher
priority of hint sets may be caused by higher fhit(H), or short D(H), or both. Thus, we
start to identify hint sets with different read and write distributions by looking at fhit(H)
and D(H) of hint sets. Figure 4.6 illustrates caching priorities of all distinct hint sets in
the DB2 60 400 trace that have non-zero priorities. Each point in Figure 4.6 represents a
distinct hint set that is present in the trace, and describes the hint set caching priority and
frequency of occurrence. Figure 4.7 provides an illustration of the read hit rate (benefit)
and the read re-reference distance (cost) of CLIC’s hint analysis for the same trace. Only
the most frequently occurring hints sets in the trace are represented. Each bubble in
Figure 4.7 represents one hint set. The position of the center of the bubble for hint H is
determined by fhit(H) and D(H). The size of the bubble represents N(H). In both figures,
we identify three specific hint sets: hint “STOCK table replacement write”, “STOCK index
replacement write”, and “ORDER table replacement write”. From Figure 4.6 we see that
these three hint sets are among hint sets that have high caching priority and high frequency
of occurrence. Thus, pages with these three hint sets have better chances to be placed in the
cache. These three hint sets are chosen also because they have significantly different benefit
and cost values. As shown in Figure 4.7, hint “STOCK table replacement write” represents
hint types that have a high read hit rate (about 95%), “STOCK index replacement write”
represents hint types that have a low read hit rate but a short read re-reference distance,
and “ORDER table replacement write” represents hint types that have medium read hit
rate and read re-reference distance.

Figure 4.8 (a) and (b) (x axis is log scale) illustrates DP-CLIC priority curves and CLIC
priorities of the three hint sets. As these three hint sets have higher caching priorities, CLIC
may keep pages with these hint sets in the cache until they are referenced by new requests.
Compared to CLIC, DP-CLIC is able to catch the variation of the benefit and cost by
using the dynamic benefit/cost model.

STOCK table replacement write: its DP-CLIC priority curve has the lowest start pri-
ority among the three hint sets, and is flat and wide. Its DP-CLIC priority, which
does not vary much with the re-reference distance, is similar to its CLIC priority.

STOCK index replacement write: With CLIC, this hint set has the highest priority,

53

STOCK table
replacement writes

STOCK index
replacement writes

ORDER table
replacement writes

Figure 4.6: Hint Set Priorities for the DB2 C60 400 Trace
Each point represents a distinct hint set. All hint sets are shown.

STOCK table
replacement writes

STOCK index
replacement writes

ORDER table
replacement writes

Figure 4.7: Hint Set Statistics for the DB2 C60 400 Trace
Each bubble represents a distinct hint set - not all hint sets in the trace are shown. Each bubble’s
radius is proportional to the frequency of its hint set.

54

10000 100000 1000000 10000000

re-reference distance (log scale)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ca
ch

in
g

pr
io

rit
y

(x
1E

-0
5)

STOCK table replacement writes
STOCK index replacement writes
ORDER index replacement writes

(a) DP-CLIC hint set priority

10000 100000 1000000 10000000

re-reference distance (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ca
ch

in
g

pr
io

rit
y

(x
1E

-0
5)

STOCK table replacement writes
STOCK index replacement writes
ORDER index replacement writes

(b) CLIC hint set priority

Figure 4.8: DP-CLIC Priority vs. CLIC Priority

and thus, pages with this hint set cannot be replaced from the cache. Its DP-CLIC
priority curve drops quickly to zero after its peak point. With DP-CLIC, pages with
this hint set are replaced quickly after storing in the cache.

ORDER index replacement write: its DP-CLIC priority curve drops after its peak
point but slowly and has a long tail. Unlike CLIC, DP-CLIC can detect the drop of
the priority and pages can be replaced by other higher priority pages.

4.6 Experimental Evaluation

We have evaluated CLIC by comparing its performance to several other algorithms’ per-
formance in Section 3.4, and CLIC outperforms other algorithms in most cases. In this
section, we evaluate DP-CLIC by comparing it with CLIC. To evaluate DP-CLIC, we add
the DP-CLIC caching policy to the simulator of the storage server cache used in Section 3.4.
In the experiments with DP-CLIC, the width of each histogram bucket, Wbucket is set to
5000, and Nbucket is set to 3000. The purpose of the read and write histograms is to capture
the benefit (read re-reference) as the function of the cost (re-reference distance). Thus,
for each hint set, the most important part is the hill portion of the read histogram. With
this setting, the histograms cover 15, 000, 000 re-reference distances, which is much longer
than the hill regions of all hint sets in our traces. As all traces have less than 150 hint
sets, the overall space for tracking the histograms and storing the priority of all hint sets is
less than 2K pages. We deducted 2K pages from the cache space when doing experiments
with DP-CLIC. We use the DB2 TPC-C and TPC-H workloads listed in Table 3.9. We
also collected information about which hint sets in these DB2 traces compete for the cache

55

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
er

ve
r

C
ac

he
 R

ea
d

H
it

R
at

io

DB2_C60_400

(a)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_C60_40

(b)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_C300_400

(c)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

DB2_C300_40

(d)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

OPT CLIC DP-CLIC

DB2_C540_400

(e)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

OPT CLIC DP-CLIC

DB2_C540_40

(f)

Figure 4.9: Read Hit Ratio of Caching Policies for the DB2 TPC-C Workloads

space in both CLIC and DP-CLIC. The goal of this experimental evaluation is to answer
the following questions:

• Can DP-CLIC further identify good caching opportunities for storage server caches,

56

(a) CLIC hint set priorities (b) DP-CLIC hint set priorities

Hint set AHint set B

Hint set C

Hint set C

Hint set B
Hint set A

Figure 4.10: DP-CLIC Priority vs. CLIC Priority

and thereby improve the cache hit ratio relative to CLIC by using dynamic priority
model?

• What is the impact of the histogram size on DP-CLIC performance?

• Can top-k work effectively with DP-CLIC for reducing the number of hint sets that
DP-CLIC must track?

4.6.1 Evaluation with TPC-C Traces

We use the same experimental setting as described in Section 3.4.1. Figure 4.9 shows
the results of the experiments for the DB2 TPC-C workload traces. There are several
observations to be made from Figure 4.9.

For DB2 C60 400 and DB2 C60 40 traces, DP-CLIC outperforms CLIC with 5% better
read hit rates on all cache sizes. In our experiments, we have logged the information about
how many pages of each hint set have been placed in the second tier cache. We observed
that the cache space was occupied mostly by pages with the three types of hint sets in
Figure 4.8, which we have analyzed in Section 4.5. With CLIC, hint “STOCK index
replacement writes” and “ORDER index replacement writes” both have higher caching
priorities than hint “STOCK table replacement writes” does. Thus, pages with these two
hint sets cannot be replaced by pages with hint sets having lower priorities. DP-CLIC
detects the drop of the priorities of the two hint sets and evicts pages with them when
their priority is low. The improvement is not large because the number of pages requested
with these two hint sets is small (about 4%).

57

(a) CLIC hint set priorities (b) DP-CLIC hint set priorities

Hint set C

Hint set B

Hint set A Hint set C

Hint set B

Hint set A

Figure 4.11: DP-CLIC Priority vs. CLIC Priority

For DB2 C300 400 and DB2 C300 40 traces, DP-CLIC has almost the same perfor-
mance as CLIC does. We identify three hint sets with which pages occupied the cache,
because they have the highest caching priorities and are frequently occurring. Figures 4.10
(a) and (b) show their CLIC and DP-CLIC priorities. By analyzing these hint sets, we
found that DP-CLIC cannot improve the read hit ratios because the characteristics of these
hint sets do not provide space to improve. Among these three hint sets, only hint set C has
a long tail in its priority curve that may have bad effect on CLIC performance. However,
it has the lowest caching priority among the three hint sets with CLIC. CLIC can replace
pages with hint set C with pages having higher priority. Thus, DP-CLIC cannot further
improve the performance.

For DB2 C540 400 and DB2 C540 40 traces, DP-CLIC outperforms CLIC with about
5% better read hit rates on most cache sizes. We identify three hint sets with which pages
occupied the cache. Figures 4.11 (a) and (b) show their CLIC and DP-CLIC priorities,
respectively. Because the upper-tier cache has a large size, these two traces have the least
temporary locality among all traces. Under DP-CLIC, the hill regions of hint sets’ priority
curves start later and are wider compared to hint sets of other traces. From Figure 4.11 we
see that Hint set A has higher priority than both Hint set B and Hint set C under CLIC.
Thus, with CLIC, pages with Hint set A can not be replaced by pages with Hint set B
and C. However, under DP-CLIC, the priority of Hint set A starts lower and its hill region
starts later than the other two hint sets, which means pages with Hint set A need to stay
in the cache longer to achieve the benefit. With DP-CLIC, if pages with Hint set A are
in the cache, they can be replaced by pages with Hint set B and C before their priorities
reach the hill region. Thus, DP-CLIC improves the read hit ratios by evicting pages when
their priorities are still low.

58

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d
 H

it
 R

a
ti

o

DB2_H80_400

(a)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d
 H

it
 R

a
ti

o

DB2_H80_50

(b)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d
 H

it
 R

a
ti

o

OPT CLIC DP-CLIC

DB2_H400_400

(c)

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o

OPT CLIC DP-CLIC

DB2_H400_50

(d)

Figure 4.12: Read Hit Ratio of Caching Policies for the DB2 TPC-H Workloads

4.6.2 Evaluation with TPC-H traces

Figure 4.12 shows the results for DB2 TPC-H traces. For DB2 H400, DP-CLIC performs as
well as CLIC on most cache sizes because the characteristics of their hint sets do not provide
space to improve. For DB2 H80, DP-CLIC achieves the greatest advantage over CLIC. To
further investigate the advantage of DP-CLIC in this case, Figure 4.13(a) shows hint set
CLIC priority for the DB2 H80 trace, in which we indicate two hint sets. We see that
among all hint sets, one hint set (hint “Lineitem table readahead”) has the largest priority
and its frequency is much larger than all other hint sets. The other hint set, hint “Order
table readahead” is the second most frequently occurring hint set, but it has much lower
frequency and lower caching priority. Thus, pages with other hint sets cannot compete
cache space with pages with hint “Lineitem table readahead” in CLIC. The performance
of CLIC mainly depends on the access pattern of this hint set. CLIC keeps pages with
this high priority hint set in the cache until they are referenced, because they have the
highest priority and cannot be replaced. Figure 4.13(b) shows the dynamic priority curve
of hint “Lineitem table readahead”, which reaches its peak quickly and drops quickly after

59

Lineitem table readahead

Order table readahead

(a) CLIC hint set priorities (b) DP-CLIC hint set priorities

Figure 4.13: CLIC priority vs. DP-CLIC priority of DB2 H80 400 trace

the peak. The priority curve has a long tail because about 30% reads occur after the
end of the hill region. Figure 4.13(b) also shows the priority curve of hint “Order table
readahead”. We see that pages with hint “Order table readahead” can have higher caching
priorities than pages with hint “Lineitem table readahead”. Thus, with DP-CLIC, pages
with other hint sets may be able to compete the cache with pages with hint “Lineitem table
readahead”. DP-CLIC outperforms CLIC by identifying the variation of caching priority
and replacing pages when their priority is low.

4.6.3 Limiting the Histogram Size

In Section 4.3, we discussed the two parameters of DP-CLIC related to tracking hint
histograms. In this section we show the effect of varying of the histogram parameters on
the second-tier cache hit ratio. As in the other experiments in this chapter, space for
tracking histograms has been deducted from the cache space.

The experiment results shown in the graphs of this section are normalized server cache
hit ratios. Cache hit ratios in Figure 4.14 and Figure 4.17 are normalized with the cache
hit ratio of the smallest width of histogram bucket in their figure. Cache hit ratios in
Figure 4.15, Figure 4.16, and Figure 4.18 are normalized with the cache hit ratio of smallest
number of buckets in their figure.

In the first group of experiments with TPC-C workloads, we test the effect of the width
of the bucket Wbucket on the cache hit ratio. Nbucket is set to 3000, and we vary the width
of bucket. Figure 4.14 shows the experiment results for the three TPC-C DB2 traces on
different second tier cache sizes. The width of bucket varies from 5000 to 1000000. From

60

Figure 4.14 we see that: for different traces, DP-CLIC performance decreases at different
values Wbucket. For trace 60-400, the read hit ratios drop when the width of the buckets is
50000. This is because the smallest hill portion of the higher-priority hint sets reach their
peak point at about 50000 (Figure 4.8). When the width of each bucket is less than or
equal to 50000, the histogram can still catch the rise and fall of the cache priority. When
Wbucket is larger than 100000, the cache hit ratios start to decrease. Similarly, for trace
300-400 and trace 540-400, DP-CLIC performance decreases when Wbucket is 100000 and
1000000, respectively. From Figures 4.10 and 4.11 we see that the peak points of their
higher-priority hint sets are close to 100000 and 1000000, respectively. Thus, DP-CLIC
works well as long as Wbucket is smaller than the peak the hill portion and is able to capture
rise and fall of important hint sets’ priorities.

In the second group of experiments with TPC-C workloads, we test the effect of the
number of buckets (Nbucket) on the cache hit ratio. First, we set Wbucket to 50000. Fig-
ure 4.15 shows the experiment results for this setting. For trace 60-400 and 300-400, the
system reaches the highest hit ratio when Nbucket is 200. For trace 540-400, the system
reaches the highest hit ratio when Nbucket is 500. When Wbucket is set to 10000, for all
traces, the system needs a larger Nbucket to reach its highest hit ratio (Figure 4.16). This
is because the overall reference distances need to cover all hill portions of important hint
sets to achieve good performance.

We also did similar tests with TPC-H workloads. Figure 4.17 shows the normalized
cache hit ratio as the function of Wbucket, and Figure 4.18 shows the normalized cache
hit ratio as the function of Nbucket. From Figure 4.17 we see that the performance of
DP-CLIC remains stable when Wbucket is less than or equal to 100000. According to the
performance shown in Figure 4.17, we set Wbucket to 100000 to test the effect of Nbucket on
the performance of DP-CLIC. From Figure 4.18 we see that we only need 10 buckets to
achieve the best cache hit ratio for both traces. This is because Wbucket is large and 10
buckets are long enough to cover the hill portion of the important hint sets. Thus, for all
traces, DP-CLIC only needs less than 1% of cache size to track dynamic priorities of hint
sets.

4.6.4 Tracking Only Frequent Hint Sets for DP-CLIC

In Section 3.4.3, Figure 3.14 shows the experiment results with CLIC using top-k (described
in Section 3.3.1) to reduce the number of hint sets to be tracked. For CLIC, tracking the
20 most frequent hint sets was sufficient. In this section, we study the effect of tracking
only the most frequently occurring hint sets using the top-k algorithm with DP-CLIC.
Similar to the experiments in Section 3.4.3, we vary k, the number of hint sets tracked by
DP-CLIC, and measure the server cache hit ratio.

We did experiments with DB2 TPC-C and TPC-H workloads. Figure 4.19 shows the
experiment results with DP-CLIC when using top-k to reduce the number of hint sets DP-
CLIC needs to track. The left side graphs (a) (c) (e) show the results for TPC-C workloads.

61

1000 10000 100000 1000000

Width of histogram bucket (log scale)

0

0.2

0.4

0.6

0.8

1

1.2

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(a) DB2 C60 400

1000 10000 100000 1000000

Width of histogram bucket (log scale)

0

0.2

0.4

0.6

0.8

1

1.2

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(b) DB2 C300 400

1000 10000 100000 1000000

Width of histogram bucket (log scale)

0

0.2

0.4

0.6

0.8

1

1.2

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(c) DB2 C540 400

Figure 4.14: Effect of Width of Buckets on Read Hit Ratio (number of bucket = 3000)

10 100 1000

Number of buckets

0

0.2

0.4

0.6

0.8

1

1.2

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(a) DB2 C60 400

10 100 1000

Number of buckets

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(b) DB2 C300 400

10 100 1000

Number of buckets

0

1

2

3

4

5

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(c) DB2 C540 400

Figure 4.15: Effect of Numbers of Buckets on Read Hit Ratio (width of bucket = 50000)

10 100 1000

Number of buckets

0.95

1

1.05

1.1

1.15

1.2

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(a) DB2 C60 400

10 100 1000

Number of buckets

0

1

2

3

4

5

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(b) DB2 C300 400

10 100 1000

Number of buckets

0

5

10

15

20

25

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(c) DB2 C540 400

Figure 4.16: Effect of Numbers of Buckets on Read Hit Ratio (width of bucket = 10000)

62

10000 100000 1000000

Width of histogram bucket (log scale)

0

0.2

0.4

0.6

0.8

1

1.2

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(a) DB2 H80 400

10000 100000 1000000

Width of histogram bucket (log scale)

0

0.2

0.4

0.6

0.8

1

C
a
ch

e
 h

it
 r

a
ti

o
 (

n
o
rm

a
liz

e
d
)

60k 180k 300k

(b) DB2 H400 400

Figure 4.17: Effect of Width of Buckets on Read Hit Ratio (number of bucket = 3000)

1 10 100 1000 10000

Number of buckets

0.4

0.6

0.8

1

1.2

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(a) DB2 H80 400

1 10 100 1000 10000

Number of buckets

0.4

0.6

0.8

1

1.2

1.4

1.6

Ca
ch

e
hi

t
ra

tio
 (

no
rm

al
iz

ed
)

60k 180k 300k

(b) DB2 H400 400

Figure 4.18: Effect of Number of Buckets on Read Hit Ratio (width of bucket = 100000)

63

1 10 100

k

0%

5%

10%

15%

20%

25%

30%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o

DB2_C60 DB2_C300 DB2_C540

DB2 TPC-C Traces, 60K Page Storage Server Cache

(a)

1 10 100

k

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o

DB2-H80 DB2-H400

DB2 TPC-H Traces, 60K Page Storage Server Cache

(b)

1 10 100

k

0%

10%

20%

30%

40%

50%

60%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o

DB2_C60 DB2_C300 DB2_C540

DB2 TPC-C Traces, 180K Page Storage Server Cache

(c)

1 10 100

k

0%

10%

20%

30%

40%

50%

60%

70%
S

e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o

DB2-H80 DB2-H400

DB2 TPC-H Traces, 180K Page Storage Server Cache

(d)

1 10 100

k

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o

DB2_C60 DB2_C300 DB2_C540

DB2 TPC-C Traces, 300K Page Storage Server Cache

(e)

1 10 100

k

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o

DB2-H80 DB2-H400

DB2 TPC-H Traces, 300K Page Storage Server Cache

(f)

Figure 4.19: Effect of Top-K Hint Set Filtering on Read Hit Ratio (DP-CLIC)

64

We see that tracking the 50 most frequent hint sets (i.e., setting k = 50) was sufficient
to achieve a read hit ratio close to what we could obtain by tracking all of the hints in
the trace. The right side graphs (b) (d) (f) show the results for TPC-H workloads. We
see that tracking k=2 most frequent hint sets is enough for TPC-H workload. Overall, we
found that the top-k algorithm is also effective for DP-CLIC to achieve good performance
while reducing the number of hint sets.

4.6.5 Increasing the Number of Hints for DP-CLIC

In Section 3.4.4, we considered a scenario in which CLIC was subjected to useless “noise”
hints, in addition to the useful hints. By deliberately introducing a controllable level of
useless hints in this experiment, we tested CLIC’s ability to tolerate them without losing
track of those hints that are useful. To test how DP-CLIC will perform with top-k as the
number of distinct hint sets in the input trace is increased, we repeated the experiments
similar to these in Section 3.4.4 with DP-CLIC. Similarly, we used our DB2 TPC-C traces
and TPC-H traces, each of which contains 5 real hint types, and added T additional
synthetic hint types. For the experiments in this section, we also chose D = 10, and we
varied T , which controls the amount of “noise”.

First, we evaluate the effectiveness of top-k approach when noise hint types are added
to the DB2 TPC-C workload traces. Figure 4.20 shows the read hit ratios in a server cache
of size 60K, 180K and 300K pages as a function of T . We fixed k = 100 and k = 200 for the
top-k algorithm. As shown in Figure 3.15, similar to CLIC, DP-CLIC fares reasonably well
for the DB2 C60 400 trace, suffering mild degradation in performance for T ≥ 2. However,
for the other two traces, DP-CLIC experienced more substantial degradation, particularly
for T ≥ 2. The cause of the degradation is that high-priority hint sets from the original
trace get “diluted” by the additional noise hint types. Since CLIC has limited space for
tracking hint sets, the dilution eventually overwhelms its ability to track and identify the
useful hints. Even when k is increased from 100 (the left side graphs of Figure 4.20) to 200
(the right side graphs of Figure 4.20), the read hit ratios have not been improved.

Secondly, we evaluate the effectiveness of top-k approach when noise hint types are
added to the DB2 TPC-H workload traces. Figure 4.21 shows the read hit ratios in a
server cache of size 60K, 180K and 300K pages as a function of T . Similarly, we fixed
k = 100 and k = 200 for the top-k algorithm. For both DB2 H400 400 and DB2 H80 400
traces, DP-CLIC’s performance is stable when T ≤ 2. This is because for these original
traces, DP-CLIC only needs to track k = 2 hint sets to obtain performance close to that
obtained by tracking all hint sets (Shown in Figure 3.14). With D = 10 and T = 2,
one useful original hint set is split into as many as DT = 100 distinct hint sets. Even
though useful hint sets have been diluted by noise hints, top-k can still identify and track
them with k = 100 or k = 200. However, when more noise hints are added (T = 3), the
performance starts to drop because k is not large to enough to collect all higher-priority
hint sets. Thus, for DP-CLIC, top-k can not work efficiently when more noise hint types

65

are added. Controlling this trade-off of space versus accuracy is an interesting tuning
problem for both CLIC and DP-CLIC.

4.7 Conclusion

The main advantage of DP-CLIC is that it can identify the varying of page caching priority
and evict pages when their caching priority is low. However, how much performance DP-
CLIC can improve compared to CLIC depends on the read and write distributions of hint
sets, which result in different priority curves. By analyzing the DB2 traces we found that
the different read and write distributions are partially caused by the upper-tier cache and
the workload. When the upper-tier cache is small (smaller than 50% of the database size),
the temporal locality is not absorbed by the upper-tier cache and the majority of read
re-references have short distances. When the upper-tier cache is large (larger than 50% of
the database size), the upper-tier cache filters more temporal locality, and thus, the read
re-reference distances in the lower-tier cache are much longer. DP-CLIC can detect the
drop of priorities of each hint set by taking into account the variance of the read hit ratio
(benefit) and the re-reference distances (cost), and can then evict pages when their priority
is low. Thus, whether the upper-tier cache size is small or large, DP-CLIC can outperform
CLIC.

To capture the variance of the priority, DP-CLIC needs to collect the read and write
histograms and calculate the dynamic priority for each hint set. The setting of the two
parameters (Nbucket and Wbucket) of DP-CLIC decides the space and time overhead. The
experimental results suggest that the histograms of hint sets do not need to have fine
granularity. The experimental results also demonstrate that the space required for DP-
CLIC to track and interpret hints is small.

66

0 1 2 3

T

0%

5%

10%

15%

20%

25%

S
e
rv

e
r

C
a
ch

e
 R

e
a
d

 H
it

 R
a
ti

o

DB2_C60 DB2_C300 DB2_C540

DB2 TPCC traces, 60K Page Storage Server Cache

(a) k=100

0 1 2 3

T

0%

5%

10%

15%

20%

25%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_C60_400 DB2_C300_400
DB2_C540_400

DB2 TPCC traces, 60K Page Storage Server Cache

(b) k=200

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_C60_400 DB2_C300_400
DB2_C540_400

DB2 TPCC traces, 180K Page Storage Server Cache

(c) k=100

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_C60_400 DB2_C300_400
DB2_C540_400

DB2 TPCC traces, 180K Page Storage Server Cache

(d) k=200

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_C60_400 DB2_C300_400
DB2_C540_400

DB2 TPCC traces, 300K Page Storage Server Cache

(e) k=100

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_C60_400 DB2_C300_400
DB2_C540_400

DB2 TPCC traces, 300K Page Storage Server Cache

(f) k=200

Figure 4.20: Effect of Top-K Hint Set Filtering on Read Hit Ratio with TPC-C Workload
Traces

67

0 1 2 3

T

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_H80_400 DB2_H400_400

DB2 TPCH traces, 60K Page Storage Server Cache

(a) k=100

0 1 2 3

T

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_H80_400 DB2_H400_400

DB2 TPCH traces, 60K Page Storage Server Cache

(b) k=200

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_H80_400 DB2_H400_400

DB2 TPCH traces, 180K Page Storage Server Cache

(c) k=100

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_H80_400 DB2_H400_400

DB2 TPCH traces, 180K Page Storage Server Cache

(d) k=200

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_H80_400 DB2_H400_400

DB2 TPCH traces, 300K Page Storage Server Cache

(e) k=100

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
Ra

tio

DB2_H80_400 DB2_H400_400

DB2 TPCH traces, 300K Page Storage Server Cache

(f) k=200

Figure 4.21: Effect of Top-K Hint Set Filtering on Read Hit Ratio with TPC-H Workload
Traces

68

Chapter 5

Classification of Hint Sets

To reduce the number of hint sets that CLIC needs to consider, we introduced the top-k
algorithm for tracking frequent hint sets in Section 3.3.1. This technique takes advantage
of the observation that all of the hint sets in the traces exhibit frequency skew and tracks
only the most frequently occurring hint sets. We studied the effect of the top-k algorithm
on the performance of CLIC and DP-CLIC in Section 3.4.3 and Section 4.6.4. From the
results of experiments with added noise hint types, we saw that the top-k algorithm may
not work well in situations in which the storage clients provide too many low-value hints.

The top-k algorithm works well for our original traces because hint sets with high
priorities have high frequency. One reason for this frequency skew is because of the hint
types defined by the clients. Table 3.2 lists the five hint types in DB2 traces. Together, a
pool ID, object ID and object type ID uniquely identify a database object. Pages in the
same DB object and with the same I/O request have the same hint sets. Therefore, hint sets
that identify a large DB object may occur more frequently than others. For example, hint
set “STOCK table replacement writes” in DB2 60 400 occurs frequently because “STOCK
table” is a large table. However, if other hint types are added to further identify pages with
different priorities, large DB objects may be divided into smaller groups. Thus, the hint
sets with high caching priorities may not have high frequency. Frequency-based technique
may not be able to identify important hint sets.

CLIC is not limited to only accept hint sets provided by the DBMS buffer pool. As
a generic approach, CLIC is designed to make replacement decisions for any lower-tier
cache by analyzing hints from different caches of different upper-tiers. For example, in
a data center as shown in Figure 5.1, a storage server may provide services to different
DBMS servers or file servers through a storage area network (SAN). Through a network, file
servers and database servers process requests to tables and files from application servers,
such as mail servers, web servers. We may have hint types such as “server identifier” and
“application server identifier”. For each server, a hint value is assigned. These hint types
can be useful or useless depending on what workloads are running on the servers. For
example, if all application servers issue TPC-C workload transactions to a DBMS server,

69

Database

File

Web

Email

Applications

Network

Storage

SAN

Figure 5.1: Architecture of Data Center

the “application server identifier” hint type maybe useless because the access patterns of
the application servers may be very similar. If one useless hint type is added and it has ten
hint values, each original hint set could be separated into ten distinct hint sets. If two such
useless hint types are added, CLIC needs to track one hundred hint sets to track the real
most important hint set. The number of hint sets may grow exponentially as the number
of hint types grows. Moreover, the statistics collected for these hint sets will be diluted by
useless hint types and may not be accurate enough for predicting the priority of hint sets.
Thus, the frequency selection technique may not work efficiently in such scenarios.

To restrict the number of hint sets that CLIC tracks, an alternative to focusing on
frequently-occurring hint sets is focusing on important hint types. For example, there are
five hint types in DB2 TPC-C traces, and each hint type has several hint values. According
to the value domain cardinality listed in Figure 3.2, theoretically, CLIC may need to trace
5040 hint sets in the worst case for a DB2 TPC-C workload trace. If we can identify that
only “request type” and “object ID” are important among the five hint types, CLIC may
need to trace only 105 hint sets in the worst case. The time and space required to track
100 hint sets will be much less than that required to track 5040 hint sets. For DP-CLIC,
even though tracking read and write histograms required less than 1K pages for 100 hint
sets, for 5040 hint sets, the whole cache could potentially be used for tracking statistics.

In this chapter, we introduce a new approach – classify hint sets using a feature selection
technique. Unlike top-k, which filters infrequently occurring hint sets, the feature selection
algorithm filters unimportant hint types. In machine learning and statistics, feature selec-
tion has been widely studied to provide more cost-effective predictors and to improve the

70

prediction performance of the predictor [30, 60] . The central assumption when using a
feature selection technique is that the data contains redundant or irrelevant features. Re-
dundant features are those which provide no more information than the currently selected
features, and irrelevant features provide no useful information in any context. For exam-
ple, the noise hint types in Section 3.4.4 are irrelevant features because they are randomly
added and do not provide any useful information about the page requests. Thus, using the
feature selection technique should be able to filter these noise hint types.

We propose hybrid algorithms that combine the feature selection technique with top-
k. The hybrid algorithms utilize the limited space for tracking hint sets efficiently, and
improve the read hit ratio compared what can be obtained by using frequency selection
alone. We evaluate the hybrid algorithm with both CLIC and DP-CLIC.

5.1 Hybrid Algorithms

Since the noise hint types cause degradation of CLIC performance when the top-k algorithm
is used, we propose a hybrid algorithm that combines the feature selection technique with
the top-k algorithm. The hybrid algorithm has two steps: in the first step, it tracks k
hint sets and identifies important hint types using the feature selection technique. In the
second step, it only considers the hint types selected in the first step, and tracks reference
statistics of k hint sets using the top-k algorithm. Therefore, we can limit the space for
tracking reference statistics of hint sets.

As introduced in Section 3.3.1, the request stream is divided into non-overlapping win-
dows, with each window consisting of W requests. CLIC restarts the top-k algorithm from
scratch for every window of W requests. In the end of each window, CLIC calculates
priorities for all tracked hint sets. As the hybrid algorithm has two steps, it needs 2W
requests to track hint sets and build the benefit/cost model. Thus, CLIC restarts the
hybrid algorithm from scratch for every 2W requests.

Step 1: The purpose of the first step is to filter irrelevant hint types by ranking the hint
types according to their impurity (which will be introduced in Section 5.2). In the
first W requests, we randomly choose k distinct hint sets about which to collect
reference statistics as a learning sample. After W requests, we calculate the impurity
for all hint types, and identify the most important hint types. The number of hint
types t selected in the first step is a parameter of the hybrid algorithm. Table 5.2
shows the parameters of the hybrid algorithm.

Step 2: The purpose of the second step is to identify k frequently-occurring hint sets using
the top-k algorithm. The hint sets tracked in this step are different from those in the
first step. As important hint types have been identified in the first step, hint sets are
grouped together by ignoring hint types which are not important. For example, if

71

Symbol Description
k The number of distinct hint sets tracked in step1 and step2
W The number of requests for step1 and step2
t The number of hint types selected in step1

Figure 5.2: Parameters of the Hybrid Algorithm

we identify that “noise1” as a useless hint type, we ignore the hint values of “noise1”
when tracking hint sets. At the end of the second set of W requests, we calculate the
caching priority for the tracked k hint sets. For DP-CLIC, read and write histograms
are collected for the k frequently-occurring hint sets. At the end of the second set of
W requests, DP-CLIC builds the DP priority model for each tracked hint sets.

5.2 Impurity of Hint Types

The purpose of using feature selection for CLIC is to reduce the number of hint types,
and thus, to reduce the overall number of distinct hint sets CLIC needs to track. In our
context, each hint set consists of a set of hint values, and each hint value is from the domain
of one hint type. As we discussed in Chapter 3, CLIC associates a caching priority with
each hint set. Assume that we have calculated the priorities for all hint sets, how can we
decide which hint types are more important than others? In this section, we introduce Gini
impurity [69] which is used for the classification and regression tree algorithm (CART) [7],
for ranking the importance of hint types.

Gini impurity is a measure of homogeneity of each subset of a learning sample used by
CART. CART is a classification method which uses historical data to construct decision
trees. Decision trees split the learning sample into smaller and smaller subsets. CART
algorithm will search for all possible variables and all possible values in order to find the
best split that splits the data into subsets with maximum homogeneity. Gini impurity can
be computed by summing the probability of each item being chosen times the probability of
a mistake in categorizing that item. Gini impurity works well for ignoring noisy data [66].

With Gini impurity, we can measure the homogeneity of priority of a partition of hint
sets when a learning sample is partitioned by hint types. For example, in the original DB2
traces, there are five hint types. Each hint set has five hint values which are from each of
the five hint types’ domains. If only one hint type is chosen, hint sets are to be grouped
by the hint values of that hint type, and thus, hint sets are grouped into a larger partition.
All hint sets in the large partition are assigned the same priority, which is the priority of
the hint value associated with that partition. If all hint sets in the large partition have
similar original priorities, the variance of their priorities is small. Thus, the original hint
set priorities are close to the priority of whole partition.

72

To measure the impurity of hint types, we define squared prioritization error of the
partition. The squared prioritization error of a partition is taken to be the frequency-
weighted variance of the priorities of the training hint sets in that partition, i.e., of the
hint sets that map to that partition. For example, if we consider partitioning hint sets using
the “request type” hint type, each hint value in “request type” will result in one partition.
Thus, all hint sets are to be categorized into four partitions, i.e. “sync read”, “replacement
write”, “recovery write”, and “sync write”, depending on the value of “request type” in
the hint sets. To calculate the variance of the priority of hint sets in one partition, we
first need to define the priority of the whole partition. Suppose that a partition P groups
together several hint sets Hi, and a caching priority Pr(P) of the partition is calculated
with Nr(P), N(P), and D(P) of hint sets in this group.

Pr(P) =
Nr(P)

N(P)D(P)
(5.1)

In Equation 5.1, N(P), Nr(P) and D(P) are defined as the following:

N(P): the total number of requests of partition P . As N(Hi) represents the total number
of requests with hint set Hi, N(P) is calculated by summing up all N(Hi) of hint
sets belonging to this partition.

N(P) =
∑
Hi∈P

N(Hi) (5.2)

Nr(P): the total number requests of partition P that result in a read re-reference (rather
than a write re-reference or no re-reference). N(P) is calculated by summing up all
Nr(Hi) of hint sets belonging to this partition.

Nr(P) =
∑
Hi∈P

Nr(Hi) (5.3)

D(P): the average read re-reference distance for requests of partition P . The following
equation first calculates the total read re-reference distance by summing up the overall
read re-reference distances of all hint sets belonging to partition P , and then divides
it by the total number of read re-reference of partition P .

D(P) =

∑
Hi∈P D(Hi)Nr(Hi)

N(P)
(5.4)

Note that the actual priorities Pr(Hi) and frequencies N(Hi) of the hint sets in the partition
are observed from the I/O request stream as introduced in Section 3.2.2.

The squared prioritization error introduced by this partition is

error(P) =
1

N(P)

∑
Hi∈P

N(Hi) (Pr(P) − Pr(Hi))
2 (5.5)

73

Each hint value of the hint type may result in one partition Pi, and thus, each partition
introduces a prioritization error. Lets error(Pi) represent the prioritization error of Pi.
For example, if hint sets are partitioned by hint type “request type”, it will result in four
partitions, and thus, four squared prioritization errors. We define the impurity of the hint
type as the total frequency-weighted prioritization error introduced by all partitions of this
hint type(HT):

N(HT) =
∑

Pi∈HT

N(Pi) (5.6)

I(HT) =
1

N(HT)

∑
Pi∈HT

N(Pi)error(Pi) (5.7)

In our context, we use the impurity of hint type to identify the most important hint
types for predicting the caching priority of hint sets. A small I(HT) of hint type HT means
that partitioning with this hint type leads to partitions that keep hint sets with similar
priorities together. Thus, by ranking the impurity I(HT) of all hint types, we can identify
good hint types for predicting the caching priority as hint types with the smallest I(HT).

In the first step of the hybrid algorithm, we collect N(H), Nr(H) and D(H) of k hint
sets. At the end of the first step, we calculate I(HT) of each hint types with the statistics,
and then choose t hint types with the smallest I(HT) as the useful hint types.

5.3 Experimental Evaluation

In Section 3.4.4 and Section 4.6.5, we tested CLIC’s and DP-CLIC’s ability to tolerate
noise hint types without losing track of those hints that are useful. The results showed
that top-k could not identify useful hint sets for both CLIC and DP-CLIC when more noise
hint types were added. In this section, we study the effect of using the hybrid algorithm
to identify useful hint sets by filtering noise hint types first. We implemented the hybrid
algorithm in the storage server cache simulator for both CLIC and DP-CLIC. We repeated
experiments similar to these in Section 3.4.4 and Section 4.6.5. In this experiment, we
used our DB2 TPC-C traces and TPC-H traces, each of which contains 5 real hint types,
and added T additional synthetic hint types. The goal of this experiment is to evaluate
whether the hybrid algorithm can outperform top-k algorithm especially when more noise
hint types are added, e.g. T ≥ 2.

We set W = 106 requests, and a monitoring of k = 100 and k = 200 hint sets. In the
first step of the hybrid algorithm, we set the number of the hint types selected t to be
three, i.e., we only choose three most important hint types in the first step.

First, we evaluate the effectiveness of the hybrid algorithm when noise hint types are
added to the DB2 TPC-C workload traces. Figure 5.3 shows the read hit ratios of both
the hybrid algorithm and top-k as T increases for DB2 TPC-C workload traces. For each

74

0 1 2 3

T

0%

10%

20%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

TPCC DB2 trace, 60K Page storage Server Cache

(a) DB2 C60 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

TPCC DB2 trace, 180K Page storage Server Cache

(b) DB2 C60 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

TPCC DB2 trace, 300K Page storage Server Cache

(c) DB2 C60 400

0 1 2 3

T

0%

10%

20%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

TPCC DB2 trace, 60K Page storage Server Cache

(d) DB2 300 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

TPCC DB2 trace, 180K Page storage Server Cache

(e) DB2 300 400

0 1 2 3

T

0%

20%

40%

60%

80%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

TPCC DB2 trace, 300K Page storage Server Cache

(f) DB2 300 400

0 1 2 3

T

0%

10%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCC DB2 trace, 60K Page storage Server Cache

(g) DB2 540 400

0 1 2 3

T

0%

10%

20%

30%

40%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCC DB2 trace, 180K Page storage Server Cache

(h) DB2 540 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCC DB2 trace, 300K Page storage Server Cache

(i) DB2 540 400

Figure 5.3: CLIC Read Hit Ratio

75

0 1 2 3

T

0%

10%

20%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

TPCH DB2 trace, 60K Page storage Server Cache

(a) DB2 H80 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

TPCH DB2 trace, 180K Page storage Server Cache

(b) DB2 H80 400

0 1 2 3

T

0%

20%

40%

60%

80%

100%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

TPCH DB2 trace, 300K Page storage Server Cache

(c) DB2 H80 400

0 1 2 3

T

0%

10%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCH DB2 trace, 60K Page storage Server Cache

(d) DB2 H400 400

0 1 2 3

T

0%

10%

20%

30%

40%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R

at
io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCH DB2 trace, 180K Page storage Server Cache

(e) DB2 H400 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%
Se

rv
er

 C
ac

he
 R

ea
d

H
it

R
at

io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCH DB2 trace, 300K Page storage Server Cache

(f) DB2 H400 400

Figure 5.4: CLIC Read Hit Ratio

76

0 1 2 3

T

0%

10%

20%

30%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io
TPCC DB2 trace, 60K Page storage Server Cache

(a) DB2 C60 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

TPCC DB2 trace, 180K Page storage Server Cache

(b) DB2 C60 400

0 1 2 3

T

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

TPCC DB2 trace, 300K Page storage Server Cache

(c) DB2 C60 400

0 1 2 3

T

0%

10%

20%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

TPCC DB2 trace, 60K Page storage Server Cache

(d) DB2 300 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%
Se

rv
er

 C
ac

he
 R

ea
d

H
it

R
at

io

TPCC DB2 trace, 180K Page storage Server Cache

(e) DB2 300 400

0 1 2 3

T

0%

20%

40%

60%

80%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

TPCC DB2 trace, 300K Page storage Server Cache

(f) DB2 300 400

0 1 2 3

T

0%

10%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCC DB2 trace, 60K Page storage Server Cache

(g) DB2 540 400

0 1 2 3

T

0%

10%

20%

30%

40%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCC DB2 trace, 180K Page storage Server Cache

(h) DB2 540 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCC DB2 trace, 300K Page storage Server Cache

(i) DB2 540 400

Figure 5.5: DP-CLIC Read Hit Ratio

trace, we present three graphs to show the read hit ratios in a server cache of size 60K,
180K and 300K, respectively. As more “noise dimensions” are added to the hints, the read
hit ratios of CLIC using the hybrid algorithm remained stable. Meanwhile, the read hit
ratios of CLIC using top-k dropped. We analyzed the hint types selected by the first step
in these experiment. In most cases, “request type”, “object type ID” and “object ID”
are identified as the three most important hint types. With the hybrid algorithm, CLIC
had similar performance with k = 100 and k = 200. Thus, tracking k = 100 hint sets
is sufficient for CLIC using the hybrid algorithm. We obtain the similar results for DB2
TPC-H workload traces as shown in Figure 5.4. Thus, CLIC’s performance is more stable
with the hybrid algorithm than with top-k when noise hints are added.

77

0 1 2 3

T

0%

10%

20%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

TPCH DB2 trace, 60K Page storage Server Cache

(a) DB2 H80 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%

70%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io
TPCH DB2 trace, 180K Page storage Server Cache

(b) DB2 H80 400

0 1 2 3

T

0%

20%

40%

60%

80%

100%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

TPCH DB2 trace, 300K Page storage Server Cache

(c) DB2 H80 400

0 1 2 3

T

0%Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCH DB2 trace, 60K Page storage Server Cache

(d) DB2 H400 400

0 1 2 3

T

0%

10%

20%

30%

40%

Se
rv

er
 C

ac
he

 R
ea

d
H

it
R
at

io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCH DB2 trace, 180K Page storage Server Cache

(e) DB2 H400 400

0 1 2 3

T

0%

10%

20%

30%

40%

50%

60%
Se

rv
er

 C
ac

he
 R

ea
d

H
it

R
at

io

hybrid k=100 hybrid k=200
topk k=100 topk k=200

TPCH DB2 trace, 300K Page storage Server Cache

(f) DB2 H400 400

Figure 5.6: DP-CLIC Read Hit Ratio

78

The hybrid algorithm has the same effect for filtering noise hint types for DP-CLIC.
Figure 5.5 to Figure 5.6 show the experiment results with DP-CLIC on DB2 TPC-C and
TPC-H traces with noise hint types added. The setting of experiments is the same as
the setting for evaluating CLIC with noise hints. We see the similar effect of the hybrid
algorithm on DP-CLIC as that on CLIC. As T increases, the cache hit ratios of DP-CLIC
did not degrade. Thus, from these experiment we conclude that the hybrid algorithm is
more efficient than top-k for reducing space overhead when dealing with large numbers of
hint types for both CLIC and DP-CLIC.

5.4 Conclusion

We have presented the top-k algorithm to reduce the number of hint sets that CLIC needs
to track in Chapter 3. We found that for the original DB2 traces, it was possible to signif-
icantly reduce the number of hints that CLIC had to track with only minor degradation in
performance. This is because the original traces do not have many irrelevant hint types.
When more irrelevant hint types are added, CLIC and DP-CLIC need a large k to achieve
good performance. In this chapter, we present an algorithm which filters irrelevant hint
types first using a feature selection algorithm. The experimental results show that the
hybrid algorithm can efficiently filter the irrelevant hint types, and thus, significantly re-
duce the number of hint sets CLIC had to track. With the hybrid algorithm, CLIC and
DP-CLIC only need to track a small number of hint sets to achieve stable performance
when more irrelevant hint types are in the traces.

79

Chapter 6

Hybrid Storage Management for
Database Systems

Flash memories, which are semiconductor chips, have many attractive features, such as
low power consumption, light weight, small size, shock resistance, and lack of moving
parts. They have been used for many years in portable consumer devices (e.g, cameras,
phones) because these features are particularly desirable for these devices. Recently, as the
price of flash memories has dropped dramatically, flash-based solid state storage devices
(SSDs) are now also becoming commonplace in server environments. Compared to HDDs,
SSDs exhibit much better performance for random reads because they have no mechanical
latency. Although SSDs are more expensive per bit than traditional hard disks (HDD),
they are much cheaper in terms of cost per I/O operation. Thus, HDDs are cost effective
for bulky, infrequently accessed data, while SSDs are well-suited to data that are relatively
hot [27]. Servers in data centers may be configured with both types of persistent storage.

There are two approaches to use the SSD in the hybrid storage system. First, the SSD
can be used as a part of the permanent storage sitting side by side with the HDD. When
using the SSD as a permanent storage, it can partially replace the hard disk and save some
cost on the storage device. The system should be able to identify hot data to place on
the SSD before the workload starts. For example, Ozmen et al. [57] presented a database
layout optimizer to generate layouts for heterogeneous storage configurations. After the
data has been placed in the SSD, it will not be moved in and out from the SSD to avoid
destroying the database layout. Secondly, the SSD can be used as a cache sitting between
the main memory cache and the HDD. When using the SSD as a cache, it can always
identify hot data dynamically as the workload is running. Thus, hot data can be placed
in the SSD and also can be replaced from the SSD when they are cold. Comparing the
two approach, the advantage of using SSD as a permanent storage is that it can save cost
on the storage device. However, as the capacity of the SSD is small and the cost of the
hard disk is much cheaper, the cost saving is limited. The advantage of using the SSD as
a cache is that it can use the SSD more efficiently as placement and replacement decision

80

can be made dynamically. Thus, we consider using the SSD as a cache is a better approach
than using the SSD as a part of permanent storage.

In this chapter, we are concerned with the use of such hybrid (SSD and HDD) storage
systems for database management, in which the SSD is using as a cache. We consider
hybrid storage systems in which the two types of devices are visible to the DBMS, so that
it can use the information at its disposal to decide how to make use of the two types of
devices. This is illustrated in Figure 6.1. When data is written to storage or evicted from
the buffer pool, the DBMS chooses which type of device to write it to. The incentive for
adding SSD to the storage hierarchy is to speed up I/O by storing frequently accessed data
in SSD.

RAM

Buffer pool
manager

SSD
manager

HDD

read/write requests

Buffer pool

SSD

w
rite

Figure 6.1: System Architecture (the arrows represent read/write requests)

Previous work has considered how to place data in a hybrid storage system for DBMS [38,
10, 11, 57, 20]. However, adding SSDs to the storage hierarchy not only raises the question
about how to manage the SSDs, but also raises the question about whether the current
DBMS buffer pool replacement algorithms still work effectively in a hybrid system. Thus,
there are two problems for the design of algorithms for DBMS-managed hybrid storage
systems:

• In a hybrid storage system, the SSD has faster random read and write than the HDD
does. To make page replacement decisions for the buffer pool, the DBMS buffer pool
replacement algorithm needs to be aware that replacing an HDD page may cause a
higher access latency than would replacing an SSD page.

81

• If the DBMS makes buffer pool replacement decisions by considering where pages are
located (SSD or HDD), page I/O access patterns may change when page locations
change. When a page is cached in the SSD, it may be evicted from the buffer pool
more quickly than when it is not cached in the SSD. As accesses to the SSD cache
are misses from the buffer pool, a page may get more accesses when it is cached in
the SSD.

To consider these two related questions, we take a broader view of the problem than has
been taken in previous work. Our view includes the DBMS buffer pool as well as the two
types of storage devices. First, we determine which data should be retained in the DBMS
buffer pool. Currently, the buffer pool employs LRU or LRU-like algorithms to decide
which data is to be replaced. One characteristic of these algorithms is that they are cost-
oblivious: they do not consider the different retrieval costs of different storage devices and
treat all data the same. However, blocks evicted from the buffer cache to an SSD are much
faster to retrieve later than blocks evicted to the HDD, and thus buffer pool replacement
decisions should be affected by the presence of hybrid storage. We consider cost-aware
buffer management, which can take this distinction into account. Second, assuming that
the SSD is not large enough to hold the entire database, we have the problems of deciding
which data should be placed on the SSD. Because the SSD provides fast random I/Os,
data that is accessed frequently (hot pages) from the storage device should be placed in
the SSD. Thus, the responsibility of the SSD caching algorithm is to identify the hot pages.
How to identify hot pages should depend on the physical access pattern for the data, which
depends, in turn, on the DBMS workload and on the management of the DBMS buffer
pool.

Because we consider both buffer pool management and management of the hybrid
storage system, we have more scope for optimization than previous work in this area, at
the expense of additional invasiveness in the design and implementation of the DBMS. In
addition, we must account for the fact that the two problems we consider are mutually
dependent. Replacement decisions in the buffer pool depend on the locations (SSD or
HDD) of the pages being replaced, since placement affects both eviction cost and reloading
costs. Conversely, page SSD placement decisions depend on how the page is used, e.g.,
how frequently it is read into or written from the buffer pool, which depends, in turn, on
the buffer manager. For example, under a cost aware replacement policy, SSD pages are
better eviction candidates than HDD pages are, because retrieving SSD pages has a much
lower access cost than retrieving HDD pages. Consequently, moving a page from the HDD
to the SSD may result in a significant increase in the physical read and write rates for that
page.

In our work, we address these dependencies using an anticipatory approach to SSD
management. When deciding whether to move a page into the SSD, our proposed admission
and replacement policy (called CAC) predicts how such a move will affect the physical I/O
load experienced by that page. The page is moved into the SSD only if it is determined

82

to be a good candidate under this predicted workload. The DBMS buffer manager then
makes cost-aware replacement decisions based on the current placements of buffered pages.

The remainder of this chapter is organized as follows. Section 6.1 gives an overview
of the system architecture that we assume. Section 6.2 presents a cost aware technique,
called GD2L, for database buffer pool management, and Section 6.3 shows some empirical
results that illustrate the effect of GD2L on the physical access patterns of database pages.
Section 6.4 presents the CAC algorithm for managing the contents of the SSD device(s).
The results of our evaluation GD2L and CAC are presented in Section 6.5.

6.1 System Overview

Figure 6.1 illustrates the system architecture we have assumed for this work. The DBMS
manages two types of storage devices, SSDs and HDDs. All database pages are stored
on the HDD, where they are laid out according to the DBMS’s secondary storage layout
policies. In addition, copies of some pages are located in the SSD and copies of some pages
are located in the DBMS buffer pool. Any given page may have copies in the SSD, in the
buffer pool, or both, although we expect the latter to be uncommon.

Figure 6.2 shows the pseudo code of the management of the buffer pool and the SSD.
When the DBMS needs to read a page, the buffer pool is consulted first. If the page is
cached in the buffer pool, the DBMS reads the cached copy. If the page is not in buffer
pool but it is in the SSD, it is read into the buffer pool from the SSD. The SSD manager
is responsible for tracking which pages are currently located in the SSD. If the page is in
neither the buffer pool nor the SSD, it is read from the HDD.

If the buffer pool is full when a new page is read in, the buffer manager must evict a
page according to its page replacement policy, which we present in Section 6.2. When the
buffer manager evicts a page, the evicted page is considered for admission to the SSD if
it is not already located there. SSD admission decisions are made by the SSD manager
according to its SSD admission policy. If admitted, the evicted page is written to the SSD.
If the SSD is full, the SSD manager must also choose a page to be evicted from the SSD
to make room for the newly admitted page. SSD eviction decisions are made according to
an SSD replacement policy. (The SSD admission and replacement policies are presented
in Section 6.4.) If a page evicted from the SSD is more recent than the version of that
page on the HDD, then the SSD manager must copy the page from the SSD to the HDD
before evicting it, otherwise the most recent persistent version of the page will be lost. The
SSD manager does this by reading the evicted page from the SSD into a staging buffer in
memory, and then writing it to the HDD.

We assume that the DBMS buffer manager implements asynchronous page cleaning,
which is widely used to hide write latencies from DBMS applications. When the buffer
manager elects to clean a dirty page, that page is written to the SSD if the page is already

83

The cur rent b u f f e r pool r eque s t i s f o r page p :

if p is not in the buffer pool1

if p is on the SSD2

read p from the SSD3

else4

read p from the HDD5

On e v i c t i o n o f page p from the b u f f e r pool :

if p is admitted to be placed in the SSD6

write p to the SSD7

On f l u s h i n g d i r t y page p from the b u f f e r pool :

if p is on the SSD8

write p to the SSD9

else if p is admitted to be placed in the SSD10

write p to the SSD11

else12

write p to the HDD13

On e v i c t i o n o f page p from the SSD :

if p is dirty (the version is newer than the one on the HDD)14

write p to the HDD15

Figure 6.2: The Management of the Buffer Pool and the SSD

located there. If the dirty page is not already located on the SSD, it is considered for
admission to the SSD according to the SSD admission policy, in exactly the same way
that a buffer pool eviction is considered. The dirty page will be flushed to the SSD if it is
admitted there, otherwise it will be flushed to the HDD.

The buffer and SSD management techniques that we have described have two key
properties. First, admission of pages into the SSD occurs only when pages are evicted or
cleaned from the DBMS buffer pool. Most caching policies for managing multi-tier caches
are access-based. They consider caching pages in all tiers when pages are read from storage
devices. Unfortunately, access-based caching policies may cause duplication of pages in the
buffer cache and the SSD, i.e., cache inclusion [70]. To minimize cache inclusion, pages
are not admitted into the SSD when they are loaded into the buffer pool from the HDD.
Second, each flush of a dirty page from the DBMS buffer pool goes either to the SSD or
to the HDD, but not to both (at least not immediately). One advantage of this approach,
compared to a write-through design, is that the SSD can potentially improve DBMS write
performance, to the extent that writes are directed to the SSD. A disadvantage of this

84

approach is that the latest version of an unbuffered page might, in general, be found on
either device. However, because the DBMS always writes a dirty buffer pool page to the
SSD if that page is already on the SSD, it can be sure that the SSD version (if any) of a
page is always at least as recent as the HDD version. Thus, to ensure that it can obtain
the most recently written version of any page, it is sufficient for the DBMS to know which
pages have copies on the SSD, and to read a page from the SSD if there is a copy of the
page there. To support this, the SSD manager maintains an in-memory hash map that
records which pages are on the SSD. To ensure that it can determine the contents of the
SSD even after a failure, the SSD manager uses a checkpointing technique (described in
Section 6.4.5) to efficiently retain its map so that it can be recovered quickly.

6.2 Buffer Pool Management

In this section, we describe our replacement algorithm for the buffer pool: a two-level
GreedyDual (GD2L) algorithm. GD2L is a restricted version of the GreedyDual algorithm
[74] that we have adapted for use in a DBMS.

Most existing cost-aware algorithms, e.g., the balance algorithm [49] and GreedyDual
[74], were proposed for file caching. They take into account cached object size and access
cost when making replacement decisions, and target different cases of cached objects: uni-
form object size with arbitrary retrieval cost, arbitrary object size with uniform retrieval
cost, or arbitrary object size with arbitrary retrieval cost. In particular, the GreedyDual
algorithm addresses the case in which the cached objects have uniform size, but incur
different retrieval costs. Young [74] shows that GreedyDual has the same (optimal) com-
petitive ratio as LRU and FIFO [49], k

k−h+1
, where k denotes the size of the cache, and h

denotes the size of the smallest cache for which OPT achieves the same cost it achieved by
using a cache of size k (k ≥ h).

GreedyDual is a range of algorithms which generalize well-known caching algorithms,
such as LRU and FIFO. Initially, we present the GreedyDual generalization of LRU. In
Section 6.2.1, we describe how a similar approach can be applied to the LRU variant used
by InnoDB, and we also discuss how to extend it to handle writes.

GreedyDual associates a non-negative cost H with each cached page p. When a page
is brought into the cache or referenced in the cache, H is set to the cost of retrieving the
page into the cache. To make room for a new page, the page with the lowest H in the
cache, Hmin, is evicted and the H values of all remaining pages are reduced by Hmin. By
reducing the H values and resetting them upon access, GreedyDual ages pages that have
not been accessed for a long time. The algorithm thus integrates locality and cost concerns
in a seamless fashion.

GreedyDual is usually implemented using a priority queue of cached pages, prioritized
based on their H value. With a priority queue, handling a hit and an eviction each

85

Symbol Description
RD The read service time of HDD
WD The write service time of HDD
RS The read service time of SSD
WS The write service time of SSD

Figure 6.3: Storage Device Parameters

require O(log k) time, where k is the number of pages in the priority queue. Another
computational cost of GreedyDual is the cost of reducing the H values of the remaining
pages when evicting a page. To reduce the value H for all pages in the cache, GreedyDual
requires k subtractions. Cao et al. [12] have proposed a technique to avoid the subtraction
cost. Their idea is to keep an “inflation” value L and to offset all future settings of H by
L.

These parameters of read/write service time are summarized in Figure 6.3. In our case,
there are only two possible initial values for H: one corresponding to the cost of retrieving
an SSD page and the other to the cost of retrieving an HDD page. We designed the GD2L
algorithm for this special case. As shown in Figure 6.4, GD2L uses two queues to maintain
pages in buffer pool: one queue (QS) is for pages with copies on the SSD, the other (QD)
is for pages without copies on the SSD. Both queues are managed using LRU. With the
technique proposed by Cao et al. [12], GD2L achieves O(1) time for handling both hits
and evictions.

Figure 6.4 describes the GD2L algorithm. When GD2L evicts the page with the smallest
H from the buffer pool, L (the inflation value) is set to the H value. If the newly requested
page is on the SSD, it is inserted to the MRU end of QS and its H value is set to L+RS;
otherwise, it is inserted to the MRU end of QD and its H value is set to L+RD. Because
the L value increases gradually as pages with higher H are evicted, pages in QD and QS are
sorted by H value. The one having the smallest H value is in the LRU end. By comparing
the H values of the two LRU pages of QD and QS, GD2L easily identifies the victim page
that has the smallest H value in the buffer pool. The algorithm evicts the page with the
lowest H value if the newly requested page is not in the buffer pool. In Figure 6.4, page q
represents the page with the lowest H value (H(q)).

6.2.1 Implementation of GD2L on MySQL

We implemented GD2L for buffer pool management in InnoDB (the default storage engine
of the MySQL database system). InnoDB maintains a buffer pool for caching database
pages and has a control block for each cached page. InnoDB manages the buffer pool
as several lists: One is the LRU list, which records all pages cached in the buffer pool;
another is the free list, which keeps buffers ready to be allocated. InnoDB also maintains
a hash table of all cached pages to facilitate fast lookup. InnoDB uses a variant of the

86

if p is not cached1�
let ps be the LRU page of QS2�
let pd be the LRU page of QD3�
if(H(ps) > H(pd))4�

q = pd5�
else6�

q = ps7�
set L = H(q)8�
evict q from the buffer pool9�
bring p into the buffer pool10�

if p is in the SSD11�
H(p) = L + RS12�
put p to the MRU of QS13�

else if p is not in SSD14�
H(p) = L + RD15�
put p to the MRU of QD16�

Figure 6.4: The GD2L Algorithm
This pseudo-code shows how GD2L handles a request for page p. L is initialized as 0

least recently used (LRU) algorithm. When room is needed to add a new page to buffer
pool, InnoDB evicts the LRU page from the LRU list. Pages that are fetched on demand
are placed at the MRU end of the LRU list. However, prefetched pages are placed near
the midpoint (at the 3/8 point) of the LRU list, moving to the MRU position only if they
are subsequently demanded. Since prefetching is used during table scans, this provides a
measure of scan resistance.

To implement GD2L, we split InnoDB’s LRU list into two LRU lists: QD and QS. As
shown in Figure 6.5, the cached HDD pages are stored in QD and the cached SSD pages
in QS. Newly loaded pages are placed either at the MRU end of the appropriate list or at
the midpoint, depending on whether they were prefetched or loaded on demand. When a
new page is inserted at the midpoint of QD or QS, its H value is set to the H value of the
current midpoint page. When a page is moved to the MRU end of its list, its H value is
set to L+RS if it is in QS, or L+RD if it is in QD, as shown in Figure 6.4.

When pages are modified in the buffer pool, they need to be copied back to the under-
lying storage device. In InnoDB, dirty pages are generally not written to the underlying
storage device immediately after they are modified in the buffer pool. Instead, page cleaner
threads are responsible for asynchronously writing back dirty pages. The page cleaners can
issue two types of writes to the dirty pages: replacement writes and recoverability writes.
As discussed in Chapter 3, the DBMS issues different types of writes for different purposes.
Replacement writes are issued when dirty pages are identified as eviction candidates. To
remove the latency associated with synchronous writes, the page cleaners try to ensure that
pages that are likely to be replaced are clean at the time of the replacement. In contrast,

87

H H H

S S S S SSS

midpoint

H HHHHH

midpoint

Q
D

Q
S

Q
D
LRU

Q
S
LRU

Pag
e i

s in
ser

ted
 to

 m
idp

oin
t

of
Q D

 w
he

n

it i
s e

vic
ted

 fro
m th

e S
SDPage is inserted to midpoint of Q

S

when it is flushed to the SSD by
a recovery write

Page is inserted to the
LRU end of Q

S
 when

it is flushed to the SSD
by a replacement write

Figure 6.5: Buffer Pool Managed by GD2L on MySQL

recoverability writes are those that are used to limit failure recovery time. The DBMS
uses write ahead logging to ensure that committed database updates survive failures. The
failure recovery time depends on the age of the oldest changes in the buffer pool. The page
cleaners issue recoverability writes for the least recently modified pages to ensure that a
configurable recovery time threshold will not be exceeded.

Two problems occur in GD2L due to dirty page flushing:

• Which pages should the page cleaners identify as eviction candidates for issuing
replacement writes?

• When pages are evicted or flushed from the buffer pool, they are considered for SSD
admission. If HDD pages are written to the SSD, their page access cost changes. As
GD2L manages HDD pages and SSD pages are in two different LRU lists that are
sorted by H values, where should the page be inserted into QS?

In InnoDB, when the free space of the buffer pool is below a threshold, page cleaners
start to check a range of pages from the tail of the LRU list. If there are dirty pages in the
range, the page cleaners flush them to the storage devices. These are replacement writes.
We changed the page cleaners to reflect the new cost-aware replacement policy. Since pages
with lower H values are likely to be replaced sooner, the page cleaners consider H values
when choosing which pages to flush. As GD2L maintains two LRU lists in the buffer pool
(QD and QS), the page cleaners check pages from tails of both lists. If there are dirty
pages in both lists, the page cleaners compare their H values and choose dirty pages with

88

lower H values to write back to the storage devices. We did not change the way the page
cleaners issue recoverability writes, since those writes depend on page update time and not
on page access cost.

The original GreedyDual algorithm assumed that a page’s retrieval cost did not change.
However, in our system a page’s retrieval cost will change when it is moved into or out of
the SSD. If a buffered page is moved into the SSD, then GD2L must take that page out
of QD and place it into QS. This situation can occur when a dirty, buffered page than is
not on the SSD is flushed, and the SSD manager elects to place the page into the SSD.
If the page flush is a replacement write, it means that the page being flushed is a likely
eviction candidate. In that case, GD2L removes the page from QD and inserts it at the
LRU end of QS. To keep QS to be sorted by H value, the page’s H value is set to be
the H value of the previous LRU page of QS. If the page flush is a recoverability write,
then the flushed page should not be inserted to the LRU end of QS because it is not an
eviction candidate. As QS is sorted by page H value, we could find the correct position
for the page in QS by looking through pages in QS and comparing H values. Instead, for
simplicity, GD2L simply inserts the page at the midpoint of QS and assigns it the same
H value as the previous Qs midpoint page. Since recoverability writes are typically much
less common than replacement writes, and since this situation only occurs when a page is
moving into the SSD, this situation is relatively rare. Hence, we chose the simple approach
for GD2L.

It is also possible that a buffered page that is in the SSD will be evicted from the SSD
(while remaining in the buffer pool). This may occur to make room in the SSD for some
other page. In this case, GD2L removes the page from QS and inserts it to QD. Since this
situation is also uncommon, GD2L simply inserts the page at the midpoint of QD, as it
does for recoverability writes.

6.3 The Impact of Cost-aware Caching

Cost-aware caching algorithms, e.g., GD2L, take into account page location when making
replacement decisions. As a result, the page read rate and write rate might be different
after the page location changes. In this section, we address the following questions: if the
buffer pool uses the GD2L caching algorithm, how does the page read rate change when a
page is placed in the SSD? GD2L also changes the mechanism for asynchronous cleaning
of dirty pages. How does this impact on the page write rate?

To study the impact of the GD2L algorithm on the page access pattern, we drove the
modified InnoDB with a TPC-C workload, using a scale factor of 10. We implemented
GD2L in the InnoDB storage engine of MySQL database system, The initial size of the
database was approximately 1GB. For managing the SSD, we used the policy that will be
described in Section 6.4.

89

0 1 2 3 4 5 6 7 8 9 10

Writes/min while on SSD

0

1

2
W

ri
te

s/
m

in
 w

h
ile

 o
n
 H

D
D

(a)

0% 10% 20% 30% 40% 50%

Miss rate while on SSD

0%

10%

20%

30%

40%

50%

M
is

s
ra

te
 w

h
ile

 o
n
 H

D
D

(b)

Figure 6.6: Miss Rate/Write Rate While on HDD vs. Miss Rate/Write rate while on SSD.
Each point represents one page

In our experiments, we set the buffer pool size to 200M, the SSD size to 400M, and the
running duration to sixty minutes. During the run, we monitored the amount of time each
page spent in the SSD, and its read and write rates while on the SSD and while not on
the SSD. We identified pages that had been cached in the SSD for at least twenty minutes
and also had not been cached in the SSD for at least 20 minutes (about 2500 pages), and
observed the buffer pool miss rate and write rate for these pages. A logical request on
a page is realized as a physical request when the page is missed in the buffer pool. The
page miss rate in the buffer pool is defined as the percentage of logical reads realized as
physical reads of the page. Figure 6.6 shows the page miss rate in the buffer pool while
the pages are on SSD vs. their miss rate while the pages are on HDD and the page write
rate while the pages are on SSD vs. their write rate while the pages are on HDD. From
the two graphs we see that most page miss rates and write rates are larger while the page
is cached on SSD. This is as expected. Once pages are placed on SSD, they are more likely
to be evicted from the buffer pool because they have lower retrieval costs. As SSD pages
in the buffer pool are better eviction candidates, the page cleaner needs to flush dirty ones
to the storage before they are evicted. As a result, page read and write rates go up while
they are cached in SSD.

6.4 SSD Management

Section 6.1 provided a high-level overview of the management of the SSD device. In this
section, we present more details about SSD management, including the page admission and
replacement policies used for the SSD and the checkpoint-based mechanism for recovering
SSD meta-data after a failure.

90

Pages are considered for SSD admission when they are cleaned or evicted from the
DBMS buffer pool. Pages are always admitted to the SSD if there is free space available
on the device. New free space is created on the SSD device as a result of invalidations of
SSD pages. Pages in the SSD cache can be clean or dirty. A clean page in the SSD is a
page whose version in the SSD is identical to the version on the HDD. A dirty page in the
SSD is a page that has been updated in the SSD but not in the HDD. In another word,
the version in the SSD is newer than the version in the HDD.

Consider a clean page p in the DBMS buffer pool. Suppose that there is also a copy of
p in the SSD, and the SSD version of p is the same as the HDD version p (Since p is clean
in the buffer pool, this also implies that all three copies of p are identical). If p is updated
and hence made dirty in the buffer pool, the SSD manager invalidates the copy of p on
the SSD if the SSD and HDD copies of p are identical. Invalidation frees the space that
was occupied by p on the SSD. If the SSD version of p is newer than the HDD version,
it cannot be invalidated without first copying the SSD version back to the HDD. Rather
than pay this price, the SSD manager simply avoids invalidating p in this case.

If there is no free space on the SSD when a page cleaned or evicted from the DBMS
buffer pool, the SSD manager must decide whether to place the page on the SSD and which
SSD page to evict to make room for the newcomer. If a dirty page is chosen to be evicted
from the SSD, it is written to the HDD first. The SSD manager makes these decisions
by estimating the benefit, in terms of reduction in overall read and write cost, of placing
a page on the SSD. It attempts to keep the SSD filled with the pages that it estimates
will provide the highest benefit. Our specific approach is called Cost-Adjusted Caching
(CAC). CAC is specifically designed to work together with a cost-aware DBMS buffer pool
management, like the GD2L algorithm presented in Section 6.2. We present the specifics
of CAC in Section 6.4.1.

6.4.1 CAC: Cost-Adjusted Caching

To decide whether to admit a page p to the SSD, CAC estimates the benefit B(p), in
terms of reduced access cost, that will be obtained if p is placed on the SSD. The essential
idea is that CAC admits p to the SSD if there is some page p′ already on the SSD cache for
which B(p′) < B(p). To make room for p, it evicts the SSD page with the lowest estimated
benefit.

Suppose that a p has experienced r(p) physical read requests and w(p) physical write
requests over some measurement interval prior to the admission decision. If the physical
I/O load on p in the past were a good predictor of the I/O load p would experience in the
future, a reasonable way to estimate the benefit of admitting p to the SSD would be

B(p) = r(p)(RD −RS) + w(p)(WD −WS) (6.1)

91

t

tD tS

rD, wD rS, wS

rD , wD , rS , wS

Figure 6.7: The Measured and Estimated Statistics of a Page
Note that tS and tD represent the total time that the page is on the SSD and not on the SSD.

where RD,RS,WD, and WS represent the costs of read and write operations on the HDD
and the SSD (Figure 6.3).

Unfortunately, when the DBMS buffer manager is cost-aware, like GD2L, the read and
write counts experienced by p in the past may be particularly poor predictors of its future
physical I/O workload. This is because admitting p to the SSD, or evicting it from the
SSD if it is already there, will change p’s physical I/O workload. In particular, if p is
admitted to the SSD then we expect that its post-admission physical read and write rates
will be much higher than its pre-admission rates, as was illustrated by the experiments in
Section 6.3. Conversely, if p is evicted from the SSD, we expect its physical I/O rates to
drop. Thus, we do not expect Equation 6.1 to provide a good benefit estimate when the
DBMS uses cost-aware buffer management.

To estimate the benefit of placing page p on the SSD, we would like to know what its
physical read and write workload would be if it were on the SSD. Suppose that r̂S and ŵS

are the physical read and write counts that p would experience if it were placed on the
SSD, and r̂D and ŵD are the physical read and write counts p would experience if it were
not placed on the SSD. (We will drop the references to specific pages in our notation when
the page is clear from context.) Using these hypothetical physical read and write counts,
we can write our desired estimate of the benefit of placing p on the SSD as follows

B = (r̂DRD − r̂SRS) + (ŵDWD − ŵSWS) (6.2)

Thus, the problem of estimating benefit reduces to the problem of estimating values for
r̂D, r̂S, ŵD and ŵS.

To estimate r̂S for a page p, CAC uses two measured read counts: rS and rD. In
general, p may spend some time in the SSD and some time not in the SSD. As the example
shown in Figure 6.7, page p spent tS time on the SSD, and tD on the HDD only. rS is
count of the number of physical reads experienced by p during tS (while p is on the SSD
duration). rD is the number of physical reads experienced by p during tD (while it is not
on the SSD). To estimate what p’s physical read count would be if it were on the SSD full
time (r̂S), CAC uses

r̂S = rS + αrD (6.3)

92

Symbol Description
rD, wD Measured physical read/write count while not on the SSD
rS, wS Measured physical read/write count while on the SSD
r̂D, ŵD Estimated physical read/write count if never on the SSD
r̂S, ŵS Estimated physical read/write count if always on the SSD
mS Buffer cache miss rate for pages on the SSD
mD Buffer cache miss rate for pages not on the SSD
α Miss rate expansion factor
t The duration the workload has been running
tD The duration the page is not on the SSD
tS The duration the page is on the SSD

Figure 6.8: Summary of Notation

In this expression, the number of physical reads experienced by p while it was not on the
SSD (rD) is multiplied by a scaling factor α to account for the fact that it would have
experienced more physical reads during that period if it had been on the SSD. Note that
rS is measured over a different time interval than r̂S. We refer to the scaling factor α as the
miss rate expansion factor, and we will discuss it further in Section 6.4.2. CAC estimates
the values of r̂D, ŵD, and ŵS in a similar fashion:

r̂D = rD +
rS
α

(6.4)

ŵS = wS + αwD (6.5)

ŵD = wD +
wS

α
(6.6)

The notation used in these calculations is summarized in Figure 6.8.

An alternative approach to estimating r̂S uses only the observed read count while the
page is on the SSD (rS), scaling it up to account for any time in which the page is not on
the SSD. We assume that page read and write rates do not change if their location does
not change, so that these counts have a linear relationship with the duration. r̂Scan be
estimated as:

r̂S = rS × t

tS
(6.7)

r̂D = rD × t

tD
(6.8)

While this may be effective, it will work only if the page has actually spent time in the
SSD, so that rS can be observed. Nevertheless, a way to estimate rS for pages that have
not been observed in the SSD is required. In contrast, estimation using Equation 6.3 will
work even if rS or rD are zero due to lack of observations.

93

6.4.2 The Miss Rate Expansion Factor

The purpose of the miss rate expansion factor (α) is to estimate how much a page’s
physical read and write rates will change if the page is admitted to the SSD. Admitting a
page to the SSD does not affect that page’s logical read and write rates. However, it will
affect the page’s physical read and write rates because a cost-aware DBMS buffer manager
evicts SSD pages more aggressively than it evicts non-SSD pages. Thus, we want the miss
rate expansion factor to capture how a page’s miss rate in the DBMS buffer cache changes
when the page is admitted to the SSD.

A simple way to estimate α is to compare the overall miss rates of pages on the SSD to
that of pages that are not on the SSD. Suppose that mS represents the overall miss rate of
logical read requests for pages that are on the SSD, i.e., the total number of physical reads
from the SSD divided by the total number of logical reads of pages on the SSD. Similarly,
let mD represent the overall miss rate of logical read requests for pages that are not located
on the SSD. Both mS and mD are easily measured. Using mS and mD, we can define the
miss rate expansion factor as:

α =
mS

mD

(6.9)

For example, α = 3 means that the miss rate is three times higher for pages on the SSD
than for pages that are not on the SSD.

While Equation 6.9 captures our intuition about increased miss rates for pages on the
SSD, we have found that it is too coarse. In Equation 6.9, α is calculated using the buffer
pool miss rates of all database pages. This relies on the assumption that all pages have the
same expansion factor. However, since different tables may have different access patterns
and the distribution of page requests is not uniform, this may not be true. As an example,
Figure 6.9 illustrates miss rate expansion factors of pages grouped by table and logical
read rates. The three lines represent pages holding the TPC-C STOCK, CUSTOMER,
and ORDERLINE tables.

Since different pages may have substantially different miss rate expansion factors, we
use different expansion factors for different groups of pages. Specifically, we group database
pages based on the database object (e.g., table) for which they store data, and on their
logical read rate, and we permit a different expansion factor for each group. We divide
the range of possible logical read rates into subranges of equal size. We define a group as
pages that store data for the same database object and whose logical read rates fall in the
same subrange. For example, in our experiments, we defined the subrange width as one
logical read per minute. If the maximum logical read rate of a table were 1000, this table
might have 1000 groups. For each page group g, we define the miss rate expansion factor
as in Equation 6.9:

α(g) =
mS(g)

mD(g)
(6.10)

94

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Logical reads/min

1

10

100

1000

M
is

s
ra

te
 e

xp
an

si
on

 f
ac

to
r

(l
og

 s
ca

le
)

STOCK CUSTOMER ORDERLINE

Figure 6.9: Miss Rate Expansion Factor for Pages from Three TPC-C tables.

where mS(g) is the overall miss rate for pages in g while they are in the SSD, and mD(g)
is the overall miss rate for pages in g while they are not in the SSD.

Note that mD(g) and mS(g) may change over time for two reasons. First, the logical
read count and the physical read count of pages in group g may changes. Second, pages
may move from one group to another as their logical read rates fluctuate.

We track logical and physical read counts for each individual page, as well as miss rates
for each group. Page read counts are updated with each logical or physical read request
to the page. Group miss rates are updated lazily, when certain events occur, using the
per-page statistics of the group’s pages. Specifically, we update group miss rates when a
page is evicted from the buffer pool, when a dirty page is flushed from the buffer pool to
the SSD, and when a page is evicted from the SSD. Because pages are grouped based in
part on their logical read rates, which can fluctuate, the group to which a page belongs
may also change over time. If this occurs, we subtract the page’s read counts from those
of its old group and add them to the new group.

It is possible that mS(g) mD(g) will be undefined for some groups. For example, a
group’s mD(g) may be undefined because pages in the group have never been evicted from
the buffer pool. We assume that mD(g) = 0 for such groups. Similarly, mS(g) may be
undefined because no pages in the group have been admitted to the SSD. We set α(g) = 1
for such groups, which gives a better opportunity for them to be admitted to the SSD.
Thus, we may have a chance to collect statistics for them.

A potential efficiency threat is the number of possible groups for which the system must
maintain statistics. The number of possible groups depends on the size of the subrange. If
we do not set the subrange size, there is only one group in each table. A smaller subrange
size leads to more accurate α(g) at a cost of more space for collecting statistics. In our

95

evaluation (Section 6.5) we ignore this cost because the space requirement for tracking
group statistics was less than 0.01% of the buffer pool size.

6.4.3 Sequential I/O

Hard disks have substantially better performance for sequential reads than for random
reads. To account for this, CAC considers only random reads when estimating the benefit of
placing a page in the SSD. In particular, the measured values rS and rD used in Equation 6.3
count only random reads. This requires that the SSD manager classify read requests as
sequential or random. Two classification approaches have been proposed in recent work.
Canim et al. [11] classify a page request as sequential if the page is within 64 pages of
the preceding request. Do et al. [20] exploit the existing DBMS read-ahead (prefetch)
mechanism: a page is marked as sequential if it is read from the disk via the read-ahead
mechanism; otherwise, the page is marked as random. Do et al. [20] indicate that leveraging
the read-ahead mechanism was much more effective. They observed that while the read-
ahead mechanism was 82% accurate in identifying sequential reads, Canim’s approach [11]
was only 51% accurate. CAC adopts this approach for identifying sequential reads, using
the read-ahead mechanism in the InnoDB buffer manager.

6.4.4 Implementation of SSD Management on MySQL

We present details of implementation of hybrid storage in InnoDB. The SSD cache is
created as a file on the SSD when the DBMS is started. As is true of all files used by
InnoDB, the file on the SSD is opened in unbuffered asynchronous I/O mode. Thus, data
requested by InnoDB is not buffered in the file system cache. Blocks on the SSD have the
same fixed size as blocks in the buffer pool. In MySQL, the block size in the buffer pool is
16K.

As shown in Figure 6.10, the SSD manager has the following main components:

Control block: For each block in the SSD, we maintain a control block in the memory
The control block has attributes to record statistics, such as rD, wD, rS, and wS,
which are necessary for calculating SSD page priority. To maintain group statistics
for miss rate factors, the control block also tracks which group the page belongs to.
To track ts and td (the total time that the page is on the SSD and not on the SSD),
we record the time when the page is placed in the SSD or evicted from the SSD.
Thus, we can update td or ts by deducting the recorded time from the current time
when a page is moved to or evicted from the SSD.

Hash table: We maintain a hash table in the buffer pool for all pages on the SSD to
facilitate fast lookup. When a new page is placed in the SSD, a hash key is created

96

Memory

SSD
.......

SSD buffer pool

....... HDD

SSD hash map

SSD control blocks

SSD priority queue

Outqueue

SSD free list

Eviction zone

Figure 6.10: The Data Structures Used by the SSD Manager

using the page space ID and offset and inserted into the hash table. When a page is
evicted from the SSD, it is also removed from the hash table.

Priority queue: A priority queue is used to organize pages placed on the SSD. The page
with the smallest priority is on the top of the priority queue. The page priority is
updated when the page is read from or written to the SSD. With the priority queue,
the system is able to quickly identify an SSD replacement victim.

Free list: The SSD free list is for tracking SSD pages that are ready to be allocated.
Initially, all SSD pages are in the free list. The SSD manager checks the free list first
when a page is considered to be placed on the SSD. When SSD pages are invalidated,
they are inserted in the free list.

Outqueue: We maintain an outqueue for recording statistics for a fixed number (Noutq)
of uncached pages (neither in the buffer pool nor in the SSD). When a page is evicted
from the SSD, an entry for the page is insert into the outqueue. An entry is also
placed in the outqueue for pages that are evicted from the buffer pool and not placed
in the SSD cache. Each entry in the outqueue records only the page statistics. When
the outqueue is full, the least-recently inserted entry is evicted to make a room for a
new entry.

97

6.4.5 Failure Handling

Since data present in the SSD may be more recent than that in the HDD, the system needs
to ensure that it can identify the pages in the SSD after a system failure. TAC [11] does
not have such a problem because it writes dirty pages to both the SSD and the HDD. Lazy
cleaning, as proposed by Do et al. [20], handles this issue by flushing all dirty pages in
the SSD to the HDD when taking a checkpoint. Neither of these approaches exploits the
persistence of the SSD. In contrast, CAC assumes that the contents of the SSD will survive
a failure, and it will read the latest version of a page from the SSD after a failure if the page
was located there. The challenge with this approach is that the SSD manager’s in-memory
hash map indicating which pages are in the SSD is lost during a failure. Debnath et al.
[17] address this problem by checkpointing the hash map and logging all writes to the SSD.
During recovery, the hash map can be rebuilt based on the last written hash map and the
log.

CAC’s approach is also based on checkpointing, but it does not require logging of
changes to the hash map. As each page header includes a page identifier, the hash map
can be rebuilt without causing any runtime overhead by scanning all pages in the SSD
during the failure recovery process. However, this may substantially increase recovery
time. For example, based on the read service time of our SSD, to scan a 32G SSD requires
about three minutes. Larger SSDs would introduce proportionally larger delays during
recovery. To achieve faster recovery, CAC checkpoints the hash map periodically and also
identifies a group of k low priority pages as an eviction zone on the SSD. Until the next
checkpoint, CAC will evict only pages that fall into the eviction zone. After a failure, CAC
initializes its hash map using the most recently checkpointed copy, and then checks the k
SSD slots in the eviction zone to identify what is actually there. The eviction zone size (k)
controls a trade-off between operational overhead and recovery time. CAC will checkpoint
its hash map when all of its eviction candidates have been evicted from the SSD. Thus,
smaller values of k result in more frequent hash map checkpoints, but faster recovery.

6.5 Evaluation

In this section, we present an experimental evaluation of GD2L and CAC. Our first objec-
tive is to provide some insight into the behavior of GD2L combined with CAC. Specifically,
we wish to address two questions.

• First, how effective is GD2L relative to non-cost-aware buffer management?

• Second, when GD2L is used to manage the buffer pool, how important is it to use
an anticipatory SSD manager, like CAC, that recognizes that page access patterns
change when the page is moved between the SSD and the HDD?

98

Our second objective is to compare the performance of our proposed algorithms (GD2L
with CAC) to that of other, recently proposed techniques for managing SSDs in database
systems.

To answer these questions, we have implemented a variety of algorithms in MySQL’s
InnoDB storage manager. For the DBMS buffer pool, we have two alternatives to com-
pare: the original buffer pool policies of InnoDB, which we refer to as LRU, and our
implementation of GD2L. For SSD management we have implemented CAC as well as
three alternatives, which we refer to as CC, MV-FIFO, and LRU2:

CC: CC is cost-based, like CAC, but it is not anticipatory. That is, unlike CAC it does
not attempt to predict how a page’s I/O pattern will change if that page is moved
between the SSD and HDD. It uses Equation 6.1 to estimate the benefit of placing
a page in the SSD, and evicts the page with the lowest benefit from the SSD when
necessary. CC’s approach for estimating the benefit of placing a page in the SSD is
similar to the approach used by TAC [11], although TAC tracks statistics on a region
basis, rather than a page basis. However, CC differs from TAC in that it considers
pages for admission to the SSD when they are cleaned or evicted from the buffer pool,
while TAC admits pages on read. Also, TAC manages the SSD as a write-through
cache, while CC, like CAC, is write-back.

LRU2: LRU2 manages the SSD using the LRU2 replacement policy, as recently proposed
by Do et al. [20] for their lazy cleaning (LC) technique. LRU2 is neither cost-based
nor anticipatory. Our implementation of LRU2 is similar to LC. Both consider pages
for admission when they are cleaned or evicted from the database buffer pool, and
both treat the SSD as a write-back cache. Our LRU2 implementation cleans pages
in the SSD only when they are evicted, which corresponds to the least aggressive
(and best performing) version of LC implemented by Do et al. [20] in SQLServer.
The invalidation procedure used for our implementation of LRU2 differs slightly from
LC’s in that our implementation invalidates an SSD page only if that page is identical
to the version of the page on the HDD.

MV-FIFO: MV-FIFO manages the SSD as a FIFO queue of pages. Pages are admitted to
the SSD when they are cleaned or evicted from the database buffer pool. If the page
being cleaned or evicted already exists in the SSD and the existing version is older,
the existing version is invalidated. MV-FIFO is neither cost-based nor anticipatory.
It was proposed for SSD management by Kang et al. as the basis of their FaCE
algorithm [35]. The FIFO organization of the SSD ensures that all writes to the SSD
are sequential and hence fast - this is the chief advantage FaCE.

Either buffer pool technique can be combined with any of the SSD managers, and we will
use the notation X+Y to refer to the combination of buffer pool manager X with the SSD
manager Y. For example, LRU+MV-FIFO refers to the original InnoDB buffer manager
combined with SSD management using MV-FIFO.

99

6.5.1 Methodology

We used the MySQL database management system, version 5.1.45, with the InnoDB stor-
age engine modified to implement our buffer management and SSD management tech-
niques. MySQL ran on test server with six 2.5GHz Intel Xeon cores and 4GB of main
memory, running Ubuntu 10.10 Linux with kernel version 2.6.35-22-generic. The server
has two 500GB RPM SCSI hard disks. One disk holds all system software, including
MySQL, and the test database. The second disk holds the transaction logs. In addition,
the server has a 32GB Intel X25-E SATA SSD. The database SSD cache is implemented
as a single file on the SSD. All files in InnoDB use unbuffered I/O.

All of our experiments were performed using TPC-C workloads. Each of our experi-
ments involves measuring performance under a TPC-C workload for a given system con-
figuration, TPC-C scale factor, and combination of buffer pool and SSD algorithms. Our
primary performance metric is TPC-C throughput, measured as the number of TPC-C
New-Order transactions that are processed per minute (tpmC). Throughput is measured
after the system has warmed up and reached its steady state performance. We also col-
lected a wide variety of secondary metrics, including device utilizations and I/O counts
measured at both the database and operating system levels. Experiment durations varied
from from four to seven hours, largely because the amount of time required to achieve a
steady state varies with the system configuration and the TPC-C scale factor. After each
run, we restart the DBMS to clean up the buffer pool and we replace the database with a
clean copy.

Like Do et al. [20], we have focused our experiments on three representative scenarios:

• database much larger than the size of the SSD cache,

• database somewhat larger than the SSD cache, and

• database smaller than the SSD cache.

To achieve this, we fixed the SSD size at 10GB and varied the TPC-C scale factor to
control the database size. We used TPC-C scale factors of 80, 150, and 300 warehouses,
corresponding to initial database sizes of approximately are 8GB, 15GB, and 30GB, respec-
tively. The size of a TPC-C database grows as the workload runs. The number of TPC-C
client terminals is set to twice the number of warehouses. For each of these scenarios, we
tested database buffer pools sizes of 10%, 20%, and 40% of the SSD size (1GB, 2GB, and
4GB, respectively).

For experiments involving CAC or CC, the maximum number of entries in the outqueue
is set to be the same as the number of database pages that fit into the SSD cache. We
subtracted the space required for the outqueue from the available buffer space when using
CAC and CC, so that all comparisons would be on an equal space basis. Unless otherwise
stated, all experiments involving CAC use an eviction zone of 10% of the SSD cache size.

100

6.5.2 Cost Parameter Calibration

As introduced in Sections 6.2 and 6.4, both GD2L and CAC rely on device read and
write cost parameters (listed in Figure 6.3) when making replacement decisions. One
characteristic of an SSD is its I/O asymmetry: its reads are faster than its writes because
a write operation may involve an erasing delay. We measure RS and WS separately.

To measure these access costs, we ran a TPC-C workload using MySQL and use
diskstats, a Linux tool for recording disk statistics, to collect the total I/O service time.
We also used InnoDB to track the total number of read and write requests it makes. As
diskstats does not separate total service time of read requests and that of write requests, we
measure the devices’ read service time using a read-only workload. The read-only workload
is created by converting all TPC-C updates to queries with the same search constraint and
deleting all insertions and deletions. Thus, the modified workload has a disk block access
pattern similar to that of the unmodified TPC-C workload. First, we stored the entire
database on the SSD and run the read-only workload, for which we found that 99.97% of
the physical I/O requests were reads. Dividing the total I/O service time (from diskstats)
by the total number of read requests (from InnoDB), we calculate RS = 0.11ms. Then, we
ran an unmodified TPC-C workload, and measured the total I/O service time, the total
number of reads, and the total number of writes. Using the total number of reads and the
value of RS obtained from the read-only experiment, we estimated the total I/O service
time of the read requests. Deducting that from the total I/O service time, we have the
total I/O service time spent on write requests. Dividing the total I/O service time on
writes by the total number of write requests, we calculate WS = 0.27ms. Similarly, we
stored the database on the HDD and repeated this process to determine RD = 7.2ms and
WD = 4.96ms. For the purpose of our experiments, we normalized these values: RS = 1,
RD = 70, WS = 3, and WD = 50.

We also checked specifications for these devices. In the specification of SATA SSD,
the random read latency is 0.075ms, based on page size 4KB. In InnoDB, the block size is
16KB. Thus, our measured read latency (0.11ms) is larger than the one in the specification.
In the specification of the hard disk, the random read/write latency is specified as < 8.5ms.
We can see that these cost values are close to what we measured. We suggest the cost
parameters can be set based on the device specification.

6.5.3 Analysis of GD2L and CAC

To understand the performance of GD2L and CAC, we ran experiments using three algo-
rithm combinations: LRU+CC, GD2L+CC, and GD2L+CAC. By comparing LRU+CC
and GD2L+CC, we can focus on the impact of switching from a cost-oblivious buffer
manager (LRU) to a cost-aware buffer manager (GD2L). By comparing the results of
GD2L+CC and GD2L+CAC, we can focus on the effect of switching from a non-anticipatory

101

SSD manager to an anticipatory one. Figure 6.11 shows the TPC-C throughput of each of
these algorithm combinations for each test database size and InnoDB buffer pool size.

1G 2G 4G

BP size

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200

tp
m

C:
N

ew
 o

rd
er

s/
m

in

LRU+CC GD2L+CC GD2L+CAC

DB size=30G

(a)

1G 2G 4G

BP size

0

2000

4000

6000

8000

10000

12000

tp
m

C:
N

ew
 o

rd
er

s/
m

in

LRU+CC GD2L+CC GD2L+CAC

DB size=15G

(b)

1G 2G 4G

BP size

0

5000

10000

15000

20000

25000

tp
m

C:
N

ew
 o

rd
er

s/
m

in

LRU+CC GD2L+CC GD2L+CAC

DB size=8G

(c)

Figure 6.11: TPC-C Throughput

GD2L vs. LRU

By comparing LRU+CC with GD2L+CC in Figure 6.11, we can see that GD2L outper-
forms LRU when the database is much larger than the SSD. The two algorithms have
similar performance for the two smaller database sizes. For the large database, GD2L
provides TPC-C throughput improvements of about 40%-75% relative to LRU.

Figures 6.12 and 6.13 show the HDD and SDD device utilizations, buffer pool miss
rates, and normalized total I/O cost on each device for the experiments with the 30GB,

102

Alg & HDD HDD SSD SSD total BP miss BP miss BP miss
BP size util I/O util I/O I/O rate(%) rate(%) rate(%)
(GB) (%) (ms) (%) (ms) (ms) (overall) (SSD) (HDD)

LRU+CC
1 93 88.6 12 11.1 99.7 6.6 7.7 4.0
2 93 72.8 8 6.0 78.8 4.4 5.0 3.6
4 94 55.1 6 3.3 58.4 2.4 2.5 2.7

GD2L+CC
1 92 53.1 21 12.1 65.2 8.8 9.3 6.1
2 90 44.3 20 9.7 54.0 7.4 7.8 5.5
4 90 36.3 14 5.8 42.1 4.7 4.9 4.2

GD2L+CAC
1 85 39.6 19 8.8 48.4 7.4 46.2 0.7
2 83 31.8 20 7.8 39.6 6.3 45.5 0.2
4 82 23.5 20 5.8 29.3 4.8 37.2 0.4

Figure 6.12: Performance Statistics (DB size=30GB)
I/O is reported as ms. per New Order transaction.

15GB, and 8G databases. The normalized I/O cost for a device is the device utilization
divided by the New Order transaction throughput. It can be interpreted as the number of
milliseconds of device time consumed, on average, per completed New Order transaction.
The normalized total I/O cost is the sum of the normalized costs on the HDD and SSD.
Buffer pool miss rates include overall miss rate, SSD page miss rate, and HDD page miss
rate.

Alg & HDD HDD SSD SSD total BP miss BP miss BP miss
BP size util I/O util I/O I/O rate(%) rate(%) rate(%)
(GB) (%) (ms) (%) (ms) (ms) (overall) (SSD) (HDD)

LRU+CC
1 79 11.1 38 5.4 16.5 4.2 6.3 0.7
2 68 5.7 47 4.0 9.7 2.7 3.5 0.5
4 73 4.4 43 2.6 7.0 1.3 2.6 0.3

GD2L+CC
1 21 2.5 68 8.0 10.4 6.1 6.9 0.4
2 18 1.5 62 5.3 6.8 3.7 4.3 0.3
4 14 0.9 61 3.8 4.7 2.3 3.0 0.07

GD2L+CAC
1 30 3.2 73 7.8 11.0 5.7 21.1 0.06
2 21 1.6 78 6.2 7.8 4.0 18.7 0.04
4 48 2.3 60 2.9 5.3 2.0 9.8 0.04

Figure 6.13: Performance Statistics (DB size=15GB)
I/O is reported as ms. per New Order transaction.

For the 30GB experiments, in which GD2L-CC outperformed LRU+CC, Figure 6.12
shows that GD2L resulted in a much lower total I/O cost (per transaction) than LRU,
despite the fact the GD2L had a higher miss rate in the InnoDB buffer pool. GD2L’s higher

103

Alg & HDD HDD SSD SSD total BP miss
BP size util I/O util I/O I/O rate
(GB) (%) (ms) (%) (ms) (ms) (%)

LRU+CC
1 5 0.4 72 5.0 5.4 2.9
2 6 0.2 65 2.6 2.9 1.5
4 37 1.1 40 1.1 2.2 0.4

GD2L+CC
1 5 0.4 70 4.7 5.1 2.9
2 5 0.2 73 3.5 3.7 1.6
4 7 0.2 62 1.9 2.1 0.7

GD2L+CAC
1 7 0.4 83 5.4 5.8 2.4
2 6 0.2 82 3.5 3.7 1.6
4 24 0.7 62 1.7 2.4 0.1

Figure 6.14: Performance Statistics (DB size=8GB)
I/O is reported as milliseconds of device time per New Order transaction.

miss rate is not surprising, since it considers replacement cost in addition to recency of use
when making eviction decisions. Although the total number of I/O operations performed
by GD2L+CC is higher than that of LRU+CC, GD2L+CC results in less I/O time per
transaction because it does more of its I/O on the SSD and less on the HDD, compared to
LRU+CC. From Figure 6.12 we see that the miss rate of SSD pages in the buffer pool is
higher than that of HDD pages. This reflects GD2L’s preference for evicting SSD pages,
since they are cheaper to reload than HDD pages. In the case of the 30GB database,
GD2L’s shifting of I/O activity from the HDD to the SSD results in significantly higher
throughput (relative to LRU+CC) since the HDD is the performance bottleneck in our test
environment. This can be seen from the very high HDD utilizations shown in Figure 6.12

For the 15GB experiments, Figure 6.13 shows that GD2L+CC again has lower total
I/O cost per transaction than LRU+CC, and shifts I/O activity from the HDD to the SSD.
However, the effect is not as pronounced as it was for the larger database. Furthermore, as
can be seen from Figure 6.11, this behavior does not lead to a significant TPC-C throughput
advantage relative to LRU+CC, as it did for the 30GB database. This is because the SSD
on our test server becomes more heavily utilized under the increased load induced by GD2L.
(This situation did not happen in the 30GB case, because most of the database hot spot
can fit in the SSD.) In a system with greater SSD bandwidth, we would expect to see a
TPC-C throughput improvement similar to what we observed with the 30GB database.

For the experiments with the 8G database, both LRU-CC and GD2L-CC have very
similar performance. In those experiments, the entire database can fit into the SSD. As
more of the database becomes SSD-resident, the behaviour of GD2L degenerates to that
of LRU, since one of its two queues (QD) will be nearly empty.

104

CAC vs. CC

Next, we consider the impact of switching from a non-anticipatory cost-based SSD man-
ager (CC) to an anticipatory one (CAC). Figure 6.11 shows that GD2L+CAC provides
additional performance gains above and beyond those achieved by GD2L+CC in the case
of the large (30GB) database. Together, GD2L and CAC provide a TPC-C performance
improvement of about a factor of two relative to the LRU+CC baseline in our 30GB tests.
The performance gain was less significant in the 15GB database tests and non-existent in
the 8GB database tests.

Figure 6.12 shows that GD2L+CAC results in lower total I/O costs on both the SSD
and HDD devices, relative to GD2L+CC, in the 30GB experiments. Both policies result in
similar buffer pool hit ratios, so the lower I/O cost achieved by GD2L+CAC is attributable
to better decisions about which pages to retain in the SSD. To better understand the
reasons for the lower total I/O cost achieved by CAC, we analyzed logs of system activity
to try to identify specific situations in which GD2L+CC and GD2L+CAC made different
placement decisions. One interesting situation we encountered was that in which a very
hot page that is in the buffer pool is placed in the SSD. This may occur, for example, when
the page is cleaned by the buffer manager and there is free space in the SSD, either during
cold start or because of invalidations. When this occurs, I/O activity for the hot page will
spike because GD2L will consider the page to be a good eviction candidate. Under the
CC policy, such a page will tend to remain in the SSD because CC prefers to keep pages
with high I/O activity in the SSD. In contrast, CAC is much more likely to evict such a
page from the SSD, since it can (correctly) estimate that moving the page will result in
a substantial drop in I/O activity. As shown in Figure 6.12, although the HDD I/Os of
GD2L+CC and GD2L+CAC are about the same, GD2L+CAC has much lower buffer pool
miss rate on HDD pages. The buffer pool miss rate of HDD pages is physical reads to the
HDD divided by the logical read count of the HDD pages in the buffer pool. Thus, we
found that GD2L+CAC tended to keep very hot pages in the buffer pool and out of the
SSD, while with GD2L+CC such pages tend to remain in the SSD and bounce into and
out of the buffer pool. Such dynamics illustrate why it is important to use an anticipatory
SSD manager (like CAC) if the buffer pool manager is cost-aware.

For the experiments with smaller databases (15GB and 8GB), there was little difference
in performance between GD2L+CC and GD2L+CAC. Both policies result in similar per-
transaction I/O costs and similar TPC-C throughput. This is not surprising, since in these
settings most or all of the hot part of the database can fit into the SSD, i.e., there is no
need to be smart about SSD placement decisions. The SSD manager matters most when
the database is large relative to the SSD.

105

6.5.4 Comparison with LRU2 and MV-FIFO

In this section we compare GD2L+CAC to two other recently proposed techniques for
managing the SSD, namely lazy cleaning (LC) and FaCE. More precisely, we compare
GD2L+CAC against LRU2 and MV-FIFO, which are similar to LC and FaCE but imple-
mented in InnoDB to allow for side-by-side comparison. Since both LC and FaCE focus
only on management of the SSD and not on management of the buffer pool, we combine
them with InnoDB’s default buffer manager for comparison to GD2L+CAC, resulting the
combined algorithms LRU+LRU2 and LRU+MV-FIFO.

Figure 6.15 shows the TPC-C throughput achieved by all three of these algorithms on
our test system for all three of the database sizes that we tested. In summary, we found that
GD2L-CAC significantly outperformed the other two algorithms in the case of the 30GB
database, achieving the greatest advantage over its closest competitor (LRU+LRU2) for
larger buffer pool sizes. For the 15GB database, GD2L+CAC was only marginally faster
than LC, and for the smallest database (8G) they essentially indistinguishable. LRU+MV-
FIFO performed much worse than the other two algorithms in all of the scenarios we tested.

LRU+MVFIFO performed poorly in our environment because the performance bottle-
neck in our test system is the HDD. The goal of MV-FIFO is to increase the efficiency of
the SSD by writing sequentially. Although it succeeds in doing this, the SSD is relatively
lightly utilized in our test environment, so MV-FIFO’s optimizations do not increase over-
all TPC-C performance. Interestingly, LRU+MV-FIFO performed poorly even in our tests
with the 8GB database, and remained limited by the performance of the HDD. There are
two reasons for this. The first is that MVFIFO makes poorer use of the available space
on the SSD than LRU2 and CAC because of versioning. The second is disk writes due to
evictions as SSD space is recycled by MV-FIFO.

Figure 6.16 shows the device utilizations, buffer hit rates and normalized I/O costs for
the experiments with the 30GB database. LRU+LRU2 performs worse than GD2L+CAC
in the 30GB database test because it has higher total I/O cost (per transaction) than
GD2L+CAC. Furthermore, the additional cost falls primarily on the HDD, which is the per-
formance bottleneck in our setting. Although it is not shown in Figure 6.16, GD2L+CAC
does fewer reads per transaction on the HDD and more reads per transaction on the SSD
than does LRU+LRU2. This may be due partly to CAC’s SSD placement decisions and
partly to GD2L’s preference for evicting SSD pages.

In the 30GB tests, the performance of LRU+LRU2 remains relatively flat as the size of
the database buffer pool increased, while GD2L+CAC’s performance increases. One reason
for this is that LRU+LRU2 generated more write I/O to the HDD because of SSD evictions
than did GD2L+CAC, and the other reason is that LRU2 is a recency-based replacement
policy. In the storage system, the SSD can be viewed as a second-tier cache below DBMS
buffer pool. One challenge of making effective use of the lower-tier cache is that the upper-
tier cache filters the temporal locality. Poor temporal locality in the request streams
experienced by the lower-tier cache reduces the effectiveness of recency-based replacement

106

1G 2G 4G

BP size

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

tp
m

C:
N

ew
 o

rd
er

s/
m

in

LRU+MVFIFO LRU+LRU2 GD2L+LRU2
GD2L+CAC

DB size=30G

(a)

1G 2G 4G

BP size

0

2000

4000

6000

8000

10000

12000

14000

tp
m

C:
N

ew
 o

rd
er

s/
m

in

LRU+MVFIFO LRU+LRU2 GD2L+LRU2
GD2L+CAC

DB size=15G

(b)

1G 2G 4G

BP size

0

5000

10000

15000

20000

25000

tp
m

C:
N

ew
 o

rd
er

s/
m

in

LRU+MVFIFO LRU+LRU2 GD2L+LRU2
GD2L+CAC

DB size=8G

(c)

Figure 6.15: TPC-C Throughput

policies, such as LRU and LRU2. As the size of the buffer pool becomes larger, more
temporal locality is filtered by the buffer pool and the SSD is used less effectively.

When the database size is 15GB, GD2L+CAC’s advantage disappears. In this setting,
both algorithms have similar per-transaction I/O costs. GD2L+CAC directs slightly more
of the I/O traffic to the SSD than does LRU+LRU2, but the difference is small. For the
8GB database there is no significant difference in performance between the two algorithms

107

Alg & HDD HDD SSD SSD total BP miss BP miss BP miss
BP size util I/O util I/O I/O rate(%) rate(%) rate(%)
(GB) (%) (ms) (%) (ms) (ms) (overall) (SSD) (HDD)

GD2L+CAC
1 85 39.6 19 8.8 48.4 7.4 46.2 0.7
2 83 31.8 20 7.8 39.6 6.3 45.5 0.2
4 82 23.5 20 5.8 29.3 4.8 37.2 0.4

LRU+LRU2
1 85 49.4 15 8.6 58.0 6.7 10.6 1.6
2 87 50.3 12 6.7 57.0 4.4 12.36 1.0
4 90 48.5 9 4.7 53.2 2.4 5.1 1.1

LRU+FIFO
1 91 101.3 8 9.2 110.5 6.6 10.5 3.1
2 92 92.3 6 5.8 98.1 4.4 7.0 2.5
4 92 62.9 5 3.7 66.6 2.5 8.3 1.2

Figure 6.16: Performance Statistics (DB size=30GB)
I/O is reported as ms. per New Order transaction.

Alg & HDD HDD SSD SSD total BP miss BP miss BP miss
BP size util I/O util I/O I/O rate(%) rate(%) rate(%)
(GB) (%) (ms) (%) (ms) (ms) (overall) (SSD) (HDD)

GD2L+CAC
1 30 3.2 73 7.8 11.0 5.7 21.1 0.06
2 21 1.6 78 6.2 7.8 4.0 18.7 0.04
4 48 2.3 60 2.9 5.3 2.0 9.8 0.04

LRU+LRU2
1 34 3.8 65 7.2 11.0 4.9 10.5 0.12
2 45 3.7 56 4.6 8.4 2.6 11.6 0.08
4 42 2.2 56 3.0 5.2 1.3 9.3 0.04

LRU+FIFO
1 92 50.4 10 5.6 56.0 4.9 7.9 1.9
2 92 33.1 9 3.4 36.5 2.7 4.7 0.32
4 97 20.7 11.3 2.0 22.8 1.4 5.3 0.4

Figure 6.17: Performance Statistics (DB size=15GB)
I/O is reported as milliseconds of device time per New Order transaction.

6.5.5 Impact of the Eviction Zone

To evaluation the impact of the eviction zone, we ran experiments with GD2L+CAC using
different eviction zone sizes. In these experiments, the database size was 1GB, the buffer
pool size is set to 200M and the SSD cache size is set to 400M. We tested k set to 1%,
2%, 5%, 10% and 100% of the SSD size, Our results showed that k values in this range
had no impact on TPC-C throughput. In InnoDB, the page identifier is eight bytes and
the size of each page is 16K. Thus, the hash map for a 400M SSD fits in ten pages. We
measure the rate with which the SSD hash map was flushed, and find that even with
k = 1%, the highest rate of checkpointing the hash map experienced by any of the three

108

Alg & HDD HDD SSD SSD total BP miss
BP size util I/O util I/O I/O rate
(GB) (%) (ms) (%) (ms) (ms) (%)

GD2L+CAC
1 7 0.4 83 5.4 5.8 2.4
2 6 0.2 82 3.5 3.7 1.6
4 24 0.7 62 1.7 2.4 0.1

LRU+LRU2
1 6 0.4 72 5.0 5.4 4.0
2 6 0.2 70 3.1 3.3 1.5
4 34 1.0 74 2.1 3.1 0.4

LRU+FIFO
1 92 28.6 12 3.7 32.3 2.9
2 95 12.2 15 1.9 14.1 1.6
4 82.2 6.0 22.2 0.6 6.6 0.4

Figure 6.18: Performance Statistics (DB size=8GB)
I/O is reported as milliseconds of device time per New Order transaction.

1% 10% 100%

k (log scale)

0

1000

2000

3000

4000

5000

6000

7000

tp
m

C:
 N

ew
 o

rd
er

s/
m

in

CAC
CC
LRU2

Figure 6.19: Throughput of TPC-C Runs in term of Eviction Zone Size

SSD management algorithms (CAC, CC, and LRU2) is less than three per second. Thus,
the overhead imposed by checkpointing the hash map is negligible.

6.6 Conclusion

In this chapter we presented two new algorithms, GD2L and CAC, for managing the buffer
pool and the SSD in a database management system. Both algorithms are cost-based and
the goal is to minimize the overall access time cost of the workload. We implemented the
two algorithms in the InnoDB storage engine and evaluated them using a TPC-C work-
load. We compared the performance of GD2L and CAC with other existing algorithms.
For databases that are large relative to the size of the SSD, our algorithm provided sub-

109

stantial performance improvements over alternative approaches in our tests. Our results
also suggest that the performance of GD2L and CAC and other algorithms for managing
SSD caches in database systems will depend strongly on the system configuration, and in
particular on the balance between available HDD and SSD bandwidth. In our test environ-
ment, performance was usually limited by HDD bandwidth. Other algorithms, like FaCE,
are better suited to settings in which the SSD is the limiting factor.

110

Chapter 7

Conclusion and Future Work

The thesis proposes algorithms for managing caches and hybrid storage devices in modern
storage systems. In the thesis, we address two independent problems: the management of
the lower-tier cache in multi-tier caches is presented in Chapter 3 - 5, and the management
of hybrid storage for database systems in presented in Chapter 6. More detailed conclusions
and discussion of potential future research directions can be found at the ends of these
chapters.

In the first part of the thesis, we have focused on the management of the lower-tier cache.
CLIC, which is a generic cache replacement algorithm, is based on hints. The applications
in the upper-tier server attach hints to their I/O requests that they think may be useful to
the lower-tier cache. CLIC monitors the request streams of the different clients and collects
statistics about the hints they contain. It uses these statistics to automatically learn the
usefulness of different hints and attach caching priorities to these hints. We use TPC-
C and TPC-H workload traces to evaluate CLIC by comparing it to other replacement
algorithms. The experimental results show that CLIC outperforms other algorithms in
most cases. In Chapter 4, we present DP-CLIC, which is an extension of CLIC. DP-CLIC
can capture temporal variation of the page caching priority by considering how long the
page has been in the cache. The experimental results show that DP-CLIC can further
improve the performance of CLIC when the size of the upper-tier cache is small (about
10% of the database size) or are large (about 90% of the database size). To reduce the
cost of cache management, CLIC uses top-K and feature selection techniques to limit the
number of hint sets that CLIC needs to track. The experimental results show that these
techniques make CLIC scale well and effectively limit the cost of cache management.

In the second part of the thesis, we have focused on how to make both buffer pool and
SSD work efficiently together when the hybrid storage is used for DBMS systems. After
the SSD has been added to the storage hierarchy to fill the performance and cost gaps
between the memory and the HDD, the HDD is still the system performance bottleneck.
Previous work focuses on how to make placement and replacement decisions for the SSD
to reduce the I/O accesses to the HDD. Our work opens up one level to include the DBMS

111

buffer pool, and thus, we manage the buffer pool and SSD jointly to reduce overall I/O
access cost. We propose a cost-aware algorithm, GD2L, to make replacement decisions for
the DBMS buffer pool. GD2L is aware that there are two different storage devices which
have significantly different I/O performance, and it takes into account that difference when
make replacement decisions. To manage the SSD in the hybrid storage system, we propose
an anticipatory algorithm CAC. CAC is aware that the page access pattern will be changed
when the page’s location changes. It adjusts page statistics when making placement and
replacement decisions for the SSD. We implemented GD2L and CAC in InnoDB (MySQL
default storage engine), and evaluated them using TPC-C workloads. By managing the
buffer pool and the SSD jointly, we achieved better performance than managing them
separately.

7.1 Future Work

There are many possible directions for future work:

• One possible direction is to apply CLIC to other multi-tier cache systems, such as
a second-tier cache below a file system cache or a web cache. CLIC is a generic
technique for exploiting application hints to manage a second-tier cache. As long as
the first-tier cache can pass hints to the second-tier cache, CLIC is able to identify
good hints for managing the second-tier cache efficiently. Thus, CLIC is not limited
to database systems.

• Another possible direction is to deploy CLIC in the multi-tier caches in the cloud.
Even though CLIC is designed for two-tier cache systems, it can be deployed in any
lower-tier cache in multi-tier cache systems. Hints generated in the upper tier caches
can be passed to the lower tier caches. One potential problem arising in this scenario
is that the lower the cache is the more hint types are passed. When some hints
have been passed through several tiers of caches, they might become useless. The
advantage of CLIC is that it can filter these useless hints using the hybrid algorithm
(Chapter 5). One technique we can add to CLIC is that it should not only identify
good hints to manage the cache but also identify good hints to pass the lower tier
cache. Another problem we need to think about is the page size in different tiers of
caches. For CLIC, we assume that the upper-tier cache and lower-tier cache have the
same page size. However, the assumption may not be hold for multi-tier caches in a
cloud. Thus, techniques for merging and splitting pages should be considered when
applying CLIC in the cloud.

• The hybrid storage management technique can be apply to other systems, for exam-
ple, file systems. GD2L is based on GreedyDual and GreedyDual is designed for the
file system originally. Thus, the algorithm is easy to apply to file systems. The hybrid
storage management technique is not limited to the hybrid storage consisting SSD

112

and HDD. Whenever a system needs to manage data for a three storage hierarchy,
GD2L and CAC can be applied.

113

References

[1] Ismail Ari, Ahmed Amer, Robert Gramacy, Ethan L. Miller, Scott Brandt, and Dar-
rell D. E. Long. ACME: Adaptive caching using multiple experts. In Workshop on
Distributed Data and Structures 4 (WDAS), pages 143–158. Carleton Scientific, March
2002.

[2] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Lakshmi N. Bairavasundaram,
Timothy E. Denehy, Florentina I. Popovici, Vijayan Prabhakaran, and Muthian Si-
vathanu. Semantically-smart disk systems: past, present, and future. SIGMETRICS
Perform. Eval. Rev., 33(4):29–35, March 2006.

[3] Lakshmi N. Bairavasundaram, Muthian Sivathanu, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. X-ray: A non-invasive exclusive caching mechanism for
raids. In Proceedings of the 31st Annual International Symposium on Computer Ar-
chitecture, ISCA ’04, pages 176–187, 2004.

[4] S. Bansal and D. Modha. CAR: Clock with adaptive replacement. In Proc. of the
3nd USENIX Symposium on File and Storage Technologies, FAST’04, pages 187–200,
March 2004.

[5] Luiz Andre Barroso. Warehouse-scale computing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’10, 2010.

[6] Laszlo A. Belady. A study of replacement algorithms for virtual-storage computer.
IBM Systems Journal, 5(2):78–101, 1966.

[7] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres-
sion Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont,
California, U.S.A., 1984.

[8] Kurt P. Brown, Michael J. Carey, and Miron Livny. Goal-oriented buffer management
revisited. In Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, pages 353–364, June 1996.

[9] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel, S. Kleiman,
C. Small, and M. Storer. Mercury: Host-side flash caching for the data center. In

114

Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th Symposium on,
pages 1–12, 2012.

[10] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Kenneth A. Ross,
and Christian A. Lang. An object placement advisor for db2 using solid state storage.
Proc. VLDB Endow., 2:1318–1329, August 2009.

[11] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Kenneth A. Ross,
and Christian A. Lang. Ssd bufferpool extensions for database systems. Proc. VLDB
Endow., 3:1435–1446, September 2010.

[12] Pei Cao and Sandy Irani. Cost-aware www proxy caching algorithms. In Proc.
USENIX Symp. on Internet Technologies and Systems, pages 18–29, 1997.

[13] Zhifeng Chen, Yan Zhang, Yuanyuan Zhou, Heidi Scott, and Berni Schiefer. Empirical
evaluation of multi-level buffer cache collaboration for storage systems. In Proceedings
of the International Conference on Measurements and Modeling of Computer Systems
(SIGMETRICS’05), pages 145–156, 2005.

[14] Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction based cache placement for storage
caches. In USENIX Annual Technical Conference. Usenix, 2003.

[15] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data
streams. Proc. VLDB Endow., 1(2):1530–1541, August 2008.

[16] Gautam Das, Vagelis Hristidis, Nishant Kapoor, and S. Sudarshan. Ordering the
attributes of query results. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’06, pages 395–406, 2006.

[17] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flashstore: high throughput persistent
key-value store. Proc. VLDB Endow., 3:1414–1425, September 2010.

[18] Biplob Debnath, Cristian Ungureanu, Akshat Aranya, and Stephen Rago. Tbf: A
memory-efficient replacement policy for flash-based caches. In Proc. of the 2013 IEEE
International Conference on Data Engineering, ICDE ’13, pages 1117–1128, 2013.

[19] David J. DeWitt, Jaeyoung Do, Jignesh M. Patel, and Donghui Zhang. Fast peak-to-
peak behavior with ssd buffer pool. In Proc. of the 2013 IEEE International Confer-
ence on Data Engineering, ICDE ’13, pages 1129–1140, 2013.

[20] Jaeyoung Do, Donghui Zhang, Jignesh M. Patel, David J. DeWitt, Jeffrey F.
Naughton, and Alan Halverson. Turbocharging dbms buffer pool using ssds. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data, SIGMOD’11, pages 1113–1124, 2011.

[21] EMC. EMC XtremCache, 2013. http://www.emc.com/collateral/hardware/

data-sheet/h9581-xtremswcache-ds.pdf.

115

http://www.emc.com/collateral/hardware/data-sheet/h9581-xtremswcache-ds.pdf
http://www.emc.com/collateral/hardware/data-sheet/h9581-xtremswcache-ds.pdf

[22] Facebook. Facebook: FlashCache, 2012. http://assets.en.oreilly.com/1/event/
45/Flashcache%20Presentation.pdf.

[23] Francesco Folino, Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. Editorial:
Mining usage scenarios in business processes: Outlier-aware discovery and run-time
prediction. Data Knowl. Eng., 70(12):1005–1029, December 2011.

[24] Brian C. Forney, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Storage-
aware caching: Revisiting caching for heterogeneous storage systems. In Proc. of the
USENIX Symposium on File and Storage Technologies, FAST’02, pages 5–18, April
2002.

[25] Fusion-IO. Fusion-IO ioTurbine, 2013. http://www.fusionio.com/products/

ioturbine/.

[26] Binny S. Gill. On multi-level exclusive caching: offline optimality and why promotions
are better than demotions. In Proc. of the 6th USENIX Conference on File and Storage
Technologies, FAST’08, pages 4–20, 2008.

[27] Goetz Graefe. The five-minute rule 20 years later: and how flash memory changes the
rules. Queue, 6:40–52, July 2008.

[28] Jim Gray and Bob Fitzgerald. Flash disk opportunity for server applications. Queue,
6(4):18–23, July 2008.

[29] Jim Gray and Franco Putzolu. The 5 minute rule for trading memory for disc accesses
and the 10 byte rule for trading memory for cpu time. In Proceedings of the 1987 ACM
SIGMOD international conference on Management of data, SIGMOD ’87, pages 395–
398, 1987.

[30] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
J. Mach. Learn. Res., 3:1157–1182, March 2003.

[31] IBM. Tivoli Storage Manager HSM for Windows, 2012. http://www-01.ibm.com/

software/tivoli/products/storage-mgr-hsm/.

[32] Intel. Understanding the Flash Translation Layer (FTL) Specification, 1998. http:

//www.jbosn.com/download_documents/FTL_INTEL.pdf/.

[33] Song Jiang and Xiaodong Zhang. ULC: A file block placement and replacement
protocol to effectively exploit hierarchical locality in multi-level buffer caches. In
Proc. 24th International Conference on Distributed Computing Systems (ICDCS’04),
pages 168–177, 2004.

[34] Theodore Johnson and Dennis Shasha. 2Q: A low overhead high performance buffer
management replacement algorithm. In Proc. International Conference on Very Large
Data Bases (VLDB’94), pages 439–450, 1994.

116

http://assets.en.oreilly.com/1/event/45/Flashcache%20Presentation.pdf
http://assets.en.oreilly.com/1/event/45/Flashcache%20Presentation.pdf
http://www.fusionio.com/products/ioturbine/
http://www.fusionio.com/products/ioturbine/
http://www-01.ibm.com/software/tivoli/products/storage-mgr-hsm/
http://www-01.ibm.com/software/tivoli/products/storage-mgr-hsm/
http://www.jbosn.com/download_documents/FTL_INTEL.pdf/
http://www.jbosn.com/download_documents/FTL_INTEL.pdf/

[35] Woon-Hak Kang, Sang-Won Lee, and Bongki Moon. Flash-based extended cache for
higher throughput and faster recovery. Proc. VLDB Endow., 5(11):1615–1626, July
2012.

[36] Hyojun Kim and Seongjun Ahn. Bplru: a buffer management scheme for improving
random writes in flash storage. In Proceedings of the 6th USENIX Conference on File
and Storage Technologies, FAST’08, pages 16:1–16:14, February 2008.

[37] Ricardo Koller, Leonardo Marmol, Raju Rangaswami, Swaminathan Sundararaman,
Nisha Talagala, and Ming Zhao Zhao. Write policies for host-side flash caches. In
Proccedings of the 11th conference on File and storage technologies, pages 45–58, 2013.

[38] Ioannis Koltsidas and Stratis D. Viglas. Flashing up the storage layer. Proc. VLDB
Endow., 1:514–525, August 2008.

[39] Sang-Won Lee and Bongki Moon. Design of flash-based dbms: an in-page logging
approach. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, SIGMOD ’07, pages 55–66, 2007.

[40] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo Kim. A
case for flash memory ssd in enterprise database applications. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, SIGMOD ’08,
pages 1075–1086. ACM, 2008.

[41] Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and Ethan L. Miller. Mea-
surement and analysis of large-scale network file system workloads. In USENIX 2008
Annual Technical Conference on Annual Technical Conference, ATC’08, pages 213–
226, 2008.

[42] Adam Leventhal. Flash storage memory. Commun. ACM, 51:47–51, July 2008.

[43] Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, and Yizhou Sun. Sampling cube: A
framework for statistical olap over sampling data. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’08, pages
779–790, 2008.

[44] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sachedina, and Shaobo Gao.
Second-tier cache management using write hints. In Proc. of the 4th conference on
USENIX Conference on File and Storage Technologies, FAST’05, pages 9–22, Decem-
ber 2005.

[45] Xin Liu, Ashraf Aboulnaga, Kenneth Salem, and Xuhui Li. Clic: client-informed
caching for storage servers. In Proccedings of the 7th conference on File and storage
technologies, FAST’09, pages 297–310, 2009.

117

[46] Xin Liu and Kenneth Salem. Hybrid storage management for database systems. Proc.
VLDB Endow., 6(8):541–552, June 2013.

[47] Tian Luo, Rubao Lee, Michael Mesnier, Feng Chen, and Xiaodong Zhang. hstorage-
db: heterogeneity-aware data management to exploit the full capability of hybrid
storage systems. Proc. VLDB Endow., 5(10):1076–1087, June 2012.

[48] Yanfei Lv, Bin Cui, Bingsheng He, and Xuexuan Chen. Operation-aware buffer man-
agement in flash-based systems. In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD’11, pages 13–24, 2011.

[49] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algorithms
for server problems. J. Algorithms, 11:208–230, May 1990.

[50] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over
data streams. In Proc. International Conference on Very Large Data Bases, VLDB
’02, pages 346–357. VLDB Endowment, 2002.

[51] Patrick Martin, Hoi-Ying Li, Min Zheng, Keri Romanufa, and Wendy Powley. Dy-
namic reconfiguration algorithm: Dynamically tuning multiple buffer pools. In 11th
International Conference on Database and Expert Systems Applications (DEXA),
pages 92–101, 2000.

[52] Nimrod Megiddo and Dharmendra S. Modha. Arc: A self-tuning, low overhead re-
placement cache. In Proc. of the 2nd USENIX Conference on File and Storage Tech-
nologies, FAST ’03, pages 115–130, 2003.

[53] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of
frequent and top-k elements in data streams. In Proc. International Conference on
Database Theory (ICDT), January 2005.

[54] D. Muntz and P. Honeyman. Multi-level caching in distributed file systems - or -
your cache ain’t nuthin’ but trash. In Proceedings of the USENIX Winter Conference,
pages 305–313, January 1992.

[55] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-loading:
Practical power management for enterprise storage. Trans. Storage, 4(3):10:1–10:23,
November 2008.

[56] OCZ. OCZ RevoDrive Hybrid 1TB PCI-E SSD Review, 2013.
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/

47441-ocz-revodrive-hybrid-1tb-pci-e-ssd-review.html.

[57] Oguzhan Ozmen, Kenneth Salem, Jiri Schindler, and Steve Daniel. Workload-aware
storage layout for database systems. In Proceedings of the 2010 international confer-
ence on Management of data, SIGMOD ’10, pages 939–950, 2010.

118

http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/47441-ocz-revodrive-hybrid-1tb-pci-e-ssd-review.html
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/47441-ocz-revodrive-hybrid-1tb-pci-e-ssd-review.html

[58] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka.
Informed prefetching and caching. In Proc. ACM Symposium on Operating Systems
Principles (SOSP’95), pages 79–95, December 1995.

[59] Douglas Perry. SSD Prices Falling Faster Than HDD
Prices, 2013. http://www.tomshardware.com/news/

ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html.

[60] L. Rokach and O. Maimon. Top-down induction of decision trees classifiers - a survey.
Trans. Sys. Man Cyber Part C, 35(4):476–487, November 2005.

[61] Mohammad Sadoghi, Kenneth A. Ross, Mustafa Canim, and Bishwaranjan Bhat-
tacharjee. Making updates disk-i/o friendly using ssds. Proc. VLDB Endow.,
6(11):997–1008, August 2013.

[62] Mohit Saxena, Michael M. Swift, and Yiying Zhang. Flashtier: a lightweight, consis-
tent and durable storage cache. In Proceedings of the 7th ACM european conference
on Computer Systems, EuroSys ’12, pages 267–280. ACM, 2012.

[63] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Database-aware semantically-smart storage. In Proc. of
the USENIX Symposium on File and Storage Technologies, FAST’05, pages 239–252,
2005.

[64] Sean M. Snyder, Shimin Chen, Panos K. Chrysanthis, and Alexandros Labrinidis.
Qmd: Exploiting flash for energy efficient disk arrays. In Proceedings of the Seventh
International Workshop on Data Management on New Hardware, DaMoN ’11, pages
41–49, New York, NY, USA, 2011. ACM.

[65] Gokul Soundararajan, Jin Chen, Mohamed Sharaf, and Cristiana Amza. Dynamic
partitioning of the cache hierarchy in shared data centers. In Proc. International
Conference on Very Large Data Bases (VLDB’08), pages 635–646, Aug 2008.

[66] Roman Timofeev. Classification and regression trees (cart) theory and applications.

[67] The TPC-C Benchmark. [online] http://www.tpc.org/tpcc/.

[68] The TPC-H Benchmark. [online] http://www.tpc.org/tpch/.

[69] wiki. Decision Tree, 2013. http://en.wikipedia.org/wiki/Decision_tree_

learning.

[70] Theodore M. Wong and John Wilkes. My cache or yours? making storage more
exclusive. In USENIX Annual Technical Conference (USENIX 2002), pages 161–175,
Jun 2002.

119

http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html
http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Decision_tree_learning

[71] Gala Yadgar, Michael Factor, Kai Li, and Assaf Schuster. Mc2: Multiple clients
on a multilevel cache. In Proc. Int’l Conference on Distributed Computing Systems
(ICDCS’08), June 2008.

[72] Gala Yadgar, Michael Factor, and Assaf Schuster. Karma: know-it-all replacement
for a multilevel cache. In Proc. of the USENIX Symposium on File and Storage
Technologies, FAST ’07, pages 25–38, 2007.

[73] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text
categorization. In Proceedings of the Fourteenth International Conference on Machine
Learning, ICML ’97, pages 412–420, 1997.

[74] Neal Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11:525–541, 1994.

[75] Neal E. Young. On-line file caching. In Proceedings of the ninth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’98, pages 82–86, 1998.

[76] Yuanyuan Zhou, Zhifeng Chen, and Kai Li. Second-level buffer cache management.
IEEE Transactions on Parallel and Distributed Systems, 15(7), July 2004.

[77] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-queue replacement algorithm
for second level buffer caches. In Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, pages 91–104, 2001.

120

	List of Figures
	Introduction
	Cache Hierarchies
	Hybrid Storage
	Contributions
	Organization of the Thesis

	Related Work
	Second-Tier Cache Management
	Hierarchy-aware Approaches
	Aggressively Collaborative Approaches

	Solid State Disks

	CLIC: Client-Informed Caching for Storage Servers
	Generic Framework for Hints
	Hint Analysis
	Hint Benefit/Cost Analysis
	Tracking Hint Set Statistics
	Time-Varying Workloads
	Cache Management

	Handling Large Numbers of Hint Sets
	Frequently-Occurring Hint Sets

	Experimental Evaluation
	Comparison to Other Caching Policies
	Limiting the Outqueue Size
	Tracking Only Frequent Hint Sets
	Increasing the Number of Hints
	Multiple Storage Clients

	Conclusion

	Dynamic Priority CLIC
	Re-reference Histogram of Hint Sets
	Dynamic Benefit/Cost Model
	Tracking Hint Statistics
	Cache Management
	DP-CLIC Priority vs. CLIC Priority
	Experimental Evaluation
	Evaluation with TPC-C Traces
	Evaluation with TPC-H traces
	Limiting the Histogram Size
	Tracking Only Frequent Hint Sets for DP-CLIC
	Increasing the Number of Hints for DP-CLIC

	Conclusion

	Classification of Hint Sets
	Hybrid Algorithms
	Impurity of Hint Types
	Experimental Evaluation
	Conclusion

	Hybrid Storage Management for Database Systems
	System Overview
	Buffer Pool Management
	Implementation of GD2L on MySQL

	The Impact of Cost-aware Caching
	SSD Management
	CAC: Cost-Adjusted Caching
	The Miss Rate Expansion Factor
	Sequential I/O
	Implementation of SSD Management on MySQL
	Failure Handling

	Evaluation
	Methodology
	Cost Parameter Calibration
	Analysis of GD2L and CAC
	Comparison with LRU2 and MV-FIFO
	Impact of the Eviction Zone

	Conclusion

	Conclusion and Future Work
	Future Work

	References

