15 research outputs found

    Database for exploration of functional context of genes implicated in ovarian cancer

    Get PDF
    Ovarian cancer (OC) is becoming the most common gynecological cancer in developed countries and the most lethal gynecological malignancy. It is also the fifth leading cause of all cancer-related deaths in women. The identification of diagnostic biomarkers and development of early detection techniques for OC largely depends on the understanding of the complex functionality and regulation of genes involved in this disease. Unfortunately, information about these OC genes is scattered throughout the literature and various databases making extraction of relevant functional information a complex task. To reduce this problem, we have developed a database dedicated to OC genes to support exploration of functional characterization and analysis of biological processes related to OC. The database contains general information about OC genes, enriched with the results of transcription regulation sequence analysis and with relevant text mining to provide insights into associations of the OC genes with other genes, metabolites, pathways and nuclear proteins. Overall, it enables exploration of relevant information for OC genes from multiple angles, making it a unique resource for OC and will serve as a useful complement to the existing public resources for those interested in OC genetics. Access is free for academic and non-profit users and database can be accessed at http://apps.sanbi.ac.za/ddoc/

    Network of Cancer Genes: a web resource to analyze duplicability, orthology and network properties of cancer genes

    Get PDF
    The Network of Cancer Genes (NCG) collects and integrates data on 736 human genes that are mutated in various types of cancer. For each gene, NCG provides information on duplicability, orthology, evolutionary appearance and topological properties of the encoded protein in a comprehensive version of the human protein-protein interaction network. NCG also stores information on all primary interactors of cancer proteins, thus providing a complete overview of 5357 proteins that constitute direct and indirect determinants of human cancer. With the constant delivery of results from the mutational screenings of cancer genomes, NCG represents a versatile resource for retrieving detailed information on particular cancer genes, as well as for identifying common properties of precompiled lists of cancer genes. NCG is freely available at: http://bio.ifom-ieo-campus.it/ncg

    DDESC: Dragon database for exploration of sodium channels in human

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sodium channels are heteromultimeric, integral membrane proteins that belong to a superfamily of ion channels. The mutations in genes encoding for sodium channel proteins have been linked with several inherited genetic disorders such as febrile epilepsy, Brugada syndrome, ventricular fibrillation, long QT syndrome, or channelopathy associated insensitivity to pain. In spite of these significant effects that sodium channel proteins/genes could have on human health, there is no publicly available resource focused on sodium channels that would support exploration of the sodium channel related information.</p> <p>Results</p> <p>We report here Dragon Database for Exploration of Sodium Channels in Human (DDESC), which provides comprehensive information related to sodium channels regarding different entities, such as "genes and proteins", "metabolites and enzymes", "toxins", "chemicals with pharmacological effects", "disease concepts", "human anatomy", "pathways and pathway reactions" and their potential links. DDESC is compiled based on text- and data-mining. It allows users to explore potential associations between different entities related to sodium channels in human, as well as to automatically generate novel hypotheses.</p> <p>Conclusion</p> <p>DDESC is first publicly available resource where the information related to sodium channels in human can be explored at different levels. This database is freely accessible for academic and non-profit users via the worldwide web <url>http://apps.sanbi.ac.za/ddesc</url>.</p

    CCancer: a bird’s eye view on gene lists reported in cancer-related studies

    Get PDF
    CCancer is an automatically collected database of gene lists, which were reported mostly by experimental studies in various biological and clinical contexts. At the moment, the database covers 3369 gene lists extracted from 2644 papers published in ∼80 peer-reviewed journals. As input, CCancer accepts a gene list. An enrichment analyses is implemented to generate, as output, a highly informative survey over recently published studies that report gene lists, which significantly intersect with the query gene list. A report on gene pairs from the input list which were frequently reported together by other biological studies is also provided. CCancer is freely available at http://mips.helmholtz-muenchen.de/proj/ccancer

    DDEC: Dragon database of genes implicated in esophageal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Esophageal cancer ranks eighth in order of cancer occurrence. Its lethality primarily stems from inability to detect the disease during the early organ-confined stage and the lack of effective therapies for advanced-stage disease. Moreover, the understanding of molecular processes involved in esophageal cancer is not complete, hampering the development of efficient diagnostics and therapy. Efforts made by the scientific community to improve the survival rate of esophageal cancer have resulted in a wealth of scattered information that is difficult to find and not easily amendable to data-mining. To reduce this gap and to complement available cancer related bioinformatic resources, we have developed a comprehensive database (Dragon Database of Genes Implicated in Esophageal Cancer) with esophageal cancer related information, as an integrated knowledge database aimed at representing a gateway to esophageal cancer related data.</p> <p>Description</p> <p>Manually curated 529 genes differentially expressed in EC are contained in the database. We extracted and analyzed the promoter regions of these genes and complemented gene-related information with transcription factors that potentially control them. We further, precompiled text-mined and data-mined reports about each of these genes to allow for easy exploration of information about associations of EC-implicated genes with other human genes and proteins, metabolites and enzymes, toxins, chemicals with pharmacological effects, disease concepts and human anatomy. The resulting database, DDEC, has a useful feature to display potential associations that are rarely reported and thus difficult to identify. Moreover, DDEC enables inspection of potentially new 'association hypotheses' generated based on the precompiled reports.</p> <p>Conclusion</p> <p>We hope that this resource will serve as a useful complement to the existing public resources and as a good starting point for researchers and physicians interested in EC genetics. DDEC is freely accessible to academic and non-profit users at <url>http://apps.sanbi.ac.za/ddec/</url>. DDEC will be updated twice a year.</p

    Network analysis of microRNAs and their regulation in human ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small non-coding RNA molecules that repress the translation of messenger RNAs (mRNAs) or degrade mRNAs. These functions of miRNAs allow them to control key cellular processes such as development, differentiation and apoptosis, and they have also been implicated in several cancers such as leukaemia, lung, pancreatic and ovarian cancer (OC). Unfortunately, the specific machinery of miRNA regulation, involving transcription factors (TFs) and transcription co-factors (TcoFs), is not well understood. In the present study we focus on computationally deciphering the underlying network of miRNAs, their targets, and their control mechanisms that have an influence on OC development.</p> <p>Results</p> <p>We analysed experimentally verified data from multiple sources that describe miRNA influence on diseases, miRNA targeting of mRNAs, and on protein-protein interactions, and combined this data with <it>ab initio </it>transcription factor binding site predictions within miRNA promoter regions. From these analyses, we derived a network that describes the influence of miRNAs and their regulation in human OC. We developed a methodology to analyse the network in order to find the nodes that have the largest potential of influencing the network's behaviour (network hubs). We further show the potentially most influential miRNAs, TFs and TcoFs, showing subnetworks illustrating the involved mechanisms as well as regulatory miRNA network motifs in OC. We find an enrichment of miRNA targeted OC genes in the highly relevant pathways cell cycle regulation and apoptosis.</p> <p>Conclusions</p> <p>We combined several sources of interaction and association data to analyse and place miRNAs within regulatory pathways that influence human OC. These results represent the first comprehensive miRNA regulatory network analysis for human OC. This suggests that miRNAs and their regulation may play a major role in OC and that further directed research in this area is of utmost importance to enhance our understanding of the molecular mechanisms underlying human cancer development and OC in particular.</p

    Computational Analysis of Candidate Disease Genes and Variants for Salt-Sensitive Hypertension in Indigenous Southern Africans

    Get PDF
    Multiple factors underlie susceptibility to essential hypertension, including a significant genetic and ethnic component, and environmental effects. Blood pressure response of hypertensive individuals to salt is heterogeneous, but salt sensitivity appears more prevalent in people of indigenous African origin. The underlying genetics of salt-sensitive hypertension, however, are poorly understood. In this study, computational methods including text- and data-mining have been used to select and prioritize candidate aetiological genes for salt-sensitive hypertension. Additionally, we have compared allele frequencies and copy number variation for single nucleotide polymorphisms in candidate genes between indigenous Southern African and Caucasian populations, with the aim of identifying candidate genes with significant variability between the population groups: identifying genetic variability between population groups can exploit ethnic differences in disease prevalence to aid with prioritisation of good candidate genes. Our top-ranking candidate genes include parathyroid hormone precursor (PTH) and type-1angiotensin II receptor (AGTR1). We propose that the candidate genes identified in this study warrant further investigation as potential aetiological genes for salt-sensitive hypertension

    DES-mutation : system for exploring links of mutations and diseases

    Get PDF
    During cellular division DNA replicates and this process is the basis for passing genetic information to the next generation. However, the DNA copy process sometimes produces a copy that is not perfect, that is, one with mutations. The collection of all such mutations in the DNA copy of an organism makes it unique and determines the organism's phenotype. However, mutations are often the cause of diseases. Thus, it is useful to have the capability to explore links between mutations and disease. We approached this problem by analyzing a vast amount of published information linking mutations to disease states. Based on such information, we developed the DES-Mutation knowledgebase which allows for exploration of not only mutation-disease links, but also links between mutations and concepts from 27 topic-specific dictionaries such as human genes/proteins, toxins, pathogens, etc. This allows for a more detailed insight into mutation-disease links and context. On a sample of 600 mutation-disease associations predicted and curated, our system achieves precision of 72.83%. To demonstrate the utility of DES-Mutation, we provide case studies related to known or potentially novel information involving disease mutations. To our knowledge, this is the first mutation-disease knowledgebase dedicated to the exploration of this topic through text-mining and data-mining of different mutation types and their associations with terms from multiple thematic dictionaries

    Concept Based Knowledge Discovery from Biomedical Literature

    Get PDF
    Philosophiae Doctor - PhDThis thesis describes and introduces novel methods for knowledge discovery and presents a software system that is able to extract information from biomedical literature, review interesting connections between various biomedical concepts and in so doing, generates new hypotheses. The experimental results obtained by using methods described in this thesis, are compared to currently published results obtained by other methods and a number of case studies are described. This thesis shows how the technology, resented can be integrated with the researchers own knowledge, experimentation and observations for optimal progression of scientific research.South Afric

    The development of a single nucleotide polymorphism database for forensic identification of specified physical traits

    Get PDF
    Magister Scientiae - MScMany Single Nucleotide Polymorphisms (SNPs) found in coding or regulatory regions within the human genome lead to phenotypic differences that make prediction of physical appearance, based on genetic analysis, potentially useful in forensic investigations. Complex traits such as pigmentation can be predicted from the genome sequence, provided that genes with strong effects on the trait exist and are known. Phenotypic traits may also be associated with variations in gene expression due to the presence of SNPs in promoter regions. In this project, the identification of genes associated with these physical traits of potential forensic relevance have been collated from the literature using a text mining platform and hand curation. The SNPs associated with these genes have been acquired from public SNP repositories such as the International HapMap project, dbSNP and Ensembl. Characterization of different population groups based on the SNPs has been performed and the results and data stored in a MySQL database. This database contains SNP genotyping data with respect to physical phenotypic differences of forensic interest. The potential forensicrelevance of the SNP information contained in this database has been verified through in silico SNP analysis aimed at establishing possible relationships between SNP occurrence and phenotype. The software used for this analysis is MATCH™. Data management and access has been enhanced by the use of a functional web-based front-end which enables the users to extract and display SNP information without running complex Structured Query Language (SQL) statements from the command line. This Forensic SNP Phenotype resource can be accessed at http://forensic.sanbi.ac.za/alecia_forensics/Index.htmlSouth Afric
    corecore