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DES-Mutation: System for 
Exploring Links of Mutations  
and Diseases
Vasiliki Kordopati   1, Adil Salhi1, Rozaimi Razali   1, Aleksandar Radovanovic1, 
Faroug Tifratene1, Mahmut Uludag1, Yu Li   1, Ameerah Bokhari1, Ahdab AlSaieedi1,2, 
Arwa Bin Raies1, Christophe Van Neste1,3, Magbubah Essack   1 & Vladimir B. Bajic   1

During cellular division DNA replicates and this process is the basis for passing genetic information to 
the next generation. However, the DNA copy process sometimes produces a copy that is not perfect, 
that is, one with mutations. The collection of all such mutations in the DNA copy of an organism 
makes it unique and determines the organism’s phenotype. However, mutations are often the cause 
of diseases. Thus, it is useful to have the capability to explore links between mutations and disease. 
We approached this problem by analyzing a vast amount of published information linking mutations 
to disease states. Based on such information, we developed the DES-Mutation knowledgebase 
which allows for exploration of not only mutation-disease links, but also links between mutations 
and concepts from 27 topic-specific dictionaries such as human genes/proteins, toxins, pathogens, 
etc. This allows for a more detailed insight into mutation-disease links and context. On a sample of 
600 mutation-disease associations predicted and curated, our system achieves precision of 72.83%. 
To demonstrate the utility of DES-Mutation, we provide case studies related to known or potentially 
novel information involving disease mutations. To our knowledge, this is the first mutation-disease 
knowledgebase dedicated to the exploration of this topic through text-mining and data-mining of 
different mutation types and their associations with terms from multiple thematic dictionaries.

Links between mutations and diseases are not restricted to rare diseases, as associations between common dis-
eases (such as cancer, heart disease, diabetes etc.) and genetic variants (mutations) were found and shown to influ-
ence susceptibility to these diseases too1. Thus, tools such as PVP2, GWAVA3, CADD4, DANN5, FATHMM-MKL6 
were developed to identify pathogenic and causal mutations in the human genome. However, association studies 
coupled with the development of these tools, added even more evidence to the plethora of mutation-disease infor-
mation in the published literature. Specifically, in the past two decades alone, more than 2,500 publications related 
to genome-wide association studies (GWAS) were published in over 300 different journals7. The large volume of 
data generated from these studies further prompt the development of resources focused on mutation-disease. 
However, the well-established resources such as OMIM8, dbSNP9, HGMD10, ClinVar11, BioMuta12, MutDB13, 
SNPedia14, UniProt15 and Variome16 that incorporate such information require sifting through large amounts of 
data to localize the information of interest. Each of these resources has a different number of mutation-disease 
information and harbor different levels of detail. For example, in the OMIM database, 5,074 genetic diseases 
are associated with one or more mutations, while in SNPedia only 463 diseases are associated with mutations. 
Nonetheless, these public databases only contain a subset of mutation-disease associations that exist in the lit-
erature, because extracting all is tied to problems due to nomenclature complexity and the need for a significant 
level of manual curation.

To address some of these issues, several text-mining-based mutation detection tools (such as MutationFinder17, 
SETH18, and tmVar19) and tools that find links between mutations and genes and/or diseases (such as Dimex20, 
EMU21, PubTator22, and PolySearch23) have been developed. These tools are based on algorithms that sift through 
biomedical text to detect mutations. It is common to use standard regular expressions to identify either only 
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point mutations, such as in the case of MutationFinder, or multiple mutation types using conditional random 
fields as in tmVar or named entity recognition of genetic variants using Extended Backus-Naur Form grammar 
as in SETH. Other tools, such as EMU and Dimex, also detect the gene and diseases associated with mutations. 
EMU extracts this mutation-gene-disease association using a rule-based method, while Dimex extracts the same 
associations using a Natural Language Processing-based mining method. Apart from the mutation detectors, 
other related tools, such as PubTator and PolySearch, also provide mutation-related information based on text 
mining. PubTator is a web-based system that assists in biocuration by deploying several entity recognition tools 
including tmVar for mutations, DNorm24 for diseases, GeneTUKit25 for gene mentions and GenNorm26 for gene 
normalization. On the other hand, PolySearch uses a co-occurrence-based text-mining approach to extract rela-
tionships between human diseases, genes, mutations, drugs and metabolites. When the connection between the 
mutations and genes are found, one can benefit from using the DAVID27 system to determine likely links of muta-
tions to diseases based on gene enrichment for different diseases. As yet, none of these resources has combined,  
1/text-mining the entire PubMed and available PMC full text articles, with 2/providing comprehensive associa-
tions of mutations to terms from 26 other topic-related terms including diseases, genes, metabolites and drugs, 
where terms are found to be statistically enriched in mutation-disease related literature, and 3/providing such 
information for multiple mutation types.

To overcome some of these limitations, we developed the mutation-focused knowledgebase (KB), 
DES-Mutation, based on the methods and concepts applied to similar topic-specific KBs28–42. DES-Mutation 
makes use of precompiled dictionaries that contain the terms used to index the text from both PubMed (title 
and abstract) and PubMed Central (PMC) (full text) articles. In this manner, DES-Mutation links human muta-
tions with different categories of terms such as human diseases, human genes, pathogens, toxins, etc., that are 
enriched in mutation-disease literature. The system allows for exploring the context of mutation-disease links that 
no other system provides. DES-Mutation provides a platform that allows users to explore statistically enriched 
co-occurring terms and potential hypotheses. We provide illustration of how DES-Mutation can be used to assist 
research in the mutation-disease domain. To our knowledge, this is the first mutation-disease knowledgebase 
dedicated to the exploration of this topic through text-mining and data-mining of different mutations types and 
their associations with terms from multiple thematic dictionaries.

Results and Discussion
The process used to construct the DES-Mutation KB is depicted in Fig. 1. In the Methodology section, we provide 
a detailed description of the information-mining approach used. Briefly, we queried terms related to mutations 
and retrieved 436,257 PubMed and PubMed Central (PMC) articles from which we extracted term-document 
mapping information using 27 different dictionaries relevant to this topic-specific KB. We then analyzed this 
information for statistically enrichment of terms, enrichment of pairs of terms, and integrated these data with 
relevant external resources to create the DES-Mutation KB.

Development of dictionaries incorporated into DES-Mutation.  Of the 27 different dictionaries 
used in this KB, seven dictionaries (“ATC Ontology (Bioportal)43”, “EGO Ontology (Bioportal)44”, “HP Ontology 
(Bioportal)45”, “ICD946”, “ORDO Ontology (Bioportal)47”, “PDO Ontology (Bioportal)44”, and “Mutations 
(tmVar)”) were newly compiled (Tables 1 and 2) to ensure relevance and comprehensiveness of the theme-specific 
topic. In Table 1, the other 20 dictionaries used in this work are denoted as “pre-existing in DES” as they were 
previously created for use in other knowledgebases developed using the DES system/framework. The “Drugs 
(DrugBank)” dictionary is updated. The compilation of most of the new dictionaries followed the standard 

Figure 1.  Workflow used to construct the DES-Mutation KB.
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process36, except for the “Mutations (tmVar)” dictionary. Reason being, there are currently over 170 million 
human SNP records in dbSNP (ver. 150), and inclusion of all the SNPs into the KB would make KB extremely slow 
and thus of no interest to end users. However, since majority of these SNPs have not been mentioned in publica-
tions, we used a machine learning based text-mining mutation extraction tool on the entire PubMed and PMC. 
This enabled us to find all the SNPs from the dbSNP database as well as SNPs outside of the dbSNP, as long as 
these have been mentioned in the publications. A comparison of the existing mutation detector tools, has shown48 
that tmVar achieves the same or higher performance in precision, recall and F-measure than MutationFinder, 
EMU and SETH (using the MutationFinder dataset). It further shows that tmVar also achieves the higher perfor-
mance in terms of recall and F-measure than SETH (using the tmVar dataset), but SETH achieved the higher per-
formance in terms of precision. Thus, we used tmVar to extract the sequence variants (using the Human Genome 
Variation Society (HGVS) nomenclature) from all PubMed (abstracts) and PMC (full-text) documents (see the 
Methods section). Note that we only used the portion of PMC documents allowed by copyright for text-mining. 
The tmVar platform extracted 628,013 potential mutation mentions from the literature. Table 3 shows different 
mutation types extracted.

Although tmVar extraction algorithm uses the HGVS convention, it still gives a number of false positives. For 
example, it extracts strings that do not have a location or has a negative location. To solve this issue, we develop 
an in-house script containing a list of rules and then we apply it on all the potential mutations extracted by tmVar. 
For that cleaning, we used frequency threshold, pattern matching, and manual verification on the data. For the fre-
quency threshold we applied the following rule: all mutations with frequency more than 50,000 are removed. This 
was decided after observing that most hits above this threshold were false positives containing mostly short pat-
terns like ‘A > C’. We would like to mention again, that tmVar applies a normalization to the results using the HGVS 
convention, but some of the results were missing some of the fields in the normalized form (such as the location 
of the mutation). For this reason, our pattern matching script followed some specific rules: 1) delete unreasonable 

Dictionary
Enriched Unique 
Terms in the KB Source

Chemicals/Compounds

Antibiotics 633 pre-existing in DES

Chemical Entities of Biological Interest (ChEBI) 19,988 pre-existing in DES

Drugs (DrugBank) 4,100 updated

Lipids 2,406 pre-existing in DES

Toxins (T3DB) 1,908 pre-existing in DES

Functional Annotation

Biological Process (GO) 7,716 pre-existing in DES

Cellular Component (GO) 1,913 pre-existing in DES

Molecular Function (GO) 2,640 pre-existing in DES

Pathways (KEGG, Reactome, UniPathway, PANTHER) 1,925 pre-existing in DES

General

ATC Ontology (Bioportal) 1,838 newly compiled

DOID Ontology (Bioportal) 5,147 pre-existing in DES

EGO Ontology (Bioportal) 1,047 newly compiled

HP Ontology (Bioportal) 5,285 newly compiled

Human Anatomy 3,345 pre-existing in DES

ICD9 821 newly compiled

ORDO Ontology (Bioportal) 7,361 newly compiled

PDO Ontology (Bioportal) 286 newly compiled

Genes/Proteins/Transcripts

Archaea Genes (EntrezGene) 6,687 pre-existing in DES

Bacteria Genes (EntrezGene) 45,120 pre-existing in DES

Fungi Genes (EntrezGene) 19,173 pre-existing in DES

Human Genes and Proteins (EntrezGene) 25,617 pre-existing in DES

Mutations (tmVar) 63,413 newly compiled

Viruses Genes (EntrezGene) 6,203 pre-existing in DES

Taxonomy

Archaea (NCBI Taxonomy) 761 pre-existing in DES

Bacteria (NCBI Taxonomy) 13,496 pre-existing in DES

Fungi (NCBI Taxonomy) 7,162 pre-existing in DES

Viruses (NCBI Taxonomy) 4,883 pre-existing in DES

Table 1.  List of dictionaries used in DES-Mutation. References for the data sources indicated are as follows: 
Bioportal, ChEBI71, Entrez Gene72, MetaboLights73, IntEnz74, T3DB75, Industrially Important Enzymes76, GO77, 
KEGG78, Reactome79, PANTHER80, UniPathways81, NCBI Taxonomy82, KOBAS83.



www.nature.com/scientificreports/

4SCienTiFiC REPOrTS |  (2018) 8:13359  | DOI:10.1038/s41598-018-31439-w

mutation extractions (such as alphabetic characters in the position field) 2) check if all detected mutations (using 
HGVS convention) contain all the fields. Hence, for a mutation detected as Substitution, it needs to include the 
following information: the sequence type, the mutation type (SUB), the wild type, the mutation position, and the 
mutant. For example, hits normalized to |SUB|A|| would be deleted. After this cleaning, out of all the mutations 
that tmVar extracted, only 105,511 unique normalized mentions remained (19,899 having an rs/ss identifier and 
85,612 being other types of mutations). Using this cleaning process, we decreased the number of false positives 
generated by tmVar. Next, to see if these mutations are valid, we performed validation by two methods, first by val-
idating the list of potential mutations with ClinVar for the 85,612 mutations, and second, via dbSNP for the 19,899 
mutations with an rs identifier. Since ClinVar is biased towards mutations which have been assigned an rs identifier, 
we needed another way to verify that the extracted term is true mutation. With ClinVar and dbSNP we validated 
54,899 and 16,475 mutations respectively (71,374 in total). Out of these, 63,488 mutations were enriched in the text 
analyzed and incorporated into the “Mutations (tmVar)” dictionary of DES-Mutation.

Basic features of resources that contain mutation-disease associations extracted via text- mining.  
To the best of our knowledge, DES-Mutation is the first KB that contains multiple classes of mutations and their 
association with diseases and 25 other categories of relevant terms as extracted via text-mining from a large num-
ber of PubMed and PMC documents. The resource we found to be most similar to DES-Mutation are PubTator 
and PolySearch. PubTator extracts mutation-disease associations from PubMed abstracts only for multiple types 
of mutations. PolySearch extracts mutation-disease associations from both PubMed abstracts and PMC full text 
articles, but mutations are only point mutations. Contrary to these, DES-Mutation extract mutation-disease 
association from both PubMed abstracts and PMC full text articles and for multiple types of mutations. Also, 
PubTator and PolySearch highlight other terms in the text beyond mutations related to disease, genes, chemicals, 
and species, irrespective if these terms are enriched in the analyzed text or not, whereas DES-Mutation pro-
vides a means to explore much more topic-related statistically enriched terms beyond diseases, genes, chemicals 
and species, such as pathways, pathogens, etc. (see “Knowledgebase Statistics” section). In Table 4, we compare 
DES-Mutation to other similar text-mining based resources. Not all resources provide clear statistical informa-
tion regarding their content, thus information provided is based on their original publication or information 
available on the web site.

Knowledgebase Statistics.  A total of 249,812 concepts are found enriched in the KB. We have in total 
63,413 mutations found in the literature corpus being significantly enriched (FDR < 0.05) that resulted in 56,811 
statistically enriched associated pairs between Mutations and Diseases (DOID Ontology (Bioportal)). Table 1 
illustrates the DES-Mutation dictionaries. Table 2 contains the description of the Ontologies that are being used 
from DES-Mutation.

Assessment of the quality of information extracted by the DES-Mutation system.  It is difficult 
to provide a global assessment of the quality of extracted information by the DES-Mutation system. However, 
here we provide an independent assessment by comparing the quality of a subset of information extracted by 

Ontology Description

ATC Ontology Anatomical Therapeutic Chemical Classification Otology: a representation of the ATC 
classification provided by WHO used for the classification of drugs.

DOID Ontology Human Disease Ontology84: a comprehensive hierarchical representation for human disease.

EGO Ontology Epigenome Ontology: a biomedical ontology for integrative epigenome knowledge 
representation and data analysis.

HP Ontology Human Phenotype Ontology: a representation of human phenome annotations with 
monogenic diseases listed in the Online Mendelian Inheritance in Man (OMIM) database.

ORDO Ontology
Orphanet Rare Disease ontology: a representation of rare diseases capturing relationships 
between diseases, genes and other relevant features which will form a useful resource for the 
computational analysis of rare diseases.

PDO Ontology Pathogenic Disease Ontology: a representation of human infectious diseases caused by 
microbes and the diseases that is related to microbial infection.

Table 2.  Ontologies used in creation of new dictionaries incorporated in DES-Mutation.

Mutation Category Number

SNP 19,899

Substitution 588,210

Deletion 12,483

Insertion 3,583

Duplication 773

InDels 295

Frameshift 2,770

Table 3.  tmVar: Number of detected entries belonging to different kind of mutations based on the PubMed and 
PMC.
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DES-Mutation with that of EMU (used for mutation mentions) and ClinVar (used for mutation-disease associa-
tions). EMU was chosen because at its core it is a rule-based mutation detection tool that employs regular expres-
sion patterns to identify mutation mentions in text. Then subsequently, EMU incorporates extra step to associate 
mutations to genes and diseases. In particular, it utilizes a detect-filter-assert approach, whereby a set of positive 
patterns are used to harness mutation hits, and these are then filtered using a set of fallible/negative patterns 
in order to reduce false positives, such as cell-line names. To associate the mutations to genes, DES-Mutation 
extracts gene names/symbols using a dictionary-based term matching approach; then the amino acid sequences 
of proteins encoded by these genes are fetched from GenBank49 and used to ascertain whether the mutations 
co-occurring in the same text can actually occur in the mentioned genes. The association between a gene and a 
mutation mentioned is validated when there is a match for the amino acid at the position of the mutation for at 
least one of the associated proteins. EMU’s method for associating these validated mutations to diseases is, how-
ever, not as rigorous, namely it is to merely use corpora specific to the particular disease in question. For example, 
to extract mutations related to prostate cancer (PCa), and breast cancer (BCa), a corpus relevant to these two 
diseases was used21.

It is worth noting, however, that within a corpus relevant to a particular disease (such as PCa), a substantial 
number of other diseases can be discussed for various reasons, including comparison, association, or as back-
ground examples. The same can be said for gene and mutation mentions within these corpora. EMU does not 
provide an extra step to actually validate the mutation-disease association as is done with genes. The other issue 
to note, is that validating mutations through sequence analysis, might increase the precision of extracted muta-
tions, however, it affects recall substantially even though these associations are not conclusive anyway, and have 
to eventually be curated. Frequently are mutations mentioned without the actual genes being present in the same 
abstract, and useful information can still be derived by these mutation hits. These are two key differences with 
DES-Mutation approach to concept association. DES-Mutation associates concepts through statistical enrich-
ment as explained in the Methodology section, thus increasing the probability of reported associations to be 
meaningful. However, that meaning is left to the user to decide on by looking at the actual related literature (easily 
accessible from the interface). So, if a number of genes keep co-occurring with a particular mutation much more 
frequently than is statistically expected by mere random chance, then these genes are deemed important to the 
context of discussing that mutation or vice-versa. The users can see this, and follow up on the link if they so wish. 
This is also due to the fact that DES-Mutation is a system that exposes a substantial amount of information from 
a voluminous corpus, annotated with many biomedical entity dictionaries. Because of the above fundamental 
disparity in the premise of each system, the following comparison between DES-Mutation and EMU will focus 
mainly on the quality of extracted mutations (excluding the sequence filter step in EMU). Thus, we here provide 
a comparison of DES-Mutation and EMU annotations for mutations mentions in randomly selected abstracts.

Comparing DES-Mutation with EMU (mutation mentions).  For this comparison, 1000 abstract-only documents 
were randomly selected from the DES-Mutation annotation to be the basis of comparison. These documents were 
also used as input for the EMU mutation extractor (the Perl scripts for the EMU extractor can be found at http://
bioinf.umbc.edu/EMU/ftp/). The two resulting mutation annotations differ in their format (see Tables 5 and 6), 
so necessary pre-processing was performed to allow for the comparison:

In particular, an equivalence relationship between the two annotations had to be established to allow for easy 
mapping across the normalized forms. This is due to the fact that trying to map at the level of the mention may 
prove futile, because the systems employ radically different ways of extraction, so the delimiters of the mutation 
mention are rarely aligned. Therefore, the annotations were decomposed into: RS# type identifiers, and non-RS# 
mutations. The latter were decomposed into DNA level, and protein level mutations. Both annotations contained 

Topics

Online text-mining recourses

PolySearch PubTator Des-Mutation

Literature
Full-text (PMC) + − +

Abstract (PubMed) + + +

Biomedical entities

Mutations SNPs SNPs, Sub, Del, Ins, 
Dup, FS, InDels

SNPs, Sub, Del, Ins, 
Dup, FS, InDels

Genes + + +

Diseases + + +

Toxins + − +

Drugs + + +

Chemicals + + +

Species + + +

Proteins + + +

Metabolites + − +

Pathways + − +

Organs/tissues + − +

Taxonomies + − +

Table 4.  Comparison of select resources that provide mutation-disease associations extracted via text-mining.

http://bioinf.umbc.edu/EMU/ftp/
http://bioinf.umbc.edu/EMU/ftp/
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DNA-indel as well as DNA-missense type mutations. For protein level mutations, all EMU hits were missense 
hits, while DES-Mutation also had protein-indel, as well as protein-FS (Frame Shift) type mutations (see Table 7).

As we do not have a “gold standard” for this comparison, we can either trust both systems in terms of having 0 
false positives, in other words the union annotation is the set of positives. Or we can only trust the intersection to 
be the set of positives, disregarding exclusive hits as false. We also include a strict case whereby we only consider 
all of EMU hits to be positives, and anything else as a negative. Using these cases, we measure the performance of 
the DES annotation in terms of Recall, Precision and F-measure.

Case 1: reference is the union of hits of DES and EMU against the 1000 randomly selected abstract-only docu-
ments (A\B is the set difference of sets A and B):

FP = 0, FN = EMUhits\DEShits = 409, TP = 2115,
Precision = 100%, Recall = 84%, F-measure = 91%.

Case 2: reference is the intersection of hits of DES and EMU against the 1000 randomly selected abstract-only 
documents:

FP = DEShits\EMUhits = 299, FN = 0, TP = 1816,
Precision = 86%, Recall = 100%, F-measure = 92%.

Case 3: reference is the set of hits of EMU against the 1000 randomly selected abstract-only documents:
FP = 299, FN = 409, TP = 1816:
Precision = 86%, Recall = 82%, F-measure = 84%.
Note that in the above, DES-Mutation recall is slightly negatively affected due to the statistical enrichment 

cut-off applied to concepts. Nonetheless, these results show that EMU and DES-Mutation are comparable in 
terms of their coverage and quality of extracted mutation mentions. However, while EMU attempts to validate 
mutation-gene associations through sequence analysis, DES-Mutation focuses on providing an explorative inter-
face to users, where they can investigate different types of associations of terms from various dictionaries, and 
validating them by referring to linked literature.

Comparing DES-Mutation with ClinVar (mutation-disease associations).  For assessing accuracy of mutation- 
disease associations suggested by DES-Mutations, we used ClinVar data. For this purpose, we did not use EMU 
because its accuracy results have been obtained based on preprocessed data where, for example, inconclusive 
entries and entries where curators did not agree have been removed. Our results, however, are based on the raw 

PMID Mutation Mention Count Normalized Form Type

2746736 lysine to methionine at 
position 227 1 p|SUB|K|227|M Protein Mutation

12782315 Y151M 3 p|SUB|Y|151|M Protein Mutation

23084080 rs4986790 4 rs4986790 SNP: rs4986790

Table 5.  DES-Mutation annotation example (follows the tmVar style of normalization).

PMID Mutation Level Type Mention Position

7528778 SER GLY 325 PROTEIN MISSENSE serine to glycine position 325

15896662 PRO ARG 249 PROTEIN MISSENSE P249R

23989986 rs6094710 — — ALL RSID rs6094710 —

Table 6.  EMU annotation example.

DEShits DEShits\EMUhits DEShits ∩ EMUhits EMUhits\DEShits EMUhits DEShits ∪ EMUhits

DNA - indel 68 28 40 38 78 106

DNA - missense 288 70 218 212 430 500

Protein - indel 14 14 0 0 0 14

Protein - missense 1535 178 1357 116 1473 1651

Protein - FS 7 7 0 0 0 7

RS # 203 2 201 43 244 246

Total 2115 299 1816 409 2225 2524

Table 7.  Comparison of DES-Mutation and EMU annotations for mutation mentions in 1000 randomly 
selected abstracts from the DES-Mutation corpus. There are 86% of DES-Mutation hits that are validated by 
EMU. The union annotation of DES-Mutation and EMU is 84% covered by DES-Mutation hits. ‘\’: is the set 
difference operator; ‘∩’: is the set intersection operator, ‘∪’: is the set union operator; DEShits\EMUhits: hits 
exclusive to DES-Mutation; EMUhits\DEShits: hits exclusive to EMU; DEShits ∩ EMUhits: hits common to DES-
Mutation and EMU; DEShits ∪ EMUhits: union of both annotations.
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unprocessed data. Thus, we analyzed 600 mutation-disease associations suggested by DES-Mutations. These 600 
associations are provided in Supplementary Table S1, with relevant associated information. Our system extracted 
437 correct associations out of all 600 associations, resulting in Precision = 72.83% (437/600). We also observed 
that when the extracted association is found in several articles, the precision is higher. For example, in cases 
when there are 8 or more supporting articles, the precision is over 80%. For example, EMU achieved precision 
of 55% and 77% on significantly smaller breast cancer and prostate cancer data, respectively. The 600 associ-
ations represent all predicted correct cases (i.e., the sum of all correct and false correct associations). Out of 
the correctly extracted associations, there are only 41 associations (9.38% = 41/437) common with the ClinVar 
entries. The remaining 396 are novel, not present in ClinVar. Thus, out of correctly extracted associations, 90.62% 
(396/437) are novel. These novel associations make 39.6% of all extracted associations. The small overlap with 
the ClinVar data is understandable as both ClinVar and DES-Mutation contain only partial information about 
mutation-disease associations.

Our system extracted 163 false positive associations. Many of the false associations were association with 
different disease mentioned in the text, or the symbol that should represent a disease actually represent a gene 
or a protein (as an example, NS1 refers to nonstructural protein 1 (NS1) in Influenza virus, instead of Noonan 
syndrome 1 (also known as NS1) and mutation is wrongly associated with NS1).

Knowledgebase Utilities and Case Studies
DES-Mutation allows users to easily explore mutation-related literature based on statistically enriched terms 
and associations of these terms. These enriched terms can be explored in several contexts via links (described 
in36). Briefly, users can explore mutation-related information via enriched terms using the “Enriched Terms” 
[Concepts] link and enriched co-occurring terms (in the title/abstract level and in full-text document at the sen-
tence level) using the “Enriched Term Pairs” [Associated Concepts] link. Users can explore if enriched term pairs 
are known or novel via the new “Explore Hypotheses” link. Links to “GO Enrichment”, “Reactome Enrichment”, 
“KOBAS Pathways”, “KOBAS Diseases”, “Import Associations” and “Literature” are also provided. “Help” tabs 
with ‘how to use’ instructions are provided for each link. To further facilitate the easy exploration of literature, 
enriched terms can be restricted via ranking options such as false discovery rate (FDR) calculated based on the 
Benjamini-Hochberg algorithm, etc. Additionally, each term has a hover box through which “Network”, “Term 
Co-occurrences”, and “Term Link Sources” links for the term of interest that can be further explored. Users are 
also provided a detailed downloadable “Software Manual” and a short introductory video showing basic function-
alities of DES-Mutation on the “Home” page.

The possibility to generate multilayered networks of associated biomedical entities is a unique feature of 
DES-Mutations. This allows for exploring the context in which mutation-disease association appears and opens 
different insights into how different biomedical entities may affect mutation-disease association. This property is 
exploited in the examples below.

Case studies that demonstrate how DES-Mutation can be used as a research support system.  
Example 1: Using DES-Mutation to find potentially novel mutation-disease associations.

To explore such potential associations, we start by selecting the “Enriched terms” link (Fig. 2, Step 1). This 
opens a page that displays all enriched terms in the KB. However, since we are interested in the inherited blood 
disorder Thalassemia, we select the “DOID Ontology (Bioportal)” which is the Disease Ontology and we filter the 
dictionary with ‘thalassemia’. From ‘thalassemia’ we generate a ‘Network’ using the right click menu (Fig. 2, Step 
2). To expand its associations, we clicked on ‘Dictionaries’ and checked on the “DOID Ontology (Bioportal)” and 
“Human Genes and Proteins (EntrezGene)” dictionaries. Then, we highlighted ‘thalassemia’ node and used its 
right click menu to ‘Expand from the term’. Here we found several known blood related disorders (such as ‘hemo-
lytic anemia’, ‘anemia’, ‘hemoglobinopathy’, ‘sickle cell trait’), iron-related disorder (‘iron overload’) and more 
general disease categories (such as’cystic fibrosis’, ‘genetic disorders’, ‘genetic disease’, ‘muscular dystrophy’ and 
‘Duchenne muscular dystrophy’). Because ‘iron overload’ is a known characteristic of ‘thalassemia’, we chose 
to similarly expand from the ‘iron overload’ node by checking on the “Human Genes and Proteins (EntrezGene)” 
dictionary only. The resulting network was simplified by removing all nodes with a single link (Fig. 2, Step 3). 
Here, we found that ‘HFE’ and ‘HAMP’ genes were linked to both the ‘thalassemia’ and ‘iron overload’ nodes. 
We then only expanded from the ‘HFE’ node by checking on the “Mutations (tmVar)” dictionary only, then 
selecting ‘Expand from the term’. This produced two SNPdb ID (‘rs1800562’ and ‘rs1799945’) that were both 
further expanded from by checking on the “Mutations (tmVar)” and “DOID Ontology (Bioportal)” dictionaries. 
Here, once again, the resulting network was simplified by removing all nodes with a single link and all dna level 
mutations in this case because they are also represented by the protein level mutations (Fig. 2, Step 4).

The most severe forms of Thalassemia (Thalassemia Major or Cooley’s Anemia) causes a life-threatening ane-
mia that requires regular blood transfusions that lead to iron-overload50–52. Thus, the Network accurately illus-
trates the link between iron overload and several closely related diseases. Also, ‘HFE’ and ‘HAMP’ genes have 
been linked to the pathophysiology of ‘thalassemia’ via 45 and 36 PubMed articles, respectively (see ‘Network’) 
which shows how extensively these links have been researched. ‘HFE’ is known to regulate the production of 
proteins located on the surface of primarily liver and intestinal cells. One of the proteins regulated by ‘HFE’ is 
Hepcidin, the “master” iron regulatory hormone produced by the liver. Hepcidin (‘HAMP’ gene) functions by 
modulating levels of iron absorbed from the diet and released from storage sites53,54. β-Thalassemia is character-
ized by low levels of hepcidin (‘HAMP’), the hormone that regulates iron absorption55.

Moreover, it has been reported that the most prevalent mutation in ‘HFE’, C282Y ‘rs1800562’, alters the ‘HFE’ 
protein structure preventing the formation of a disulfide bond in the α3 domain, abrogates β2-microglobulin 
association and cell surface expression of the protein, that may be sufficient to cause iron storage overload56. 
Also, the second mutation in the ‘HFE’ gene, H63D ‘rs1799945’, was shown to increase iron overload in 
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β-Thalassemia carriers57. These two allelic variants of ‘HFE’ (C282Y and H63D) were also shown to be signif-
icantly correlated with Hereditary hemochromatosis (HHC), a disorder of iron metabolism, characterized by 
increased iron absorption and deposition in the joints, pituitary gland, pancreas, heart and liver58. The third 
mutation in the ‘HFE’ gene, S65C ‘p|SUB|S|65|C’, has only been implicated in a mild form of HHC59 but has not 
been implicated in β-Thalassemia. The mutation ‘rs855791’ is related with the TMPRSS6 gene and the mutation 
P589S ‘rs1049296’ is related to the transferrin (TF) gene. Genome-wide association studies have shown that the 
SNP ‘rs855791’, which causes the MT2 V736A amino acid substitution, is associated with variations of serum 
iron, transferrin saturation, hemoglobin, and erythrocyte traits60. Both of these two mutations are connected to 
iron-related diseases55,61. In fact, the epistatic interaction between P589S ‘rs1049296’ in the transferrin gene (TF) 
and C282Y ‘rs1800562’ in the hemochromatosis gene (‘HFE’) result in the increased risk of cognitive impairment 
and Alzheimer’s and Parkinson’s diseases62,63.

Thus, DES-Mutation can generate a ‘bird’s-eye-view’ of potential connections between disease and mutation. 
As shown above, DES-Mutation suggests that even though there is no literature evidence for “p|SUB|S|65|C” 
(S65C) being connected to thalassemia, this mutation of ‘HFE’ gene is associated with ‘iron overload’ that is 
characteristic of ‘thalassemia’. Thus, DES-Mutation links “p|SUB|S|65|C” (S65C) mutation to ‘thalassemia’ via 
both ‘HFE’ and ‘iron overload’, making this a novel hypothesis of the link of the mutation to ‘thalassemia’.

Exploring relationships between low cholesterol level and MTB infection.  The higher the level of cholesterol the 
lower is the risk of the tuberculosis. In fact, hypocholesterolemia was shown to be a major risk factor for devel-
oping pulmonary tuberculosis64. However, exploring the underlying mechanism of this relationship is still in 
its infancy. Thus, to explore all possible relationship between cholesterol and MTB, using ‘Associated terms’ we 
filter the first column with biological process of interest, ‘cholesterol import’ and for the second column, we 
select the ‘Bacteria Entrez Genes’ dictionary. This process retrieves 4 records that represent terms that co-occur 
possibly suggesting a biological relationship. To increase the chances of unravelling a plausible hypothesis, we 
re-ordered the AB frequency column to display the ‘Bacteria Entrez Genes’ term with the highest number of pub-
lications linked to term A. This re-arrangement showed that ‘pSmeSM11ap110’ and ‘mce4’ have most links to 
term B. However, ‘pSmeSM11ap110’ is a locus tag identifier, so we did not consider it. From ‘mce4’ we generate 
a ‘Network’ using the right click menu (Fig. 3, Step 1). To expand its associations, we clicked on ‘Dictionaries’ and 
selected the “Bacteria (NCBI Taxonomy)” and “Biological Process” dictionaries, then highlighted ‘mce4’ node 
to use its right click menu to ‘Expand from the term’. Here, we found ‘Mycobacterium tuberculosis’ (MTB) and 
‘cholesterol import’ nodes have the highest number of publication links to the ‘mce4’ node. Thus, the resulting 
network was simplified by removing all other nodes. The link between these nodes is expected, as previous studies 

Figure 2.  Step-by-step illustration of how DES-Mutation can be used to identify relationships between the 
human disease ‘thalassemia’ and mutations. The purple circles represent the “DOID Ontology (Bioportal)” 
dictionary; the yellow square represent the “Human Genes and Proteins (EntrezGene)” dictionary; and the pink 
octagons represent the “Mutations (tmVar)” dictionary. The edge color is distributed across a color spectrum 
from red (strong association) to blue (weaker association) based on the frequency of co-occurrence. The 
number on each edge represents the number of publications that link the associated nodes.
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demonstrated that the high level of mycobacterial persistence in its host, is partly due to MTB using the ‘mce4’ 
gene to acquire and utilize its hosts cholesterol as an energy and carbon source65,66. Moreover, the ‘mce4’ gene acts 
as a transporter in the MTBs’ cholesterol import system and loss of this function was shown to impair the growth 
of MTB predominantly during the chronic phase of murine infection65. Next, we expand the ‘cholesterol import’ 
node with ‘Human Genes and Proteins (Entrez Gene)’ dictionary (Fig. 3, Step 2). The resulting network was 
simplified in this case by removing all nodes with a single publication. This left us with the three genes including 
‘SCARB1’, ‘ABCA1’ and ‘TPSO’. However, since the normal function of ‘TPSO’ is associated with the reduction 
of cholesterol, we only expanded the remaining two genes (‘SCARB1’ and ‘ABCA1’) with terms from the ‘Human 
Mutations (tmVar)’ dictionary (Fig. 3, Step 3).

The network presents an overview of all plausible mutations that could be induced by ‘Mycobacterium tuber-
culosis’ (MTB) infection resulting in reduction of cholesterol. The network shows two human genes that are 
involved in maintaining the cholesterol level in the body, ‘ABCA1’ and ‘SCARB1’, and a mycobacterial gene, 
‘mce4’. The ‘ABCA1’ acts as a key “gatekeeper” influencing intracellular ‘cholesterol transport’ while ‘SCARB1’ 
is a receptor for lipoproteins such as cholesterol. In a normal condition, the host ‘ABCA1’ gene will regulate the 
movement of cholesterol into the cell and the ‘SCARB1’ will bind to the cholesterol, acting as a receptor. Thus, 
we hypothesize that when there are mutations occurring in these genes, the host will display less resilience to 
MTB infection. Specifically, mutations in the ‘ABCA1’ and ‘SCARB1’ genes, may lead to the inability to control 
the “right balance” of cholesterol in the body and exacerbate cholesterol being imported into MTB. ‘SCARB1’ 
has been shown to facilitate the uptake of cholesteryl esters from high-density lipoproteins in the liver, which is 
supposed to reduce plague formation that could cause atherosclerosis. A number of recent studies have shown 
the links of atherosclerosis with MTB infection67–69. However, no known mutation associated with ‘SCARB1’ has 
been associated with lowering cholesterol. Nonetheless, the mutation ‘rs2230806’ in ‘ABCA1’ increases suscep-
tibility to lowering of cholesterol levels.

As shown above, even though there is no literature evidence for mutation ‘rs2230806’ in ‘ABCA1’ gene being 
connected to MTB infection, DES-Mutation via connections to ‘cholesterol transport’ and the mycobacterial gene 
‘mce4’, both being implicated in MTB infection, suggest this mutation’ potential association to MTB infection.

Figure 3.  Step-by-step illustration of how DES-Mutation can be used to identify relationships between low 
cholesterol and MTB infection. The red square represents the “Bacteria Genes (EntrezGene)” dictionary; the 
green triangle represents the “Bacteria (NCBI Taxonomy)” dictionary; the yellow square represents the “Human 
Genes and Proteins (EntrezGene)” dictionary; and the pink octagons represent the “Mutations (tmVar)” 
dictionary. The edge color is distributed across a color spectrum from red (strong association) to blue (weaker 
association) based on the frequency of co-occurrence. The number on each edge represents the number of 
publications that link the associated nodes.
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Concluding Remarks
DES-Mutation provides various means that facilitate the easy exploration of mutation-disease relationships, 
based on terms and phrases enriched in published mutation-disease literature. These terms and phrases are pro-
vided in 27 topic-specific dictionaries (Table 1), which provide extensive insights into mutation-disease links. 
These insights are also not limited to point mutations but include seven different mutation types. Among the 
mutation-based resources, DES-Mutation has unique property of enabling network-based interpretation of con-
text in which mutation-disease associations appear.

Nonetheless, DES-Mutation’s limitations are similar to most text-mining resources, as detailed in 
DES-TOMATO70, and some limitations are specific to this KB. For example, the toxin dictionary is currently 
limited to T3DB. Also, this KB cannot capture all associations due to inconsistencies in disease nomenclature, 
even though terms/phrases are normalized and several disease resources are used, for example, (ICD9, DOID 
Ontology, ORDO ontology, etc.). Also, limitations associated with Network generation include the following: 1) 
a term/node can only be expanded by a maximum of 10 sub-node, this was a design choice to avoid “hairball” 
networks and 2) an association between nodes does not specify the type of relationship giving the association, 
e.g., a mutation linked to multiple genes does not mean that mutation is found in all the genes but rather that the 
genes are discussed in the same context.

Nonetheless, the case studies demonstrate the usefulness of this KB despite these limitations. The user-friendly 
interface and extensive instruction manuals eases the information exploration process. The DES-Mutation KB 
will be updated biannually to include newly published articles and the “Mutations (tmVar)” dictionary will be 
expanded to include tmVar2.0.

Materials and Methods
Server architecture and underlying systems.  DES-Mutation is a topic-specific literature exploration 
system, that is based on significantly improved text-mining and data-mining capabilities of the DES system for 
topic-specific literature exploration, that was originally developed by VBB and AR and used to create a number 
of KBs in past28–37,42. The knowledgebase is implemented and hosted on a CentOS-7 operating system. Results are 
provided using Apache web server version 2.4.6. A MongoDB (2.6.11) database stores the literature repository, 
and a PostgreSQL (9.2.15) database stores the KB index and related tables. Apache Lucene was used to index 
the documents. Various programming languages/tools were used to develop the KB including: Java (openjdk 
1.8.0_91), PHP 5.4.16, JavaScript, JQuery 3.0.0 C/C ++ (gcc 4.8.5) and Perl v5.16.3. DES-Mutation is functional 
across commonly used web-browsers (Linux, Windows, and Mac OS platforms) and was specifically tested for 
Firefox, Chrome and Safari. The workflow used to construct the DES-Mutation KB is depicted in Fig. 1.

Developing the dictionaries.  To ensure relevant and comprehensive topic-specific information explora-
tion, seven new dictionaries were developed/compiled to complement the 21 pre-existing DES v2.0 dictionaries 
we used for this study and listed in Table 1.

Mutation dictionary.  The tmVar was used to extract the sequence variants using the Human Genome Variation 
Society (HGVS) nomenclature, from all PubMed (abstracts) and PMC (full-text) documents. The ClinVar and 
dbSNP datasets were used to validate the mutations extracted from the whole PubMed and PMC using the 
tmVar-based dictionary. We found that 83% of these SNPs exist in dbSNP dataset and 64% of all other mutation 
types exist in the ClinVar dataset.

Disease dictionary.  In addition to the disease dictionary (DOID Ontology (Bioportal)), we compiled five novel 
disease-related dictionaries: 1) from WHO (ICD-9-CM), from NCBO Bioportal (ATC Ontology, HP Ontology, 
ORDO Ontology, and PDO Ontology). For all dictionaries, synonymous terms/phrases were normalized to 
ensure terms can be recognized through trusted sources such as EntrezGene ID, UniProt ID, NCBI Taxonomy ID.

Preparing the literature corpus.  PubMed and PMC articles, stored in our local literature repository 
(MongoDB), were queried using [(mutation OR mutations OR indel OR indels OR deletion OR deletions OR inser-
tion OR insertions OR mutagenesis) AND (human OR “homo sapiens” OR bacterium OR bacteria OR virus OR 
viruses OR fungi OR fungus)] to create the DES-Mutation literature corpus on September 21, 2017. The query 
retrieved 458,158 articles that were used to build the KB, of which 266169 were full-articles and 191989 were 
abstract only documents. Out of these articles, 436,257 had annotations and are included in the KB.

Selection of 600 gene-mutation associations extracted by DES-Mutation.  To select gene-mutation  
associations as extracted by our system, we sorted pairs represented gene-mutation associations by the number 
of documents in which our system found them. Then we took all associations found on positions 101–200 (each 
supported by 16–27 publications), 401–500 (each supported by 8 publications), 901–1,000 (each supported by 
5 publications), 2,901–3,000 (each supported by 3 publications), 4,901–5,000 (each supported by 2 publication) 
and 9,901–10,000 (each supported by 1 publication). In total, we used in this way 600 gene-mutation associations. 
These associations have been evaluated manually by curators, cross-checked and marked as correct by providing 
a PubMed ID of an article where the confirmation can be found. ‘N/A’ is used to denote false association, and it is 
accompanied by a comment why the association in false (see Supplementary Table S1).

Concept Enrichment.  If a concept occurs in the background annotation (the set of all articles in PubMed, and 
PMC, denoted as B) |C| number of times, then taking a random sample of documents, denoted as K, the concept 
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has a probability P(C) = |C|/|B| to appear in each document, and its expected frequency in this random sample 
 ∩| |[ C K ] is proportional to the size of the sample K (namely  ∩ =[ C K ]  K × P(C)) (see Fig. 4).

If that sample in our knowledgebase results from a specific query however, we expect the query bias to affect 
observed concept frequencies, so they are not necessarily aligned with background ones. In other words, concepts 
relevant to the query would appear significantly more than their expectation of occurrence by random chance, 
while most irrelevant concepts would lie close to the mean of this hypergeometric distribution (if we consider 
sampling without replacement) or binomial distribution (if we consider sampling with replacement). Both types 
of modeling produce similar results for large enough KBs, but the hypergeometric distribution is more accurate 
for small KBs. In DES, concepts are enriched by computing the probability of observing them at least x number 
of times, where x is the actual frequency observation. This translates to computing 1-CDF(x) which is the com-
plement of the cumulative distribution function at the observation x. This value gets smaller the more the concept 
is relevant to the KB. This p-value measure is corrected for multiplicity testing and the FDR is used as a score for 
relevance. Concepts with an FDR > 0.05 are cut off from the annotation, and are not used when enriching concept 
pairs/associations.

Pair Enrichment.  Pair enrichment is performed in exactly the same manner (see Fig. 5), by considering hits 
against one of the concepts as taking a biased sample, then performing statistical enrichment of the other concept 
against this sample, as explained above. The statistical significance is again established by cutting off any pairs 
having an FDR > 0.05.

So, in conclusion: statistical significance in both cases is determined using a threshold on the FDR value.
Measures used for evaluating DES mutation annotation compared to EMU:

=
+

Precision TP
TP FP (1)

=
+

Recall TP
TP FN (2)

Figure 4.  Concept Enrichment in DES.

Figure 5.  Pair Enrichment in DES.
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= ×
×
+

F measure precision recall
precision recall

_ 2
(3)

Precision is the proportion of valid instances (true positives) among all detected instances (both true and 
false positives). It was used for our comparison with EMU as a measure of the quality of mutations extracted by 
DES-mutation from a randomly selected sample of 1000 abstract-only documents. Recall is the proportion of 
valid instances extracted (true positives) over all valid instances (both true positives and false negatives). It was 
used for our comparison with EMU as a measure of the extent of coverage of DES-Mutation of the mutations 
mentioned in the randomly selected sample of 1000 abstract-only documents. F-measure combines both preci-
sion and recall and is computed as their harmonic mean.

Availability
The DES-Mutation portal is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.
sa/des-mutation/.
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