15 research outputs found

    Towards End-to-End Speech Recognition

    Get PDF
    Standard automatic speech recognition (ASR) systems follow a divide and conquer approach to convert speech into text. Alternately, the end goal is achieved by a combination of sub-tasks, namely, feature extraction, acoustic modeling and sequence decoding, which are optimized in an independent manner. More recently, in the machine learning community deep learning approaches have emerged which allow training of systems in an end-to-end manner. Such approaches have found success in the area of natural language processing and computer vision community, and have consequently peaked interest in the speech community. The present thesis builds on these recent advances to investigate approaches to develop speech recognition systems in end-to-end manner. In that respect, the thesis follows two main axes of research. The first axis of research focuses on joint learning of features and classifiers for acoustic modeling. The second axis of research focuses on joint modeling of the acoustic model and the decoder. Along the first axis of research, in the framework of hybrid hidden Markov model/artificial neural networks (HMM/ANN) based ASR, we develop a convolution neural networks (CNNs) based acoustic modeling approach that takes raw speech signal as input and estimates phone class conditional probabilities. Specifically, the CNN has several convolution layers (feature stage) followed by multilayer perceptron (classifier stage), which are jointly optimized during the training. Through ASR studies on multiple languages and extensive analysis of the approach, we show that the proposed approach, with minimal prior knowledge, is able to learn automatically the relevant features from the raw speech signal. This approach yields systems that have less number of parameters and achieves better performance, when compared to the conventional approach of cepstral feature extraction followed by classifier training. As the features are automatically learned from the signal, a natural question that arises is: are such systems robust to noise? Towards that we propose a robust CNN approach referred to as normalized CNN approach, which yields systems that are as robust as or better than the conventional ASR systems using cepstral features (with feature level normalizations). The second axis of research focuses on end-to-end sequence-to-sequence conversion. We first propose an end-to-end phoneme recognition system. In this system the relevant features, classifier and the decoder (based on conditional random fields) are jointly modeled during training. We demonstrate the viability of the approach on TIMIT phoneme recognition task. Building on top of that, we investigate a ``weakly supervised'' training that alleviates the necessity for frame level alignments. Finally, we extend the weakly supervised approach to propose a novel keyword spotting technique. In this technique, a CNN first process the input observation sequence to output word level scores, which are subsequently aggregated to detect or spot words. We demonstrate the potential of the approach through a comparative study on LibriSpeech with the standard approach of keyword word spotting based on lattice indexing using ASR system

    Objective assessment of speech intelligibility.

    Get PDF
    This thesis addresses the topic of objective speech intelligibility assessment. Speech intelligibility is becoming an important issue due most possibly to the rapid growth in digital communication systems in recent decades; as well as the increasing demand for security-based applications where intelligibility, rather than the overall quality, is the priority. Afterall, the loss of intelligibility means that communication does not exist. This research sets out to investigate the potential of automatic speech recognition (ASR) in intelligibility assessment, the motivation being the obvious link between word recognition and intelligibility. As a pre-cursor, quality measures are first considered since intelligibility is an attribute encompassed in overall quality. Here, 9 prominent quality measures including the state-of-the-art Perceptual Evaluation of Speech Quality (PESQ) are assessed. A large range of degradations are considered including additive noise and those introduced by coding and enhancement schemes. Experimental results show that apart from Weighted Spectral Slope (WSS), generally the quality scores from all other quality measures considered here correlate poorly with intelligibility. Poor correlations are observed especially when dealing with speech-like noises and degradations introduced by enhancement processes. ASR is then considered where various word recognition statistics, namely word accuracy, percentage correct, deletion, substitution and insertion are assessed as potential intelligibility measure. One critical contribution is the observation that there are links between different ASR statistics and different forms of degradation. Such links enable suitable statistics to be chosen for intelligibility assessment in different applications. In overall word accuracy from an ASR system trained on clean signals has the highest correlation with intelligibility. However, as is the case with quality measures, none of the ASR scores correlate well in the context of enhancement schemes since such processes are known to improve machine-based scores without necessarily improving intelligibility. This demonstrates the limitation of ASR in intelligibility assessment. As an extension to word modelling in ASR, one major contribution of this work relates to the novel use of a data-driven (DD) classifier in this context. The classifier is trained on intelligibility information and its output scores relate directly to intelligibility rather than indirectly through quality or ASR scores as in earlier attempts. A critical obstacle with the development of such a DD classifier is establishing the large amount of ground truth necessary for training. This leads to the next significant contribution, namely the proposal of a convenient strategy to generate potentially unlimited amounts of synthetic ground truth based on a well-supported hypothesis that speech processings rarely improve intelligibility. Subsequent contributions include the search for good features that could enhance classification accuracy. Scores given by quality measures and ASR are indicative of intelligibility hence could serve as potential features for the data-driven intelligibility classifier. Both are in investigated in this research and results show ASR-based features to be superior. A final contribution is a novel feature set based on the concept of anchor models where each anchor represents a chosen degradation. Signal intelligibility is characterised by the similarity between the degradation under test and a cohort of degradation anchors. The anchoring feature set leads to an average classification accuracy of 88% with synthetic ground truth and 82% with human ground truth evaluation sets. The latter compares favourably with 69% achieved by WSS (the best quality measure) and 68% by word accuracy from a clean-trained ASR (the best ASR-based measure) which are assessed on identical test sets

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Spoken command recognition for robotics

    Get PDF
    In this thesis, I investigate spoken command recognition technology for robotics. While high robustness is expected, the distant and noisy conditions in which the system has to operate make the task very challenging. Unlike commercial systems which all rely on a "wake-up" word to initiate the interaction, the pipeline proposed here directly detect and recognizes commands from the continuous audio stream. In order to keep the task manageable despite low-resource conditions, I propose to focus on a limited set of commands, thus trading off flexibility of the system against robustness. Domain and speaker adaptation strategies based on a multi-task regularization paradigm are first explored. More precisely, two different methods are proposed which rely on a tied loss function which penalizes the distance between the output of several networks. The first method considers each speaker or domain as a task. A canonical task-independent network is jointly trained with task-dependent models, allowing both types of networks to improve by learning from one another. While an improvement of 3.2% on the frame error rate (FER) of the task-independent network is obtained, this only partially carried over to the phone error rate (PER), with 1.5% of improvement. Similarly, a second method explored the parallel training of the canonical network with a privileged model having access to i-vectors. This method proved less effective with only 1.2% of improvement on the FER. In order to make the developed technology more accessible, I also investigated the use of a sequence-to-sequence (S2S) architecture for command classification. The use of an attention-based encoder-decoder model reduced the classification error by 40% relative to a strong convolutional neural network (CNN)-hidden Markov model (HMM) baseline, showing the relevance of S2S architectures in such context. In order to improve the flexibility of the trained system, I also explored strategies for few-shot learning, which allow to extend the set of commands with minimum requirements in terms of data. Retraining a model on the combination of original and new commands, I managed to achieve 40.5% of accuracy on the new commands with only 10 examples for each of them. This scores goes up to 81.5% of accuracy with a larger set of 100 examples per new command. An alternative strategy, based on model adaptation achieved even better scores, with 68.8% and 88.4% of accuracy with 10 and 100 examples respectively, while being faster to train. This high performance is obtained at the expense of the original categories though, on which the accuracy deteriorated. Those results are very promising as the methods allow to easily extend an existing S2S model with minimal resources. Finally, a full spoken command recognition system (named iCubrec) has been developed for the iCub platform. The pipeline relies on a voice activity detection (VAD) system to propose a fully hand-free experience. By segmenting only regions that are likely to contain commands, the VAD module also allows to reduce greatly the computational cost of the pipeline. Command candidates are then passed to the deep neural network (DNN)-HMM command recognition system for transcription. The VoCub dataset has been specifically gathered to train a DNN-based acoustic model for our task. Through multi-condition training with the CHiME4 dataset, an accuracy of 94.5% is reached on VoCub test set. A filler model, complemented by a rejection mechanism based on a confidence score, is finally added to the system to reject non-command speech in a live demonstration of the system

    Robust speech recognition under band-limited channels and other channel distortions

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, junio de 200

    Robust Automatic Transcription of Lectures

    Get PDF
    Die automatische Transkription von Vorträgen, Vorlesungen und Präsentationen wird immer wichtiger und ermöglicht erst die Anwendungen der automatischen Übersetzung von Sprache, der automatischen Zusammenfassung von Sprache, der gezielten Informationssuche in Audiodaten und somit die leichtere Zugänglichkeit in digitalen Bibliotheken. Im Idealfall arbeitet ein solches System mit einem Mikrofon das den Vortragenden vom Tragen eines Mikrofons befreit was der Fokus dieser Arbeit ist

    Modelling, Simulation and Data Analysis in Acoustical Problems

    Get PDF
    Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years
    corecore