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Abstract

In this thesis, I investigate spoken command recognition technology for robotics. While high
robustness is expected, the distant and noisy conditions in which the system has to operate
make the task very challenging. Unlike commercial systems which all rely on a "wake-up"
word to initiate the interaction, the pipeline proposed here directly detect and recognizes
commands from the continuous audio stream. In order to keep the task manageable despite
low-resource conditions, I propose to focus on a limited set of commands, thus trading off
flexibility of the system against robustness.

Domain and speaker adaptation strategies based on a multi-task regularization paradigm
are first explored. More precisely, two different methods are proposed which rely on a tied
loss function which penalizes the distance between the output of several networks. The first
method considers each speaker or domain as a task. A canonical task-independent network is
jointly trained with task-dependent models, allowing both types of networks to improve by
learning from one another. While an improvement of 3.2% on the frame error rate (FER) of
the task-independent network is obtained, this only partially carried over to the phone error
rate (PER), with 1.5% of improvement. Similarly, a second method explored the parallel
training of the canonical network with a privileged model having access to i-vectors. This
method proved less effective with only 1.2% of improvement on the FER.

In order to make the developed technology more accessible, I also investigated the use
of a sequence-to-sequence (S2S) architecture for command classification. The use of an
attention-based encoder-decoder model reduced the classification error by 40% relative to a
strong convolutional neural network (CNN)-hidden Markov model (HMM) baseline, showing
the relevance of S2S architectures in such context. In order to improve the flexibility of the
trained system, I also explored strategies for few-shot learning, which allow to extend the
set of commands with minimum requirements in terms of data. Retraining a model on the
combination of original and new commands, I managed to achieve 40.5% of accuracy on the
new commands with only 10 examples for each of them. This scores goes up to 81.5% of
accuracy with a larger set of 100 examples per new command. An alternative strategy, based
on model adaptation achieved even better scores, with 68.8% and 88.4% of accuracy with 10



v

and 100 examples respectively, while being faster to train. This high performance is obtained
at the expense of the original categories though, on which the accuracy deteriorated. Those
results are very promising as the methods allow to easily extend an existing S2S model with
minimal resources.

Finally, a full spoken command recognition system (named iCubrec) has been developed
for the iCub platform. The pipeline relies on a voice activity detection (VAD) system to
propose a fully hand-free experience. By segmenting only regions that are likely to contain
commands, the VAD module also allows to reduce greatly the computational cost of the
pipeline. Command candidates are then passed to the deep neural network (DNN)-HMM
command recognition system for transcription. The VoCub dataset has been specifically
gathered to train a DNN-based acoustic model for our task. Through multi-condition training
with the CHiME4 dataset, an accuracy of 94.5% is reached on VoCub test set. A filler model,
complemented by a rejection mechanism based on a confidence score, is finally added to the
system to reject non-command speech in a live demonstration of the system.
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Chapter 1

Introduction

Over the last years, automatic speech recognition (ASR) technology has progressed dramati-
cally. However, despite some recent claims, it is far from being a solved problem. If it is true
that human-level performance has been reached on some datasets (e.g. Switchboard) (Xiong
et al., 2016), there are still many challenges for the ASR community to solve.

Hence, ASR technology is very effective in closed-microphone conditions, where the
signal-to-noise ratio (SNR) is high. A very good example is the wide availability of audio
assistants (e.g. Siri, Google Now, Cortana) on smartphones nowadays. Though, in distant
microphone and noisy environment conditions, speech recognition is still a challenging task
and an object of active research. Those two elements – distance and noise – are strongly
related: the more you increase the distance between the microphone and the speaker, the
stronger is the impact of the noise and reverberation on the recorded signal and the harder is
the task.

The goal gets even harder with continuous listening conditions, as considered in command
recognition. The additional constraint of detecting when the commands are pronounced may
add many false positives against which the model should be robust. This is to contrast with
most of the work in ASR which takes as assumption that the sentences are already segmented.

Spoken command recognition for robotics, where commands should be segmented from
a continuous audio stream in noisy conditions and with a possibly distant microphone is thus
very challenging and the main problem addressed in this thesis.

To illustrate the difficulty of the task, a comparison can be made with an application
that already reached the market and which has to deal with very similar conditions – smart
speakers (e.g. Google Home or Amazon Echo). These home assistants also work with distant
microphones and perform continuous listening. However, in practice, the system really
attends continuously to a single word only, called "wake-up" word ("Ok Google" and "Alexa"
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for the two systems respectively), the detection of which activates the speech recognition
system that will recognize the actual command. This strategy allows for much more robust
performance as the system has only to discriminate between two classes: keyword present or
keyword absent. By gathering a very large number of examples for the wake-up word, the
number of false positives can then be reduced to a minimum. Despite that, it can be seen
from the news that those devices still recognize commands wrongly sometimes and, e.g.,
can send a private conversation between two persons to one of their contacts without their
awareness1.

This example highlights the difficulty of the task. My objective was to move one step
further and perform continuous command recognition without resorting to a wake-up word.
As large vocabulary command recognition would have been too challenging, I decided to
focus on small vocabulary tasks. This fits well with robotic applications where the number of
actions a robot can perform is still quite limited usually.

A smaller number of commands also makes their classification easier, which compensates
for another limitation we have: the shortage of resources. I did not have the means of
gathering a big dataset to train robust acoustic models on a large vocabulary and existing
corpuses do not match the runtime conditions of my application. Using a smaller vocabulary
is thus a first way to counterbalance the negative impact of the scarcity of data. An additional
possibility I explore in this thesis is the use of domain adaptation techniques (chapter 4) that
allow to leverage on bigger existing dataset to get more robust acoustic models.

However, one of the main limitation of this small vocabulary approach is its lack of flexi-
bility. As we will see, it is hard to extend the vocabulary of the command recognition system
beyond its original scope without impacting the performance or requiring the collection of
additional data. Working on low resource scenarios is a first way to mitigate this issue, as it
reduces the effort required to gather examples of new commands. I additionally explore the
possibility of using few-shot learning strategies to extend the vocabulary with a minimum
number of examples for each new command (chapter 5). I combine this later work with the
use of end-to-end (E2E) models in order to simplify the training and deployment procedures,
so as to make this technology accessible to the widest audience possible.

Finally, once a command is recognized, the problem of taking an appropriate action arises.
Interpreting the meaning of an utterance is the focus of natural language understanding and
is out of the scope of this thesis. A simple one-to-one mapping is used here to assign an
action to each command.

To summarize, the work presented here tries to answer following questions:

1https://www.theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation

https://www.theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation
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• How to build a robust small vocabulary command recognition system in low resource
conditions?

• How to compensate for the lack of flexibility of the system and make it easier to extend
the vocabulary?

• How can I simplify the use of ASR technology for the robotic community and allow
non-expert users to easily train/adapt a model for their own task?

1.1 Characteristics of spoken command recognition for
robotics

I will start by defining the main characteristics of the target application and its specificities
with respect to other types of scenarios. As I started my work, I identified 3 main require-
ments of spoken command recognition for robotics: high robustness to noise and distance,
online/continuous recognition and computational efficiency. I focused my efforts on the first
requirement, robustness, which is key in the user’s experience. Though, despite the other two
aspects not being the subject of active research, they guided the technical decisions that were
made throughout the thesis. Techniques that were too computationally intensive or would
lead to high latency were not considered.

A second objective I fixed for my work was to make command recognition technology
more accessible to non-expert users. This requirement is not imposed by the task but
will greatly augment the impact of the developed technology. Due to their simplicity and
intuitiveness, vocal interfaces provide a very appealing way to command all the electronic
equipments that surround us. Though, they are not straightforward to build, especially for
small groups or companies. Through this thesis, I wanted to help making it easier for anyone
to build a command recognition system. Chapter 5, which considers the use of E2E models,
is a step in that direction.

1.1.1 Robustness

Robustness is a key property for an application to attain user acceptance level and reach the
market. I would argue that command recognition for robotics is even more dependent on this
factor. While the consequences of a misrecognition are very limited and usually reversible
in the case of, e.g., a vocal assistant on a smartphone, a robot can affect our environment in
a more dramatic way. The robustness of the command recognition system is thus critical
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if robots have to be used in day-to-day environments (e.g. home, office, hospitals) and
alongside humans. This is the reason why robustness is one of the main focuses of my thesis.

The main obstacle to achieving good accuracy in my case is the absence of big datasets
matched to the runtime conditions. Few datasets cover distant and noisy situations. Also, the
specific kind of noise present in the background is important as a mismatch between training
and testing environments may lead to poor performance. Additionally, while datasets usually
contain recordings of native-speakers, the users of iCub robot (which is used as a test case)
are mainly non-native English speakers.

1.1.2 Continuous listening

A simple strategy to avoid the problem of continuous listening on smartphones could be to
use a manual trigger to decide when speech starts and stops. Apart from not being convenient,
this strategy is hard to apply for robotic applications. Robots usually do not offer an easy
way to signal the sentence end points (such as a button or a tactile interface) and control of
the robot is expected to be possible at distance. The same is true of smart devices, where
it is now common to use "wake-up" words, i.e. specific keywords that precede and signal
the beginning of a command. Wake-up words improve the users experience as they allow
hand-free interactions with the device. I tried to go even further by trying to recognize the
commands reliably without the use of such additional cue.

To handle the continuous aspect of the task, I decided to resort to a voice activity detection
(VAD) system, that is responsible for detecting when the input is likely to contain speech
(any speech) and activating the ASR system. The use of a VAD module has two main
advantages: (1) it filters most of the silence allowing the command recognition system to
focus on segments of speech (thus working in conditions closer to the ones usually considered
with ASR systems) and (2) it avoids running an expensive command recognition system
continuously.

Indeed, another consequence of performing continuous listening is that we need the
system to run all the time and online (in the sense of real-time). This adds to the pre-existing
computational constraints as we will now see.

1.1.3 Computational requirements

As any embedded ASR system, a command recognizer for a robot has strong computational
constraints, in terms of both memory and computation capability. This is even more the case
in robotics (compared to, e.g., a smart speaker) as command recognition is not the main task
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of the robot and many other functionalities (such as vision, motor control or planning to
mention a few) compete for the resources. Obviously, the continuous and online aspects of
the task add to the difficulty.

This deployment constraints are sometime in opposition with research objectives, where
high performance can be achieved at the expense of such practical concerns. A good example
is the use of ensembles, which improves accuracy at a high computational cost. Hence, even
though I did not perform active research on less intensive speech recognition technology,
techniques requiring heavy computational resource were discarded from the outset.

1.1.4 (Re)Usability

A system which would be polyvalent and robust at the same time is hard to obtain with
limited resources (in terms of supervised training data) and with all the constraints I already
mentioned. I thus propose to trade the polyvalence for robustness by focusing on application-
specific models, where the system is trained for a specific task and hence specific vocabulary
and runtime conditions. If we want to increase the reusability of such technology, the key
point is then to make it easier for non-expert users to gather data and train a model for their
own application.

A first answer to this concern lies in the low resource setup we adopt, which facilitates
the collection of data on a per-task basis. Additionally, I explored the possibility of using
few-shot learning to expand the vocabulary with low data requirements (see chapter 5). In
terms of training and deployment, I explored the adequacy of E2E architectures for our setup
as they greatly simplify these procedures.

1.2 Thesis structure and contributions

I will start with an introduction to speech technology in chapter 2, comparing ASR and
keyword spotting (KWS) tasks. While they each have their own specificities, the application
domain considered here require both functionalities. I will then spend some time to introduce
the resources (datasets and toolkits) used throughout the thesis (chapter 3). This includes the
Vocal Commands for iCub (VoCub) dataset which has been gathered for this thesis. After
this, I will present the work I did on domain adaptation (chapter 4), which addresses the
problem of robustness in low resource settings and is the first contribution of this thesis.
Chapter 5 will be dedicated to the second main contribution of the thesis, the study of
few-shot learning for E2E models. This work tries to address the second and third questions
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listed at the beginning of this chapter, related to flexibility and reusability. Chapter 6 presents
the development of iCubrec, a fully operational command recognition system for the iCub
platform (Metta, Natale, et al., 2010). Together with the VoCub dataset, this system composes
the more practical contribution of my work. I will conclude in chapter 7 and discuss possible
directions for future work.



Chapter 2

Automatic speech processing

Despite them sharing many characteristics, speech recognition and keyword spotting have
both their specificities, explaining why different metrics and solutions are used to solve each
task. I will argue that command recognition stands somewhere between them and can thus
borrow ideas from both fields. After discussing the differences and the similitudes between
these three problems, I will give an overview of the methodologies employed for each of
them. I will finish by presenting the overall framework I intend to use on the robot.

2.1 Speech recognition versus keyword spotting

First, I would like to precise what is intended here by speech recognition, as the expression
can have a broader understanding. By ASR, I imply the task of speech to text transcription
from pre-segmented audio, where the problem is to find the most likely sequence of words
www∗ = (w∗

1, . . . ,w
∗
N) given a sequence of acoustic observations OOO = (ooo1, . . . ,oooT ). Traditionally,

most of the acoustic corresponds to speech and silence is only present in small proportions.
Also, most of the vocabulary present in the sentences is known and out-of-vocabulary (OOV)
words are an exception.

Conversely, KWS is concerned with detection of a small set of words in a live stream
of audio. Silence then constitutes most of the observed signal, and most of the remaining
speech correspond to OOV words. Trying to maximize recognition of the keywords can
then easily result in many false detections. The challenge of KWS is to achieve the highest
detection rate possible while maintaining the false detections to a minimum. This requires
good models of silence and OOV speech.

The standard metrics used for each task reflect this specificities. The word error rate
(WER) used in speech recognition (see subsection 2.8.1 for the precise formulation) evaluates
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the correctness of the predicted text with respect to a reference, taking substitutions, insertions
and deletions into account. For KWS, it is more common to use notions such as false positive
and true positive (definitions will be given in subsection 2.8.2), which reflects the constraint
of balancing the maximization of keywords detection against false detections in conditions
where most of the input does not contain the expected words.

2.2 Spoken command recognition

Similarly to KWS, command recognition is concerned with the detection of commands in a
continuous stream of audio. It then faces the same challenges: not only should the commands
be distinguished from one another but we additionally need to detect when they happen in a
stream containing mainly silence and non-command speech. However, a big difference with
respect to KWS is that we do not restrict ourselves to single keywords. Commands can be
fully-fledged sentences following a complex grammar. In that respect, the recognition of a
command is closer to a speech recognition task with a small vocabulary and a strict grammar.

As a consequence, some strategies used for KWS are not easily transposable to our setup.
For example, in one of the work closest to ours, Chen et al. (2014) trained a deep neural
network (DNN) to directly predict the probability of the keywords being present in the audio
at each time step. They propose a simple strategy to extend this to the detection of short
expressions composed of several words. This strategy consists in combining into a final
confidence score the probability of each individual word composing the expression (over a
fixed window), by simply multiplying them. This posterior handling mechanism may not be
adequate for more complex expressions or sentences though. One limit of this mechanism,
as acknowledged by the authors, is that it does not enforce the order of the labels in the
sequence. It is thus impossible to distinguish sentences like "Put the glass in the water"
or "Put the water in the glass". Also, negative sentences (e.g. "Don’t move the box") may
trigger the recognition of the positive version of the sentence ("Move the box"). This is
partially solved by Prabhavalkar, Alvarez, et al. (2015) who proposed an improved version
of the posterior handling mechanism taking the relative order of words into account.

These examples illustrate the main difference between complex sentences and keywords.
Unfortunately, there is no way to handle complex sentences in a simple way that would
allow to easily adapt work on KWS. One will inevitably have to resort to more complex
representations such as language models, which are used for long in ASR systems.
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Thus, command recognition can either be seen as a KWS task with key-phrases in place
of keywords, or as an ASR system with strict vocabulary and grammar, operating in live
conditions where most of the audio consists of silence and non-command speech.

The following sections will cover a high-level presentation of the methodology used in
these tasks.

2.3 Feature extraction

For both tasks, it is quite uncommon to work directly on the acoustic signal. Instead, manually
engineered features are usually computed and used in place of the raw signal. These features
have properties that make them more suitable for learning a statistical model and were key
in achieving good performance, at least until recently. Indeed, the newly introduced DNN
models have been shown to be better at extracting useful features from their input. It as been
found that neural networks perform better when using mel-scaled log filter bank coefficients
rather than the more complex mel-frequency cepstrum coefficients (MFCCs) commonly used
with Gaussian mixture models (GMMs) (Mohamed et al., 2012; Li, Yu, et al., 2012). It
has further been showed that a neural network can even use the power spectrum (Sainath,
Kingsbury, et al., 2013) or the raw signal directly (Palaz et al., 2013).

The two most commonly used feature types, regardless of the kind of task, are filter bank
coefficients and MFCCs. To motivate their use, I will start by presenting a few properties of
the human perception that inspired them.

2.3.1 Human speech perception

The human ear is responsible for transforming the variations of the air pressure into pulses
that can be transmitted to the auditory nervous system for processing. It is sensitive to
frequencies between 20 Hz and 20 kHz roughly. Transforming the acoustic pressure signal
in the time-domain into a representation in the frequency domain is the role of the cochlea.
While performing this conversion, the cochlea organizes the information in filters. Each
filter responds maximally to a small range of frequencies and those filters are organized
topologically, the filters closest to the cochlear base responding to the highest frequencies
while the filters closest to its apex respond to the lowest frequencies. This conversion of the
variation of the air pressure over time into the frequency domain and the organization of the
representation into band-pass filters is the first property of human’s auditory perception.
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FIGURE 2.1 Perception of pitch (mel scale) versus frequency (hertz scale).
(Krishna Vedala, Mel-Hz plot, CC BY-SA 3.0)

Other two properties that are pertinent to our discussion are the non-linear perception of
pitch and loudness. It has been observed that the sensitivity of the human auditory system is
not the same across all frequencies. Hence, to elicit the same perception of pitch increase,
larger and larger intervals are necessary between the sounds as we go up the frequency scale.
The mel scale (represented in Figure 2.1) accounts for this non-linear perception of pitches
and is defined as:

m = 2595 log10

(
1+

f
700

)
, (2.1)

where f is the frequency and m is its equivalent on the mel scale.
Similarly, the perception of loudness by humans is non-linear, and the perceived change

in sound intensity gets smaller as the intensity increases. This is exemplified by the dB scale
of sound intensity which is also logarithmic.

A deeper introduction to human speech perception can be found in Huang, Acero, et al.
(2001, section 2.1.3).

2.3.2 Filter bank coefficients

The mathematical equivalent of the conversion from air pressure variations to frequency
by the ear is the Fourier transform (FT). It is usually the first transformation applied to the
sound to obtain features. To compute the FT, a small window of signal is required (25 ms
traditionally). This process is repeated at fixed step intervals (10 ms usually), the power

https://commons.wikimedia.org/wiki/User:Krishnavedala
https://commons.wikimedia.org/wiki/File:Mel-Hz_plot.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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spectrum pppi of the ith frame being computed as:

pppi =
|FT (oooi)|2

N
, (2.2)

where FT (·) is the N-point Fourier transform.
Triangular band-pass filters are then applied to the output to extract frequency bands. The

filters are equally spaced on the mel scale to account for the non-linear perception of pitch
by humans.

Finally, the log function is usually applied to also mimic the non-linear perception of
loudness, resulting in log mel-scale filter bank coefficients.

2.3.3 Mel-frequency cepstral coefficients

The filter bank coefficients we just described are highly correlated, which may be an issue.
This is especially the case with the GMM-hidden Markov model (HMM) approach where
diagonal matrices are often used to model covariance, so as to reduce the number of param-
eters (growing as the square of the number of coefficient for a full covariance matrix). A
discrete cosine transform (DCT) can be additionally applied to the coefficients in order to
decorrelate them, leading to the MFCCs (Davis and Mermelstein, 1980).

2.3.4 Common practices

Another common practice is to compute the first and second derivatives of the features and
add them to the feature vector. Additionally, for DNNs, a context of several frames is usually
used, where the frame’s features are appended with features from a few frames before and
after it.

2.4 Speech recognition

Speech recognition is a sequence-to-sequence mapping problem where one tries to map
from the sequence of acoustic observations OOO = (ooo1, . . . ,oooT ) to a sequence of words www =

(w1, . . . ,wN) (with N ≪ T ). The goal then is to find the most likely sequence of words www∗

given the acoustic, out of all possible hypothesis H, that is:

www∗ = argmax
www∈H

P(www|OOO) (2.3)
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It is quite uncommon though to work on the acoustic observations directly. Instead, they
are usually preprocessed to obtain features such as the filter bank coefficients or the MFCCs.
The set of features computed from the raw sound are then replacing the acoustic observations
in Equation 2.31.

This problem is usually decomposed using Bayes rule as:

www∗ = argmax
www∈H

P(OOO|www)P(www)
P(OOO)

(2.4)

∝ argmax
www∈H

P(OOO|www)P(www) (2.5)

The probability of the features P(OOO) is independent of www during decoding and can thus
be ignored. We have two remaining components: (i) P(OOO|www) which estimates the probability
of the acoustic based on the sequence of words and is usually referred to as the acoustic
model, and (ii) the prior probability P(www) which is also known as the language model. The
two components are typically estimated independently.

2.4.1 The acoustic model

I will focus here on HMM-based acoustic modeling as it is the dominant approach in ASR.

The GMM-HMM acoustic model

A hidden Markov model is a statistical model where the systems is assumed to follow a
Markov process with unobserved states, also called hidden states (illustrated in Figure 2.2).
The only access we have to the hidden states is through observed variables which are related
to the hidden states via probability distributions.

The HMM is defined by:

• a set O = {O1, . . . ,OM} of observed variables (discrete or continuous).

• a set Ω = {1,2, . . . ,K} of hidden states.

• the transition probability matrix AAA = {ai j}, where ai j is the probability of following
the transition from state i to state j.

• the output probability distribution B = {bi(ooo)}, where bi(ooo) defines the probability of
observing output ooo in state i. Classically in ASR, multivariate GMMs were used to

1The notation is overloaded: OOO refers to both the acoustic observations and the features derived from them.
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FIGURE 2.2 Illustration of a hidden Markov model with 3 hidden states and 4
discrete observed values.

model the output distribution of continuous variables (see e.g. Rabiner, 1989, for an
introduction to the use of GMM-HMM in speech recognition).

• the initial state probability distribution π , which defines the probability of starting in
any of the states.

The model parameters θθθ = {AAA,B,π} can be estimated through the Baum-Welch algo-
rithm (Baum and Petrie, 1966), which is an instance of the expectation maximization (EM)
algorithm (Dempster et al., 1977).

As can be seen from this definition, several simplifications are used to make the problem
more manageable. First, the HMM is supposed to follow a first order Markov process, that is
the transition to a state j only depend on the current state i. Said otherwise, the probability
of being in a specific state at step t given the states history, P(st |st−1, . . . ,s1), is reduced to
the probability of this state given the previous state only, P(st |st−1). Also, observations are
assumed to be independent of previous observations and states given the current state. Thus,
P(ooot |ooot−1, . . . ,ooo1,st , . . . ,s1) is reduced to P(ooot |st). This simplifications, as inaccurate as they
are, proved good enough for the problem at hand. The probability of the observed features
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can then be formulated as:

P(OOO|w) = ∑
s∈S

P(ooo1|s1)P(s1)
T

∏
t=2

P(ooot |st)P(st |st−1) (2.6)

= ∑
s∈S

bs1(ooo1)π(s1)
T

∏
t=2

bst (ooot)ast−1,st , (2.7)

where S is the set of all state sequences matching the sequence of words w.

From states to words

The only point missing in the above description of the GMM-HMM approach is the link
between the hidden states and the sequence of words. The smallest unit in terms of pronun-
ciation is the phoneme, from which we can define the pronunciation of any word. Hence,
it would be reasonable to relate states and phonemes in a one-to-one fashion. Though, the
pronunciation of a phoneme is not constant over time. A common practice is thus to split
each phoneme into several consecutive states (3 states is a popular choice) that allow to
model differently the start, middle and end of the phoneme. When the phones are consid-
ered independently from one another, we talk about context independent (CI) phonemes or
monophones.

It is further known that the pronunciation of a phoneme is influenced by preceding and
following ones, a phenomenon known as the co-articulation effect. Context dependent (CD)
phonemes (Schwartz et al., 1985), or triphones, which distinguish the pronunciations of a
phoneme in different contexts, have been shown to improve acoustic modeling.

Though, CD modeling assumes that all contexts are different, leading to a huge number
of triphones. If we consider that English uses about 44 phonemes, we obtain 443 triphones,
which is hardly manageable. Considering all triphones is very expensive and requires enough
data to model each of them accurately. However, some contexts can have a very similar effect
on the phoneme. An alternative then is for similar triphones to share statistical parameters
(Young and Woodland, 1994; Young, Odell, et al., 1994), where phonetic properties are used
to evaluate the similarity. These clustered CD phonemes, also called senones, offer a good
trade-off between the exactitude of triphones and the difficulty of learning them reliably.

Using a pronunciation dictionary, which maps words to their phoneme transcription, we
can then determine the set S of state sequences corresponding to a sequence of words.
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The DNN-HMM acoustic model

The classical GMM-based approach to estimating the output probabilities of the HMM was
recently replaced by DNN-based models (Hinton, Deng, et al., 2012). While the use of
shallow neural networks was already proposed by Bourlard and Wellekens (1990), the use
of deep networks (thanks to recent progress in model optimization) and estimation of their
parameters on bigger datasets allowed to surpass the traditional GMM-HMM paradigm.

In order to use DNNs to estimate the output probabilities of the HMM, one has to slightly
adapt Equation 2.6 though. Indeed, the DNN estimates P(st |ooot) instead of P(ooot |st). The two
probabilities can be related by following formula:

bst (ooot) = P(ooot |st) =
P(st |ooot)P(ooot)

P(st)
(2.8)

∝
P(st |ooot)

P(st)
(2.9)

Again, the probability P(ooot) being independent of st (over which we optimize), it can be
ignored.

In order to train the neural network to predict P(st |ooot), which is done in a supervised
manner, one need a reference state st for each input ooot . Despite some attempts to train DNNs
from scratch (Senior, Heigold, et al., 2014; Zhang and Woodland, 2014), the most common
strategy is still to start by training a GMM-HMM acoustic model first, which can be used
to compute the alignment between the states and the observed frames (and also provide the
triphone clustering when senones are used). Strategies to train GMMs from scratch, such
as flat start initialization (where the states are evenly spaced across the sound segment) are
readily available, and the model can then be refined in an iterative procedure.

To be precise, the method I just presented is referred to as the hybrid DNN-HMM
approach. An alternative use of DNNs, called the tandem approach (Hermansky et al., 2000),
consists in using the neural network to compute new features that will be used as input to a
more traditional GMM-HMM acoustic model. This later approach is not considered in this
thesis and whenever I refer to the DNN-HMM approach, the hybrid one is intended.

More details on DNN-based acoustic models will be given in section 2.5.

2.4.2 The language model

The acoustic model estimates the probability of www taking only the acoustic information into
account. This can lead to the recognition of sentences that are not valid for the language
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considered. The additional constraints imposed by the language are taken into account in the
optimization task through the prior P(www), also called the language model.

The main problem for many tasks is to model the open-ended set of sentences that should
be accepted by the language model. Here again, some approximations are usually used to
make the task manageable. The most common approach is to use n-gram models (Damerau,
1971), where the probability of a word is assumed to depend only on a finite number (n−1)
of preceding words. Hence, the probability of a sequence of words can be formulated as:

P(www) =
T

∏
t=1

P(wt |wt−1, . . . ,wt−n+1) (2.10)

Some recent work proposes to use recurrent neural networks (RNNs) to perform language
modeling (Mikolov et al., 2010). The main limitation with the use of neural networks as
language model (LM) though, also true for n-grams with a large context, is the computational
cost. A good compromise then consist in using a simpler LM model initially (e.g. a 3-gram
LM) and rescore the best predictions with a more complex one (e.g. a RNN-LM or a 5-gram
LM).

In some cases where a restricted grammar is imposed, such as in the setup considered
here, the grammar can be defined in closed form using a formalism such as the extended
Backus-Naur form (EBNF) (used to define context-free grammars).

2.4.3 Decoding

Given acoustic and language models, as well as a pronunciation dictionary relating each
word to its phonemic transcription, the decoder finally computes the sequence of words with
highest probability. The standard decoding algorithm for HMM-based systems is the Viterbi
algorithm (Viterbi, 1967). It relies on principles from dynamic programming to efficiently
computes the required scores. Instead of a 1-best word sequence, it can also output a lattice
of N-best paths.

2.5 Deep neural networks for acoustic modeling

The use of DNNs to estimate state probabilities in the hybrid framework plays an important
role in this thesis. It thus deserves to be treated in more details. I will try here to give a
general overview of the main architectures, optimization and training strategies used with
these models.
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2.5.1 Architecture

The most common architecture is the fully connected feed-forward neural network, where
each layer of units is fully connected to the next layer and no connection exist between units
of a layer or from a layer going backward.

Alternatively, the use of convolutional layers has been explored. Originally proposed
for vision (Lecun et al., 1990), it has since been shown that convolutional layers can also
be applied successfully to speech recognition, either along the frequency axis alone (Abdel-
Hamid et al., 2013), or along both frequency and time (Tóth, 2014). Convolutional neural
networks (CNNs) use a small weight matrix spanning only a small patch of input features.
To cover the whole input, this patch is repeatedly applied on a shifted window of values. The
stride (or shift) used to move the window allows to downsample the input. Additionally, a
pooling layer can also be used to reduce the dimensionality. The max-pool operation (based
on the maximum function) is a popular choice. Unlike standard DNNs which ignore the input
topology, CNNs leverage on the correlations in time and frequency present in the speech.
The weight being shared along one or both dimensions, they also offer more compact models
and naturally offer translational invariance.

Speech being a sequential signal, recurrent approaches have naturally been considered as
well (see e.g Robinson, 1994; Deng et al., 1994). While backpropagation can be applied to
their training using a technique called backpropagation through time (BPTT) (Werbos, 1988),
one limit of this approach is related to the vanishing/exploding gradient problem (Bengio
et al., 1994): as the number of layers through which we backpropagate the error increases,
the gradient tends to shrink or grow out of control. This historically limited the depth of
DNNs and the applicability of BPTT to long sequences. While some solutions have been
developed to avoid this problem, such as careful initialization or rectified linear unit (ReLU)
activation function (Nair and Hinton, 2010), special types of recurrent units have also been
proposed. The long short-term memory (LSTM) unit (Hochreiter and Schmidhuber, 1997)
was the first of this kind and uses a gate mechanism, which allows the gradient to flow more
freely through the layers. These types of units have since been shown to be very effective for
different sequential tasks including ASR (see e.g. Graves, Jaitly, and Mohamed, 2013; Sak
et al., 2014).

Residual layers (He, Zhang, et al., 2016), which were also proposed for vision originally,
allowed to reach another level in the number of layers that can effectively be used. The idea
stemmed from the observation that using very deep networks can still lead to a degradation of
performance compared to shallower ones. He, Zhang, et al. proposed to reformulate layers so
as to learn a residual function, which is sumed with the output of the preceding layer, instead
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of a direct transformation of this same output. This has since been applied successfully to
speech recognition (Xiong et al., 2016).

2.5.2 Training criteria

Framewise training

DNNs are used to model the posterior probability of the HMM states given the acoustic
features. Hence, a natural training criterion to train them is the framewise cross entropy loss,
defined as:

LCE =−∑
t

lnP(ŝt |ooot), (2.11)

where P(ŝt |ooot) is the probability predicted by the network for the reference state ŝt given
observation ooot .

Sequence-discriminative training

Framewise training completely ignores the sequential nature of speech signal. Sequence-
discriminative training criteria have been proposed in order to remedy that. Common
sequence-discriminative criteria include maximum mutual information (MMI) (Bahl et al.,
1986), minimum phone error (MPE) (Povey, 2004) and state-level minimum Bayes risk
(sMBR) (Kaiser et al., 2000; Gibson and Hain, 2006; Povey and Kingsbury, 2007). They all
have in common to try optimizing the score of the whole reference sentence over any other
possible sequence. To do that, they all leverage on statistics that can be collected from the
lattice, the difference being the granularity they consider. MMI works at the whole sentence
level by optimizing following loss:

LMMI = log
P(OOO|ŝ)κP(ŵww)

∑w P(OOO|s)κP(www)
, (2.12)

where ŵww is the reference word sequence and κ is the acoustic scaling factor. At the denomina-
tor, we find the sum over all word sequences in the lattice as an approximation of all possible
word sequences.

MPE and sMBR are both minimum Bayes risk (MBR) objectives which consider different
levels of granularity (the phone and state level respectively). The corresponding criteria is:

LMBR =
∑w P(OOO|s)κP(www)A(www, ŵww)

∑w′ P(OOO|s′)κP(www′)
, (2.13)
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where A(www, ŵww) is the raw accuracy of word sequence www with respect to reference sequence ŵww,
that is the number of correct phone or state labels respectively. A comparison of the different
criteria has been done by Veselỳ et al. (2013), which showed little difference between them.

More recently, a lattice-free version of the MMI criterion has been proposed (Povey,
Peddinti, et al., 2016) which showed improved results.

The connectionist temporal classification loss

Another way to train networks in a sequence-discriminative manner and without the need for
pre-computed alignments is the connectionist temporal classification (CTC) loss (Graves,
Fernández, et al., 2006). Usually applied on top of a RNN, CTC solves the problem by
summing over the probability of all possible alignments corresponding to the expected output
sequence.

More formally, consider the input sequence OOO = (ooo1, . . . ,oooT ) and an output sequence
lll = (l1, . . . , lK), where lk ∈ 1, . . . ,L with L the number of output labels. An additional blank
label – is also considered corresponding to the absence of label.

The probability of sequence lll is then defined as the sum over all possible alignments
πππ = (π1, . . . ,πt), where πππ allows repetitions of labels and occurrences of the blank label
between two different labels of lll. This is formalized as:

P(lll|OOO) = ∑
πππ∈φ(lll)

P(πππ|OOO), (2.14)

where φ(lll) is the set of all possible alignments corresponding to lll. For example, "aa – b –"

and "– a – – b" are two valid alignments for lll = ab and T = 5.
Assuming conditional independence between two consecutive outputs of the network,

the probability of alignment πππ can be factorized as follows:

P(πππ|OOO)≈
T

∏
t=1

P(πt |OOO), (2.15)

where P(πt |OOO) is estimated by the network. By modifying the forward-backward algorithm,
the probability P(lll|OOO) can be efficiently computed.

The CTC loss can finally be defined as the negative log likelihood of the reference (or
ground truth) sequence l̂ll,

LCTC =− lnP(l̂ll|OOO). (2.16)
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Regularization

In addition to the main loss, additional regularization terms can be added to the optimized
loss. Regularization terms aim at reducing the overfitting of the model and obtain better
generalization. The most common regularization terms are the l1 and l2 norms which penalize
the norm of the weights and are defined as:

Ll1 =∥θθθ ∥1= ∑
i
|θi|, (2.17)

Ll2 =∥θθθ ∥2
2= ∑

i
θ

2
i , (2.18)

where θθθ is the set {θi} of network’s weights.

2.5.3 Optimization procedure

Gradient descent (GD) is without doubt the most popular optimization algorithm, but it is
rarely used in its vanilla version. As GD tries to minimize the objective function by computing
the gradient over the entire training set, it tends to be very slow. Stochastic gradient descent
(SGD) (Bottou, 1998) solves this issue by computing the gradient for each training example
and updating the parameters before moving to next example. While this strategy is usually
much faster, the updates have high variability which makes the objective function fluctuate.
A good compromise then is the mini-batch SGD which takes an intermediate stance: gradient
is computed over a small batch of examples, which reduce the variance of the parameter
updates while allowing faster training.

These strategies have several limitations though. First, one has to choose a learning
rate. This is not a trivial matter as learning rates that are too small can lead to very slow
convergence while, conversely, learning rates that are too large will make the loss oscillate or
diverge. Learning rate schedules, pre-defined or based on improvement criteria, are often
used to improve the learning. However, once again, they have to be defined manually and
do not adapt to the evolution of the optimization procedure. Also, the same learning rate is
applied to all parameters which is suboptimal.

Several alternative optimization algorithms have been proposed in order to overcome
those limitations. A first strategy, used in this thesis, is to add momentum (Rumelhart
et al., 1986). Momentum tries to overcome the difficulty of SGD or mini-batch SGD to deal
with ravines, that is areas of the objective surface where the curve is much steeper in some
directions than in others. To do that, it combines the current gradient with previous updates,
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which allows to increase the gradient in direction with constant progress and reduce it in
directions where the gradient often changes sign. This can be formalized as:

vvvt = γvvvt−1 +η∇θθθ t−1J(θθθ t−1), (2.19)

θθθ t = θθθ t−1 + vvvt , (2.20)

where J(θθθ) is the objective function parameterized by θθθ , vvvt is the parameter update at time t,
γ is the weight for the momentum term and η is the learning rate.

Adagrad (Duchi et al., 2011) tries to solve the problem of the same learning rate being
applied to all parameters. Essentially, the idea is to use higher learning rates for parameters
that are infrequently updated and smaller ones for parameter frequently updated. To do so,
the algorithm keeps track of the sum of the square of the gradients with respect to each
parameter θi since the beginning of the training. This is done through the diagonal matrix
GGGt ∈ Rd×d , where d is the dimension of the parameter space. The update of parameter θi is
then defined as:

gt,i = ∇θt,iJ(θt,i) (2.21)

θt+1,i = θt,i −
η√

Gt,ii + ε
gt,i, (2.22)

where Gt,ii is the element at position (i, i) of the matrix GGGt and ε is a smoothing term to avoid
division by zero. This can be factorized over all parameters as:

θθθ t+1 = θθθ t −
η√

GGGt + ε
gggt , (2.23)

As the learning rate is automatically adapted, there is usually no need to manually tune it
and the default value of 0.01 can be leaved unchanged. The main limitation of this algorithm
is the monotonic decrease of the learning rate due to the sum of squared gradients which
monotonically increases as training progresses.

Adadelta (Zeiler, 2012) proposes to solve this weakness, by using a decaying average of
the past gradients. The running average is then defined as:

E[ggg2]t+1 = γE[ggg2]t +(1− γ)ggg2
t , (2.24)
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with γ a weighting parameter. The parameter update then become:

θθθ t+1 = θθθ t −
η√

E[ggg2]t + ε
gggt , (2.25)

In order to have the update unit match the one from the parameters, an additional exponentially
decaying average of the squared parameter update is introduced which I will not describe
here.

The adaptive moment estimation (Adam) method (Kingma and Ba, 2015) improves on
Adadelta by combining its exponentially decaying average of past squared gradients with an
exponentially decaying average of past gradients like the momentum method. The authors
showed that the algorithm compares favorably to other optimization methods while requiring
little tuning of its hyperparameters, which makes it a good alternative in most cases.

Finally, I would like to mention a popular technique called early stopping. The method
consists in monitoring the validation error and ending the training when the validation error
stops improving for several consecutive steps. It proves to be an effective way of preventing
overfitting of networks.

A comprehensive review of gradient descent optimization algorithms is proposed by
Ruder (2016).

2.6 End-to-end models

Recently, an alternative approach to the dominant HMM-based speech recognition has
attracted much attention: E2E modeling. The E2E approach proposes to use all-neural S2S2

models to directly predict the sequence www∗ (or a sub-word equivalent such as character-
or phoneme-based sequence), incorporating the acoustic and language models in a single
architecture. The alignment problem is also included directly into the optimization framework
of those models. E2E models have the advantage of greatly simplifying the training and
deployment pipelines of speech recognition systems.

One of the first breakthroughs came from the CTC loss (Graves, Fernández, et al.,
2006), which allows an acoustic neural model to be trained directly on unsegmented data.

2E2E learning is defined as the possibility of training the model to predict the final output (transcripts in
the case of speech recognition) directly from the input (speech features) in a single optimization framework.
S2S models are defined as architectures that can take a variable-length sequence as input and output another
variable-length output. ASR being a sequence-to-sequence problem, E2E methods are necessarily S2S. The
reverse is not necessarily true. An example would be a S2S architecture using a LM for hypothesis rescoring
and would thus not be E2E.
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While the original technique is not E2E, it has later been extended to train models that
predict grapheme sequences (Graves and Jaitly, 2014) or in conjunction with a LM based
on RNNs, an architecture referred to as the RNN-transducer (Graves, 2012). More recently,
the attention-based encoder-decoder model has been applied to ASR (see e.g Chorowski,
Bahdanau, Cho, et al., 2014; Chan, Jaitly, et al., 2016). In this approach, the variable-length
hidden representation computed by the encoder is converted at each output time step to a
fixed-length vector through a weighted sum, which weights are provided by the attention
mechanism. The decoder then predicts the output based on this fixed-length vector.

2.6.1 Performance

If the simplicity of the training procedure of E2E systems is attractive, they used to offer
reduced performance over traditional HMM-based systems, especially so when used without
an external LM. For example, the attention-based S2S model trained by Chan, Jaitly, et al.
(2016) achieves results 76% relatively worse than a state-of-the art HMM-based model
(reduced to -29% rel. with the use of an external LM). Using a much bigger dataset (∼12,500
hours), Prabhavalkar, Rao, et al. (2017) managed to reach competitive results on a dictation
task, but were still performing 13–35% worse on voice-search data. Very recently, Chiu et al.
(2018) managed to reach state of the art performance on both dictation and voice search tasks
(using the same 12.5K hours dataset), thanks to some of the many improvements proposed in
the last years to improve S2S architectures, such as the multi-head attention. This mechanism,
originally proposed by Vaswani et al. (2017), allows the decoder to attend to several locations
of the encoded embedding.

While the work I just presented rely on very large dataset, E2E models can also perform
well in lower resource conditions. For example, Rosenberg et al. (2017) achieved competitive
results on several languages using as few as 40 hours of data, even though they failed to
surpass a DNN-HMM baseline.

2.6.2 Attention-based encoder-decoder architecture

A more thorough review of the attention-based encoder-decoder architecture, which is used
in chapter 5, is now proposed.

Between the different E2E approaches, the attention-based encoder-decoder architecture
has been shown to give better results (Prabhavalkar, Rao, et al., 2017). While the original
model (Bahdanau, Cho, et al., 2015) was proposed for neural machine translation (NMT),
several ways to adapt it for speech recognition have since been proposed.
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A first difference with machine translation resides in the ratio between the length of the
input and output sequences: in speech recognition, the input sequence tends to be much
longer than the output sequence. Chan, Jaitly, et al. (2016) proposed to use pyramidal
layers to downsample the input, where the time resolution in a layer is divided by 2 by
concatenating the output of every 2 units from the layer below. This reduces the number
of hidden states the attention has to attend to, thus improving both the accuracy and the
computational performance. Similarly, convolutional neural networks (CNNs) have been
shown to be effective (Hori et al., 2017), leading to further improvement.

Another concern pertains to the global attention mechanism which is a bit too flexible for
speech recognition (an essentially monotonic left-to-right process). Indeed, during training,
the attention mechanism can access the whole input sequence (global property) while only a
small portion of it is relevant for the prediction of next output token in speech recognition.
The attention can also jump from a position to another with no constraint on the distance
between the two positions and their chronology (i.e. the second position can be located before
the first one). This can lead to corrupted alignments (especially for long sentences or in
noisy conditions). Several strategies have been proposed to enforce a monotonic left-to-right
attention better fitting the speech process. In their pioneering work, Chorowski, Bahdanau,
Cho, et al. (2014) already proposed a penalty based on the distance between current and
previous attention to encourage locality. They later proposed a location-aware attention
mechanism (Chorowski, Bahdanau, Serdyuk, et al., 2015) where the previous attention
weights are fed to the attention mechanism. Convolutional features are computed based on a
learned convolutional kernel, allowing the attention mechanism to base its predictions on
the previous attended location. In the same vein, Tjandra et al. (2017) proposed to predict
the center of the next attended location as an increment over the last predicted center (thus
enforcing monotonicity). By only considering a small window around this new center,
locality is also enforced.

The local monotonic attention mechanism proposed by Tjandra et al. (2017) still relies
on the full embedding from the encoder when computing the center of the attention for next
output. Other approaches proposed to restrict the input to a smaller window. While this
helps enforcing locality and monotonicity, it also has computational advantages as it reduces
the size of the embedding over which attention computations are performed. It may also
have interesting properties in the context of command recognition as it may better enable
online processing of speech, where processing can start before all the utterance is acquired.
One such approach has been proposed by Bahdanau, Chorowski, et al. (2016), using a fixed
length window starting from the median of the previous attention weights. Alternatively,



2.6. End-to-end models 25

Jaitly et al. (2016) explored the possibility to use fixed blocks of equal length. A block is
discarded when the decoder produces an end-of-block symbol. In both cases though, a large
window/block length has to be used to get good results, which limits the effectiveness of the
approach so far.

Taking a different approach, a hybrid CTC/Attention architecture trained in a multi-task
fashion has been proposed by Kim et al. (2017) (see also Watanabe, Hori, Kim, et al., 2017,
for a more extended presentation). The idea there is to use the monotonous and left-to-right
properties of CTC to find better alignments, which compensate for the over-flexibility of the
attention-based decoder.

It has also been reported that attention-based S2S models sometime produce incomplete
transcriptions. A common solution to this is to use a coverage term (Chorowski and Jaitly,
2016) which encourages the attention weights to cover the input more completely over the
whole transcription process.

2.6.3 Output targets

A grapheme- or phoneme-based output is commonly used with S2S models, with phonemes
having the inconvenience of requiring a pronunciation dictionary. Recently, the acoustic-
to-word approach proposed to directly use words as output for S2S models (more precisely
with CTC-based models). First attempts showed promising results despite the method
requiring order of magnitude more data to model accurately large vocabularies (Soltau et al.,
2016; Audhkhasi, Ramabhadran, et al., 2017). Attempts have been made to improve the
computational efficiency (Soltau et al., 2017) and the data frugality (Audhkhasi, Kingsbury,
et al., 2017) of these models.

Another interesting direction is the use of a conjunction of word and sub-word units
(sometime called "word-pieces") to model OOV words. Originally proposed for NMT
(Sennrich et al., 2016; Wu et al., 2016), it has been successfully applied to acoustic-to-word
CTC models (Li, Ye, et al., 2018), recurrent neural network transducer (RNN-T) architecture
(Rao et al., 2017), or attention-based approaches (Chan, Zhang, et al., 2017; Chiu et al., 2018;
Zeyer, Irie, et al., 2018).

2.6.4 Online processing

The use of a local window when computing the attention weights (Bahdanau, Chorowski,
et al., 2016; Jaitly et al., 2016) is a first step in enabling online processing with S2S
architectures. Another limit of the approach lies in the bidirectional RNN layers often used
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in such approaches. Bidirectional RNNs – especially bidirectional LSTMs – have been
shown to be more powerful than their unidirectional equivalent. The main drawback of such
layers though is the necessity to wait for the end of the sentence to perform the backward
computation. This adds latency which is highly detrimental in an online pipeline. Work on
windowed bidirectional RNNs (Zeyer, Schlüter, et al., 2016) could solve this issue.

2.7 Keyword spotting

In KWS, the goal is to find occurrences of one or more keywords in audio recordings. The
two main applications of KWS are spoken document retrieval (SDR) and vocal command
systems (sometime referred to as online or streaming KWS). Each of these applications take
the problem from an opposite point of view. In SDR, the goal is to retrieve audio documents
from a database based on a keyword given by the user. The audio documents are collected
before the search occurs while the keyword is given at search-time only. Conversely, in vocal
command systems, the list of keywords is known before-hand while the audio stream, where
the keyword is to be searched for, is only available at search-time. This difference has a
strong incidence on the requirements and the methodologies applied to both problems. It is
common in SDR to pre-process the data to allow faster search when a query is generated.
However, as the keyword is not known at this point, an open or large vocabulary should
be used to not restrict the queries that can be made afterward. In vocal command systems,
the audio stream has to be treated online, thus imposing strong computational and latency
constraints on the keyword spotting system. Though, as the list of possible keywords is
known before-hand, the system can be tuned for them in order to make it more efficient.

A field of research that is closely related to KWS (particularly the SDR task) is that
of query-by-example, where the query keyword is given verbally instead of textually. The
comparison with audio recordings can then be made directly in the acoustic domain. This
setup is less relevant in the context of spoken commands and will not be treated here.

I will now give an overview of the different approaches devised for KWS. Contrary to
a common way to classify them based on the methodology used (e.g. HMM-based versus
neural network based), I will present them based on the high-level strategy employed. I will
start by presenting the lattice-based search methods, move to keyword-filler models to finish
with the (few) approaches that try to estimate directly a confidence score for the presence
of each keyword, without resorting to a filler model. A special focus will be put on the
application of these methods to spoken command interfaces as it is the topic of this thesis.
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2.7.1 Lattice-based approaches

A straightforward approach to the KWS problem is simply to apply a large-vocabulary
continuous speech recognition (LVCSR) system on the audio records, in order to extract
a textual representation of what is said. This representation can then be search textually
for the keyword. While the 1-best output of the ASR system can be used directly, N-best
lattices have been shown to give better results (Szöke et al., 2005; Miller et al., 2007). Indeed,
ASR systems are never perfect and will inevitably output wrong transcriptions. In such
cases though, the correct words are likely to be present in the lattice with high probability.
Searching the lattice then tends to produce higher recall (which is the probability of detecting
keywords when they are present), with the risk of generating more false detections. A
threshold can be further applied on the confidence of each hypothesis in the lattice to control
such false detections.

With the recent progress of ASR systems, this approach can deliver very high performance.
It also has the advantage that knowledge of the keyword(s) is not necessary to generate the
lattice. This proves useful in SDR context, where the lattice can then be generated in advance
and stored. Textual search over the lattices, which is very efficient, can be done at query-time,
thus optimizing the whole process. The main disadvantage in that case is the dependence on
the vocabulary and the grammar of the LVCSR system. Named entities for example, despite
being useful keywords, are hardly manageable in such conditions.

One way to solve this issue is to work at the sub-word level. Speech recognition systems
based on phonemes (Szöke et al., 2005) or other sub-word units (see e.g. Garcia and Gish,
2006, who use an unsupervisedly learned sub-word inventory) have been used to generate
unconstrained lattices (vocabulary- and grammar-wise). Keywords can then be searched
based on their sub-word transcription. In addition, partial matches can also be detected and
the edit distance used as a confidence score (see e.g. Miller et al., 2007).

The approach used by Garcia and Gish (2006) is original from several points of view.
Segment-based sub-word units (which are phone-like and syllable-like units according to the
authors) are used instead of the more common phonemes or words. Moreover, it is one of
the rare approaches where these units are learned unsupervisedly from the speech corpora.
Only a low amount of word-level transcription (as low as 15 mins) is required to train a
grapheme-to-sound model, which is used to map the keyword to its sub-word transcription.
A search based on dynamic programming is then used to detect the keyword in the 1-best
transcription of the audio record.

Though, as shown by Szöke et al. (2005), sub-word lattices tend to perform worse
than word lattices. This can probably be attributed to the limited language constraints (in
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terms of vocabulary and grammar) put on this type of models. This brings us to one of the
main observation pertaining to KWS: despite the task not requiring to model non-keyword
speech or non-speech signal, performance tend to increase with the capacity of the system
to model them accurately. Hence, LVCSR systems which try to model the whole speech
sequence tend to perform better than other techniques. This is of particular relevance in the
context of streaming KWS as more powerful models are usually more demanding in terms of
computations. A trade-off has then to be found between computational efficiency and the
capacity to model arbitrary speech (and thus the performance).

More recently, Rosenberg et al. (2017) compared end-to-end architectures (a CTC-based
model and an encoder-decoder with attention) with a more traditional DNN-HMM system
in low-resource conditions. The different models where tested for both ASR and KWS
tasks. In the later case, search based on word or grapheme lattices was performed (where the
grapheme-based lattice was used for OOV words). Unlike ASR, poorer performance was
reported for KWS with the end-to-end models, mainly due to their sharp posteriors resulting
in a limited hypothesis space. Zhuang et al. (2016) also proposed an end-to-end all-neural
approach, where an architecture based on LSTM units trained with the CTC loss is used to
produce the phoneme lattices. Despite working at the phoneme level, and unlike previously
mentioned work, this model showed promising results.

One of the main drawbacks of lattice-based search in the context of vocal command
detection is the computationally intensive pipeline they require. This is not much of a problem
in SDR where documents can be processed offline. It is however a big limitation when the
system has to be used online. Phoneme-based (or more largely sub-word based) lattices are
more tractable than word-based lattices but tend to give worse performance. Also, in both
cases, transcription of keyword and non-keyword speech is treated equally. An exception to
that is the work by He, Prabhavalkar, et al. (2017) which used a RNN-T model to produce
phoneme- or grapheme-based output where the keyword can be searched for. In addition to
specifically addressing the streaming condition, they propose an attention mechanism to bias
the model toward a specific keyword at runtime. While this approach has the advantage of
allowing unconstrained keyword detection, the model is trained with about ∼ 18000 hours
of data. This illustrates another disadvantage of the lattice-based approach: while large
vocabulary ASR systems produce strong results when trained on large datasets, the same
level of performance is not guaranteed for smaller datasets. The keyword-filler strategy can
address both issues.
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FIGURE 2.3 Generic configuration of a keyword-filler model, with the word
models and the garbage model organized in a loop.

2.7.2 Keyword-filler modeling

The keyword-filler approach tries to find a middle-ground between the two extremes offered
by LVCSR and phoneme-based lattice search regarding vocabulary and grammar constraints.
While the keywords are modeled accurately, a garbage or filler model is used for the non-
keyword speech which models it more or less accurately (illustrated in Figure 2.3). The
approaches found in the literature range from a single garbage model to a CI phoneme loop
with a bigram language model for the transition between the phonemes. For the keywords,
more accurate CD phoneme models or word models3 can be used. At runtime, the Viterbi
algorithm is used to compute the best path and a keyword is detected when this path goes
through the corresponding word model.

Comparisons of different granularity for the garbage model have been made by Bourlard,
D’hoore, et al. (1994) or Manos and Zue (1997). Bourlard, D’hoore, et al. experimented
with a unique garbage model, a CI phoneme loop or an intermediate model composed of
7 clusters obtained by merging similar CI models. Comparing the different methods with
parameters leading to equal recognition and rejection performance, the authors found the CI
phoneme loop to be stronger than the single garbage model, but weaker than the clustered
models. Manos and Zue compared a LVCSR system with a CI phone-like filler composed

3An advantage of the small vocabulary considered in KWS is the possibility to use word models rather
than phoneme models. Recent work has also explored word modeling for large vocabulary ASR (Soltau et al.,
2016; Soltau et al., 2017; Audhkhasi, Ramabhadran, et al., 2017; Audhkhasi, Kingsbury, et al., 2017; Li, Ye,
et al., 2018) in the E2E framework but very large datasets are required to achieve competitive performance (see
subsection 2.6.3 for more details).
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of 57 (segment-based) models, as well as lower levels of granularity obtained by clustering
the CI models (with 18, 12 or 1 cluster). Stronger garbage models consistently give better
results, at the expense of more computations. Overall, phoneme loops tend to give a good
compromise between performance and computational constraints.

Similarly, Szöke et al. (2005) compared the use of a LVCSR system (which imposes
strong constraints vocabulary- and grammar-wise) and a phoneme recognizer (minimal
constraints) to a phoneme-based keyword-filler approach. Again, modeling extraneous
speech accurately tends to improve keyword detection, and the keyword-filler approach
proves to be a good compromise between the two other approaches. This is especially true
for streaming applications as the set of keywords is fixed in advance.

All-neural approaches have also been used in this context, where the neural network
directly predicts the probability of each frame to belong to one of the keywords or the filler
model. One of the first attempts of this kind was proposed by Chen et al. (2014) using a
feed-forward DNN. Specifically aimed at streaming applications, this model was shown
to outperform a keyword-filler model. The simplicity of the architecture, both from the
training and deployment points of view, make it very appealing. No complex decoding is
required and it can be trained end-to-end. An extension to CNN-based networks (Sainath
and Parada, 2015) has also been proposed. With embedded systems in mind, the trade-off
between the number of parameters of the model (or the number of operations performed), and
the performance is studied. Tang and Lin (2018) studied the inclusion of residual layers and
dilated convolutions to further improve the performance, while Shan et al. (2018) explored
the used of an attention-based architecture in the same context. While this fully neural
approaches seems very competitive for keywords, they have never been applied on full
sentences (as the ones we are considering in this thesis). Chen et al. (2014) proposes a simple
mechanism to detect expressions composed of several words by multiplying the score of the
individual words over a window. This strategy has its limits as it does not take the word order
into account, or the presence of other words (such as a negation) in between (issues partially
solved by Prabhavalkar, Alvarez, et al. (2015)). The use of a recurrent architecture, as done
by Shan et al. (2018) may be another way to solve these issues.

2.7.3 Without explicit garbage model

The approaches I will now present all have in common that they do not use an explicit model
for extraneous speech at all. The online garbage model proposed by Bourlard, D’hoore, et al.
(1994) is such an approach. The score of the online garbage is computed as the average of
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the N best phoneme models used to represent the keywords. This way, no additional model
is required for the non-keyword speech. This approach also proved to be the most successful
one (against a single garbage model, a CI phoneme loop and a compressed version of the
later one with 7 phoneme clusters).

Junkawitsch et al. (1996) proposed a similar approach. Keywords are modeled with a
phoneme-based GMM-HMM and decoded with a modified version of the Viterbi algorithm.
Keywords are allowed to start and stop at any time step. At each time step, the decoding
algorithm keeps track of a normalized score for each state, corresponding to the best path
leading to this state. The normalized score relates the score of state s j to the state with
highest emission probability, similarly to the online garbage model of Bourlard, D’hoore,
et al. (1994), but directly within the score. A keyword-specific threshold is used for decision,
for which an optimal value can be computed analytically. Advantages of the method include
low computational and storage requirements, as well as the possibility to run the algorithm
time-synchronously. However, the performance of the system is not compared against any
other system making it hard to evaluate its performance. Also, the algorithm is susceptible to
changes in the acoustic conditions (e.g. noise).

Finally, Keshet et al. (2009) proposed a discriminative method based on support vector
machines (SVMs). The acoustic features corresponding to the sentences to test and the
target keyword are mapped into the same vectorial space, where a SVM is used to separate
sentences with and without the keyword. The method outperforms a conventional HMM-
based approach, but relies on manually designed feature functions.

2.8 Evaluation

2.8.1 WER

The WER is the most common evaluation metric for speech recognition systems. To compute
it, the hypothesized transcription is aligned with the reference transcription through dynamic
programming techniques. As a result, several indicators can be computed:

• S: the number of words that were substituted with a different one in the hypothesized
transcription

• D: the number of words that were deleted

• I: the number of words that were inserted
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TABLE 2.1 Confusion matrix for keyword detection.

True condition
Keyword
present

Keyword
absent

Predicted
condition

Keyword
detected

True positive False positive

Keyword not
detected

False negative True negative

• C: the number of words that were correctly predicted

• N: the total number of words in the reference (N = S+D+C)

The WER can then be computed as:

WER =
S+D+ I

N
(2.26)

It is also possible to define an accuracy score WAcc as:

WAcc = 1−WER =
N −S−D− I

N
=

C− I
N

. (2.27)

2.8.2 KWS

When dealing with KWS systems, it is more common to report the performance with a
confusion matrix, in terms of the predicted condition (positive if a keyword is detected,
negative otherwise) and the truthness of this prediction. Table 2.1 represents the 4 possible
outcomes.

Often, some hyperparameter is available which allows to trade between true and false
positive rates. By increasing the probability of detecting a keyword, we are less likely to
miss one but also more likely to detect one when it is not present. The evolution of the true
positive rate as one increase the false negative rate corresponds to the receiver operating
characteristic (ROC) curve. A good KWS tries to maximize the area under this curve.

Another way to evaluate a KWS system is through the precision and recall scores, defined
as:

precision =
∑ true positive

∑ keyword detected
=

∑ true positive
∑(true positive+ f alse positive)

(2.28)
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recall =
∑ true positive

∑ keyword present
=

∑ true positive
∑(true positive+ f alse negative)

(2.29)

Those two values can be combined in a single score called the F1 score and defined by:

F1 score =
2

1
recall +

1
precision

(2.30)

2.9 Proposed approach

Unlike what is usually done for commercial products incorporating vocal command recog-
nition, this thesis propose to explore direct detection of commands without the use of a
wake-up word. However, KWS approaches to streaming application focus on single word
commands and are hardly applicable to direct detection of fully-fledged sentences. For the
iCubrec pipeline, I thus propose the use of a VAD system as a first step. This should allow to
filter most of the silence and reduce the computational load of the system in large proportions.
The audio segments extracted by the VAD system can then be processed by a more classical
system based on HMMs, thus allowing to reuse the large number of techniques available in
that context (such as domain adaptation), or a more original E2E system. In both cases, the
model will have to deal with the presence of non-command sentences which will require the
use of a garbage model.

Another important aspect of a spoken command recognition system is usually the problem
of command understanding. As this is not the subject of the thesis, I simply relied on a
one-to-one mapping between each command and a corresponding action (said otherwise, the
language understanding module is reduced to a look up table).



Chapter 3

Resources

3.1 Toolkits

The two main toolkits available for speech recognition are the Hidden Markov Model Toolkit
(HTK) (Young, Evermann, et al., 2015) and Kaldi (Povey, Ghoshal, et al., 2011). While
Kaldi tends to be favored by the speech community lately, thanks to its active community
and the availability of many recent techniques, HTK has the advantage of being better
documented and more accessible for newcomers. For these reasons, I initially used HTK
for my experiments. The work I did on domain robustness and the first version of iCubrec
rely on this framework. More recently, I moved to Kaldi as it offers more flexibility. The
CNN-HMM baseline in chapter 5 and the new version of iCubrec where both implemented
with Kaldi. I will quickly describe both frameworks. I will also present TensorFlow (Abadi
et al., 2016) deep-learning library, used to train the DNN-based acoustic models in both cases.
While HTK required the development of transfer tools to convert the neural networks trained
with Tensorflow into its own format, Kaldi can natively take as input posteriors computed
with an external model. Finally, the End-to-End Speech Processing Toolkit (ESPnet)1 will be
presented, which was used to train sequence-to-sequence models.

3.1.1 The Hidden Markov Model Toolkit

HTK is a toolkit for building and manipulating HMMs, which is mainly used for speech
recognition. Currently maintained by the Cambridge University Engineering Department
(CUED), the code is freely available for academic research. It consists of a set of libraries
and modules that provide facilities for all the tasks necessary to build a speech recognition

1https://github.com/espnet/espnet

https://github.com/espnet/espnet
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system, such as feature extraction, HMMs estimation and testing or result analysis. The
output probabilities of the HMM model can be estimated with GMMs or DNNs, for which
native support has been recently added (as of version 3.5) (Zhang and Woodland, 2015).

Neural network functionalities remain limited though: only feed-forward networks can
be used, with a limited set of activation functions or training options. In order to alleviate
this constraints, I alternatively trained networks with an external deep learning framework
(TensorFlow in this case) and converted the trained models to HTK format for decoding. This
can be done easily with the appropriate code and allows to use more complex optimization
procedures, even though we are still limited to the architectures recognized by HTK.

A strong advantage of HTK is its accompanying book (Young, Evermann, et al., 2015)
which provides an extensive documentation to the toolkit.

3.1.2 Kaldi

Kaldi, named after the discoverer of the coffee plant, is a modern speech recognition toolkit
freely available under the Apache License. Its development started in 2009 and was based on
HTK, but quickly became an independent product. A particular effort is made to propose a
flexible and extensible set of functions. For instance, and contrary to HTK, Kaldi can easily
be interfaced with external deep learning libraries. It also provides complete recipes for
the main speech datasets. Mainly intended for researchers, its documentation is not always
accessible to non-expert users.

3.1.3 TensorFlow

TensorFlow is not a speech recognition framework per se but can be used to train DNN-based
acoustic models. Mainly developed by Google, it is an open source software library (released
under the Apache 2.0 license) for high performance numerical computation, mainly used for
machine learning and deep learning applications. Python is the main programming language
supported by TensorFlow and the one supporting the widest range of features. An applica-
tion programming interface (API) in C language is also available with less functionalities.
Tensorflow originally represents the flow of computations through a graph, which has to be
compiled before it can be applied to any data. More recently, an imperative programming
environment called "eager mode" has also been added which allows immediate evaluation of
operations (officially announced in version 1.7).

TensorFlow was used to train all the DNN-based acoustic models presented in this thesis,
in conjunction with either HTK or Kaldi.
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3.1.4 End-to-End Speech Processing Toolkit

The ESPnet toolkit was originally developed for experiments on hybrid CTC/Attention
end-to-end models (Kim et al., 2017; Hori et al., 2017; Watanabe, Hori, Kim, et al., 2017). It
is now freely available and provides a complete setup for speech recognition. Both pytorch2

and chainer3 deep-learning libraries can be adopted. Kaldi’s data preprocessing and scoring
facilities are used, from which the recipe style was also borrowed.

Technically, the toolkit proposes different kinds of encoders (based on CNNs or pyrami-
dal bilateral long short-term memory (BiLSTM)) and attention mechanisms (dot product,
location-aware or multi-head, see section 2.6). It also supports the use of a language model
for rescoring (based on RNNs or LSTMs) and provides recipes for many well-known datasets
(e.g. Wall Street Journal (WSJ), Switchboard, CHiME 4 and 5, Librispeech, TED, AMI,
Voxforge).

3.2 Datasets

The different datasets used in the thesis will be presented in following subsections. When
presenting baseline systems, I will limit myself to DNN-based acoustic models as it is the
focus of this thesis. In all the cases, the alignments are obtained from a GMM-HMM system,
which is also used to train the HMM and provide the triphones clustering (TIMIT excepted
as we use monophone targets).

I will start with the TIMIT dataset (Garofolo, Lamel, et al., 1993) used in the experiments
on domain adaptation. I will then present the WSJ dataset (Garofolo, Graff, et al., 1993).
WSJ is not used on its own but is the starting point of CHiME4 (Vincent et al., 2017) which
was used as a source corpus for experiments on domain robustness with the VoCub dataset in
chapter 6. The Speech Commands (SC) dataset (Warden, 2018) is used in the experiments
on few-shot learning for S2S models in chapter 5. Finally, I will introduce the VoCub dataset
(Higy, Mereta, et al., 2018) that I gathered in the scope of this thesis to address the problem
of command recognition for robotics.

2https://pytorch.org/
3https://chainer.org

https://pytorch.org/
https://chainer.org
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3.2.1 TIMIT

Dataset description

TIMIT (Garofolo, Lamel, et al., 1993) is a dataset of clean read speech that was commissioned
by the Defense Advanced Research Projects Agency (DARPA). It was recorded at Texas
Instruments (TI) and transcribed and Massachusetts Institute of Technology (MIT), hence its
name.

It is composed of recordings from 630 american English speakers from 8 major dialects
and both genders, who read 10 sentences each. From these 10 sentences, 2 are identical for
all speakers (referred to as the SA sentences in the corpus), 5 of them are read by 7 different
speakers (referred to as the SX sentences) and the remaining 3 sentences are unique for each
speaker (referred to as the SI sentences). The dataset has been designed to be phonetically
balanced and provides both phonetic and lexical alignments.

Validation and coreTest sets

The dataset provides a default split of speakers in training and test sets. However, some of
the SX sentences read by speakers in the test set are shared with speakers from the training
set. To avoid that, a core test set is also specified in the documentation. The speakers from
this core test set read sentences different from the ones used in the training set. In all the
experiments with TIMIT, this core test set was used as the actual test set. The remaining set
of speakers, which are part of the original test set but share some sentences with the training
speakers, form the validation set.

Evaluation

The TIMIT corpus being meant for acoustic-phonetic studies, it is standard to evaluate
models trained on it in term of phone error rate (PER) and not WER, as is usually done
with other datasets. In the same way, a phone bigram LM is used. I followed this standard
procedure in all experiments reported in this thesis.

3.2.2 Wall Street Journal

WSJ (Garofolo, Graff, et al., 1993) is also a DARPA dataset that was built to support research
on LVCSR systems and consists of clean read speech. The utterances are selected from a
corpus of Wall Street Journal news and are divided into two subsets recorded in different
phases, WSJ0 and WSJ1. WSJ0 is composed of the 7138 utterance and adding WSJ1 brings
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TABLE 3.1 Summary of the number of sentences and speakers in CHiME4
dataset.

Subset Real data Simulated data
# of speakers # of sentences # of speakers # of sentences

tr 4 1600 83 7318
dt 4 1640 4 1640
et 4 1320 4 1320

this number to 36515 sentences. Some spontaneous dictation is included in addition to the
read speech.

Training, validation and test sets are provided for speaker-independent (SI) and speaker-
dependent (SD) models, with vocabularies of 5k or 20k words. Bigram language models
are provided for both vocabulary sizes, with or without verbalized punctuation and for open
or closed vocabulary sets. Recordings from two microphones are available, a close-talking
Sennheiser HMD414 and a second microphone which may vary.

3.2.3 CHiME4

The 4th Computational Hearing in Multisource Environments (CHiME) challenge4 (Vincent
et al., 2017) addressed distant speech recognition. The accompanying read speech corpus
is based on WSJ setup, more precisely the SI 5k vocabulary ("no verbal punctuation" –
NVP) subset of WSJ0. Unlike this later dataset, recordings in CHiME4 (real and simulated)
correspond to distant speech in noisy conditions. Four kinds of environments are considered:
bus, cafeteria, pedestrian area, street junction.

Real recordings for training (tr), validation (dt) and test (et) sets correspond to data
from 4 speakers each. Simulated data were generated by artificially mixing clean speech with
pre-recorded noise. For the training set, the original 7138 utterances from WSJ0 are used.
For validation and test sets, utterances recorded in a booth are used to generate simulated
data. Table 3.1 summarizes the number of speakers and sentences in each subset.

For all recordings, 6 channels are available, corresponding to 6 different microphones
present on the tablet used to prompt the sentences (5 in the front and 1 in the back of the
device). For real data, an additional channel is available corresponding to a close microphone.
The challenge was then divided into 3 tracks depending on the number of microphones
available at test time – 6 channels, 2 channels or 1 channel. For the two last tracks, the

4http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/data.html

http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/data.html
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microphones used for each utterance in the validation and test set were randomly sampled
from the 5 front channels.

3.2.4 Speech Commands

Description of the dataset

Google’s SC dataset (Warden, 2018) is a corpus of spoken words designed to meet the
specific requirements of KWS. The dataset tries to provide freely accessible data to train
and evaluate such systems, with the aim of making vocal interfaces available to a wider
audience of researchers and makers, a philosophy that corresponds to my objective of making
command recognition technology more accessible. Unlike VoCub dataset, the corpus focuses
on keywords but has some nice properties: it provides many examples per keyword (with
a mean of ∼3000 examples per classes), it covers a wide variety of accents and data was
collected in realistic conditions. This properties made it a good candidate for my experiments
on sequence-to-sequence and few-shot learning (chapter 5).

The first version of the dataset was composed of 30 keywords with ∼65,000 examples
overall. A second version of the dataset was released recently, which brings these numbers
to ∼105,800 recordings for 35 different keywords, pronounced by 2618 speakers. Each
record has a fixed duration of 1 second and contains an isolated word, so as to resemble a
trigger task, where a wake-up word is used to activate speech recognition on a device. It is
composed of a core of 24 common words, including the 10 digits and commands that could
be useful for Internet of Things (IoT) or robotics (e.g. yes, no, on, off ). The 11 remaining
words are mainly meant to populate an _unknown_ category, corresponding to OOV speech.
This group tries to cover as many phonemes as possible and also contains some words with a
pronunciation close to that of some core keywords (e.g, tree which is close to three).

The precise task suggested by Warden (2018), which was also the goal of a Kaggle
challenge5, corresponds to the classification of 10 of the keywords (out of the 35 available).
Two additional classes are considered: (i) a _silence_ category corresponding to records
free of speech, and (ii) an _unknown_ category for records containing speech that is none of
the keywords. Several minute-long records of background noise are bundled with the dataset
and can be used to generate examples for the _silence_ category, while the _unknown_

category is populated with the remaining 25 keywords. See Table 3.2 for the list of words by
category (target keywords vs. unknown words).

5https://www.kaggle.com/c/tensorflow-speech-recognition-challenge

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
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TABLE 3.2 List of the words present in the SC dataset by category. Words
with an asterisk are new in version 2 of the dataset.

Set Words

target keywords down, go, left, no, off, on, right, stop, up, yes

unknown words backward*, bed, bird, cat, dog, eight, five, follow*, forward*,
four, happy, house, learn*, marvin, nine, one, seven, sheila,
six, three, tree, two, visual*, wow, zero

3.2.5 VoCub

Recording a dataset has two main advantages: (i) it allows to easily test the recognition
system and reliably estimate its performance in real conditions, and (ii) it can be used to adapt
the system in order to reduce the training-testing mismatch problem (see subsection 4.1.1 for
the definition). For this reasons, I gathered a dataset corresponding to a real-usage scenario
with the robot that will be used as a test application. This resulted in the VoCub dataset6

(Higy, Mereta, et al., 2018) that will be presented in the following.

Target application

As the target application on the robot, I chose the interactive object learning (IOL) demo7.
The purpose of this demo was to demonstrate visual object learning and classification on
iCub. The robot is presented with new objects together with a verbal label and learns the
object’s visual appearance. It can then recognize the different items and perform simple
actions such as grasping or pointing to them.

For the dataset, 8 different objects have been selected (illustrated in Figure 3.1), leading
to 103 unique english commands (see Table 3.3 for some examples or Appendix A for the
complete grammar).

Acquisition process

The commands were recorded with a tablet, in order to have a more generic setup that does
not require the robot to collect training data. Recordings were done in the same conditions
as normal experiments with the robot, that is in the room where experiments with iCub are

6The dataset can be freely downloaded from the accompanying website at
https://robotology.github.io/natural-speech/vocub.

7A demonstration video can be found at https://youtu.be/ghUFweqm7W8, where a pre-existing command
recognition system based on Microsoft SDK is used.

https://robotology.github.io/natural-speech/vocub
https://youtu.be/ghUFweqm7W8
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FIGURE 3.1 The 8 objects selected for the VoCub dataset. From top to bottom
and left to right: bottle, ladybug, turtle, toy, box, octopus, lego, car.

TABLE 3.3 10 examples of the commands used in the VoCub dataset

I will teach you a new object.
This is an octopus.
What is this?
Let me show you how to reach the car with your left arm.
Let me show you how to reach the turtle with your right arm.
There you go.
Grasp the ladybug.
Where is the car?
No, here it is.
See you soon.
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usually carried over and with the same environmental noise (noisy servers and computers
running, possible concurrent speakers in the background).

The data collection was split in two phases for each speaker, a non-static (cond = 1)
and a static condition (cond = 2), with an equal number of recorded utterances for each
condition. In the static condition, the speaker sat in front of two screens where the sentences
to read were displayed. In the non-static condition, the commands were provided to the
subject verbally through a speech synthesis system, and the subject had to repeat them while
performing a secondary manual task8. This secondary task was designed to be simple enough
to not impede the utterance repetition task, while requiring people to move around the robot.
The distance between the speaker and the microphone in this last condition ranges from 50
cm to 3 m.

An additional set of sentences was collected for the testing group (same structure but
different vocabulary) to test the recognition system for new commands not seen during
training. The sentences consist of 20 new commands, pronounced by each speaker of the test
set twice: once in non-static condition (cond = 3) and once in static condition (cond = 4).
See section A.2 for the extended grammar, including the new sentences.

Dataset

The recordings consist of the 103 unique commands, which are composed of 62 different
words. In total, 29 speakers were recorded, 16 males and 13 females, all of whom are
non-native american/british English speakers. I finally obtained 118 recordings from each
speaker: of the 103 unique commands, 88 were recorded once, and 15 twice (corresponding
to sentences containing rare words, see Table A.1 in appendix). This resulted in about 2.5
hours of recording in total.

A split of the speakers into training, validation and test sets is proposed with 21, 4
and 4 speakers per set respectively. The files are organized with the following convention
<setid>/<spkrid>/<spkrid>_<cond>_<recid>.wav, where:

• <setid> identifies the set: tr for training, dt for validation and et for testing.

• <spkrid> identifies the speaker: from 001 to 021 for training, 101 to 104 for validation
and 201 to 204 for testing.

• <cond> identifies the condition (see above).

• <recid> identifies the record within the condition (starting from 0 and increasing).
8The acquisition process is better illustrated by this video: https://youtu.be/N-rrNQ0gnRY.

https://youtu.be/N-rrNQ0gnRY
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TABLE 3.4 Hyperparameters used to train the acoustic DNN-HMM baseline
on VoCub.

Parameter Value

Input size 440
Output size 681
Number of hidden layers 4
Number of units per hidden layer 2000

Mini-batch size 200
Momentum 0.9
Initial learning rate 0.01
Decay rate 0.95
L2-norm regularization weight 0.001
Number of epochs 30
Number of epochs for early stopping 3

Baseline

The baseline DNN-HMM model I will now present has been trained by Leonardo Badino.
The acoustic model was trained using linear discriminant analysis (LDA)-maximum

likelihood linear transform (MLLT) features, extracted with Kaldi over windows of 25 ms
with a stride of 10 ms. To obtain them, 13 MFCCs are first extracted with first and second
derivatives. A context of 3 frames from each side is then used, resulting in a vector of
dimension 234, which is reduced to 40 values through LDA. A diagonalizing transform
(MLLT) is finally estimated and applied.

The DNN model, is trained through Tensorflow to predict senone probabilities. It uses
the LDA-MLLT features from 11 frames (5 from each side) as input and has an output size
of 681. It is composed of 4 hidden layers of 2000 units with ReLU activation function for
intermediate layers and softmax function for the final one. It is trained through cross-entropy,
with mini-batch SGD. A decaying learning rate with momentum is applied, as well as l2-norm
regularization. The network is trained for a maximum of 30 epochs and early stopping is
applied if the performance on the validation set does not improve for 3 consecutive epochs.
Table 3.4 summarizes the values of the different hyperparameters.

Decoding and evaluation are done with Kaldi, using a strict grammar (strict condition
hereafter) allowing only the commands present in the dataset. As can be seen from Table 3.5,
despite the small size of the dataset, very good results can be achieved. We reach an accuracy
of 92% on the test set without the use of any advanced technique. While this is still quite low
for practical use (about 1 sentence out of 10 is mis-recognized), it is promising given the size
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TABLE 3.5 Evaluation of the baseline system on VoCub validation and test
sets. FER of the DNN, WER and SER (or command accuracy) are given for

the test set with more or less restrictive grammars

Grammar
Validation set Test set

FER
(%)

WER
(%)

SER
(%)

FER
(%)

WER
(%)

SER
(%)

strict 48.4 5.62 13.56 48.6 4.14 7.64
loop 48.4 28.64 63.35 48.6 19.18 44.59

of the training set. To further evaluate the performance of the acoustic model and the impact
of the strong grammar, I also report results where the grammar is replaced with a word loop
(referred to as loop condition), which allows any combination of the 62 words from the
dataset. Simply relaxing the syntactic constraints of the grammar results in an important
deterioration of the performance from 7.64% of sentence error rate (SER) to 44.59%. This
suggests that the acoustic model is not very robust and the grammar plays an important role
in the good performance we observed. This motivated my work on domain adaptation which
explored new strategies to improve the acoustic model leveraging on available datasets.

Table 3.6 further analyze the performance of the baseline system on the extended test
set. I report performance on the original sentences (conditions 1 and 2) and the new ones
(conditions 3 and 4) separately. The grammar is also extended to include the new sentences
(see section A.2 for the definition of the extended grammar). Performance on the original
sentences slightly improves with this new grammar. The performance on the new sentences
is very poor though, with only 12% of accuracy, probably due to a poor representation of the
senones present in these new sentences and not in the original ones. It can also be that the
model overfitted to the original sentences. This shows another limitation of the model trained
on VoCub dataset only. Again, domain adaptation may help mitigate the issue to some extent,
as the source dataset can provide a better coverage of the senones. However, because of the
mismatch between the source and target domains, performance may still degrade significantly.
The work on few-shot learning in chapter 5 is an attempt to compensate for that, by exploring
how the set of commands can be extended with only few examples for each new command.
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TABLE 3.6 Evaluation of the baseline system on VoCub extended test set.
WER and SER (or command accuracy) are given for conditions 1 and 2 on one
side and 3 and 4 on the other side. The grammar is also extended to contain

the new sentences introduced in conditions 3 and 4.

Conditions WER
(%)

SER
(%)

1 and 2 3.47 7.22
3 and 4 66.08 88.05



Chapter 4

Robustness against sources of variability

As mentioned previously (chapter 2), the goal of speech recognition is to find a mapping from
the input acoustic signal to the sequence of words that generated it. However, many sources
of variability affect the target signal as it proceeds from the speaker to the listener. A first
group of factors is related to the speaker and influence the production process itself: gender
and age, accent, speaking rate or idiosyncrasies play a role in speech generation and influence
what is emitted. The signal then suffers distortions while it proceeds from the speaker to the
listener: the noise produced by other sources get mixed with the original signal and alter
it. Also, the physical environment impacts the signal through reverberation, as the sound is
reflected by the surfaces of objects present in the environment. Finally, the characteristics of
the listener (be it a human or an electronic device) affect the way the signal is perceived. In
the case of ASR, the difference between microphones is referred to as channel variability.

How to obtain acoustic models that are robust against these sources of variability is a
long-standing research topic. In close-microphone scenarios, speaker variability is the main
issue. Though, as the performance of speech recognition systems improve, they tend to be
used in more adverse acoustic environments and noise robustness is taking more and more
importance. This is even more the case as we also start considering distant microphone
conditions: the longer the distance between the microphone and the speaker, the stronger is
the impact of the noise on the recorded signal. Nonetheless, despite these two main sources
of variability (speaker and noise) having their own specificities, many techniques can be
applied to both factors indifferently.

The following section will present the main solutions that have been developed over the
years to tackle speaker and domain variability.
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4.1 Problem definition and solutions

4.1.1 The training-testing mismatch problem

Acoustic models can learn to deal with most sources of variability in the acoustic signal given
adequate training data. However, in practice, they are trained on a finite set of records that
can only cover those sources partially. Thus, they will likely fail to extrapolate to test samples
corresponding to conditions that are substantially different from the training ones. As the
discrepancy between training and testing (or runtime) conditions increases, the performance
can quickly degrade. In the literature, this is often referred to as the training-testing mismatch
problem. One way to alleviate the issue is to resort to multi-condition training, where the
training data covers different conditions. This prevent the model from overfitting to one
specific context and helps it generalize better to unseen situations.

4.1.2 Domain independent or domain dependent models

In face of the difficulty in covering all possible domains and the deterioration of performance
that can result from mismatched training and testing conditions, there are two complementary
stances one can take. Working on domain independent models, one can try to improve the
invariance of the representation learned by the acoustic model, so that it is less dependent
on the conditions in which the training data has been recorded. Alternatively, one can avoid
the problem altogether by using models trained on data matched to the testing conditions
only. Indeed, such domain dependent models are ensured to perform at least as well as a
domain independent model given enough matched training data. However, they have several
limitations. They require to train and store a different model for each domain considered.
Also, for each new model to train, a big dataset is required (especially so with the recent
deep learning models) and gathering it can be an expensive process.

Hence, if a domain dependent approach results in improved performance, it is traded off
against the greater flexibility of domain independent models. Depending on the application’s
requirements, one or the other may be favored.

4.1.3 Domain adaptation

As we have just seen, domain dependent models give the best performance but require large
amount of training data covering the testing conditions. When the resources available for
the target domain are scarce, an alternative approach is applicable: domain adaptation. This
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approach leverages a larger speech corpus recorded in different conditions (source domain)
to train a model matched to the target context for which only low resources are available.
An example could be a model trained on adult speech (source domain) and adapted to child
speech (target domain). This time, the trade-off is between the performance and the quantity
of data available.

A key aspect of domain adaptation is the compactness of the representation that needs to
be learned as the limited test-matched data do not allow the proper estimation of a large set
of parameters.

Another distinction is to be made between supervised methods, that require labeled data,
and unsupervised approaches, that can leverage on non-labeled utterances.

4.1.4 Gaussian mixture models versus deep neural networks

The traditional GMM-HMM approach is known to be particularly bad at generalizing to
unseen conditions. DNN-based acoustic models, on the other hand, have been proved to
generalize better to new conditions. Seltzer et al. (2013), while investigating the noise robust-
ness of neural networks, showed that a DNN trained without explicit noise compensation can
match its state-of-the-art GMM counterpart on Aurora-4 dataset. Similarly, Liao (2013) has
demonstrated that DNNs can adapt better to new speakers than GMMs.

Yu, Seltzer, et al. (2013) have further analyzed DNNs internal representation to understand
their remarkable robustness to sources of variability in the input space. They have found
that the invariance of neural networks is due to the robustness of their internal representation
which allow them to interpolate well around training samples. They also showed that the
model’s invariance increases with its depth. However, despite these nice properties, neural
networks may still fail to extrapolate when the data mismatch increases. This is in line with
the work by Seltzer et al. (2013), who demonstrated that noise robustness can be further
improved, e.g. by incorporating information about the environment (the noise-aware training
strategy described in subsection 4.2.1). Hence, it is useful to try compensating explicitly for
unseen variabilities.

4.2 Review of the literature

In this section, I will mainly present methods that apply to DNNs as it is the focus of this
thesis. GMM-based approaches will only be presented when necessary.
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4.2.1 Improving model invariance

I will first present strategies that try to improve the invariance of domain independent models.
A simple yet effective approach, already in use with GMM-HMM models, is the multi-

condition training strategy, which consists in exposing the model to the largest set of domains
possible. This allows the model to learn regularities from the data that are less dependent
on a specific condition and generalize better to new ones. An example of its use for noise
robustness can be found in Seltzer et al. (2013).

A more explicit way to enhance the invariance of the internal representation of neural
networks has been proposed for speech by Shinohara (2016). The authors explored the use of
adversarial multi-task learning (MTL) techniques, where the classical senone classification
task is trained adversarially to a domain (noise) classifier, that is, the error from the noise
classification task is subtracted when estimating the parameters of the main network, so as to
reduce the noise discriminability. Saon, Kurata, et al. (2017) applied the same approach to
speaker variability by training a speaker classifier in parallel to the main network.

Finally, domain-aware approaches propose to enrich the input to the acoustic model
with information about the domain , with the idea that the neural network can relate these
additional features to the variability in the data and better deal with it. This has been proved
effective for both noises (Seltzer et al., 2013) and speakers (Saon, Soltau, et al., 2013; Senior
and Lopez-Moreno, 2014).

As shown by Yu and Deng (2015, section 11.5.2, equations 11.19 and 11.20), domain-
aware training (or equivalently speaker-aware training) is equivalent to using a domain-
specific bias that is implicitly learned from the domain information. Learning the relation
between the domain information and the bias allows to generalize to new domains.

A popular way to represent speaker information is to use i-vectors, originally proposed
for speaker verification (Dehak et al., 2011). I-vectors try to capture information about the
sources of variability in the acoustic signal (not only speaker but also channel or noise) in a
low-dimensional fixed-length representation. They can be computed at the utterance (Senior
and Lopez-Moreno, 2014) or speaker (Saon, Soltau, et al., 2013) level.

Going one step further, Cui et al. (2017) explored the possibility to use i-vectors to adapt
the network at different levels. Following a meta-learning approach, they train a control
network that will estimate scaling and bias weights that are applied after each hidden layer,
instead of the bias of the first layer only.

While the domain information can be computed as a separate step, it is also possible
to incorporate the domain feature extraction process into the main network. Qian et al.
(2016) proposed a model that computes senones posterior probability while jointly learning
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to extract speaker, phone and environment factors. These factors are then fed back to the
main task to improve invariance.

4.2.2 Feature adaptation

The techniques I just presented investigate how the acoustic model can be made more
invariant to the variability in the input features. Alternatively, it is possible to normalize the
input before feeding it to the acoustic model.

The most popular feature-based approaches to speaker adaptation with GMM-HMM
systems were vocal tract length normalization (VTLN) (Eide and Gish, 1996) and feature-
space maximum likelihood linear regression (fMLLR) (Gales et al., 1998). Seide et al. (2011)
studied the usefulness of these features with the newly introduced DNN-based approach and
found that most of the gain from VTLN is subsumed: the error reduction goes from 9% when
VTLN is used with GMMs to 2% with DNNs. The use of fMLLR transforms on the other
hand is still effective with 5% of error reduction regardless of the type of model. The main
limitation of the later approach is the need of a GMM to estimate the features.

More recently, Mimura et al. (2017) proposed to use generative adverserial networks
(GANs) to perform cross-domain adaptation with non-parallel corporas. In that case, instead
of trying to remove sources of variability from the input, they learn a mapping from source
to target domains (and vice-versa), giving the possibility to map all input data to the same
domain and learn a single domain-dependent model. They applied their methodology to
noise and speaking style adaptation.

4.2.3 Model adaptation

Model adaptation offers a compromise between the good performance of a domain-dependent
model and the difficulty to gather enough data to train one. Leveraging on well trained
systems from one or more source domains with abundant data, this approach propose to learn
a model better matched to the target domain with a fraction of the data needed to train a
domain-dependent one. Again, this approach also applies to speaker variability.

The simplest strategy one can imagine consists in initializing the network with a pre-
trained model and train it for a few epochs on the target domain or speaker, updating all
the weights (see e.g. Gemello et al., 2007; Liao, 2013; Saon, Soltau, et al., 2013). Given
enough data, this strategy can work well but will easily overfit if the dataset is too small. It is
important then to reduce the number of adapted parameters. Several adaptation techniques
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have been proposed over the years which offer a compact representation that can be estimated
even from a small amount of data.

A popular strategy is to add a linear layer to the network. The weights of the linear
layer are then learned using the data from the target domain. Depending on the position at
which the layer is placed in the network, it will be referred to as a linear input network (LIN)
(Abrash et al., 1995; Neto et al., 1995), a linear hidden network (LHN) (Gemello et al., 2007)
or a linear output network (LON) (Li and Sim, 2010). The LIN approach is close to fMLLR
in spirit as it offers a way to normalize the input. The best position in the network at which
the layer should be placed seems to be highly dependent on the task.

Rather than adding a linear layer, Swietojanski and Renals (2014) proposed to adapt
the amplitude of hidden units in an unsupervised fashion (using first-pass alignments), a
technique called the learning hidden units contribution (LHUC) method. This method showed
an improvement of 8-15% on a corpus of publicly available TED talks and is compatible
with fMLLR.

Finally, an alternative to the addition of new parameters is the use of regularization. A
famous method is to force the output distribution of the domain-dependent model to stay close
to the output distribution of the domain independent network, using e.g. the Kullback–Leibler
divergence (KLD) (Yu, Yao, et al., 2013). See also Falavigna et al. (2017) for an example of
KLD adaptation applied to CHIME-3.

4.2.4 Speaker adaptive training

Speaker adaptive training (SAT) was introduced by Anastasakos et al. (1996) for speaker
adaptation with GMM-HMM but the idea is quite generic and can easily be transposed to
other sources of variability or methodologies. The main observation made by the authors
is that a SI acoustic model has to model both the phonetic and speaker variability. While
model adaptation techniques such as LIN try to compensate for the speaker variability only
during the adaptation step, Anastasakos et al. propose to already decouple the two sources of
variability at training time. The part of the model learning the phonetic regularities should
thus be more independent of speakers and easier to adapt in subsequent step.

Some of the techniques presented here above can easily be modified to integrate domain
or speaker adaptation at training time. For example, this has been the case for the family of
linear networks (Ochiai, Matsuda, Lu, et al., 2014; Ochiai, Matsuda, Watanabe, et al., 2015)
or the LHUC approach (Swietojanski and Renals, 2016).
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4.3 Distillation

Another line of research that is related to the methodology employed here is knowledge
distillation (Hinton, Vinyals, et al., 2015). Distillation was not specifically designed for
model adaptation but can be used in this context as we will see.

4.3.1 Seminal work

Firstly coined by Hinton, Vinyals, et al. (2015), knowledge distillation stems from work on
model compression (Bucilǎ et al., 2006). The original goal was to compact an ensemble of
models of various types into a simpler model that would achieve performance close to the
ensemble for a fraction of the computational cost. To do that, the complex ensemble (also
referred to as the teacher) is used to label data (real or simulated) and the resulting labels are
used to teach a simpler neural network based model, also called the student. Neural networks
being universal function approximators, they should in principle be able to approximate
any function given enough data and parameters. They are thus ideal candidates to learn
the function modeled by the ensemble and represent it in a more compact way. The use of
artificially generated data is key in the work from Bucilǎ et al. as it allows to transfer the
knowledge of the ensemble (which is used to label the data) to the student network. This
additional source of information about the model learned by the ensemble guides the student
model to a better optimum. The application of model compression to speech recognition
was first proposed by Li, Zhao, et al. (2014), where real unlabelled data is used instead of
artificial data to transfer information to the student.

Hinton, Vinyals, et al. (2015) also introduced a temperature parameter T to control the
smoothness of the teachers’ softmax output layer. The ith output of the network, ỹyyi, is then
defined as:

ỹyyi =
exp(zzzi/T )

∑ j exp(zzz j/T )
, (4.1)

which reduces to the standard softmax function for T = 1. The loss of the student network is
in turn defined as:

LS(xxxi,yyyi) = (1−λ )LCE(yyyi, fS(xxxi,θθθ))+λT 2LCE(ỹyyi, f ′S(xxxi,θθθ ,T ))+R(θθθ), (4.2)

where LCE is the cross entropy loss, xxxi, yyyi and ỹyyi are the ith input vector, one-hot label
and soft label from the teacher respectively, fS and f ′S are the student model without and
with temperature in the final softmax, θθθ is the set of parameters of the model and R is a
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regularization term. As advised by Hinton, Vinyals, et al., the loss on the soft targets is scaled
by T 2 to keep the relative contribution of soft and hard labels to the gradient similar as the
temperature is changed.

The motivation behind distillation is that, in the multi-class classification task, the
knowledge from the teacher can also be conveyed through the probability given to the non-
target categories. This is to contrast with the one-hot label often used to train neural networks.
By raising the temperature, the output of the softmax is smoothed and more of this knowledge
is retained, providing more information to the student. Hinton, Vinyals, et al. also prove that,
in the extreme case where an infinite temperature is used, softmax with temperature reduces
to the logits (which are sometime used instead of the output to distill knowledge).

4.3.2 Generalized distillation

Lopez-Paz et al. (2015) further proposed a generalized distillation framework which combines
the distillation strategy from Hinton, Vinyals, et al. with the privileged knowledge paradigm
from Vapnik and Vashist (2009). This later work explores the use of some privileged
information xxx∗ that is available at training time only. An example related to speech recognition
would be the availability of speaker information for each utterance of the training dataset
but not at test time. Lopez-Paz et al. propose to leverage this additional data through the
teacher-student framework where the teacher would be trained on the privileged information
xxx∗. The teacher would then be used to generate soft labels for the student which is trained on
the regular input xxx.

4.3.3 Distillation for speaker and domain robustness

Several studies have investigated the use of distillation (or generalized distillation) in the
context of speaker or domain robustness. One of the first work of this kind, by Markov and
Matsui (2016), was based on parallel clean and noisy speech data where the clean speech
was used as privileged knowledge. They showed a 4.65% WER reduction for the student
net on Aurora2 dataset. Similarly, it has been shown that several other sources of privileged
information can be leveraged to improve domain robustness, such as enhanced features for
noisy conditions (Watanabe, Hori, Roux, et al., 2017), broadband recordings for narrowband
ones (Fukuda et al., 2017), adult data for child speech (Li, Seltzer, et al., 2017; Asami et al.,
2017), or standard language for dialects (Asami et al., 2017). For speaker robustness, Yu,
Markov, et al. (2016), showed that articulatory features can be used as privileged knowledge,
while Joy et al. (2017) demonstrated the usefulness of fMLLR features.
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While distillation focuses on the output of the network as a source of information, Kim
et al. (2017) proposed the bridge-net architectures where the output of intermediate layers of
the teacher are used as additional hints to guide the training of the student. Together with
the use of the recurrent units, adding information about the intermediate representations
improves recognition of distant speech by 5.04% relative on the AMI corpus (using clean
speech as privileged knowledge) over standard distillation.

4.3.4 Distillation versus Kullback-Leibler divergence

The KLD loss, mentioned in subsection 4.2.3, is defined as follow:

LKLD(xxxi,yyyi) = (1−λ )LCE(yyyi, f (xxxi,θθθ))+λLCE(ỹyyi, f (xxxi,θθθ)), (4.3)

where f (xxxi,θθθ) is the function computing the output values of the network for input xxxi.
Ignoring the regularization term in Equation 4.2, we can see that both equations are equivalent
when a temperature of 1 is used. Distillation with temperature is thus an extension of KLD
regularization where the temperature allows to soften the output of the teacher, hence giving
more importance to the alternative classes.

4.4 Bias undoing

The following section will present a first approach I proposed to improve the speaker/do-
main robustness of DNN-based acoustic models. This strategy is directly inspired by the
regularized MTL paradigm (Evgeniou and Pontil, 2004) and ensuing work (Khosla et al.,
2012; Badino et al., 2017), where the approach has been used to build more robust speaker-
or domain-independent models (even though they did so in contexts different from speech
recognition). To motivate the proposed model, I will first present the relevant literature.

4.4.1 Related work

Evgeniou and Pontil (2004) proposed a new framework for MTL called regularized MTL.
However, it should be noted that their definition of a task is broader than what is usually
intended in ASR. Within the speech recognition community, two tasks are usually considered
different if they operate on different input and/or output space. This is for example the case
of the multi-task architecture used for multilingual training (Ghoshal et al., 2013; Heigold
et al., 2013; Huang, Li, et al., 2013). Evgeniou and Pontil on the other hand, extend this
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definition to situations where the input and output spaces are the same but the distributions
used to sample the data are different (which would rather be seen as multi-condition training
within the ASR community). Hence, each learning task t ∈ {1, . . . ,T} can be defined by
a different distribution Dt over the space X ×Y , where X and Y are the input and output
spaces respectively. Given access to a sample Dt ∼Dt of examples from each distribution,
the goal is to learn task-specific functions ft : X →Y . To formalize the relation between
the tasks, they define a "mean" or "canonical" function f0 and its set of parameters θθθ 0. The
relation between the task-specific functions ft parameterized by θθθ t and the canonical function
f0 is defined by the distance vvvt between their sets of parameters such that:

θθθ t = θθθ 0 + vvvt . (4.4)

The smaller the vvvt vectors are, the closer the tasks. The explicit formulation of the relation
between tasks aims at providing a regularization mechanism which should improve the
performance of the task-dependent models. A parallel can easily be drawn between the tasks,
as defined by Evgeniou and Pontil and the different speakers in speaker adaptation or the
domains in domain adaptation. Taking this point of view, the regularized MTL paradigm is
close in spirit to the SAT approach which also tries to explicitly split the acoustic model in a
canonical SI part and SD sub-models that are jointly trained.

Khosla et al. (2012) made the same parallel in their work on dataset bias for computer
vision. The main assumption is that each dataset (constituting a different domain) is a biased
version of the full visual world. They then try to learn an unbiased function f0 through
the regularized MTL paradigm. It is to be noted that contrary to Evgeniou and Pontil, the
objective here is not to improve the task-dependent models. Through the canonical model,
the authors seek an unbiased function that should perform well on its own and give better
performance on any new dataset. They thus incorporate the optimization of the canonical
model f0 in their loss, which was not present in the original proposal.

More related to speech recognition, Badino et al. (2017) applied a similar approach to
the acoustic inversion problem, where the goal is to recover articulatory features from the
acoustic domain. Also here, the use of the regularized MTL paradigm is motivated by the
search of a speaker-independent model that would get rid of speakers’ biases. While the
two previously mentioned works were based on SVMs, Badino et al. extend the paradigm to
DNN models and introduce a new similarity measure (referred to as O-MTL, in opposition
to the approach based on the weights from Evgeniou and Pontil, referred to as W-MTL).
In the O-MTL method, the distance between the different networks is based on the output
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FIGURE 4.1 Illustration of the O-MTL approach applied to gender robustness.
The two gender-dependent models are represented at the top while the gender-
independent model is illustrated at the bottom. The arrows represent the MTL

regularization loss that relates the output of the different models.

of the networks only and no parameter is shared. In this respect, the O-MTL approach is
much closer to distillation or KLD-based regularization. Though, a major difference with
distillation is that the SI net and the SD models are optimized in parallel. No distinction is
made between teacher and student, and the two types of networks can learn from one another.
Also, the way the problem is structured as a unique SI model versus several SD models each
covering a speaker is new.

4.4.2 Methodology

The approach followed here takes direct inspiration from the O-MTL strategy from Badino
et al. and uses it to improve the speaker/domain robustness of DNNs in acoustic modeling
(illustrated in Figure 4.1).
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Let D = {(xxx1,yyy1), . . . ,(xxxN ,yyyN)} ⊂ X ×Y be the set of examples composing the dataset.
The reference output yyyi is a one-hot vector where the entry corresponding to the reference
state is set to 1 and all other entries are set to 0. Let t ∈ {1, . . . ,T} represent the different
tasks (speakers or domains) present in the dataset. Each example (xxxi,yyyi) can be assigned to a
unique task.

The main objective is to train a task-independent model

f0 : X →Y (4.5)

that predicts the phoneme (or triphone or senone) category yyyi of an acoustic feature vector
xxxi. This correspond to the usual task assigned to the DNN model in acoustic modeling. The
function f0 is defined by a set of parameters θθθ 0.

We additionally consider task-dependent models

ft : X →Y, (4.6)

where each model’s parameters θθθ t are estimated from the set Dt = {(xxxt
1,yyy

t
1), . . . ,(xxx

t
nt
,yyyt

nt
)}

of examples belonging to task t, such that D =
⋃T

t=1 Dt and each subset Dt follows a different
distribution Dt (Dt ∼Dt).

One of the main difference with the acoustic inversion problem is that the DNNs trained
here output a probability distribution (enforced through the softmax activation function used
for the output layer), when the acoustic inversion model estimates real valued variables
instead. The square loss originally considered by Badino et al. (2017) is thus replaced by the
cross-entropy loss, as usually done in ASR. The overall optimization objective can now be
defined as finding the set of parameters {θθθ 0,θθθ 1, . . . ,θθθ T} that minimize:

(1−λ )L(θθθ 0,θθθ 1, . . . ,θθθ T )+λRMT L(θθθ 0,θθθ 1, . . . ,θθθ T )+RL2(θθθ 0,θθθ 1, . . . ,θθθ T ), (4.7)

where L correspond to the usual cross-entropy loss for the task-dependent and task-independent
models, RMT L is the multi-task regularization term and RL2 corresponds to standard l2-norm
regularization of the networks parameters. As can be seen from Equation 4.7, λ ∈ [0,1]
allows to control the trade off between the phoneme prediction task and the MTL regular-
ization. Hence, more regularization can be applied to the different models, lowering the
constraint to match the reference labels. At one extreme, when λ = 0, no regularization
is applied and the models are trained independently. On the contrary, if λ = 1, phoneme
classification is completely ignored and only the distance between the output of the networks
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is considered. The three components of the loss are finally defined as:

L(θθθ 0,θθθ 1, . . . ,θθθ T ) =
N

∑
i=1

LCE(yyyi, f0(xxxi,θθθ 0))+
T

∑
t=1

nt

∑
i=1

LCE(yyyt
i, ft(xxxt

i,θθθ t)), (4.8)

RMT L(θθθ 0,θθθ 1, . . . ,θθθ T ) =
T

∑
t=1

nt

∑
i=1

∥zt(xxxt
i,θθθ t)− z0(xxxt

i,θθθ 0)∥2
2, (4.9)

RL2(θθθ 0,θθθ 1, . . . ,θθθ T ) = λL2DI∥θθθ 0∥2
2 +λL2DD

T

∑
t=1

∥θθθ t∥2
2, (4.10)

where z0(·) and zt(·) are the functions computing the logits (the output of the final layer before
the softmax) of the domain-independent (DI) and domain-dependent (DD) nets respectively.
I also tried using the output of the networks directly (additionally introducing the temperature
parameter proposed by Hinton, Vinyals, et al.) but preliminary experiments showed better
results using the logits.

4.4.3 Experimental setup

Dataset

The experiments were carried on TIMIT, as the small size of the dataset allows to iterate
rapidly and explore many alternative architectures or configurations of the hyperparameters.
For all experiments, we used only SI and SX sentences (see subsection 3.2.1). The amount
of data per speaker being too small though, speaker adaptation was not feasible. Also,
the method would have required to train one network per speaker which would have been
impractical. I thus decided to use genders as the domains.

For each frame, 40 log mel-scale filter bank coefficients plus energy are extracted over
windows of 25 ms, with a stride of 10 ms. First and second derivatives are also calculated
giving 123 features per frame. A context of 11 frames (5 from both sides) is used as input to
the networks, corresponding to 1353 values in total. The target labels correspond to 3-state
monophones, that is 183 values overall. For scoring, the set of 61 phonemes is collapsed to
39 phones after decoding, as done by Lee and Hon (1989).

Baseline

Both DI and DD baseline models (later referred to as STL models, in opposition to the MTL
procedure) follow the same architecture and are composed of 4 hidden layers of 2000 units,
with ReLU activation function for the intermediate layers and softmax activation for the
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TABLE 4.1 Hyperparameters used to train the acoustic DNN-HMM baseline
on TIMIT.

Parameter Value

Input size 1353
Output size 183
Number of hidden layers 4
Number of units per hidden layer 2000

Mini-batch size 500
Momentum 0.5
Initial learning rate 0.3
Decay rate 0.75
L2-norm regularization weight 0.0003

output one. The models are trained with mini-batch SGD with momentum and a decaying
learning rate. Regularization based on l2-norm is used and early stopping is applied after 3
epochs of decreased performance on the validation set. Table 4.1 summarizes the values of
the different hyperparameters.

O-MTL approach

One of the main limitation in the use of the O-MTL approach is that each task is represented
by a different network. As the number of tasks increases, training all those models in parallel
can become unmanageable in terms of memory. To mitigate that, I re-used the alternate
training procedure proposed by Badino et al., where θθθ 0 and θθθ t are trained alternatively
while the other set of parameters is kept fixed. The training procedure is summarized in
Algorithm 1.

Algorithm 1 O-MTL training procedure
1: Initialize θθθ 0 and each θθθ t with the weights of their respective STL model, saved after a

number einit of epochs (optimal results are obtained using the weights of a net trained
only for few epochs).

2: while early-stopping criterion is not reached do
3: Train each ft model for 1 epoch keeping θθθ 0 fixed.
4: Train f0 for 1 epoch keeping all θθθ t fixed.
5: end while

Initializing the weights of the different networks (step 1) by first training them with the
STL strategy for few epochs gave slightly better results. Similar pretraining strategy didn’t
improve performance on the baseline (not shown here).
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TABLE 4.2 Hyperparameters used for the O-MTL approach on TIMIT dataset.

Parameter Value

einit 3
Initial learning rate 0.6
λ 0.2
λL2DI 0.0003
λL2DD 0.0003

The loss actually optimized in steps 3 and 4 of Algorithm 1 are given in Equation 4.11
and Equation 4.12. The architecture and the optimization strategy are otherwise kept identical
to the baseline model. Table 4.2 summarizes the values of the hyperparameters that gave the
best results for the O-MTL approach.

LDI(θθθ 0) = (1−λ )
N

∑
i=1

LCE(yyyi, f0(xxxi,θθθ 0))+λ

T

∑
t=1

nt

∑
i=1

∥zt(xxxt
i,θθθ t)− z0(xxxt

i,θθθ 0)∥2
2

+λL2DI∥θθθ 0∥2
2

(4.11)
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(4.12)

4.4.4 Results

Table 4.3 reports the validation frame error rate (FER) of the DI and DD baselines as well as
the best O-MTL, for which the DI and DD sub-nets are evaluated separately. Results of DI
models are presented for all data or split by gender. For DD models, I use the models trained
on each gender to compute the FER on corresponding validation data. I additionally report
the weighted sum of these scores, to allow better comparison with DI models.

We can first observe that the gender-dependent STL models perform worse than their
gender-independent counterpart. It is likely that TIMIT is too small to allow estimation of
good gender-dependent models. The additional data provided to the gender-independent
model compensate for the harder task it faces, allowing it to do ∼ 2.9% relatively better than
the combination of gender-dependent models.
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TABLE 4.3 FER (%) of the single- and multi-task models on TIMIT validation
set.

Domain
dependence

Training
strategy

Validation FER (%)
All F M

DI STL 35.95 36.80 35.51
DI O-MTL 34.90 35.80 34.41

DD STL 37.04 39.35 35.82
DD O-MTL 36.09 38.22 34.90

TABLE 4.4 FER (%) of the gender-dependent single- and multi-task models on
TIMIT validation set. While the models are trained on data from one gender

only, I report evaluation on data from both genders.

Training
gender

Training
strategy

Validation FER (%)
All F M

F
STL 49.51 39.35 54.87
O-MTL 47.20 38.22 51.95

M
STL 41.58 52.48 35.82
O-MTL 40.03 49.60 34.97

Despite that, we observe that both DI and DD models can benefit from the O-MTL
approach, performing ∼ 2.9% and ∼ 2.6% relatively better than their STL equivalent.

In order to evaluate the impact of the O-MTL strategy on the generalization of the DD
models, I also performed a more detailed analysis of their performance on the different
domains. Table 4.4 reports the validation FER of gender-dependent models trained with the
STL or O-MTL strategy, when evaluated on each gender (also the one they were not trained
on). We can see that the improvement of those models on the gender they did not see at
training time (∼ 5.3% and ∼ 5.5% respectively for the models trained on female and male
data) is about twice the improvement obtained on there own gender (∼ 2.9% and ∼ 2.4%
respectively). I hypothesize that this improvement in generalization can be attributed to the
guidance of the DI model.

Finally, in Table 4.5, I report the FER and PER on the test set of the best DI models
trained following the STL or O-MTL procedures. Unfortunately, the improvement obtained
for the FER (about ∼ 3.2%) does not completely carry over to the PER, where we obtain
only ∼ 1.5% of relative improvement.
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TABLE 4.5 FER and PER (%) of the gender-independent single and multi-task
models on TIMIT test set.

Training
strategy

Test FER
(%)

Test PER
(%)

STL 36.98 22.05
O-MTL 35.81 21.71

4.4.5 Conclusion

The O-MTL training approach to domain robustness showed mitigated results here. I
managed to obtain ∼ 3.2% of relative improvement on the test FER but this only partially
carries over to the PER (∼ 1.5% of relative improvement). It may be though that TIMIT
is too small for proper estimation of gender-dependent models, as shown by the poorer
performance they obtain compared to a DI model. It would be interesting then to see how
this approach performs on bigger datasets and possibly with different sources of variation
(especially noise).

Alternatively, it could be interesting to try a similar approach in the context of linear
networks (LIN, LHN or LON), where task-independent and task-dependent linear transfor-
mations could be considered, instead of full networks. This would probably be better suited
to a small dataset such as TIMIT.

Finally, while I consider here the use of the canonical DI model, improvement is also
observed for the DD models. Instead of aiming for a stronger task-independent model, one
could rather try to improve performance for the task-dependent model corresponding to the
target application. Applying this approach to domain adaptation in the scope of iCubrec
pipeline, one option would then be to train a separate model for source and target domains,
where the target domain is covered by VoCub dataset. While VoCub is small and overfitting
is observed when training a model on this dataset only, the O-MTL approach developed here
could offer a way to regularize it and improve its performance.

4.5 Task-aware training

One of the limitations of the O-MTL approach I just presented is the necessity to train a
separate model for each task. Also, the generalization of the model to new tasks that are
relatively different from the ones seen during training may be poor (an example would be
a model trained on several noise conditions that faces a completely new one at runtime).
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The speaker- or domain-aware training approach proposes to circumvent these issues by
providing a representation of the speaker or domain to the network in order to help it factor
out this source of variability more easily. One can also hope that, when faced with a new
condition, the model can leverage on this information to better generalize to it.

4.5.1 Methodology

Inspired by this line of research, I propose a second approach where the task dependent
models are replaced with a single task-aware model. Making a parallel with distillation, I
will refer to this model as the teacher, as it has access to privileged knowledge through the
task embedding that is concatenated to its input. The other network, which does not have
access to the task embedding, is thus referred to as the student network. It is to be noted
though that unlike the distillation paradigm, teacher and student both learn from one another.
Equation 4.7, defining the O-MTL loss function, can be rewritten in this case as:

(1−λ )L(θθθ T ,θθθ S)+λRMT L(θθθ T ,θθθ S)+λL2RL2(θθθ T ,θθθ S), (4.13)

where θθθ T and θθθ S are the parameters of the teacher ( fT ) and student ( fS) models respectively,
and λL2 is a unique weight applied to RL2 (instead of the individual weights λL2DI and λL2DD

used previously).
I discovered through the first set of experiments on bias undoing that optimizing hyper-

parameters for such a criterion is quite hard. Indeed, as λ is modified, the scale of L and
RMT L terms changes and the scale of the full loss with them. This is exemplified by the much
higher initial learning rate used with the O-MTL approach (0.6) compared to the STL one
(0.3). An alternative and equivalent loss (apart for the values of the hyperparameters that
should be scaled accordingly) is thus considered here. The scale of the main term, L, is kept
constant, with the hope that the learning rate will then be less dependent on λ , giving:

L(θθθ T ,θθθ S)+λRMT L(θθθ T ,θθθ S)+λL2RL2(θθθ T ,θθθ S). (4.14)
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The different terms are in turn defined as:

L(θθθ T ,θθθ S) =
N

∑
i=1

LCE(yyyi, fT (xxx∗i ,θθθ T ))+LCE(yyyi, fS(xxxi,θθθ S)), (4.15)

RMT L(θθθ T ,θθθ S) =
N

∑
i=1

∥zT (xxx∗i ,θθθ T )− zS(xxxi,θθθ S)∥2
2, (4.16)

RL2(θθθ T ,θθθ S) = ∥θθθ T∥2
2 +∥θθθ S∥2

2, (4.17)

where zT (·) and zS(·) correspond to the functions computing the logits of the teacher and
student networks respectively. Again here, I also tried using the output of the networks
directly (introducing again the temperature parameter) but preliminary experiments showed
better results using the logits.

The student model is the one we intend to use at runtime. Even though it is expected
to perform worse than the teacher model, it has some advantages. To reliably estimate the
embeddings needed by the teacher, enough data should be collected and a first pass on
the data should be performed to extract the relevant information. This adds latency and
complexity to the pipeline, which is a drawback for online embedded ASR systems.

4.5.2 Experimental setup

Again, I use TIMIT dataset for the experiments. As the new method do not resort to separate
task-dependent models though, it is possible to work directly on speaker robustness instead
of grouping them by gender. As for the task representation, I opted for i-vectors. They have
been shown to be a very effective representation of speakers but also acoustic environment
and channel. They can thus address most of the sources of variability we are concerned with.

I-vectors extraction

To extract the i-vectors, the MSR Identity Toolbox1 has been used, which is based on
MATLAB. After estimation of the GMM-based universal background model (UBM), the
total variability subspace is computed and LDA is applied to project the i-vectors onto a
lower dimensional space with good speaker class-separability.

In addition to i-vectors computed at the utterance-level, I also experimented with speaker-
level ones. To obtain them, I simply take the mean of the utterance-level i-vectors of each
speaker.

1https://www.microsoft.com/en-us/download/details.aspx?id=52279

https://www.microsoft.com/en-us/download/details.aspx?id=52279
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FIGURE 4.2 The 1st and 2nd dimensions of the speaker i-vectors after PLDA.
Female speakers are represented in orange and male speakers in blue.

As can be seen from Figure 4.2, the first dimension found by the dimensionality reduction
algorithm allows to discriminate speakers by gender nearly perfectly. Apart from one male
speaker, the two genders would be linearly separable just based on this dimension. This
confirms quantitatively gender as one of the main sources of variability in our data and thus
its use in the previous set of experiments.

Baselines

Two baselines are considered here. The first one is the same as the STL model presented in
previous section and will be the reference for the student network. The second one, trained
using the speaker-aware training (SAwT) procedure, has i-vectors appended to its input and
will serve as a baseline for the teacher model. I will refer to them as the STL and SAwT models
respectively. Hyperparameters are the same as the ones presented in Table 4.2, except for the
input size which is increased by the size of the i-vectors in the case of the SAwT model.
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Training procedure

An additional difference with the precedent set of experiments is the introduction of a
new training procedure. Instead of the parallel procedure presented precedently, where I
alternatively train each network for one epoch, I use here a fully alternated training procedure.
In this case, I train one network completely (until early stopping criteria is met) before
extracting the logits needed to train the other network. This second network is in turn trained
completely, before logits are extracted to retrain the first model. The motivation for this new
procedure is that the performance of each network is best at the end of the training and so
should be the information provided by the logits. Providing these final logits to the other
model from the beginning may thus help it reach a better minimum. Also, using the same
secondary targets throughout the training of the network may lead to a better optimum. When
the two networks are trained in parallel, the information they provide to each other drifts as
the training progresses, which may compromise the training procedure.

The loss optimized by teacher and student networks with this new training procedure are
given in Equation 4.18 and Equation 4.19. The architecture and the optimization strategy are
otherwise kept identical to the baseline models.

LS(θθθ S) =
N

∑
i=1

LCE(yyyi, fS(xxxi,θθθ S))+λ

N

∑
i=1

∥zS(xxxi,θθθ S)− zT (xxx∗i ,θθθ T )∥2
2

+λL2∥θθθ S∥2
2

(4.18)

LT (θθθ T ) =
N

∑
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∑
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∥zS(xxxi,θθθ S)− zT (xxx∗i ,θθθ T )∥2
2

+λL2∥θθθ T∥2
2

(4.19)

The new training procedure (illustrated in Figure 4.3) can be summarized as follow. I
start from the SAwT baseline, which is used as the first teacher T0. It is the only model used
in the O-MTL procedure that does not use the loss described in Equation 4.13. T0 is used to
extract the logits that will be used as secondary targets for the first student model S1. Once
trained, the S1 model is in turn used to obtain logits that will serve as secondary targets for the
second teacher T1 (as we consider the SAwT as the first teacher). And we continue alternating
the training of student and teacher networks likewise, for a fixed number of iterations or until
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they stop improving from one step to the next. This training procedure is summarized in
Algorithm 2.

Algorithm 2 Task-aware training procedure
1: Initialize the teacher model (T0) with the parameters of the SAwT baseline.
2: while stopping criterion is not reached do
3: (Re)initialize the parameters θθθ S of the student model.
4: Train the student model keeping the teacher fixed, optimizing loss LS.
5: Reinitialize the parameters θθθ T of the teacher model.
6: Train the teacher model keeping the student fixed, optimizing loss LT .
7: end while

The new training procedure makes the relation with distillation even more visible. The
remaining differences are the presence of secondary targets for the teacher and the alternate
training procedure that refines the different models over several iterations.

4.5.3 Results

Figure 4.4 shows the evolution of the validation FER for the SAwT model as a function of:
(1) the size of the i-vector, (2) the use of speaker or utterance level i-vectors and (3) the
use of LDA or not. Using LDA clearly improves the effect of the i-vectors. The level at
which i-vectors are computed has less impact on the performance but speaker-level i-vectors
consistently outperform utterance-level ones, with and without LDA. The best results are
obtained for speaker-level i-vectors of size 50 with LDA. As shown in Table 4.7, the best
SAwT model improves over the validation FER of the STL baseline by 3.8% relative.

Figure 4.5 and Figure 4.6 show the evolution of the validation performance (FER) of the
student and teacher networks respectively, over 10 iterations and for λ ∈ {0.1,0.3,0.5,0.7}.
Higher values of λ have been tried but make the training diverge. Sometimes, experiments
also diverged for lower values of λ , after a few iterations. In the experiments presented
here, this happened for λ = 0.3 and 0.5, as can be seen by the missing points in the figures.
This could probably be avoided with a better choice of hyperparameters, or alternatively,
with a different optimization algorithm. Adaptive algorithms, such as Adam presented in
subsection 2.5.3 could be a good choice here.

We can first notice that the evolution of the performance do not always follow a stable
trajectory over iterations and tend to fluctuate, especially for the teacher network. A good
example is the evolution of the teacher network with λ = 0.3, where the FER seems to
increase until the 7th iteration and then falls down for two iterations reaching its minimum at
the 9th iteration.
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Teacher
(with i-vectors)

Student
(without i-vectors)

FIGURE 4.3 Illustration of the fully alternated training procedure. The first
teacher is initialized with the SAwT baseline, after which student and teacher
are trained alternatively using the logits of the previously trained model, until

convergence is reached.
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FIGURE 4.4 FER (%) of the SAwT baseline on TIMIT validation set, as a
function of the i-vector’s dimension. Results are presented for utterance-level

(utt) and speaker-level (spkr), with or without lda.

Globally, increasing λ tends to give better results for the student network. As λ increases,
more and more iterations are needed to reach the optimum FER. On the contrary, the teacher
network gives better results with lower values of the hyperparameter. This suggests that
teacher and student may need different values of λ to achieve best performance.

Table 4.6 summarizes the validation performance of the teacher and student networks for
the best iteration. The student network reaches 35.52% of FER for λ = 0.7 while the teacher
network reaches 34.39% of FER for λ = 0.1. Table 4.7 further compares the best student
and teacher models with the 2 baselines. We can see that the best student model improves
on the STL baseline by 1.2% relative, while the teacher improves on the SAwT baseline by
0.5%. Hence, despite the O-MTL being effective in improving both the teacher and student
models, the improvement remains quite modest.

Finally, the PER of the STL baseline system and the best student model on the test set
is given in Table 4.8. The FER improvement obtained with the O-MTL approach on the
validation set translates poorly to the PER on the test set with only 0.3% of improvement.
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FIGURE 4.5 FER (%) of the student network on TIMIT validation set, as a
function of the iteration and for different values of λ .
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FIGURE 4.6 FER (%) of the teacher network on TIMIT validation set, as a
function of the iteration and for different values of λ .
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TABLE 4.6 FER (%) of the student and teacher network on TIMIT validation
set, for different values of λ (each time at the best iteration).

λ Student Teacher

0.1 35.66 34.39
0.3 35.63 34.50
0.5 35.67 34.59
0.7 35.52 34.66

TABLE 4.7 FER (%) on TIMIT validation set using the baseline systems or
the best teacher and student.

Strategy FER (%)

STL 35.95
SAwT 34.58

O-MTL (student λ = 0.7) 35.52
O-MTL (teacher λ = 0.1) 34.39

TABLE 4.8 PER (%) on TIMIT coreTest set using the STL baseline system or
the best student.

Strategy PER (%)

STL 22.05
O-MTL (student λ = 0.7) 21.97
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4.5.4 Conclusion

I this section, I proposed a different O-MTL paradigm where a speaker-aware network is
trained jointly with a model that does not have access to such information. Also, instead of
training the models jointly, I experimented with a new strategy where the two networks are
trained fully in alternation. The success of the method is quite limited, with an improvement
of only 1.2% on the validation FER for the model trained without i-vectors.

Two main reasons can explain this poor performance. First, as seen from the results
obtained with the SAwT baseline, i-vectors yield limited improvement on TIMIT. Using
speaker-aware training only improves on the baseline by 3.8%. It would then be interesting to
reproduce the same kind of experiments on a different dataset. Also, the results suggest that
a better optimization strategy, may lead to further improvement. The use of an asymmetric λ

parameter for the teacher and the student is a first possibility. Using an adaptive optimization
algorithm such as Adam is another one.

Also, as already noticed in the previous set of experiments with O-MTL on TIMIT, the
performance only partially transfers to the PER. This illustrates the limit of using the FER as
a proxy for the real measure of the performance when training a neural network for acoustic
modeling. The use of sequence discriminative training or sequence-to-sequence models
should help in that respect.

Finally, both sets of experiments where carried on the TIMIT corpus (a small dataset) and
focused on gender or speaker variability. It would be interesting to test the same strategies
with bigger datasets and sources of variability more related to the command recognition task
I aim to address (e.g. noise, reverberation or channel). This investigation is postponed to
future work.



Chapter 5

Few-shot learning with attention-based
sequence-to-sequence models

The complexity of modern speech recognition systems based on DNN-HMM technology and
the difficulty of gathering the necessary data can make it hard for single individuals or small
companies to develop their own systems. E2E approaches have recently become popular
as a means of simplifying the training and deployment of speech recognition systems, thus
addressing the first issue. However, they often require large amounts of data to perform well
on large vocabulary tasks. With the aim of making E2E approaches usable by a broader
range of users, this chapter explores the potential use of E2E methods in small vocabulary
contexts where smaller datasets may be used. A significant drawback of small-vocabulary
systems is the difficulty of expanding the vocabulary beyond the original training samples –
therefore I also study strategies to extend the vocabulary with only few examples per new
class (few-shot learning).

The work presented in this chapter was developed during a visiting period at the Centre
for Speech Technology Research (CSTR), University of Edinburgh, under the supervision of
Dr. Peter Bell. It is an extended version of the work presented in Higy and Bell (2018).

After motivating the present work in section 5.1, relevant literature will be presented in
section 5.2. Methodology and experiments are discussed in sections 5.4 and 5.5 respectively,
and I conclude in section 5.6.



5.1. Motivations 74

5.1 Motivations

The motivation behind this work is similar to that behind the Google Tensorflow team’s
release of the SC dataset (Warden, 2018) and the organization of an accompanying challenge1:
make speech recognition technology – and more precisely command recognition – accessible
to a wider audience. Together with the SC dataset, Google released a baseline classification
system2 which was used as a starting point by many challenge participants. To enable a
simple classification system to be used directly without the use of time-warping or other
dynamic programming algorithms, every input file in the dataset is constrained to a fixed
length, something that would not be required by the more flexible standard HMM-based
approaches to speech recognition. Although the fixed-length constraint is not unreasonable
for a small vocabulary keyword recognition task, I was motivated to consider a more recent
E2E approach – specifically the attention-based encoder-decoder architecture – as a means
of allowing input of arbitrary length, whilst retaining the simplicity of a single DNN-based
discriminative classifier. This approach also allows me to readily switch between sub-word
(phoneme or grapheme) and word modeling by just changing the target output. The main
drawback of a word-based output is the impossibility to introduce any new keyword without
modifying the architecture of the network. Phoneme- and grapheme-based outputs allow to
adapt more easily an existing network to new keywords as the constituent units are shared
across words.

While those advantages are not fundamental in the scope of the keyword recognition task
proposed with the SC dataset, the problem tackled in this thesis is broader. The command
recognition task I consider is not restricted to keywords and employs longer commands,
where the flexibility of the attention-based encoder-decoder architecture may prove useful. I
chose to use the SC dataset, which is publicly available, as it allows the replication of my
results. The dataset also has the advantage of providing a large number of examples per
keyword, allowing to test the proposed approach in good conditions.

This chapter presents experiments on the use of a S2S model for a modified version of
the SC task, comparing it with a more traditional CNN-HMM approach. In the literature,
S2S models are usually applied on large vocabulary tasks with large datasets and it is not
obvious that they will work well in my setup. An exception to this comes from work on
KWS where a small set of keywords is usually considered (see e.g. He, Prabhavalkar, et al.,
2017; Shan et al., 2018). However, the approaches are often specific to isolated keywords
and the number of examples available per keyword is usually very large.

1https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
2https://www.tensorflow.org/tutorials/sequences/audio_recognition

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
https://www.tensorflow.org/tutorials/sequences/audio_recognition


5.2. Related work 75

As mentioned previously, an obvious limitation of the small vocabulary approach I take
is its flexibility (in the sense that only a closed set of commands can be recognized). This
is even more the case with S2S models where the LM is an integral part of the model and
can not easily be modified (as can be done with a DNN-HMM system, see e.g. the extended
grammar for VoCub dataset in subsection 3.2.5). The S2S system is then confined to the
list of commands defined in the original data. To alleviate this constraint, strategies are
also explored to extend the set of commands with very few examples, thus addressing the
few-shot learning problem (Ravi and Larochelle, 2017; Snell et al., 2017; Yang et al., 2018)).

5.2 Related work

While many papers have explored the use of E2E architectures for large vocabulary tasks,
few have considered small vocabulary or low resource contexts.

Most of the work considering a small vocabulary comes from literature on KWS. In
this context, commands are usually restricted to isolated keywords, thus allowing the use
of approaches that would not extend easily to longer word sequences. A good example
is the CNN classifier (or its feed-forward predecessor presented by Chen et al. (2014)),
proposed by Google in the scope of the Kaggle challenge. When isolated short words are
considered, it is indeed possible to consider simple classifiers that predict the probability of
each frame to be part of one of the keywords or not. The context available to the network is
then enough to make a decision. While a simple posterior handling algorithm has also been
proposed to smooth the output and handle short key-phrases (Chen et al., 2014; Prabhavalkar,
Alvarez, et al., 2015), its application to more complex syntactic structures is very limited
(see section 2.2 for a deeper discussion). The work closer to mine is probably the one from
Shan et al. (2018) which also uses an attention-based architecture. However, as for previous
approaches, the proposed architecture is still a classifier. No decoder is present and the output
of the attention function is directly converted into a confidence score. A second limit of this
line of research is the amount of data used to train the models. Very good performance is
obtained thanks to large datasets. In the work of Shan et al. (2018) for example, ∼1700 hours
of data are used to detect a single wake-up word.

Conversely, work exists on the application of the E2E paradigm to low resource conditions,
but usually considers large vocabulary tasks. A good example is the work of Rosenberg
et al. (2017), which applied an attention-based encoder-decoder architecture to both ASR
and KWS. They achieved competitive results on several languages for the large vocabulary
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ASR task, even though they failed to surpass a DNN-HMM baseline. For KWS, a LVCSR
method based on lattice-search is used which showed limited results.

Between the different E2E approaches, the attention-based encoder-decoder architecture
has been shown to give better results on a LVCSR task (Prabhavalkar, Rao, et al., 2017)
and will thus be used here. More precisely, the hybrid CTC/Attention model from Kim
et al. (2017) will be used, which gave promising results and for which the code was readily
available3. I will now present this architecture.

5.3 Joint CTC/Attention architecture

The hybrid CTC/Attention architecture proposed by Kim et al. (2017) and illustrated in
Figure 5.1 uses a multi-task training approach where the encoder is shared by two decoders,
one based on CTC and one using an attention mechanism. Both architectures are trained
jointly. The motivation is to use CTC, which enforces monotonic alignments, to guide the
training of the shared encoder. This helps the more powerful but also too flexible attention
mechanism (see subsection 2.6.2) converge faster and to a better optimum.

More formally, the problem can be stated as trying to estimate the probability of an output
sequence yyy = (y1, . . . ,yU) given the input sequence XXX = (xxx1, . . . ,xxxT ). The model further
conditions each individual output label on previous ones, so that the sequence probability
can be factorized as:

P(yyy|XXX) = ∏
u

P(yu|XXX ,yyy1:u−1), (5.1)

where yyy1:u−1 = (y1, . . . ,yu−1).

The architecture is first composed of an encoder which is shared between the CTC and
the attention-based encoder-decoder network. The role of the encoder is to convert the input
features XXX into a higher-level representation HHH = (hhh1, . . . ,hhhK).

HHH = Encoder(XXX) (5.2)

The encoder is also used to downsample the input so that the input length is usually smaller
than the length of the hidden embedding (K < T ).

The CTC loss has been described in section 2.5.2. I will now describe the attention and
decoder components. The main difficulty of the sequence-to-sequence problem defined above
is the dependence of the variable-length sequence yyy on another variable-length sequence,

3https://github.com/espnet/espnet

https://github.com/espnet/espnet
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FIGURE 5.1 Architecture of the hybrid CTC/Attention model. Blocks denoted
with A and D respectively represent the attention and decoder functions of the

attention-based decoder.
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XXX . In the attention-based encoder-decoder architecture, this is solved by the attention
mechanism, which converts the variable-length intermediate representation HHH into a fixed-
length representation cccu, based on HHH and the previous decoder state sssu−1.

cccu = Attention(HHH,sssu−1). (5.3)

Finally, the decoder uses the output of the attention cccu as well as previous state sssu−1 and
previous predicted label yu−1 to predict next label yu and update its internal state sssu.

(yu,sssu) = Decode(cccu,sssu−1,yu−1). (5.4)

We will now see the three components – encoder, attention and decoder – in more details.

5.3.1 Encoder

A popular choice for the encoder is to use pyramidal BiLSTM layers (Chan, Jaitly, et al.,
2016), which provide downsampling in a layer by concatenating the output of every 2 units
from the layer below. Alternatively, convolutional layers can be used in combination with
standard BiLSTM layers to apply downsampling. CNN-BiLSTM encoders have been shown
to give better results than layers based only on LSTM or gated recurrent unit (GRU) units
in E2E KWS (Shan et al., 2018). More interestingly, it has also been shown to be effective
in the scope of the hybrid approach considered here (Hori et al., 2017). Both pyramidal
and CNN-based BiLSTM encoders are readily available in ESPnet framework and will be
compared here.

5.3.2 Attention

To combine hidden vectors hhhk into a fixed length representation cccu, a weighted sum is
calculated for each output label as:

cccu = ∑
k

au,khhhk, (5.5)

where aaau,k is the attention weight applied to vector hhhk at output step u. The attention vector
aaau = (aaau,1, . . . ,aaau,K) is estimated at each step based on the intermediate representation HHH

and previous decoder state sssu−1. Additionally, it can be conditioned on previous attention
vector aaau−1, as is the case with the location-aware attention (Chorowski, Bahdanau, Serdyuk,
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et al., 2015) employed here. The attention weight au,k can then be computed as:

FFFu = KKK ∗aaau−1, (5.6)

eu,k = wwwT tanh(WWWsssu−1 +VVV hhhk +UUU fff u,k +bbb), (5.7)

au,k =
exp(γeu,k)

∑ j exp(γeu, j)
, (5.8)

where ∗ denotes the convolution, fff u,k is the convolutional feature vector, eu,k is the energy
value, and γ is an inverse temperature or sharpening factor. The trainable parameters are:
(i) the convolution kernel KKK, (ii) the weight matrices WWW , VVV , UUU respectively applied to the
previous decoder state (sssu−1), the kth output of the encoder (hhhk) and the kth convolutional
feature vector ( fff u,k), (iii) the bias bbb and (iv) the weight vector www that is applied to the output
of the tanh function to obtain the energy. The attention weights are computed as the softmax
of the energies eu,k, which are themselves computed based on the convolutional features, the
hidden features and previous decoder state.

5.3.3 Decoder

The decoder uses the fixed size representation cccu to update its internal state sssu and predict
next output yu. It is composed of a unidirectional LSTM layer followed by a linear layer
and a softmax function to convert the output into a probability distribution. This can be
formalized as:

(qqqu,sssu) = LST M(cccu,sssu−1,yyyu−1), (5.9)

yu ∼ So f tmax(Lin(qqqu)), (5.10)

where qu is the output of the LSTM layer.
Two additional tokens are added to the output labels. The start-of-sequence token (<sos>)

is used to initialize the sequence while the end-of-sequence token (<eos>) indicates that
sequence decoding completed.

The attention-based decoder loss uses the cross-entropy criterion based on the ground
truth output sequence ŷ. This loss can be defined as:

Latt =− lnP(ŷyy|XXX) =−∑
u

lnP(ŷu|XXX , ŷyy1:u−1) (5.11)
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5.3.4 Combining the two approaches

The overall loss LMT L proposed by Kim et al. to train the full model is finally defined as the
combination of the CTC loss LCTC and the attention loss Latt using a weighting parameter λ :

LMT L = λLCTC +(1−λ )Latt . (5.12)

Hori et al. (2017) also proposed a way to combine the prediction of the CTC and attention-
based architectures at test time in order to further improve the performance of the hybrid
model.

5.4 Methodology

The main task considered here corresponds to the one proposed in Tensorflow’s SC challenge
presented with the dataset in subsection 3.2.4, and which evaluates keyword classification.
The dataset is composed of more than 105K examples of 35 possible keywords, with each
example being 1 second long. Among the 35 keywords represented, 10 are used as target
commands for detection (see org_kwd set in Table 5.2 below for the complete list) while the
other are used as OOV words to test for false detections. In addition to the keywords, two
additional classes are considered: (i) a _silence_ category corresponding to records free of
speech, and (ii) an _unknown_ category corresponding to records containing speech that is
none of the keywords and populated with the remaining 25 keywords.

5.4.1 TensorFlow example code

Together with the Kaggle challenge mentioned earlier, TensorFlow team released example
code to serve as a starting point for the challenge participants. This code is also the one used
by Warden (2018) to report baseline results.

The model is an all neural classification system that operates on the whole example at
once (leveraging on the fixed length of the records) and directly outputs a prediction score
for each of the 12 classes. The input is composed of 40 MFCCs computed over windows of
30ms, with a stride of 10ms by default. Inspired from the architecture proposed by Sainath
and Parada (2015), the network is composed of two 2D (across both time and frequency)
convolutional layers of 64 filters over patches of 8x20 and 4x10 respectively. The first
convolution is followed by a max pooling layer of 2x2 with a stride of (2, 2). Dropout is also
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TABLE 5.1 Classification error (%) of the baseline systems on the 12 categories
for version 1 of the SC dataset.

Model Classification error (%)
Validation set Test set

Tensorflow classifier 10.8 10.9
CNN-HMM 2.82 3.63

applied after each convolutional layer. A final linear layer followed by the softmax function
gives the final prediction.

5.4.2 CNN-HMM baseline

As an alternative to the classification system just mentioned, a baseline based on a more
classical CNN-HMM ASR system is described now. This system does not have the simplicity
of Tensorflow’s code but is much more flexible. The experiments presented here are based
on code that was originally developed by Ondřej Klejch, Joachim Fainberg and Joanna
Rownicka, from the CSTR group in Edinburgh University, for their participation in the
Kaggle challenge mentioned earlier. They themselves started from the recipe4 provided with
Kaldi for the Resource Management (RM) dataset.

The CNN-BiLSTM acoustic model is composed of two 2D (across both time and fre-
quency) convolutional layers, followed by 4 fully connected layers. The network is trained to
predict senones with the usual cross-entropy loss, followed by 1 iteration of discriminative
training with the sMBR objective (Gibson and Hain, 2006). The network uses as input 11
frames (with a context of 5 from both sides) of 40 filter bank coefficients, augmented with ∆

and ∆∆ features. The alignments used as reference for network optimization are obtained
from a GMM-HMM system trained with LDA-MLLT features.

All the words from the _unknown_ category are modeled through a single occurence
of a special phoneme labelled UNK (e.g. house is transcribed as UNK). For decoding, a
grammar allowing a single occurrence of any of the 10 keywords or the UNK/SIL phonemes
(in isolation) is used.

Table 5.1 compares the performance of this model and the classifier provided by Ten-
sorflow team on version 1 of the dataset. It can be seen that the CNN-HMM system clearly
outperforms the classifier, with 74% of relative improvement on the classification error for
the test set. The CNN-HMM will thus be retained for comparison in following experiments.

4egs/rm/s5/local/nnet/run_cnn2d.sh
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5.4.3 End-to-end model

I report here experiments on hybrid CTC/Attention with either pyramidal or CNN encoders.
The pyramidal BiLSTM encoder is composed of 4 layers of 320 bidirectional LSTM units.
Downsampling is performed in the first two layers with a factor of 2 each time. The CNN-
BiLSTM encoder is composed of 4 convolutional layers, with 2 max pooling layers (after
the second and fourth convolutions). Each pooling layer has a reduction factor of 2, thus
downsampling the timescale of the input by 4 overall. Four layers of 320 BiLSTM units sit
on top of the CNN part.

I used the location-aware attention mechanism and a layer of 300 LSTM cells for the
decoder. Default hyperparameters from ESPnet voxforge recipe were used unless stated
otherwise, including the default value of λ = 0.5. The input was composed of 80 fbanks and
I experimented with 3 different types of labels: phonemes, graphemes and words.

When a phoneme-based output is used, each keyword is mapped to a phoneme sequence
using a pronunciation dictionary. Also, similarly to what is done for the CNN-HMM baseline,
the additional UNK and SIL phonemes are used to model examples from the _unknown_

and _silence_ categories (each example being modeled with a single occurrence of the
corresponding phoneme). For the grapheme-based output, each keyword is decomposed in its
constituent character sequence while ? and _ characters are used to represent the _unknown_
and _silence_ categories (e.g house is transcribed as ?). For both phoneme- and grapheme-
based outputs, all output not corresponding to one of the keywords or _silence_ is further
mapped to the _unknown_ category when scoring.

5.4.4 Strategies for few-shot learning

The main limitation of the small vocabulary approach used here (or used in the Kaggle
challenge) is its flexibility. The ASR systems presented here are trained on a small set of
keywords and no guarantee is given that they will generalize to new ones (in fact I expect
them to recognize new keywords poorly if at all). While the use of sub-word targets usually
allows to decode words not seen at training time, the poor coverage of senones (due to the
limited vocabulary) is likely to result in poor generalization to new keywords. Also, in the
case of the S2S model, the decoder may overfit to the small vocabulary and thus be unable to
predict any other sequence. This is a limitation that is hardly manageable in practical usage.
To alleviate it, I propose to explore strategies for few-shot learning, where one can gather
few examples of a new word and use them to retrain or adapt the existing system, so that it
will perform better on this new word.
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The retrain strategy. The simplest strategy I tried consists in adding the examples
of the new keywords to the training set from the beginning and train a new model on it
(a method referred to as retrain hereafter). One issue with this method is that the new
keywords will be under-represented compared to the original ones. To improve on that, I
propose to try oversampling the few-shot examples, that is the model will see these examples
k times during an epoch (where k is the oversampling factor) when the original examples
will be seen only once.

The adapt strategy. The main limitation of the retrain strategy is that it requires
to retrain the model from scratch every time. Alternatively, I propose a method based on
adaptation (referred to as adapt) where I start from a model trained on the 12 original
categories (the 10 original keywords to which _unknown_ and _silence_ categories are
added). Its weights are then adapted by training the model for a few more epochs on the
few-shot examples, keeping the same training procedure otherwise. To avoid performance
deteriorating too much on the 12 original categories, some of their examples are also included,
with the same number of examples per class as for the few-shot classes. The overall number
of examples being very small, few updates are made per epoch. I thus expect higher learning
rates to be useful. The number of epochs, which plays a complementary role, has also been
optimized.

One drawback of this strategy, however, is that the model I start from may not contain
all the output labels required for the new keywords (limited to the phonemes or graphemes
present in the 10 original keywords). This problem is solved by replacing the missing
phonemes (resp. graphemes) by the UNK model (resp. the character ?) initially introduced
for the _unknown_ category). This can result in a dramatic change as exemplified by the
word backward for which most phonemes are absent from the pretrained models output.
The original transcription "B AE K W ER D" becomes "UNK UNK UNK UNK UNK D" after
replacement. Similarly for graphemes, replacing missing characters leads to the transcription
"????w?rd".

The retrain_replace strategy. In view of the limitation just mentioned and in order
to compare the adapt strategy more fairly with the retrain approach (which uses all
labels where the adapt strategy do not), the retrain_replace strategy is introduced. This
strategy uses the same training procedure as the retrain method, but with the modified
labels (limited to the phonemes/graphemes present in the original keywords).
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TABLE 5.2 List of SC keywords assigned to the different word sets.

Set Words

org_kwd down, go, left, no, off, on, right, stop, up, yes
org_unk bed, bird, cat, dog, happy, house, marvin, sheila, tree, visual, wow
new_kwd forward, four, one, three, two, zero
new_unk eight, five, follow, learn, nine, seven, six

5.5 Experiments

5.5.1 Experimental setup

My experimental setup is based on the second version of the SC dataset presented in sec-
tion 3.2.4. The original setup with 10 keywords has been slightly modified here. A limitation
of the original design is that the same collection of words is used for the _unknown_ category
at both training and test time. In order to better evaluate the generalization capability of the
model to unseen words (which will likely be limited given the number of words used to train
this category), I decided to exclude some of them from the training set. These words will only
be used for evaluation in order to get a better idea of the generalization of the _unknown_

category to unseen speech. Also, as mentioned earlier, I am interested in exploring strategies
for few-shot learning. Hence, a few words are also kept aside for use in those experiments.

The 10 original keywords (from here on referred to as the org_kwd set of words) are kept
identical. The 25 remaining ones however are split into two main categories: 7 are used as
new keywords in the few-shot experiments (referred to as new_kwd) and 18 as unknowns (the
unk set). This later group is further split into 11 words (org_unk) that are used for training
and evaluation, while the remaining 7 (new_unk) are seen at evaluation time only. When
evaluating the unk set, the average of the scores of the two subsets is used (with equal weight
for the two categories). Table 5.2 gives the list of words assigned to each category.

The split of the data in training, validation and test sets was done using the function
implemented in Tensorflow’s example code with 80%, 10% and 10% for each set respectively.
The _unknown_ category being the combination of several keywords, it is over-represented
in the dataset. To prevent it from dominating the learning procedure, it is downsampled by
randomly selecting a number of examples corresponding to the mean number of examples
available for the keywords (org_kwd). Finally, for all experiments on few-shot learning, f

examples are randomly sampled from the training records I have kept aside for each new
class.
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TABLE 5.3 Error rate (%) of the S2S model on SC validation set, with different
types of encoder and output. Unlike Table 5.1, results for the 10 keywords and

the _unknown_ or _silence_ categories are given separately.

Encoder Output org_kwd unk _silence_

Pyramidal BiLSTM
Phoneme-based 4.9 27.4 0.0
Grapheme-based 5.1 25.4 0.0
Word-based 5.5 31.1 0.0

CNN-BiLSTM
Phoneme-based 3.7 22.2 0.0
Grapheme-based 3.8 23.1 0.0
Word-based 3.8 25.7 0.0

5.5.2 End-to-end approach for small vocabulary ASR

I first report results on the original classification task trained on 12 categories, comparing
traditional and E2E pipelines. Table 5.3 summarizes the results obtained with the S2S model
for different types of encoder and output. Unlike Table 5.1, error rates for the 10 keywords
(org_kwd set) and the _unknown_ or _silence_ categories are given separately. We can first
see that the encoder using CNNs clearly outperforms the one based on pyramidal BiLSTMs.
The best CNN-BiLSTM model reduces the classification error by 24% relatively to the best
pyramidal model on the org_kwd category. Comparing the different types of output now,
we see that the classification error of the three CNN-BiLSTM S2S models on the keywords
are very close. Looking at the performance of the same models on the unk set, we see they
all display a much higher error rate, as expected with only 11 different words to populate
the _unknown_ category for training. It can be noticed though that the phoneme-based S2S
model performs significantly better than its two competitors on this set. This may be due to
a better generalization to the new_kwd set which counts for half in the error rate of the unk
category.

Hence, the greater simplicity of the grapheme- or word-based approaches, which do
not require a pronunciation dictionary, can be traded off for better performance. Moreover,
it has to be highlighted that in the small vocabulary context explored here, building the
pronunciation dictionary is greatly simplified compared to the large vocabulary situation.

In Table 5.4, I compare the test classification error of the best E2E model (CNN-BiLSTM
encoder with phoneme-based output) with the CNN-HMM baseline. On the main task, the
E2E approach beats the baseline by 40% relative. This is very promising as it shows that
E2E models are a competitive alternative to more traditional approaches for this task. The
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TABLE 5.4 Classification error (%) of the baseline and the best S2S model on
SC test set.

Model org_kwd unk _silence_

CNN-HMM 4.2 35.6 0.0
Hybrid CTC/Attention S2S 2.5 23.6 0.0

results on the unk set shows that they also generalize much better, the E2E approach beating
the baseline by 34% relative on this subset.

Finally, I give some insight on the behavior of the S2S models. As can be seen from
Figure 5.2, and confirmed by manual inspection, the attention tends to focus on a single
portion of each input or (more often) uses a diffuse attention that spans most of the input.
Contrary to what is usually observed with this kind of architecture, the attention does not
shift along the input time axis as the output tokens are produced. It appears that the model
representation is more akin to word than sub-word modeling, as is usually observed. With
the small vocabulary used here, the model is apparently able to discriminate between the
different keywords with a single "glance" at the data. For example, in the case of the word
stop, the model seems to attend to the phoneme T (first row of Figure 5.2). More surprisingly,
in some cases (a good example is the word yes, 2nd row of the figure), the model seems to
seek information from a fixed position, even if it falls in the silence preceding the word. The
most common case is illustrated by the remaining examples where the attention is spread
over the input. A more quantitative analysis would be required to better understand those
dynamics, which may be related to the effective window size of the encoder.

5.5.3 Few-shot learning

For small number of few-shot examples ( f ), the variability introduced by the random selection
of the sample is high. Mean scores over 10 runs is thus reported for all experiments on
few-shot learning.

I experiment with f ∈ {10,100}. While 100 examples may seem a lot for few-shot
learning, it allows to test how the different strategies behave when the number of examples
increase. It is also to be noted that 100 examples is only 2.6% of the number of examples
available for the original classes (∼ 3850 on average).

For the retrain strategy, I experimented with values of the oversampling factor (k) so as
to reach up to 3000 simulated examples for the new keywords (k = 300 for f = 10 and k = 30
for f = 100), obtaining similar frequency in training and test sets. As Figure 5.3 shows,
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FIGURE 5.2 Attention weights produced by the phoneme-based S2S model
for two examples of the following words (one line per word in the same order):
stop, yes, down, tree (unknown), bed (unknown) and silence. Their respective

alignment is displayed on top.
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this technique is particularly effective for f = 10 with the new_unk set (top figure). While
the score of both phoneme- and grapheme-based models is around 95% of error without
oversampling, the mean error score goes below 72% when the multiplication factor is higher
than 1 and below 60% for multiplication factors between 10 and 100. The best score is
achieved for k = 10 with the grapheme-based output, which improves the performance by
40% relative over the same model without oversampling. The improvement is less visible
for f = 100 but still lead to 12% relative improvement for the grapheme-based model with
k = 30.

The degradation of the performance on the original keywords (middle figure) tends to
increase with the multiplication factor, peaking at k = 100 for f = 10 and then going down.
The degradation for the two models giving the best results on the new keywords is around
16% in both cases. A better compromise between new and original keywords can probably
be found though. Finally, we can see that the performance of the different models on the unk
set (bottom figure) is quite variable with no clear tendency. The mean classification error
fluctuates between 24 and 31% for f = 10 and between 27 and 31% for f = 100.

Figure 5.4 shows the classification error with the retrain_replace strategy for the
new_kwd (top), org_kwd (middle) and unk (bottom) categories. As can be seen from the
figures, the phoneme replacement rule does not seem to affect considerably the results. For
f = 10, the best results on the new keywords are achieved with the grapheme-based model
and k = 10, with an error rate of 57.9%. Conversely for f = 100, the best performance is
obtained with the phoneme-based model and k = 30, with a classification error of 17.0%.
The main difference between the retrain and retrain_replace strategies is in the results
obtained for the unk category which are much more consistent here. The scores obtained
with phoneme- and grapheme- based outputs with the later strategy are more correlated for
both values of f . These results tend to suggest that the inclusion of new phonemes/graphemes
in the retrain strategy may be the reason of the highly variable performance on the unk set.

Finally, Figure 5.5 shows the classification error with the adapt strategy for the new_kwd
(top), org_kwd (middle) and unk (bottom) sets. For each experiment, the best number of
epochs has been selected based on the validation set. As can be seen from the top figure,
this strategy allows to reach much lower error rates on the new keywords. We can also see
that increasing the learning rate is necessary to get the best results, but too high a value and
the results quickly deteriorate as the model overfits the small training set. The best results
on the new keywords are achieved with the grapheme-based (resp. phoneme-based) output,
with a learning rate of 3 for f = 10 (resp. f = 100). The performance on the org_kwd set
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FIGURE 5.3 Classification error (%) on SC validation set using the retrain
strategy, for the new_kwd (top), org_kwd (middle) and unk (bottom) categories
and as a function of the oversampling factor. Phoneme- and grapheme-based
outputs are compared, for f = 10 or 100. The bars represent the standard

deviation over 10 runs.
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FIGURE 5.4 Classification error (%) on SC validation set using the
retrain_replace strategy, for the new_kwd (top), org_kwd (middle) and
unk (bottom) categories and as a function of the oversampling factor. Phoneme-
and grapheme-based outputs are compared, for f = 10 or 100. The bars repre-

sent the standard deviation over 10 runs.
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TABLE 5.5 Error rate (%) on SC validation set using the S2S model with dif-
ferent few-shot learning strategies and different number of few-shot examples.

f Strategy org_kwd unk _silence_ new_kwd

10
retrain 4.3 28.6 0.1 57.0
retrain_replace 4.7 27.3 0.1 57.9
adapt 11.5 65.8 0.3 29.2

100
retrain 4.5 29.6 0.0 16.9
retrain_replace 4.8 30.3 0.0 17.0
adapt 7.4 42.5 0.5 10.1

TABLE 5.6 Error rate (%) on SC test set using the S2S model with the two
main few-shot learning strategies.

f Strategy org_kwd unk _silence_ new_kwd

10
retrain 3.7 31.3 0.1 59.5
adapt 11.7 66.5 0.4 31.2

100
retrain 3.8 31.8 0.0 18.5
adapt 6.9 45.0 0.8 11.6

progressively deteriorates as the learning rate increases and a big drop in performance is
observed for a learning rate of 7.

Table 5.5 summarizes the error rate of the different strategies on the validation set for
the two values of f (10 and 100) with the hyperparameters giving optimal scores on the
new_kwd set. A first observation is that the phoneme/grapheme replacement rules introduced
in subsection 5.4.4 for the adapt strategy does not seem to penalize the performance on
the new_kwd set. The retrain_replace strategy gives results very close to the retrain

one overall. Comparing the performance of the adapt and retrain strategies now, we see
that adaption is not only much faster to train but is also the best one on the new keywords.
The classification error is improved by 49% and 40% relative for f 10 and 100. Though,
this is is achieved at the expense of the org_kwd and unk sets where the performance is
highly deteriorated. Lower learning rates may help mitigate this issue by providing a better
compromise between the new keywords and the other categories.

Table 5.6 summarizes the test error rate of the best models for both strategies (retrain
and adapt).
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FIGURE 5.5 Classification error (%) on SC validation set using the adapt
strategy, for the new_kwd (top), org_kwd (middle) and unk (bottom) categories
and as a function of the learning rate. Phoneme- and grapheme-based outputs
are compared for 10 and 100 fewshot-examples ( f ). The bars represent the

standard deviation over 10 runs.
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5.6 Conclusion

In this chapter, I studied the adequacy of E2E approaches on a small vocabulary task, in order
to simplify the process of training a keyword/command recognition system and make this
technology more accessible. I found that they can be competitive in such a context, giving
better results than a strong CNN-HMM baseline. Two few-shot strategies have also been
proposed. By simply training a model from scratch on the combination of the original dataset
and those new examples, I managed to reach 40.5% of accuracy with only 10 examples
per new keyword and 81.5% with 100 examples. A faster adaptation strategy was also
proposed which achieves even better results with 68.8% and 88.4% of accuracy for 10 and
100 examples respectively. Though, this is achieved at the expense of the performance on the
original keywords.

I have also shown that the dynamic of the hybrid CTC/Attention model in the proposed
task is quite different from what is usually observed with large vocabulary tasks. The model
representation is more akin to word modeling making the attention mechanism of limited
interest. An alternative then would be to consider a many-to-one model such as the attention-
based system (without decoder) proposed by Shan et al. (2018). It would also be interesting
in the future to analyze more deeply the behavior of the model as one move from a small
vocabulary keyword task to a large vocabulary one with complex sentences.



Chapter 6

Integration

The ultimate goal of my research is the study and development of command recognition
technology for robotics. In parallel to my work on acoustic model robustness and few-
shot learning for sequence-to-sequence models, I developed a fully functional command
recognition system for the iCub platform1 (Metta, Natale, et al., 2010), called iCubrec. This
system is intended as a testbed for the proposed methodologies and a demonstration of their
performance on a real application case.

A first version of this system2 as been described in Higy, Mereta, et al. (2018). The
speech recognition system was then based on Tensorflow and HTK. A new version has since
been developed, which improves the pipeline in several ways:

• Segmentation of speech from the continuous audio stream is done automatically by a
VAD module, instead of the manual trigger used previously.

• HTK toolkit has been replaced with Kaldi which offers more facilities for neural
networks integration, as well as many modern techniques not available in HTK.

• A stronger DNN-based acoustic model has been trained.

• A garbage model has been added to the grammar of our model, as well as a rejection
mechanism to account for failures of the VAD model.

• A simple mechanism has been implemented to filter out sentences pronounced by the
robot itself.

I will briefly present the iCub platform, before describing the developed speech recogni-
tion pipeline in more details.

1http://www.icub.org/index.php
2https://github.com/robotology/natural-speech/tree/master/icubrec

http://www.icub.org/index.php
https://github.com/robotology/natural-speech/tree/master/icubrec
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6.1 iCub platform

iCub is an open-source humanoid robotic platform, intended for research in embodied
artificial intelligence. The robot was originally designed by a consortium of several european
universities, in the scope of the RobotCub european project, and built by the Italian Institute
of Technology (IIT). In addition to the robot itself, the platform also includes a middleware
and a large software repository. The middleware, called YARP (Yet Another Robot Platform)
(Metta, Fitzpatrick, et al., 2006), is responsible for the communication between the sensors,
the actuators and the different modules controlling the behavior of the robot. The module
repository3, mainly written in C++, provides many basic functionalities (e.g. visual depth
perception, motor control, voice synthesis, facial expressions) as well as more advanced
applications (e.g. visual object detection and recognition, walking and balance control, object
grasping and manipulation). The hardware design, the software and the documentation are
all released in open-source under the GPL license.

6.1.1 The iCub robot

The iCub (illustrated in Figure 6.1), which is 104 cm tall and weights around 22 kg, has been
dimensioned as a five-year-old child. It has 53 degrees of freedom (DOF) divided between
the head, arms and hands, waist and legs. In addition to visual and audio perceptions, the
robot has full kinesthetic awareness: proprioception (body configuration in space), movement
(through accelerometers and gyroscopes), force/torque (to control how much force is exerted)
and touch. It is one of the few humanoids in the world with a full-body sensitive skin allowing
it to interact with its environment safely.

The robot was not initially designed to operate autonomously and was provided power
and network connectivity through an umbilical cable. A battery-packed version is now
available as well (as of version 2.5), with wifi connection and on-board battery (giving the
robot an autonomy of 2 hours).

More than 40 robots exist in various laboratories world-wide.

6.1.2 R1

R1 (illustrated in Figure 6.2) is a new robot developed by the IIT. Intended as a personal
assistant for domestic or professional purposes, it is 125 cm tall and weights around 50 kg
(including a battery, which gives it an autonomy of 3 hours). Its extensible torso and arms

3https://github.com/robotology

https://github.com/robotology
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FIGURE 6.1 iCub robot.
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allow the robot to reach far objects. The head, composed of a LED screen, also contains
vision, equilibrium and sound sensors.

Aimed at mass market, its design has been simplified compared to iCub, in order to make
it more robust and affordable. Hence, it is composed at 50% of plastic and 50% of carbon
fibers and metal. The number of motors as been reduced from 53 to 28. In particular, the
hands are composed of two fingers only, the legs are replaced by gyroscopic wheels and the
tactile skin is present only on the forearms and the hand.

6.1.3 YARP

Yet Another Robot Platform (YARP) is the middleware developed for the iCub platform,
which purpose is similar to the well-known Robot Operating System (ROS) platform which
came after it. It takes care of the communication between sensors, actuators and the diverse
modules that control the robot. While YARP is originally developed in C++, it can be
interfaced with other programming languages like Python. As all other components of the
iCub platform, it is open sourced (under BSD-3-Clause license). Performance plays a key
role in the design of YARP.

Ports are a key concept in YARP, as they allow the different modules to exchange
information. For example, they are used to handle communication between the different
modules of the iCubrec command recognition system. Each module can declare any number
of ports which will be used to send or receive information. The port’s name, serves as an
id to refer to the port from outside the module and can for instance be used to connect two
ports. Whenever data is written on an output port, the port will send it through YARP to all
ports registered as listeners. A simple example is provided in Figure 6.3 with two modules,
a sender with an output port named /sender:o and a receiver with an input port named
/receiver:i. The two ports are connected such that any data sent by the sender on its
output port will automatically be received by the receiver on its input port. The suffixes :o
and :i are not mandatory but are an easy way to identify input and output ports. I will follow
this convention here.

Remote procedure call (RPC) ports are also available which allow synchronous commu-
nication. Hence, each message sent will receive a reply. This mechanism can be used for
example when the sender needs to receive a confirmation that the action has been performed.
Following the convention introduced previously for ports, RPC ports will be prefixed with
:io.
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FIGURE 6.2 R1 robot.

sender receiver/sender:o /receiver:i

FIGURE 6.3 An example of two modules connected through YARP ports.



6.1. iCub platform 99

FIGURE 6.4 Placement of the microphones on iCub’s head, one on each side
of the head, at a position similar to human ears. The right microphone is

represented here, indicated by the blue arrow.

6.1.4 Speech recognition on the iCub platform

Two main options are available to acquire audio when working with the robots: (1) use the
robots’ own microphones, or (2) use an external microphone. Both R1 and iCub are equipped
with microphones. iCub has two microphones, one on each side of the head, at a position
similar to human ears (see Figure 6.4). R1, is equipped with an array of 6 microphones,
all mounted on the head (see Figure 6.5). At the beginning of my PhD, R1 was not yet
available and the version of iCub we had (version 2.5) was not ideal for speech recognition.
First, the microphones available on the robot were of poor quality with a low SNR. Second,
one inconvenience of iCub, as far as audio perception is concerned, is the presence of the
on-board PC104 controller in the head of the robot. The fan used to cool the system is quite
noisy and very close to the microphones. An alternative has been found which relies on an
external microphone for sound acquisition (used to gather VoCub dataset). These problems
have now been solved with a new version of the head incorporating better microphones
(Soundman OKM II) and a more silent fan-less cooling system.
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FIGURE 6.5 Placement of the microphones on R1’s head, 4 on the top (top
picture) and 2 on the bottom of the head(bottom picture). The location of the
microphones is materialized by the small holes indicated by the blue arrows.
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The alternative using an external microphone is based on the yarp.js4 library (Ciliberto,
2017). The library uses javascript, and more precisely Node.js, to connect any device to
YARP without requiring any code installed on the machine itself. A web server, responsible
for the communication with YARP offers web services that can be accessed by any device on
the same network through a web browser. This way, it is possible to acquire sound from a
phone and stream it through YARP for example. This is the method that was used to record
the VoCub dataset from a tablet.

It is to be noted that YARP can handle sounds natively through the Sound object.

6.2 iCubrec pipeline

The command recognition pipeline we developed is organized as follows:

• The sound is acquired from one of the robots microphones or from an external device
and streamed through YARP.

• The VAD system detects the presence of speech in the continuous audio stream and
segments the relevant portion. The segment corresponding to a possible command is
saved to a file and the actual command recognition system is activated.

• The command recognition module decodes the sentence. A garbage model and a
rejection mechanism allow the module to filter false positives from the VAD (see
subsection 6.2.2 for details). When a command is recognized, it is sent to a state-
machine.

• The state-machine module is responsible for controlling the interaction with the robot,
generating appropriate actions in response to the commands, based on the context and
the state of the interaction.

The pipeline is illustrated in Figure 6.6.
The sound acquisition process and the state-machine where not the focal point of my

work and mainly rely on pre-existing modules. I mostly contributed to the implementation of
the VAD and command recognition systems, which I will now describe. More focus is put
on the command recognition module and especially the acoustic model which are the main
focus of my thesis.

4https://github.com/robotology/yarp.js
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FIGURE 6.6 The command recognition pipeline.

6.2.1 Voice activity detection

The development of the VAD system is a joint work of 3 persons: Raffaele Tavarone (Center
for Translational Neurophysiology of Speech and Communication (CTNSC), IIT), Luca Pasa
(same affiliation) and I. Raffaele Tavarone focused on the training of a DNN-based VAD
model, while together with Luca Pasa, I worked on the integration of this model in YARP.

To construct the neural network input, 40 log mel-scale filter bank coefficients and energy
are extracted over 25 ms frames, with a stride of 10 ms. We then concatenate the features
from 11 frames (5 from each side of the current frame) to construct the final input. The
network is composed of 4 layers of 2000 units, with the ReLU activation function for the
hidden layers and the softmax function for the output one. The output has a dimension of 2
corresponding to the probabilities of "speech" versus "non-speech". The network is trained
on VoCub dataset with the standard cross-entropy loss, through SGD and with mini-batches
of size 1500. Adam optimizer (Kingma and Ba, 2015) is used with a learning rate of 0.0001
and β1 = 0.9, β2 = 0.999, ε = 1e−08.

Figure 6.7 shows the confusion matrix for the frame-level predictions of the VAD on
VoCub test set and for the chosen operating point. The accuracy for the non-speech and
speech categories is of 96% and 92% respectively. Evaluation of a similar model trained on
a different dataset can be found in Savran et al. (2018).

The output of the VAD is further smoothed using a moving average over 5 outputs (2 on
each side of the current one). Speech is detected when the probability exceeds a threshold
(0.7 by default). A minimum length parameter (set to 300 ms by default) also allows to filter
out segments that are unlikely to contain speech due to their shortness.

The neural network is trained and runs with Tensorflow. The module is interfaced with
YARP through its Python bindings. When a segment of speech is detected that exceeds
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FIGURE 6.7 Confusion matrix for the frame-level predictions of the VAD on
VoCub test set.

this minimum duration, it is saved as a wavefile and the command recognition module is
notified. The module exposes two ports: /reader:i where it receives the incoming sound,
and /file_writer:o where segment filenames are written upon detection.

Hyperparameters where chosen so as to favor false positives over false negatives. This
allows to limit the number of commands missed by the VAD system, while the false detections
can be subsequently filtered by the command recognition system.

6.2.2 Command recognition

The first version of the command recognition system, described in Higy, Mereta, et al. (2018),
is a GMM-HMM system based on HTK. In order to interface it with YARP, the original
HVite decoder (written in C) has been modified5 to add two ports. Speech recognition is
triggered by reception of the command "recognize" on the input port, while the output port
is used to sent the recognized command (in textual format). One of the main limitation of
using HTK, apart from the limited support for neural networks mentioned in subsection 3.1.1,
is the impossibility to use neural networks for online decoding. Only GMM-based models
are supported (as of version 3.5). This is another reason that motivated the use of Kaldi for
the second version.

5The modified version of HVite decoder can be found in the github repository containing all the code for
the first version of iCubrec: https://github.com/robotology/natural-speech/tree/master/icubrec/

https://github.com/robotology/natural-speech/tree/master/icubrec/
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While I implemented the first version of the command recognition system by myself, the
second version is a joint work of Leonardo Badino, Luca Pasa and myself. The DNN-based
acoustic model was trained by Leonardo Badino and will be presented in more detail in
next section. I worked with Luca Pasa on the integration of the model with YARP. For
each segment extracted by the VAD, senones posterior probabilities are estimated by the
DNN. Similarly to the VAD system, Tensorflow is used to train and run the acoustic model.
Once extracted, the posterior probabilities are passed to Kaldi for decoding and the best
lattice path is extracted. A finite state transducer based on VoCub grammar (see section A.1)
is used as language model. The Python module is interfaced with YARP through two
ports: /file_reader:o where the name of the wavefile containing the segment to decode is
expected, and /cmd_writer:o where the recognized command is sent (in textual format).

Even though the VAD system should filter most of the non-speech audio, it may still
generate some false positives (especially so as we favor them over false negatives). We
combine two mechanism to filter them: (i) a filler model inspired by literature on KWS, and
(ii) a rejection mechanism based on a confidence score.

The filler model was initially composed of a special phoneme (<SPN>) modeling non-
command speech noise. However, we noticed many false positives due to non-command
sentences containing words present in the commands (especially stop words such as I, you, is,
or this). We thus included the most frequent stop words6 in the garbage model, in isolation.
This heuristic proved very effective in filtering out non-command sentences.

Additionally, a filtering mechanism based on the per-frame average of the acoustic
negative log-likelihood (given by Kaldi program lattice-best-path) allows to remove
segments that are likely to be mis-recognized given their high score. A threshold of 1.7 gives
good results in practice.

Finally, an unanticipated source of errors came from the robot. Speech synthesis is
used on the robot to interact with the user. In the course of an interaction, the robot often
pronounces sentences very similar to the commands used by the human (if not the same).
An example would be the robot saying "This is an octopus" to answer the question "What is

this?", which is exactly one of the commands. While more advanced mechanisms could be
used, we simply disregard audio while the robot is speaking.

6The complete list is the following: I, is, no, see, this, yes, you.
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6.3 The acoustic model – current performance and limita-
tions

I will now present the hybrid DNN-HMM acoustic model in more details with an evaluation
of its performance. In all cases, the command recognition system is evaluated in isolation
here.

In order to improve on the baseline presented in section 3.2.5, we explored two domain
adaptation strategies: (1) multi-condition training (referred to as multi-condition here-
after), where one uses the combination of data from source and target domains to train the
model and (2) KLD-based model adaptation (referred to as kld), where we first trained a
model on the source data and later adapted it to the target domain with KLD regularization.
In both cases, CHiME4 was used as the source dataset and VoCub as the target dataset.

The architecture and training procedure of both models follow the baseline ones, except
for following modifications. For the multi-condition strategy, we trained the model on
the combination of CHiME4 and VoCub datasets. For the kld strategy, we first trained the
network on CHiME4, then adapted it to VoCub dataset. For the adaptation phase, we added
KLD regularization in the loss. The weight λ applied to the KLD regularization term was
tuned on the validation set considering only the FER, and the other optimization parameters
are reset to their original values. The output dimension of the two models is 1808 and 1984
respectively.

The performance of the two strategies on the validation set is shown in Table 6.1, together
with the baseline system. As a comparison, I also present results obtained with a state of
the art commercial product, Google Cloud Speech-to-Text7 (referred to as google). Google
product can also take hints as input, in the form of a list of sentences which are likely
to appear in the evaluation set of utterances. This biases the model toward the specified
sentences (without excluding completely sentences that are not in the list) and should provide
better results. Scores with our list of commands as hints is also shown (referred to as
google-hinted).

It can be seen from the table that the baseline model, despite being trained on a small
amount of data, is hard to beat. The gap is particularly important with Google model, which
gives poor results with 75.2% and 62.5% of SER respectively without and with hints. This
low performance can easily be explained as the model was trained without domain-matched
data and uses an unconstrained grammar (or a biased one when hints are provided). The
comparison is quite unfair in this respect, but illustrates the difficulty of training a model that

7Available at https://cloud.google.com/speech-to-text/

https://cloud.google.com/speech-to-text/
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TABLE 6.1 Error rate (%) of the different models on VoCub validation set.

Model WER (%) SER (%)

google 50.72 75.21
google-hinted 39.43 62.50
baseline 5.62 13.56
multi-condition 7.48 16.03
kld 9.69 18.94

TABLE 6.2 Error rate (%) of the baseline and the two adaptation strategies
with a word loop grammar on VoCub validation set.

Model WER (%) SER (%)

baseline 28.64 63.35
multi-condition 28.24 57.84
kld 28.57 65.53

is robust over a large range of speakers and acoustic conditions. Even commercial systems
trained on very large datasets struggle with peculiar conditions such as the one considered
here. This further motivates the approach taken in this thesis.

Surprisingly, both adaptation strategies, multi-condition training and KLD-based model
adaptation, are outperformed by the baseline in this condition. VoCub training set seems big
enough to obtain reliable performance when used alone.

Table 6.2 show more nuanced results using the loop grammar already described in
section 3.2.5 (which allows any combination of the 62 words from the dataset). As can
be seen, using a weaker grammar (giving a better evaluation of the acoustic model) multi-
condition training performs better than the baseline, providing an improvement of 9% relative
on the SER. The kld strategy still performs worse than the baseline but by a smaller margin
(about 3% relative) when evaluated this way. This is encouraging and shows that multi-
condition training has a positive effect on the performance of the acoustic model, despite its
performance being worse when used in conjunction with the strict grammar.

Strangely, this differences in SER are obtained despite very similar WER for the three
models. In order to explain this phenomenon, in Table 6.3, I analyze separately the three types
of errors composing the WER: insertions, deletions and substitutions. We can observe that
the acoustic models have very different patterns of error. The multi-condition strategy
has the highest number of substitutions but the lowest number of insertions and deletions.
The baseline and the kld strategy result in the highest number of insertions and deletions
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TABLE 6.3 Decomposition of the WER on VoCub validation set with a loop
grammar into insertions, deletions and substitutions. Results are presented for

the baseline and the two adaptation strategies.

Model Insertions Deletions Substitutions

baseline 301 73 263
multi-condition 229 54 345
kld 245 123 260

TABLE 6.4 Error rate (%) of the baseline and the multi-condition strategy
on VoCub test set.

Model WER (%) SER (%)

baseline 4.14 7.64
multi-condition 2.52 5.51

respectively, while showing very close number of substitutions. These differences are likely
to explain the variations in SER.

Test results of the baseline and the best adaptation strategy, shown in Table 6.4, further
comfort the use of the multi-condition strategy. Unlike what is observed for the validation
test, multi-condition training here outperforms the baseline by 28% relative.

Finally, while the use of domain adaptation was mainly aiming at improving the accuracy
on the core VoCub commands, it can also be expected that the model will generalize better
to new ones. It has indeed been shown in section 3.2.5 that the performance of the baseline
system deteriorates when tested on sentences not seen at training time (conditions 3 and 4
of the dataset). Table 6.5 shows again the performance of the baseline on the two groups,
together with the performance of the multi-condition strategy in the same context. The
extended grammar (defined in section A.2) is used in this case.

TABLE 6.5 Evaluation of the baseline and the multi-condition training strategy
on VoCub extended test set. WER and SER are given for conditions 1 and 2

on one side and 3 and 4 on the other side.

Model Conditions 1 and 2 Conditions 3 and 4
WER (%) SER (%) WER (%) SER (%)

baseline 3.47 7.22 66.08 88.05
multi-condition 3.91 6.57 54.17 80.92
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As can be seen from the table, the multi-condition strategy achieves better SER
for both groups of sentences. On the new sentences, the adaptation strategy performs 8%
relatively better than the baseline, showing better generalization capabilities.

Overall, multi-condition training proves to be a useful strategy to improve the performance
of the acoustic model on the original sentences (despite giving worse performance on the
validation set with the strict grammar) and generalizes better to new sentences. It can be
expected also that it will be more robust to background noise (not evaluated here).

6.4 Demonstration on the robot

6.4.1 Application to the IOL demo with iCub

The first version of iCubrec was tested with the IOL demo on iCub. Audio was acquired
through the same tablet that was used to acquire VoCub dataset. The VAD was not present at
that time and a manual trigger was used to signal starting and ending point of each command.
A video illustrating the obtained result can be found at https://youtu.be/xdzdQYGwBFg.

6.4.2 Application to the online detection demo with R1

The second version of the pipeline has been tested with the online detection demo8 on
R1. This demo uses a slightly reduced grammar (see section A.3). While the tablet is still
used to acquire the audio, the VAD system provides a completely hand-free experience.
As for the acoustic model, the DNN obtained through the multi-condition strategy pre-
sented earlier has been retained. A video illustrating the obtained result can be found at
https://youtu.be/kvyVaLfILbY.

6.5 Future work

In this chapter, I presented the iCubrec command recognition system we developed. It allows
reliable and hand-free vocal interaction with the robots, which was one of the main goals
of my PhD. Using multi-condition training, the performance of the acoustic system where
improved in two ways. First, despite worse performance on the validation set with the strict
grammar, overall performance of the acoustic model on VoCub core command is improved.
Also, the model generalizes better to new commands.

8The online detection demo improves on the IOL demo by using a DNN-based visual detection system
(instead of a simple heuristic) and incorporates a stronger classification system.

https://youtu.be/xdzdQYGwBFg
https://youtu.be/kvyVaLfILbY
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From there, several improvements are possible:

• The system was only tested using a tablet for audio signal acquisition, the same tablet
that was used to record VoCub dataset. While replacing the tablet microphone with one
of the robot microphones is straightforward technically, we may observe a deterioration
of performance due to different channel characteristics. This will have to be evaluated.

• This brings me to a limit of the evaluation performed in subsection 6.2.1 and section 6.3,
which only considered the VAD and the acoustic model in isolation. The interaction
of the two modules are not tested, nor is the performance of the system in continuous
streaming conditions with silent periods and non-command speech. The design and
implementation of an evaluation protocol for the full pipeline (including the filler and
rejection mechanisms, as well as the possible use of a different microphone) would
allow to assess better the performance of the system. In that case, evaluation metrics
from KWS literature will probably be more appropriate.

• Regarding domain adaptation, we only explored multi-condition training and KLD-
based model adaptation here. More advanced techniques, such as the ones analyzed in
chapter 4 would probably lead to further improvement. The robustness of the system
is key in the user’s experience. It would thus be very desirable to push the accuracy of
the system further. With 5.5% of mis-recognized commands, there is still a lot of room
for progress in the acoustic model.

• When spontaneously interacting with the robot, users are very likely to introduce
disfluencies or use variants of the commands we specified. It would be very interesting
to explore the robustness of the system to these sources of perturbation. While it is
possible to improve the acceptance rate of those sentences (which depends mainly on
the rejection threshold and the entry cost of the garbage model) this will also likely
increase false positives. Alternatively, natural language processing techniques could
be used to relax the one-to-one constraint between vocal commands and meaning,
allowing more flexibility in the expression of the user’s intent.

• Finally, it has been shown that performance can deteriorate significantly when new
sentences, not present in the training set, are added to the system. This strongly
limits the reusability of the system for different applications. The work on sequence-
to-sequence models described in chapter 5 is an attempt to solve this problem, by
providing a simpler training and deployment procedure. This would allow non-expert
users to gather their own dataset and train a dedicated system on it. The few-shot
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strategies I proposed also explore the possibility to extend an existing system with a
minimal amount of data for the new commands. It would be interesting to evaluate
how these approaches perform in real conditions.



Chapter 7

Conclusions and future work

7.1 Contributions

In this thesis, I explored the use of spoken commands to control a robot. While robustness
was my first concern, a particular attention has been put on building a simple pipeline that
can be reused more easily by the robotics community.

In order to reach high accuracy despite scarce resource conditions, domain adaptation
strategies were investigated. Two methods based on the O-MTL paradigm (Badino et al.,
2017) have been proposed. The first one considered the joint optimization of a gender-
independent network with two gender-dependent models. Experiments on TIMIT showed
mitigated results. While the method proved useful with 3.2% of improvement on the FER,
this only partially carried over to the PER. A second approach has been proposed where the
target network was jointly optimized with a model having access to speaker information. This
second approach also showed limited results on the PER with only 0.3% of improvement.
Better optimization strategies may be useful to get the most out of this paradigm. It would
also be interesting to test the same approaches on a more challenging task such as CHiME4
dataset, which also includes noisy conditions.

In order to simplify the command recognition pipeline, a second contribution explored
the use of the attention-based encoder-decoder architecture. The S2S model showed very
good results, improving keyword recognition by 40% over a strong CNN-HMM baseline.
I additionally explored the possibility to introduce new keywords with only few examples
per keyword (few-shot learning strategies). A first strategy that requires to retrain the model
from scratch achieved 40.5% of recognition on the new keywords with only 10 examples
per keyword and 81.5% when 100 examples are available. A faster alternative based on
model adaptation yielded even better results on the new keywords with 68.8% and 88.4% of
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accuracy for 10 and 100 keywords respectively. The latter results are achieved at the expense
of the performance on the original categories though. These results are very promising as
they open the possibility to easily include new keywords in the command recognition system.

Finally, I described the iCubrec pipeline which was developed to test spoken command
recognition on a real scenario. For this purpose, the VoCub dataset has been gathered
corresponding to ∼2.5 hours of data matching the test scenario. Using this dataset, DNN-
based acoustic models have been trained. The best performing model, trained under the
multi-condition training paradigm, achieved 94.5% of accuracy on the test set. The fully
functional pipeline, which includes a VAD system for a completely hand-free interaction,
has been successfully tested on R1 robot.

7.2 Future work

Unfortunately, none of the approaches studied in this thesis for domain adaptation of few-shot
learning with S2S models found there way in iCubrec pipeline. Despite being very effective,
multi-condition training remains a simple domain adaptation strategy. It would be interesting,
in the near future, to explore more advanced strategies to further improve the accuracy of
iCubrec system, which is key in the user’s experience. It would also be useful to establish an
evaluation protocol for the full pipeline, including the VAD module, to get a more accurate
estimation of its performance in real usage conditions.

While the attention-based encoder-decoder architecture showed promising results for
keyword classification, it’s application to more complex commands should be further in-
vestigated. The possibility to use S2S models in place of the more complex DNN-HMM
system, opens appealing perspectives in terms of reusability. The adaptation of this paradigm
to online application, through techniques such as windowed attention or online-enabled
BiLSTM units, also seems promising.

Finally, the possibility to extend the vocabulary with minimal data requirements – e.g.
through few-shot strategies – is another attractive direction for future work. Going one step
further, it would be interesting to investigate incremental learning strategies, such as the one
proposed by Camoriano et al. (2017) for vision, where new commands could progressively
be learned through interaction with the robot. One of the main challenge then is to acquire
labels for the new audio examples. Camoriano et al. assumed an existing speech recognition
system to provide labels for the new objects the system has to learn visually. Conversely,
audio labels could be acquired relying on another modality. This raises an egg-and-chicken
problem though if the different modalities are relying on one another.
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7.3 Perspectives

While smartphone or tablets usually offer other type of interfaces (such as tactile interfaces),
vocal interactions are going to be indispensable for many applications in robotics. On the
other hand, robotic platforms offer many promising features which could be exploited to
improve command recognition. The most obvious modality that can be leveraged is vision.
Robots are readily equipped with cameras, allowing synergies between auditive and visual
information. Vision could for example be used to provide side information about, e.g, the
speaker. Visual information could also be more fully integrated in the auditive pipeline to
improve VAD or command recognition. Hence, Savran et al. (2018) showed how visual
detection of lip activity can improve VAD. Similarly, Ephrat et al. (2018) or Morrone et al.
(2018) explored the use of vision for speech enhancement in multi-talker environments.

Another advantage of robotic platforms is their movement capabilities, which are quite
unique compared to other speech-enabled devices. For example, work on the iCub by
Hambrook et al. (2017) showed how head movements can help localize sounds. This can
in turn be used to filter sound from other directions improving the quality of the audio
signal for latter processing. Another big challenge in command recognition is to determine
whether speech is addressed to the vocal interface or not. This is an ill-posed problem when
considering only audio information. A robotic platform could leverage on visual information
to detect whether the speaker is rather speaking to the robot or addressing another human. In
this context head movements could help keep the speaker in the robot’s field of view.

To conclude, as vocal interfaces will continue to improve, their understanding of the
context of a command will become more crucial to respond appropriately. The capability of
the system to access other modalities (especially vision) and maybe to act on the environment
will become more important. Moving from current deep learning paradigm that performs very
well on isolated tasks (such as object detection, speech recognition or machine translation)
to a more holistic apprehension of the world is probably the next challenge for machine
learning. In this context, robotic platforms are an ideal tool, enabling the study of the different
components in interaction.
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Szöke, Igor, Petr Schwarz, Pavel Matějka, and Martin Karafiát (2005). “Comparison of
keyword spotting approaches for informal continuous speech”. In: In Proceedings Eu-
rospeech (see pp. 27, 30).

Tang, R. and J. Lin (2018). “Deep Residual Learning for Small-Footprint Keyword Spotting”.
In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5484–5488. DOI: 10.1109/ICASSP.2018.8462688 (see p. 30).

Tjandra, Andros, Sakriani Sakti, and Satoshi Nakamura (2017). “Local Monotonic Attention
Mechanism for End-to-End Speech and Language Processing”. en. In: Proc. of the 8th
International Joint Conference on Natural Language Processing. arXiv: 1705.08091.
Taipei, Taiwan (see p. 24).

Tóth, L. (2014). “Combining time- and frequency-domain convolution in convolutional
neural network-based phone recognition”. In: 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 190–194. DOI: 10.1109/ICASSP.
2014.6853584 (see p. 17).

Vapnik, V. and A. Vashist (2009). “A new learning paradigm: learning using privileged
information.” eng. In: Neural networks : the official journal of the International Neural
Network Society 22.5-6, pp. 544–557. ISSN: 0893-6080. DOI: 10.1016/j.neunet.2009.06.
042 (see p. 53).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is All you Need”. In: Advances
in Neural Information Processing Systems (NIPS). Ed. by I. Guyon, U. V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc.,
pp. 5998–6008 (see p. 23).
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Appendix A

Grammars

All grammars are represented using HTK grammar definition language. It consists of a set
of variables (starting with $) which are defined by a regular expression. Vertical bars (|)
indicate alternatives. Special symbols SENT-START and SENT-END represent sentence start
and end.

A.1 VoCub original grammar

Original grammar for the VoCub dataset, corresponding to the commands of the IOL demo.
Table A.1 gives the list of 15 commands that were recorded twice per speaker.

$vObject = octopus;

$cObject = toy | lego | ladybug | turtle | car | bottle | box;

$object = $vObject | $cObject;

$aObject = an $vObject | a $cObject;

$side = left | right;

$action = Take | Grasp | Touch | Push | Explore;

$sent = Skip it |

Yes you are |

No you are not |

No here it is |

Yes I do |

No I do not |

There you go |

Finished |

Return to home position |
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Calibrate on table |

See you soon |

I will teach you a new object |

Execute a plan |

What is this |

Wrong this is $aObject |

This is $aObject |

Where is the $object |

$action the $object |

Let me show you how to reach the $object with your $side arm |

Forget the $object |

Forget all objects;

( SENT-START ( $sent ) SENT-END )

TABLE A.1 List of the 15 commands that were recorded twice per speaker for
the VoCub dataset.

Skip it.
Yes you are.
No you are not.
No here it is.
Yes I do.
No I do not.
There you go.
Finished.
Return to home position.
Calibrate on table.
See you soon.
I will teach you a new object.
Execute a plan.
What is this?
Forget all objects.

A.2 VoCub extended grammar

Extended grammar for the VoCub dataset, corresponding to the original commands of the
IOL demo and 20 additional sentences recorded for the test set only.



A.2. VoCub extended grammar 128

$vObject = octopus;

$cObject = toy | lego | ladybug | turtle | car | bottle | box;

$object = $vObject | $cObject;

$aObject = an $vObject | a $cObject;

$side = left | right;

$action = Take | Grasp | Touch | Push | Explore;

$objDemo = keys | pen;

$sent = Skip it |

Yes you are |

No you are not |

No here it is |

Yes I do |

No I do not |

There you go |

Finished |

Return to home position |

Calibrate on table |

See you soon |

I will teach you a new object |

Execute a plan |

What is this |

Wrong this is $aObject |

This is $aObject |

Where is the $object |

$action the $object |

Let me show you how to reach the $object with your $side arm |

Forget the $object |

Forget all objects |

Hold the glass |

Go back to initial state |

False that is a cup |

Analyze the dolphin |

Let me teach you how to pick up the can with your left hand |

Talk to you later |

Let me teach you how to pick up the tool with your right hand |

Drop that ball |

Give me some coins |



A.3. Reduced grammar for the online detection demo 129

Turn the phone |

Let me demonstrate how to grab the $objDemo with your other hand |

Hold on |

Stop it |

False this is not a spoon |

Accomplish the task |

Done |

That is a pair of scissors |

Pull the hammer |

Shake this bag;

( SENT-START ( $sent ) SENT-END )

A.3 Reduced grammar for the online detection demo

Reduced grammar used for the online detection demo with R1.

$vObject = octopus;

$cObject = toy | lego | ladybug | turtle | car | bottle | box;

$object = $vObject | $cObject;

$aObject = an $vObject | a $cObject;

$sent = Yes you are |

No you are not |

Return to home position |

See you soon |

What is this |

This is $aObject |

Where is the $object |

Forget the $object |

Forget all objects;

( SENT-START ( $sent ) SENT-END )
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