270,880 research outputs found

    Data-Driven Robust Optimization

    Full text link
    The last decade witnessed an explosion in the availability of data for operations research applications. Motivated by this growing availability, we propose a novel schema for utilizing data to design uncertainty sets for robust optimization using statistical hypothesis tests. The approach is flexible and widely applicable, and robust optimization problems built from our new sets are computationally tractable, both theoretically and practically. Furthermore, optimal solutions to these problems enjoy a strong, finite-sample probabilistic guarantee. \edit{We describe concrete procedures for choosing an appropriate set for a given application and applying our approach to multiple uncertain constraints. Computational evidence in portfolio management and queuing confirm that our data-driven sets significantly outperform traditional robust optimization techniques whenever data is available.Comment: 38 pages, 15 page appendix, 7 figures. This version updated as of Oct. 201

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version

    Modeling and Optimization of Complex Building Energy Systems with Deep Neural Networks

    Full text link
    Modern buildings encompass complex dynamics of multiple electrical, mechanical, and control systems. One of the biggest hurdles in applying conventional model-based optimization and control methods to building energy management is the huge cost and effort of capturing diverse and temporally correlated dynamics. Here we propose an alternative approach which is model-free and data-driven. By utilizing high volume of data coming from advanced sensors, we train a deep Recurrent Neural Networks (RNN) which could accurately represent the operation's temporal dynamics of building complexes. The trained network is then directly fitted into a constrained optimization problem with finite horizons. By reformulating the constrained optimization as an unconstrained optimization problem, we use iterative gradient descents method with momentum to find optimal control inputs. Simulation results demonstrate proposed method's improved performances over model-based approach on both building system modeling and control

    Robust Optimization using a new Volume-Based Clustering approach

    Get PDF
    We propose a new data-driven technique for constructing uncertainty sets for robust optimization problems. The technique captures the underlying structure of sparse data through volume-based clustering, resulting in less conservative solutions than most commonly used robust optimization approaches. This can aid management in making informed decisions under uncertainty, allowing a better understanding of the potential outcomes and risks associated with possible decisions. The paper demonstrates how clustering can be performed using any desired geometry and provides a mathematical optimization formulation for generating clusters and constructing the uncertainty set. In order to find an efficient solution to the problem, we explore different approaches since the method may be computationally expensive. This contribution to the field provides a novel data-driven approach to uncertainty set construction for robust optimization that can be applied to real-world scenarios

    Distributed simulation of city inundation by coupled surface and subsurface porous flow for urban flood decision support system

    Get PDF
    We present a decision support system for flood early warning and disaster management. It includes the models for data-driven meteorological predictions, for simulation of atmospheric pressure, wind, long sea waves and seiches; a module for optimization of flood barrier gates operation; models for stability assessment of levees and embankments, for simulation of city inundation dynamics and citizens evacuation scenarios. The novelty of this paper is a coupled distributed simulation of surface and subsurface flows that can predict inundation of low-lying inland zones far from the submerged waterfront areas, as observed in St. Petersburg city during the floods. All the models are wrapped as software services in the CLAVIRE platform for urgent computing, which provides workflow management and resource orchestration.Comment: Pre-print submitted to the 2013 International Conference on Computational Scienc

    Modeling cloud resources using machine learning

    Get PDF
    Cloud computing is a new Internet infrastructure paradigm where management optimization has become a challenge to be solved, as all current management systems are human-driven or ad-hoc automatic systems that must be tuned manually by experts. Management of cloud resources require accurate information about all the elements involved (host machines, resources, offered services, and clients), and some of this information can only be obtained a posteriori. Here we present the cloud and part of its architecture as a new scenario where data mining and machine learning can be applied to discover information and improve its management thanks to modeling and prediction. As a novel case of study we show in this work the modeling of basic cloud resources using machine learning, predicting resource requirements from context information like amount of load and clients, and also predicting the quality of service from resource planning, in order to feed cloud schedulers. Further, this work is an important part of our ongoing research program, where accurate models and predictors are essential to optimize cloud management autonomic systems.Postprint (published version

    Model-Driven Development of Complex and Data-Intensive Integration Processes

    Get PDF
    Due to the changing scope of data management from centrally stored data towards the management of distributed and heterogeneous systems, the integration takes place on different levels. The lack of standards for information integration as well as application integration resulted in a large number of different integration models and proprietary solutions. With the aim of a high degree of portability and the reduction of development efforts, the model-driven development—following the Model-Driven Architecture (MDA)—is advantageous in this context as well. Hence, in the GCIP project (Generation of Complex Integration Processes), we focus on the model-driven generation and optimization of integration tasks using a process-based approach. In this paper, we contribute detailed generation aspects and finally discuss open issues and further challenges
    • …
    corecore