
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-822719

Matthias Böhm, Dirk Habich, Wolfgang Lehner, Uwe Wloka

Model-Driven Development of Complex and Data-Intensive Integration
Processes

Erstveröffentlichung in / First published in:

Model-Based Software and Data Integration: First International Workshops. Berlin, 01.-
03.04.2008. Springer, S. 31-42. ISBN 978-3-540-78999-4.

DOI: https://doi.org/10.1007/978-3-540-78999-4 5

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-822719
https://doi.org/10.1007/978-3-540-78999-4_5

Model-Driven Development of Complex and
Data-Intensive Integration Processes

Matthias Böhm1, Dirk Habich2, Wolfgang Lehner2, and Uwe Wloka1

1 Dresden University of Applied Sciences, Database Group
mboehm@informatik.htw-dresden.de,
wloka@informatik.htw-dresden.de

2 Dresden University of Technology, Database Technology Group
dirk.habich@inf.tu-dresden.de,

wolfgang.lehner@inf.tu-dresden.de

Abstract. Due to the changing scope of data management from centrally stored
data towards the management of distributed and heterogeneous systems, the in-
tegration takes place on different levels. The lack of standards for information
integration as well as application integration resulted in a large number of dif-
ferent integration models and proprietary solutions. With the aim of a high de-
gree of portability and the reduction of development efforts, the model-driven
development—following the Model-Driven Architecture (MDA)—is advanta-
geous in this context as well. Hence, in the GCIP project (Generation of Complex
Integration Processes), we focus on the model-driven generation and optimization
of integration tasks using a process-based approach. In this paper, we contribute
detailed generation aspects and finally discuss open issues and further challenges.

Keywords: Model-Driven Architecture, Integration Processes, GCIP, Federated
DBMS, Enterprise Application Integration, Extraction Transformation Loading.

1 Introduction

The scope of data management continuously changes from centrally stored data to the
integration of distributed and heterogeneous systems. In fact, integration is realized on
different levels of abstraction: we distinguish between information integration (func-
tion integration and data integration), application integration, process integration, and
partially also GUI integration. Due to missing standards for information integration and
application integration, numerous different integration systems with overlapping
functionality exist. In conclusion, only a low degree of portability of the integration
task specification can be reached. However, portability is strongly needed, in particu-
lar, in the context of extending existing integration projects. Typically, in an enterprise
IT-infrastructure, there are multiple integration systems. Assume that two relational
databases are currently integrated with a federated DBMS for reasons of performance.
If this integration process should be extended with the aim of integrating an SAP R/3
sys-tem, functional restrictions make it necessary to transfer the integration process to
the existing EAI server, with the lowest possible development efforts. Aside from the
main problem of portability, there are three more major problems. First, extensive
efforts are

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

needed in order to specify integration tasks. This includes, for example, mapping speci-
fications between heterogeneous data schemas. Although there are approaches to mini-
mize these efforts, like automated schema matching or data integration with uncertainty
(e.g., dataspaces), these approaches are not applicable in real-world enterprise scenar-
ios, due to insufficient exactness. Second, very little work exists on the optimization of
integration tasks. However, this is crucial, e.g., in the context of application integration,
where complete business processes depend on it. Third, the decision about the optimal
integration system (w.r.t. performance, functionality and development effort) is made
based on subjective experience rather than on objective integration system properties.

Hence, our GCIP project (Generation of Complex Integration Processes) addresses
the mentioned problems using a model-driven approach to generate and optimize inte-
gration processes. Basically, integration processes are modeled as platform-independent
models (PIM) using graphical process description notations like UML and BPMN.
Those are transformed into an abstract platform-specific model (A-PSM). Based on
this central representation, different platform-specific models (PSM) can be generated
with the help of specific platform models. Currently, we provide platform models for
federated DBMS, EAI servers and ETL tools. Finally, each PSM can be transformed
into multiple declarative process descriptions (DPD), which represents the code layer.

The contribution of this paper mainly includes three issues. First, after having sur-
veyed related work in this research area in Section 2, we show how integration processes
can be modeled in a platform-independent manner in Section 3. Second, in Section
4, we discuss generation aspects including the A-PSM, PSM and DPD specifications.
Third, in Section 5, we enumerate open issues and research challenges correlated to
our approach. Finally, we conclude the paper in Section 6 and give an overview of our
future work on the optimization of integration processes.

2 Related Work

A lot of work on MDA techniques already exists [1,2]. Further, sophisticated tools and
frameworks for model-driven software engineering have been developed. Therefore, we
survey related work in three steps. First, we point out major MDA techniques. Second,
we show that for application development as well as for data modeling, suitable MDA
support exists. Third, we illustrate the lack of model-driven techniques and approaches
in the context of integration processes.

The core concepts of a model-driven architecture (MDA)—specified by the Object
Management Group (OMG)—are MOF [3], standardized meta models like UML [4],
and model-model transformation techniques. In accordance to [5,6], it could be stated
that QVT (Query/View/Transformations) and TGG (Triple Graph Grammars) are cur-
rently the most promising techniques for such model-model transformations. Due to the
bidirectional mapping and the possibility of incremental model changes, TGG in par-
ticular is seen as the most suitable solution for model transformations. TGG comprises
three graphs: the left-side graph (representing the first model), the right-side graph (rep-
resenting the second model) and finally, a correspondence graph between the two mod-
els. Based on the given correspondence graph, a TGG rule interpreter is able to process
the graph transformations for both directions.

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Further, the MDA paradigm is widely used in the area of database applications for
database creation. First, the model-driven data modeling and the generation of normal-
ized database schemas should be mentioned. This approach is well known and many
different systems and tools exist. Second, there is the generation of full database ap-
plications, including the data schema as well as data layer code, business logic layer
code, and even user interface code. In this area, CASE tools in particular have to be
named. However, there are still research items in this application area. For example, the
logical database optimization is not realized adequately. The GignoMDA project [7,8]
addresses this research item by allowing hint specification. Third, it can be stated that in
the application area of data warehouse schema creation, MDA is also used increasingly.
In accordance to the MDA paradigm, the CWM (Common Warehouse Metamodel) [9]
should be mentioned. However, in contrast to normalized data modeling, there is not as
much MDA support for data warehouse modeling.

Within the context of integration processes, there is insufficient support for model-
driven development. Basically, two different groups of related work should be distin-
guished in this area. First, there is the modeling of workflow processes. With WS-
BPEL [10], there is a promising standard and several extension proposals. However,
this language has deficits concerning the modeling of data-intensive integration pro-
cesses; plus, it is a platform-specific model. In accordance to the MDA paradigm, the
existing process description languages can be classified into three layers: (1) graphi-
cal representation layer, (2) description layer and (3) execution layer. The graphical
notations of UML 2.0 and BPMN 2.0 [11] are included in (1). Further, in (2), only
WS-CDL [12] should be mentioned. Finally, (3) comprises WSBPEL, XPDL [13] and
ebBP [14]. With this logical stratification in mind, the model-driven development of
workflow processes is possible. In contrast to this, there are only few contributions
on generic integration process generation. One of these is the RADES approach [15],
which tries to give an abstract view on EAI solutions using technology-independent
and multi-vendor-capable model-driven engineering methodologies. However, this ap-
proach is very specific to EAI solutions. Although some work on ETL process modeling
[16,17,18] and ETL model transformation [19,20,21] exists, most data integration re-
search addresses schema matching automation [22,23] or static meta data management
[24] rather than the model-driven generation of integration tasks for different target in-
tegration systems. Thus, we are not aware of any solution for the generic generation
of data-intensive integration processes. However, we are convinced that such a solution
is required as a logical consequence of the historical evolution in this area. Finally, we
want to refer to the Message Transformation Model (MTM), a conceptual model for
data-centric integration processes in the area of message-based application integration,
which was introduced in short with [25]. This model is used as our abstract platform-
specific model and thus, as the core of the whole generation process.

3 Integration Process Modeling

Due to the lack of solutions for generic model-driven integration process genera-
tion, the main approach of modeling complex integration processes is introduced in
this section. As already mentioned, integration processes can be specified with

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

platform-independent models (PIM). Therefore, the PIM has to be derived from the
computer-independent model (CIM), which is represented by textual specifications.
Further, it is the first formal specification of the integration process and thus the starting
point for the automated generation. In order to allow different target platforms, at this
level, no technology is chosen. Thus, the platform independence of the model is reached
by restricting the modeling to graphical notations like BPMN [11] and UML [4].

The procedure for PIM modeling is equal to the procedure of structured analysis and
design (SAD). The single steps—which are introduced in the following—are used in
order to allow for different degrees of abstraction during modeling time. Note that it
might occur that, different persons will model the different degrees of abstraction.

1. Determination of terminators (external systems): First, all external systems, also
known as the terminators of a process description, and their types are determined.
This is derived from the overall system architecture.

2. Determination of interactions with the terminators: Second, the type of interaction
is specified for each interaction between the integration system and an external
system. As a result, this comprises the determination of whether these are read
(pull), write (push) or mixed interaction forms.

3. Control flow modeling: Third, the detailed control flow is modeled, including struc-
tural aspects (e.g., alternatives), time aspects (e.g., delays and asynchronous flows)
as well as signal handling (e.g., errors).

4. Data flow modeling: Fourth, the abstract data flow modeling is applied. This means
the general specification of data flow activities like filters, data transformations and
the transactional behavior.

5. Detailed model parameterization: Finally, all control flow and data flow activities
are parameterized in detail using annotations. Thereby, condition evaluations are
specified and the data transformation is described on the schema mapping level.

Those five modeling steps result in a single platform-independent model which rep-
resents the integration process. It would be possible to separate aspects with different
model views (terminator interactions, control and data flow, parameterization and con-
figuration). Due to an increasing complexity, we explicitly do not use multiple models.

We want to introduce the example processes P13 and P02 from the DIPBench
(Data-Intensive Integration Process Benchmark) specification [26,27]. Obviously, these
are not complex integration processes, but we use these process types as running ex-
amples throughout the whole paper. Figure 1 shows the PIM P13 and PIM P02, mod-
eled with the help of StarUML, using the supported UML activity diagrams. The pro-
cess type P13 basically describes the extraction of movement data from a consolidated
database and its loading into a global data warehouse. Let us use the introduced pro-
cedure for PIM process modeling: First, the two external systems cs1.cdb.DBA and
cs1.dwh.DBA are determined (“service“) and identified as RDBMS. Second, the in-
teraction types (“operation“) have to be detected. So, at the beginning of the process,
a stored procedure is called on cs1.cdb.DBA in order to realize the data cleans-
ing [28]. Furthermore, two different datasets are queried from the cs1.cdb.DBA.
These datasets are finally inserted into cs1.dwh.DBA. Third, the control flow may
be determined as a simple sequence of process steps. Fourth, the data flow—specified by

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 1. Example PIM P13 and PIM P02

rectangles and dashed arrows—has to be provided. As illustrated, the specific datasets
are transfered from the extracting to the loading activities. Fifth, and thus finally, the
model is enriched with technical details (in the form of UML annotations) like table
names, procedure names and so on. The process type P02 focuses on the reception of
Customer master data (xml messages), its translation to relational data, and the content-
based insertion into one of three target systems, based on the extracted sitekey.

4 Integration Process Generation

Based on the modeled platform-specific integration processes, our GCIP Framework
supports the generation of several platform-specific models. Due to the complexity of
this generation, we describe this from various perspectives.

4.1 A-PSM Generation

In contrast to other approaches, we use an abstract platform-specific model (A-PSM)
between the PIMs and the PSMs. This is reasoned by four facts. First, it reduces the
transformation complexity between n PIMs and m PSMs from n ·m to n+m. Second,
it separates the most general PIM representations from the context-aware A-PSM of
integration processes, still independent of any integration system type. Third, it offers
the possibility for applying context-aware optimization techniques in a unique (normal-
ized) manner. And fourth, it increases the simplicity of model transformations, using
small, well-defined transformation steps.

Basically, the Message Transformation Model (MTM) is used as A-PSM. This model
represents the starting point of all transformations into and from platform-specific mod-
els. Obviously, we are only able to generate integration processes which can be ex-
pressed adequately with the MTM. Although the MTM was already introduced in short
with [25], its importance drives us to give a short overview of this meta model. The
MTM is a conceptual model for data-intensive integration processes and is separated
into a conceptual message model and a conceptual process model.

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

The conceptual message model was designed with the aim of logical data indepen-
dence and represents the static aspects of a message transformation. In accordance
with the molecule atom data model (MAD), the MTM meta message model can be
seen as a molecule type message and thus as a recursive, hierarchical, object-oriented
and redundancy-free structure. The molecule type message is composed of two atom
types: the header segment and the data segment. Furthermore, there is a uni-
directional, recursive self-reference of the atom type data segment, with a 1:CN
cardinality, which represents the molecule type data segment. There, the header
segment is composed of k name-value pairs, whereas the data segment is a log-
ical table with l attributes and n tuples. The option of nested tables ensures a dynamic
and structure-carrying description of all data representations.

The conceptual process model—the execution model for the defined messages—
addresses the dynamic aspects of a transformation process and was designed with the
aim of independence from concrete process description languages. Basically, a graph-
oriented base model Directed Graph is used. It is limited to the three components:
node (generalized process step), transition (edge between two nodes) and the hi-
erarchical process. A single node may have multiple leaving transitions, and during
the runtime of one process instance, there may be multiple active leaving transitions but
not more than the total number of its leaving transitions. Thus, one transition has exactly
one target node. Indeed, multiple transitions could refer to one node. The process is a
hierarchical element and contains a start node, several intermediate nodes and an end
node. In fact, such a process is also a specialized node, so that the recursive execution
with any hierarchy level is possible. A node receives a set of input messages, further ex-
ecutes several processing steps specified by its node type and its parameterization, and
finally returns a set of output messages. The actual process model is defined—with the
aim of a low degree of redundancy—on top of the base model Directed Graph. Opera-
tors are defined as specialized process steps and thus as node types. Basically, these
are distinguished into the three categories: interaction-oriented operators (Invoke,
Receive and Reply), control-flow-oriented operators (Switch, Fork, Delay and
Signal) and data-flow-oriented operators (Assign, Translation, Selection,
Projection, Join, Setoperation, Split, Orderby, Groupby, Window,
Validate, Savepoint and Action).

Definition 1. A process type P is defined with P = (N, S, F) as a 3-tuple representa-
tion of a directed graph, where N = {n1, . . . , nk} is a set of nodes, S = {s1, ..., sl}
is a set of services, including their specific operations si = {o1, ..., om}, and F ⊆
(N × (S ∪ N)) is a set of flow relations between nodes or a node and a service. Each
node has a specific node type as well as an identifier NID (unique within the process
type) and is either of an atomic or a complex type. Each process type P , with P ⊆ N , is
also a node. A process p with P ⇒ p has, a specific state z(p) = {z(n1), . . . , z(nk)}.
Thus, the process state is an aggregate of the specific single node states z(ni).

Basically, two different event types initiating such integration processes have to be dis-
tinguished. The specific event type has a high impact on the process modeling and on
the generation of platform-specific models for different target integration systems. The
main event types could be distinguished as follows:

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

– Message stream: Processes are initiated by incoming messages. According to the
area of data streaming, such a stream is an event stream. Processes of this event
type have a RECEIVE operator and are able to reply to the invoking client.

– External events and scheduled time events: Processes are initiated in dependence
on a time-based schedule or by external schedulers. These processes do not have a
RECEIVE operator and are not able to reply synchronously to an invoking client.

msg1/pname = ’sp_runMovementDataCleansing’

msg2/tblname1 = ’Orders’
msg2/tblname2 = ’Orderline’

Service{ cs1.cdb.DBA }; Operation{ CALL };
IN msg1/pname;

Service{ cs1.cdb.DBA }; Operation{ QUERY };
IN msg2/tblname1; OUT msg3/dataset

Service{ cs1.cdb.DBA }; Operation{ QUERY };
IN msg2/tblname2; OUT msg4/dataset

msg3/tblname = ’Orders’
msg4/tblname = ’Orderline’

Service{ cs1.dwh.DBA }; Operation{ INSERT };
IN msg3/tblname, msg3/dataset;

Service{ cs1.dwh.DBA }; Operation{ INSERT };
IN msg4/tblname, msg4/dataset;

Fig. 2. Example A-PSM P13

An XML representation of
the conceptual MTM was de-
fined. Thus, the external XML
representation of the PIM can
be transformed into the XML
representation of the A-PSM
using transformation templates.
Figure 2 shows the A-PSM
P13, derived from the PIM
P13. Basically, the MTM is
message-based and thus uses
message variables instead of
the explicit data flow used in
the PIM. Furthermore, detailed
parameters like table names
and stored procedure names
have to be assigned to the in-
put messages. That is why the
logical sequence is extended with several ASSIGN operators. In contrast to this, the
interaction-oriented operator INVOKE is simply mapped. Finally, note that technical
details, like schema mappings and configuration properties, can be annotated on the
PIM as well as the A-PSM level, while all following models are generated in a fully
automated manner.

4.2 PSM Generation

From the unique A-PSM, multiple platform-specific models (PSM), including PSMs for
FDBMS, ETL tools and EAI servers, could be generated. For this transformation, the
defined specific platform models (PM) are used. Here, a PM represents a meta model
for an integration system type, like the type ETL tool. We describe in detail only the
PM for FDBMS, including the resulting PSM, while the integration system types ETL
tools and EAI servers are only discussed from a high-level perspective.

Federated DBMS PSM. The PSM for federated DBMS comprises structural as well
as semantic differences to the A-PSM (MTM). In contrast to the MTM, it is rather
hierarchically structured and not a graph-based model. Thus, some structured compo-
nents recursively include other structured components as well as atomic components.
Furthermore, the two different process-initiating event types are expressed with two dif-
ferent possibilities for the root component. First, there is the Trigger, which is bound
to a queuing table and represents the event type message stream. Second, there is the

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Table 1. Interaction-Oriented Operators

Name Description

Call Invoke a persistently stored module (e.g., procedures, functions)
Insert Load a dataset into a specified relation
Delete Delete a specified dataset
Update Set a specified attribute value
Resource Scan Extract a dataset from a specified relation

Table 2. Control-Flow-Oriented Operators

Name Description

If Execute all path children if the path condition is true
Delay Interrupt the execution based on a timestamp or for a specified time
Signal Terminate the integration process or raise a defined error
Iteration Loop over all children while the specified condition is true

Table 3. Data-Flow-Oriented Operators

Name Description

Assign Value assignment of atomic or complex objects (different query language)
Translation Execution of elementary schema translations
Selection Choice of tuples in dependence on a specific condition
Projection Choice of attributes in dependence on a specific attribute list
Join Compound of multiple datasets depending on conditions and types
Setoperation Use of the set operations union, intersection and difference
Split Decomposition of a large XML document into multiple rows
OrderBy Sorting of a dataset depending on a specified attribute
GroupBy Partitioning of tuples with grouping attributes and aggregate functions
Window Partitioning of tuples for ordering and correlations, without grouping
Validate Constraint validation on a dataset depending on a specific condition

Table 4. Transaction-Oriented Operators

Name Description

BeginTX Start a new transactional context
CommitTX End the current transactional context in a successful way
RollbackTX End the current transactional context in a failed way
Savepoint Write intermediate results for recovery processing

Procedure, representing the event type external events and scheduled time events,
where no data-intensive parameters are specified for such a procedure. Both of these
root component types implicitly include the handling of the transactional context.

Before revisiting our used example, the components of the PM FDBMS s hould be
mentioned. Basically, they are distinguished into four groups: interaction-oriented op-
erators, control-flow-oriented operators, data-flow-oriented operators and transaction-
oriented operators. These groups are explained in detail by Tables 1 to 4.

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

cs1.cdb.DBA.
sp_runMovement
DataCleansing

cs1.dwh.DBA.
Orders

cs1.dwh.DBA.
Orderline

cs1.cdb.DBA.
Orders

cs1.cdb.DBA.
Orderline

Fig. 3. Example FDBMS PSM P13

Using the introduced plat-
form model, the PSM FDBMS
is derived from the A-PSM. Fig-
ure 3 shows this PSM FDBMS
representation of the example
process P13. The process is
transformed into the hierar-
chical structure Procedure.
Here, a BeginTX is implicitly
inserted at BOT and a CommitTX is inserted at EOT. The first invoke and all correlated
properties are represented by the Call element. Finally, there are two query trees, con-
structed of Insert and Resource Scan elements, which copy the two movement
data relations from the consolidated database to the data warehouse.

ETL Tool PSM. Similar to the first mentioned PSM, the PSM for ETL tools has some
semantic differences to the MTM. This platform model is based on tuple routing be-
tween data-flow-oriented process steps, where the edges between these steps contain—
on the conceptual layer—queues for buffering of tuples. Furthermore, it is an acyclic
model, which is typical for the concentration on data flow semantics. In our generic plat-
form model of ETL tools, no special process steps are included directly in the model
because they are almost proprietary definitions. Using the mentioned platform model,
the introduced example A-PSM P13 can be transformed to the ETL PSM. The derived
model includes specialized process steps, where these are specific to the used source
and target systems. Further, the parameter specifications are directly included in the
used steps. This approach promises high performance but causes a higher data depen-
dence than an EAI server would do.

EAI Server PSM. Many commercial EAI servers use XML technologies and standard
workflow languages like WSBPEL [10] or XPDL [13] for integration process specifica-
tion. This abstract definition and the well-known adapter concept realize the needed data
independence. Thus, the derivation of the EAI server PSM implies the mapping from
A-PSM process types to WSBPEL process descriptions. Although this is a very easy
mapping for interaction and control flow operators, it is recommended that the specific
target integration systems support the WSBPEL extension WSBPEL-MT. Otherwise,
the data-flow-oriented operators defined for the MTM could not be used. However, for
the example process P13, this extension support is not required because interaction-
oriented operators, control-flow-oriented operators and the data-flow-oriented operator
Assign are used exclusively.

4.3 DPD Generation

In contrast to the MDA paradigm, where the lowest representation level is the Code
layer, we name the lowest—MDA-relevant—level of the integration process represen-
tation the Declarative Process Description (DPD). This decision was made in order
to distinguish (1) the integration process specifications (DPD) deployed in the specific
integration system and (2) the actual generated integration code, internally produced
by the integration system. However, the mentioned process descriptions are usually

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

specified in a declarative way because this leaves enough space for physical optimiza-
tion techniques. Let us face the concrete DPDs for federated DBMS, ETL tools and
WSBPEL-conform EAI servers. In case of FDBMS, the PSM P13 is generated in a
DPD, represented by several DDL statements and an SQL stored procedure. In contrast
to that, P02 is generated in the form of several DDL statements and a trigger due to the
different event type. Both examples are included in appendix A.

The majority of ETL tools work based on XML specifications, which may be di-
rectly used or specified by an additional GUI. Also, the EAI server works similar to
this, except for the standardized language specification. Further, there are two main
types of XML specification usage for these two integration system types. Some tools
statically generate imperative code in the form of internal execution plans. Other tools
dynamically interpret the XML specifications, where created object graphs are used.
The decision is made based on performance aspects as well as flexibility requirements.

5 Open Issues and Challenges

Due to the complexity of model-driven generation, there are major challenges and open
research issues to be solved. Basically, we see the following five points:

– Schema mapping extraction: We extract schema mapping information from XSLT
and STX stylesheets. Due to the complex functionality of these languages, there are
cases, where schema mapping extraction cannot be realized. Hence, sophisticated
techniques for the schema mapping generation have to be developed, including
levels of uncertainty when no exact information can be provided.

– Round-trip engineering: Our approach works in a top-down direction, so all
changes should be made on the PIM or the A-PSM level. In order to support incre-
mental changes and the migration of legacy integration tasks, reverse engineering
is advantageous. However, there are lots of challenges correlated to this issue.

– Intra-system process optimization: The model-driven generation leaves enough
space for logical process optimization, rewriting process plans with rule-based and
workload-based optimization techniques.

– Inter-system process optimization: Aside from the aforementioned optimization,
the most powerful global optimization technique is the decision on the optimal
integration system (w.r.t. performance). Thus, the major challenge is the workload-
based decision on the chosen PSM and DPD.

– Supporting different execution models: There are integration system types which
have a completely different execution model (e.g., subscription systems like repli-
cation servers) and thus, supporting those, creates some challenges.

6 Summary and Conclusion

In this paper, we addressed two major problems within the area of integration processes.
First, there was the problem of a low degree of portability. Second, large efforts were
needed in order to set up and maintain integration scenarios. We conceptually showed
(and evaluated with the implemented GCIP Framework) that a model-driven generation
approach can dramatically reduce these two problems and is thus, advantageous for this

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

application context as well. However, there are two more major problems and a lot of
open research challenges. In our future work, we will focus on the logical optimization
of integration processes using our model-driven generation approach.

References

1. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architecture: Practice
and Promise. Addison-Wesley, Reading (2003)

2. Thomas, D., Barry, B.M.: Model driven development: the case for domain oriented program-
ming. In: OOPSLA (2003)

3. OMG: Meta-Object Facility (MOF), Version 2.0 (2003)
4. OMG: Unified Modeling Language (UML), Version 2.0 (2003)
5. Königs, A.: Model transformation with triple graph grammars. In: MODELS (2005)
6. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM

Syst. J. 45(3) (2006)
7. Habich, D., Richly, S., Lehner, W.: Gignomda - exploiting cross-layer optimization for com-

plex database applications. In: VLDB (2006)
8. Richly, S., Habich, D., Lehner, W.: Gignomda - generation of complex database applications.

In: Grundlagen von Datenbanken (2006)
9. OMG: Common Warehouse Metamodel (CWM), Version 1.0 (2001)

10. OASIS: Web Services Business Process Execution Language Version 2.0 (2006)
11. BMI: Business Process Modelling Notation, Version 1.0 (2006)
12. W3C: Web Service Choreography Description Language, Version 1.0 (2005)
13. WfMC: Process Definition Interface - XML Process Definition Language 2.0 (2005)
14. OASIS: ebXML Business Process Specification Schema, Version 2.0.1. (2005)
15. Dorda, C., Heinkel, U., Mitschang, B.: Improving application integration with model-driven

engineering. In: ICITM (2007)
16. Simitsis, A., Vassiliadis, P.: A methodology for the conceptual modeling of ETL processes.

In: CAiSE workshops (2003)
17. Trujillo, J., Luján-Mora, S.: A UML Based Approach for Modeling ETL Processes in Data

Warehouses. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003.
LNCS, vol. 2813, pp. 307–320. Springer, Heidelberg (2003)

18. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for ETL processes. In:
DOLAP (2002)

19. Hahn, K., Sapia, C., Blaschka, M.: Automatically generating OLAP schemata from concep-
tual graphical models. In: DOLAP (2000)

20. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Applying mda to the development of data
warehouses. In: DOLAP (2005)

21. Simitsis, A.: Mapping conceptual to logical models for ETL processes. In: DOLAP (2005)
22. Dessloch, S., Hernandez, M.A., Wisnesky, R., Radwan, A., Zhou, J.: Orchid: Integrating

schema mapping and ETL. In: ICDE (2008)
23. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A programming platform for generic model

management. In: SIGMOD (2003)
24. Göres, J., Dessloch, S.: Towards an integrated model for data, metadata, and operations. In:

BTW (2007)
25. Böhm, M., Habich, D., Wloka, U., Bittner, J., Lehner, W.: Towards self-optimization of mes-

sage transformation processes. In: ADBIS (2007)
26. Böhm, M., Habich, D., Lehner, W., Wloka, U.: Dipbench: An independent benchmark for

data intensive integration processes. In: IIMAS (2008)

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

27. Böhm, M., Habich, D., Lehner, W., Wloka, U.: Dipbench toolsuite: A framework for bench-
marking integration systems. In: ICDE (2008)

28. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull.
(2000)

A Example FDBMS DPD
EXEC s p a d d s e r v e r cs1 , . . .
EXEC s p a d d e x t e r n l o g i n cs1 , . . .
CREATE PROXY TABLE rOrdersCDB EXTERNAL TABLE AT ” cs1 . cdb .DBA. Ord er s ”
CREATE PROXY TABLE rOrder l i n eC DB EXTERNAL TABLE AT ” cs1 . cdb .DBA. O r d e r l i n e”
CREATE PROXY TABLE rOrdersDWH EXTERNAL TABLE AT ” cs1 . dwh .DBA. Ord er s ”
CREATE PROXY TABLE rOrderl ineDWH EXTERNAL TABLE AT ” cs1 . dwh .DBA. O r d e r l i n e”

CREATE PROCEDURE P13 AS
BEGIN

BEGIN TRANSACTION

EXEC cs1 . cdb .DBA. sp r u n M o v emen t Dat aC l ean s i n g
INSERT INTO rOrdersDWH SELECT ∗ FROM rOrdersCDB
INSERT INTO rOrderl ineDWH SELECT ∗ FROM rOrder l i n eC DB

COMMIT TRANSACTION
END

Listing 1.1. Example FDBMS DPD P13

. . .
CREATE TRIGGER P02 ON P02 Queue FOR INSERT
AS
BEGIN

DECLARE
@customerkey BIGINT , . . .
@s i t ek ey INTEGER , . . .

BEGIN TRANSACTION

SELECT @tid = (SELECT TID FROM i n s e r t e d)
SELECT @i = 1
SELECT @xpath = ” / / cu s t o mer [1] ”
WHILE NOT (SELECT x m l e x t r a c t (@xpath , (SELECT co nv ert (VARCHAR(1 6 3 8 4) ,MSG) FROM P02 Queue WHERE TID=@tid)

RETURNS VARCHAR(1 6 3 8 4))) IS NULL
BEGIN

SELECT @rowptr = x m l e x t r a c t (@xpath , (SELECT co nv ert (VARCHAR(1 6 3 8 4) ,MSG) FROM P02 Queue WHERE TID=@tid)
RETURNS VARCHAR(1 6 3 8 4))

SELECT @customerkey = x m l e x t r a c t (’ / cu s t o mer / @Customerkey ’ , @rowptr RETURNS BIGINT) ,
@lastname = x m l e x t r a c t (’ / cu s t o mer / @Lastname ’ , @rowptr RETURNS VARCHAR(4 0)) ,
. . .
@ l a s t m o d i f i e d = x m l e x t r a c t (’ / cu s t o mer / @LastModif ied ’ , @rowptr RETURNS DATETIME)

IF (@si t ek ey = 2 OR @si t ek ey = 3)
BEGIN

IF NOT EXISTS (SELECT 1 FROM rCompanyBP WHERE Companykey=@companykey)
BEGIN

INSERT INTO rCompanyBP (Companykey , Name , I m p o r t a n c e F l a g)
VALUES (@companykey , @companyname , 1)

END
INSERT INTO rCustomerBP

(Customerkey , Lastname , F i r s t n ame , A d d r e s s S t r i n g , Zipcode ,
S i t e k e y , Phone1 , Phone2 , Companykey , B i r t h d ay , C rea t ed , L a s t M o d i f i e d)

VALUES (@customerkey , @lastname , @f i r s t n ame , @address , @zip ,
@si tekey , @phone1 , @phone2 , @companykey , @bir thday , @created , @ l a s t m o d i f i e d)

END
ELSE IF (@si t ek ey = 4)
BEGIN

IF NOT EXISTS (SELECT 1 FROM rCompanyT WHERE Companykey=@companykey)
BEGIN

INSERT INTO rCompanyT (Companykey , Name , I m p o r t a n c e F l a g)
VALUES (@companykey , @companyname , 1)

END
INSERT INTO rCustomerT

(Customerkey , Lastname , F i r s t n ame , A d d r e s s S t r i n g , Zipcode ,
S i t e k e y , Phone1 , Phone2 , Companykey , B i r t h d ay , C rea t ed , L a s t M o d i f i e d)

VALUES (@customerkey , @lastname , @f i r s t n ame , @address , @zip ,
@si tekey , @phone1 , @phone2 , @companykey , @bir thday , @created , @ l a s t m o d i f i e d)

END
SELECT @i = @i + 1
SELECT @xpath = ” / / cu s t o mer [” || co nv ert (VARCHAR(2 0) , @i) || ”] ”

END
DELETE FROM P02 Queue WHERE TID = @tid

COMMIT TRANSACTION
END

Listing 1.2. Example FDBMS DPD P02

Final edited form was published in "Model-Based Software and Data Integration: First International Workshops.
Berlin 2008", S. 31-42, ISBN 978-3-540-78999-4

https://doi.org/10.1007/978-3-540-78999-4_5

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Model-Driven Development of Complex and Data-Intensive Integration Processes
	Introduction
	Related Work
	Integration Process Modeling
	Integration Process Generation
	A-PSM Generation
	PSM Generation
	DPD Generation

	Open Issues and Challenges
	Summary and Conclusion
	Example FDBMS DPD

	ADP1E5B.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Matthias Böhm, Dirk Habich, Wolfgang Lehner, Uwe Wloka

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

