7,769 research outputs found

    Network-based stratification of tumor mutations.

    Get PDF
    Many forms of cancer have multiple subtypes with different causes and clinical outcomes. Somatic tumor genome sequences provide a rich new source of data for uncovering these subtypes but have proven difficult to compare, as two tumors rarely share the same mutations. Here we introduce network-based stratification (NBS), a method to integrate somatic tumor genomes with gene networks. This approach allows for stratification of cancer into informative subtypes by clustering together patients with mutations in similar network regions. We demonstrate NBS in ovarian, uterine and lung cancer cohorts from The Cancer Genome Atlas. For each tissue, NBS identifies subtypes that are predictive of clinical outcomes such as patient survival, response to therapy or tumor histology. We identify network regions characteristic of each subtype and show how mutation-derived subtypes can be used to train an mRNA expression signature, which provides similar information in the absence of DNA sequence

    Identifying candidate drivers of drug response in heterogeneous cancer by mining high throughput genomics data

    Get PDF
    List of initial modulators for the resistant group. (TXT 1 kb

    Context-driven progressive enhancement of mobile web applications: a multicriteria decision-making approach

    Get PDF
    Personal computing has become all about mobile and embedded devices. As a result, the adoption rate of smartphones is rapidly increasing and this trend has set a need for mobile applications to be available at anytime, anywhere and on any device. Despite the obvious advantages of such immersive mobile applications, software developers are increasingly facing the challenges related to device fragmentation. Current application development solutions are insufficiently prepared for handling the enormous variety of software platforms and hardware characteristics covering the mobile eco-system. As a result, maintaining a viable balance between development costs and market coverage has turned out to be a challenging issue when developing mobile applications. This article proposes a context-aware software platform for the development and delivery of self-adaptive mobile applications over the Web. An adaptive application composition approach is introduced, capable of autonomously bypassing context-related fragmentation issues. This goal is achieved by incorporating and validating the concept of fine-grained progressive application enhancements based on a multicriteria decision-making strategy

    Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer.

    Get PDF
    Functional redundancy shared by paralog genes may afford protection against genetic perturbations, but it can also result in genetic vulnerabilities due to mutual interdependency1-5. Here, we surveyed genome-scale short hairpin RNA and CRISPR screening data on hundreds of cancer cell lines and identified MAGOH and MAGOHB, core members of the splicing-dependent exon junction complex, as top-ranked paralog dependencies6-8. MAGOHB is the top gene dependency in cells with hemizygous MAGOH deletion, a pervasive genetic event that frequently occurs due to chromosome 1p loss. Inhibition of MAGOHB in a MAGOH-deleted context compromises viability by globally perturbing alternative splicing and RNA surveillance. Dependency on IPO13, an importin-β receptor that mediates nuclear import of the MAGOH/B-Y14 heterodimer9, is highly correlated with dependency on both MAGOH and MAGOHB. Both MAGOHB and IPO13 represent dependencies in murine xenografts with hemizygous MAGOH deletion. Our results identify MAGOH and MAGOHB as reciprocal paralog dependencies across cancer types and suggest a rationale for targeting the MAGOHB-IPO13 axis in cancers with chromosome 1p deletion

    An Integrative -omics Approach to Identify Functional Sub-Networks in Human Colorectal Cancer

    Get PDF
    Emerging evidence indicates that gene products implicated in human cancers often cluster together in “hot spots” in protein-protein interaction (PPI) networks. Additionally, small sub-networks within PPI networks that demonstrate synergistic differential expression with respect to tumorigenic phenotypes were recently shown to be more accurate classifiers of disease progression when compared to single targets identified by traditional approaches. However, many of these studies rely exclusively on mRNA expression data, a useful but limited measure of cellular activity. Proteomic profiling experiments provide information at the post-translational level, yet they generally screen only a limited fraction of the proteome. Here, we demonstrate that integration of these complementary data sources with a “proteomics-first” approach can enhance the discovery of candidate sub-networks in cancer that are well-suited for mechanistic validation in disease. We propose that small changes in the mRNA expression of multiple genes in the neighborhood of a protein-hub can be synergistically associated with significant changes in the activity of that protein and its network neighbors. Further, we hypothesize that proteomic targets with significant fold change between phenotype and control may be used to “seed” a search for small PPI sub-networks that are functionally associated with these targets. To test this hypothesis, we select proteomic targets having significant expression changes in human colorectal cancer (CRC) from two independent 2-D gel-based screens. Then, we use random walk based models of network crosstalk and develop novel reference models to identify sub-networks that are statistically significant in terms of their functional association with these proteomic targets. Subsequently, using an information-theoretic measure, we evaluate synergistic changes in the activity of identified sub-networks based on genome-wide screens of mRNA expression in CRC. Cross-classification experiments to predict disease class show excellent performance using only a few sub-networks, underwriting the strength of the proposed approach in discovering relevant and reproducible sub-networks

    High-throughput screening for drug discovery targeting the cancer cell-microenvironment interactions in hematological cancers

    Get PDF
    Introduction The interactions between leukemic blasts and cells within the bone marrow environment affect oncogenesis, cancer stem cell survival, as well as drug resistance in hematological cancers. The importance of this interaction is increasingly being recognized as a potentially important target for future drug discoveries and developments. Recent innovations in the high throughput drug screening-related technologies, novel ex-vivo disease-models, and freely available machine-learning algorithms are advancing the drug discovery process by targeting earlier undruggable proteins, complex pathways, as well as physical interactions (e.g. leukemic cell-bone microenvironment interaction). Area covered In this review, the authors discuss the recent methodological advancements and existing challenges to target specialized hematopoietic niches within the bone marrow during leukemia and suggest how such methods can be used to identify drugs targeting leukemic cell-bone microenvironment interactions. Expert opinion The recent development in cell-cell communication scoring technology and culture conditions can speed up the drug discovery by targeting the cell-microenvironment interaction. However, to accelerate this process, collecting clinical-relevant patient tissues, developing culture model systems, and implementing computational algorithms, especially trained to predict drugs and their combination targeting the cancer cell-bone microenvironment interaction are needed.Peer reviewe

    Multi-omic investigation of the mechanisms underlying the pathobiology of head and neck squamous cell carcinomas

    Full text link
    Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy associated with molecular heterogeneity, locoregional spread, resistance to therapy and relapse after initial treatment. Increasing evidence suggests that master developmental pathways with key roles in adult tissue homeostasis, including Hippo and Wnt/β-catenin signaling, are dysregulated in the initiation and progression of HNSCC. However, a comprehensive investigation into the crosstalk between these pathways is currently lacking, and may prove crucial to the discovery of novel targets for HNSCC therapy. More recent evidence points to the tumor microenvironment, mainly comprising cancer-associated fibroblasts (CAFs), as capable of influencing tumor cell behavior and promoting invasive HNSCC phenotypes. Nonetheless, current methods to screen for CAF markers in tumors are restricted to targeted immunostaining experiments with limited success and robustness across tissue types. The Cancer Genome Atlas network has generated multi-tiered molecular profiles for over 10,000 tumors spanning more than two dozen different cancer types, providing an unprecedented opportunity for the application and development of integrative methods aimed at the in silico interrogation of experimentally-derived signatures. These multi-omic profiles further enable one to link genomic anomalies, including somatic mutations and DNA copy number alterations, with phenotypic effects driven by pathogenic pathway activity. Effectively querying this vast amount of information to help elucidate subsets of functionally and clinically-relevant oncogenic drivers, however, remains an ongoing challenge. To address these issues, I first investigate the effects of oncogenic pathway perturbation in HNSCC using experimental models coupled with in vitro genome-wide transcriptional profiling. Next, I describe a new computational approach for the unbiased identification of CAF markers in HNSCC solely using bulk tumor RNA-sequencing information. Lastly, I have developed Candidate Driver Analysis or CaDrA - a statistical framework that allows one to query genetic and epigenetic alterations for candidate drivers of signature activity within a given disease context. Collectively, this work offers new perspectives on the molecular cues underlying HNSCC development, while simultaneously highlighting the power of integrative genomics methods capable of accelerating the discovery of novel targets for cancer diagnosis and therapy
    corecore