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Abstract

Introduction: The interactions between leukemic blasts and cells within the bone marrow 

environment affect oncogenesis, cancer stem cell survival, as well as drug resistance in hematological 

cancers. The importance of this interaction is increasingly being recognized as a potentially important 

target for future drug discoveries and developments. Recent innovations in the high throughput drug 

screening related technologies, novel ex-vivo disease-models, and freely available machine-learning 

algorithms are advancing the drug discovery process by targeting earlier undruggable proteins, 

complex pathways, as well as physical interactions (e.g., leukemic cell-bone microenvironment 

interaction).

Area covered: In this review, the authors discuss the recent methodological advancements and 

existing challenges to target specialized hematopoietic niches within the bone marrow during 
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leukemia and suggest how such methods can be used to identify drugs targeting leukemic cell-bone 

microenvironment interactions.

Expert opinion: The recent development in cell-cell communication scoring technology and culture 

conditions can speed up the drug discovery by targeting the cell-microenvironment interaction. 

However, to accelerate this process, collecting clinical-relevant patient tissues, developing culture 

model systems, and implementing computational algorithms, especially trained to predict drugs and 

their combination targeting the cancer cell-bone microenvironment interaction are needed.

Keywords: Cancer cell -microenvironment interaction, drug combination, high content microscopy

Article highlights: 

 The leukemic blast-bone marrow microenvironment interaction is an attractive target for 

future drug discovery, which holds potential of targeting drug-resistant cancer cell population 

in patients. 

 The drug discovery process can benefit from the recent development in the culture models 

(e.g., in 2D and 3D co-culture models), screening technology, and artificial intelligence 

platforms as they can simultaneously mimic the interaction and allow high throughput 

screening.

 A wide variety of supervised machine learning algorithms have been developed to predict 

drug–combinations and drug responses that can be adopted to target the cancer-

microenvironment interactions.
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 There is critical need for implementing specific models for drug prediction which utilize the 

molecular information of the known genes involved in bone marrow-microenvironment 

interaction. 

1. Introduction: Leukemias are heterogenous diseases characterized by a broad spectrum of 

molecular alterations that influence the patient’s clinical outcomes. Further, they are driven by not 

only genetic or epigenetic alterations within different hematopoietic cell types but also due to the 

interaction of the hematopoietic cells with other non-hematopoietic cells (e.g., stromal, adipocytes, 

macrophages) in the bone marrow (BM) microenvironment [1, 2, 3]. For example, concomitant 

mutations and functional alterations in mesenchymal stromal cells (MSCs) of the bone marrow can 

cause oncogenesis in myeloid cells [4, 5]. Similarly, the malignant cells can also transform the MSCs 

within the normal niche to produce inflammatory cytokines and growth factors (e.g., IL-1β, IL-6) to 

support malignant cell expansion [6]. Further, these interactions can facilitate the transformed cells 

by immune evasion and protect them from chemotherapy (Figure1A) [3]. Hence, targeting the BM 

microenvironment in conjunction with leukemic cells can provide an effective therapy for leukemias 

such as Acute Myeloid Leukemia (AML) [7, 8]. 

The leukemic cell-microenvironment interaction involves diverse molecules, including cellular 

metabolites, receptors, junction proteins and other signaling molecules in the extracellular matrix (8, 

9). Several such signaling molecules are druggable and can be targeted to interfere with leukemic-

BM cells interactions (10, 11). Targeting these interaction pathways have identified multiple novel 

drugs undergoing clinical trials with some bring even approved in hospitals. For instance, in 2008, 

the FDA approved the first leukemic-BM cells interaction disruptor called Plerixafor (13). Plerixafor 
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blocks the ‘CXCR4 chemokine receptor” disrupting the interaction between the bone marrow niche 

and leukemic blast cells leading to their mobilization from in the BM to peripheral blood (13). 

Plerixafor in combination with G-CSF is prescribed to mobilizes HSCs from the bone marrow to the 

peripheral blood for collection and subsequent autologous transplantation in patients with Non-

Hodgking’s lymphoma or multiple myeloma (12). Furthermore, both programmed cell-death protein 

1 (PD-1) inhibitors (e.g., nivolumab, pembrolizumab) and anti-programmed death-ligand 1 (PD-L1) 

monoclonal antibodies (e.g., atezolizumab, durvalumab) are another promising treatment that target 

the cancer cell-T-cell interaction, which is being investigated in a variety of leukemias (14, 15). Drugs 

targeting inflammation, excessive reactive oxygen species (ROS), and angiogenesis are also under 

development phases (Table 1) for AML and other leukemias. The whole drug discovery field is 

witnessing a transformation due to the advent of multiple novel high-throughput technologies focused 

on characterizing the genomic makeup of patients, identifying different cell populations and score 

signaling interactions within the BM microenvironment (14). These techniques and resources can be 

adopted and modified to accelerate the drug discovery phase by targeting the leukemic cell-BM 

microenvironment interaction. Our focus is to describe experimental model systems, profiling 

techniques and use of publicly available computational tools for high throughput drug screening 

(HTS) and combination prediction targeting cell-microenvironment interactions in leukemia. We will 

suggest how these methods can be adopted for drug discovery targeting cell-microenvironment 

interaction. 

2. Opportunities for drug discovery targeting cancer cell-microenvironment interaction:

We start by going through some of the recent development in the drug screening tools required for 

the drug discovery targeting the leukemic cell-microenvironment interaction. Rather than providing 
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a systematic review of all developed resources, we mainly focus on information sources required for 

HTS of big-chemical library in cancer including model systems, cell viability measurement and drug 

response prediction algorithms. For more comprehensive surveys of underlying biological 

mechanism, the reader is referred to recent reviews (16-20). We will discuss the use of these resources 

in Section 4.

2.1 Ex-vivo model system and culture methods for high-throughput drug screening (HTS) assay: HTS 

is a widely used technique to assess the phenotypic effect of thousands of drugs on a pre-clinical 

model system (e.g., patient-derived primary cells, secondary cell lines) in short span of time with 

lower cost. Hence, HTS is used to explore the massive chemical spaces across both approved and 

investigational drugs, to identify effective and safer therapies to target cancer cells. Historically, cell-

lines have been used as experimental models for HTS as they are easy to grow and handle in a 2-

dimensional (2D) culture in the laboratory. However, these simplistic culture models don’t consider 

the role of the other cell types present within the tumor microenvironment (e.g., macrophage), 

essential for the cancer cell’s survival. Thus, the major bottleneck in the use of 2D cell-cultures is its 

inability to consider cell-cell interaction. 

Alternative 2D and 3D co-culture-based models are now being developed, where cancer cells are 

grown together with other cells from its microenvironment, such as fibroblasts or stromal cells, that 

support cancer cell growth and development during ex-vivo drug screening (21-23). In 2D co-culture 

models, cells of different types are either mixed prior to plating and cultured together (21) or are 

separated by a physical barrier in the culture plate containing the growth media (24). These 

experiments are easy to handle, less time consuming and offers the possibility to study the effect of 
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drugs between different interacting cells compared to animal-based complex models. However, these 

co-culture-based models miss out on the blood vasculature and signaling interactions amongst other 

cell types present in the tissue. Hence the measurement may not represent the accurate drug response. 

Similarly, 3D-cell culture-based models (e.g., organoids, spheroids) are adopted for drug screening 

in both solid and hematological cancers as they can better model the cell-cell interaction in tumors 

rather than their 2D counterparts (25). For instance, spheroids are 3D-multicellular mass that can be 

developed from primary tumors or cancer cell lines when embedded within extra cellular matrix 

(ECM) hydrogels and resemble cancer tissue more closely due to their solid 3D structure.  The 3D 

structure of spheroids offers a unique opportunity to model the growing cell’s morphology, 

proliferation potential, and drug response in bone marrow and lymph node more closely (26-29). 

Further, spheroids are also considered more suitable model for studying hematological cancer, despite 

the circulating nature of the leukemia as spheroids are enriched for cancer stem cells (CSCs) which 

are responsible for drug resistance and relapse of the leukemic patients (30, 31). 

Recent studies have shown that 3D co-culturing of AML cell lines with human bone marrow derived 

mesenchymal cells were a better model for drug resistance studies over cells cultured in 2D cultures 

or in suspensions (32, 33). Although these static co-culture-based 3D models provide a major 

improvement over the monolayer cell culture, it fails to model the vascularization and dynamic 

interaction between multiple immune cell types present in the bone marrow microenvironment. 

Therefore, missing the true effect of a drug response due to circulating chemicals, shear and 

mechanical stresses because of blood flow (33, 34). To address some of these short comings, 3D 

preclinical dynamic experimental systems such as Cancer-on-a-chip (COC) have recently been 

developed for hematological cancer. This consists of a microfluidic cell culture system with 
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multichannel that mimic the activities, mechanics, and physiological responses of entire organs, (or 

partly), representing an artificial organ like the bone marrow (35).  For example, Zhao et al., 

developed a novel 3D-dynamic model consisting of primary human bone marrow stromal cells, 

osteoblasts and human leukemic cells cultured in a microfluidic collagen matrix platform where they 

assessed the effect of cytarabine on cell-cell interaction in an AML model (35). The 3D-dynamic 

model maintained similar viability of cancer cells at higher drug concentrations than 3D-static model, 

indicating a higher drug resistance in the 3D-dynamic model due to protection from 

microenvironment similar to the protective effect of bone marrow microenvironment in patients. 

However, the complexity of the COC decreases the total number of drugs that can be tested at a time 

in an experiment. Thus, limiting its use for HTS. 

Furthermore, patient-derived-xenograft (PDX)-based animal models can be used to screen among a 

limited number of drugs for their effect on cell-cell signaling pathways in hematological and other 

solid cancers (36). PDX-based models can be useful for “mouse clinical trial” or MCT approach, 

where a panel of PDX are created using tumors from patient samples and are treated with a drug like 

phase II clinical trials (37, 38). The individual tumor response is analyzed to assess the efficacy and 

toxicity of drugs as well as to capture the inter-tumor heterogeneity of cancers. However, mouse PDX 

models gradually loose the human stromal cells originally present in tumors (dissected from patients) 

and are replaced by host stromal cells as the xenograft grows (39). This replacement by the murine 

stroma could confound the analysis of the human tumor-stroma interactions. The reason being that 

some mouse stromal cytokines might not affect human carcinoma cells in PDX model, failing to 

mimic the original tumor samples. This may limit the use of PDX models for tumor-
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microenvironment interaction studies. The relation between physiological relevance and 

experimental throughput off different ex-vivo model has been shown in Figure 1B.

We suggest that different experimental model systems should be integrated and adopted at different 

levels of drug discovery targeting the cell-cell interaction. For example, 2D and 3D co-culture models 

are a suitable model for HTS as they are easy to handle (Table 2). Whereas leukemic cells derived 

from spheroid cultures may be relevant in targeted drug studies to investigate their effect on leukemic 

cell-bone marrow interactions as spheroids-like cell aggregates mimic the bone marrow 

microenvironment more closely.

2.2 Experimental techniques for HTS: Luminesce or fluorescence-based drug screening assays (e.g., 

ATP Assay of Cell Viability, Resazurin Reduction Cell Viability Assay) are common techniques used 

to measure biologically relevant parameters to predict the response of drugs on cancer cells (40-43). 

For example, the CellTiter-Glo® Luminescent Cell Viability Assay is a standardized method to 

determine the number of viable cells in a culture. The cell’s viability is detected based on a luminesce 

signal from the luciferase reaction where the amount of ATP is measured from live cells using a 

luminometer. However, these assays produce the bulk readouts as averaged values for the effect of 

the drug over the viability of cell populations and ignore the underlying cellular heterogeneity of 

cancerous tissues.  As a result, the signal can be derived from only an affected cancer-subpopulation 

which may not be the actual intended-target cell population within the sample. The method cannot 

discriminate for drug efficacy/potency over different interacting subpopulations in a 

microenvironment. Hence, this can lead to misinterpretation of the biological effect of drugs, 

especially in relapsed/refractory patients where drug-resistant cancer population drives the disease 
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progression with the help of microenvironment (44). The luminesce or fluorescence-based bulk 

assays may be inappropriate for drug screening focused on identifying new drugs targeted for tumor-

microenvironment interactions, as it cannot quantify the effect of drugs on cell-cell interaction level 

(Figure 2). 

As an alternative, image-based high-content screening (HCS) can be a potent strategy to discover 

drug targeting cancer cell-microenvironment interactions as shown in Figure 2. Imaging after 

simultaneous staining with multiple fluorescence colors can visualize complete cells belonging to 

different cell types, and their diverse cellular substructures, including physical cellular junctions (45-

47). The generated image can be analyzed by sophisticated image softwares to quantify the individual 

morphological features (e.g., area, size, and shape of cells), and texture of cellular organelles. Further, 

fluorescence intensity from the colored proteins can be used to estimate cellular changes due to drug 

treatment among or within specific cell populations (48). Cell Painting is one such assay where six 

inexpensive dyes can be used to stain eight cell organelles and components present in a tissue sample 

(49, 50). These components are imaged in five channels, where each capture fluorescent light of a 

particular wavelength and can be used to assess the effect of drugs over different organelles (51). 

Similarly, mass cytometry imaging (MCI) offers a substantial multiplexing capacity for phenotypic 

profiling, where 40 proteins can be simultaneously stained. The images are acquired enabling 

visualization of a variety of distinct cell types in their native microenvironment within a tissue (52-

54). Image-based drug profiling technology can be customized by performing multiple rounds of 

serial staining and destaining for markers relevant to a disease, which can be used to quantify the 

drug effect on various cell types (55, 45). However, the generated data from image-based screening 

can be highly complex and large. Hence, it can be challenging to analyze image data for big drug 

screening projects. Furthermore, the computational expertise required for image analysis from such 
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project is limited to certain academic groups and company. Hence, technological advances in image 

acquisition, processing, and analysis will be needed to establish HCS as a common and powerful tool 

for small molecule drug discovery (57). 

High throughput flow cytometry is another powerful tool that is increasingly being used as phenotypic 

drug screening platform in both suspended and adherent cell systems after detaching from culture 

plate (58). High throughput flow cytometry can analyze one cell at a time from a heterogeneous cell 

population without needing to develop complex segmentation algorithms for data analysis, as 

required for imaging-based screening (59). It can quantify the different cell composition in patient 

samples and can easily be adopted to study the effect of drugs affecting cancer cell-microenvironment 

interactions. For instance, the recent development of HyperCyt® has enabled the use of flow 

cytometry as a powerful approach for HTS using multiplexed fluorescence intensity assays in both 

adherent and suspension cells. HyperCyt® can detect the effect of drug over various cell types in a 

high-throughput manner (60, 61). Furthermore, adoption of novel cell-cell interaction recording 

assays such as GFP-based Touching Nexus (G-baToN) (62) that label cells undergoing direct 

interactions using fluorescence proteins for high throughput screening can be helpful for drug 

screening at centers where fluorescence-based technologies are commonly used for drug discovery. 

The comparison of different experimental techniques that can be used for drug discovery targeting 

blast-microenvironment interaction has been summarized in Table 3.

2.3 Computational experimental model to score leukemic cell-microenvironment interaction: To 

develop drugs targeting cell-microenvironment interaction, we also need to quantify the proportion 

of various cell types present in the sample as along with the interaction between these cell-types at a 

gene or pathway level. Recently, single cell RNA-sequencing (scRNA-Seq) and mass cytometry time 
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of flight (CyTOF) are widely being used to identify different cell types in the bone microenvironment 

(63, 64). These techniques can quantitatively score the strength of interaction using gene or protein 

expression level involved in leukemic cell-microenvironment signaling (63). The interaction score 

for each pair of interacting proteins is usually calculated using the interacting ligand and their cognate 

receptor expression as input in a scoring function (63-65). In a recent study, Armingol et al.  reviewed 

the method and tool used in cell–cell interactions assessment from transcriptomic data and the 

algorithms, such as those based on network model dissecting the HSC–niche interactions spatially 

and temporally (66). However, there is an urgent clinical need to develop a rational and systematic 

strategies for integrating these cell-cell interactions scoring technology (e.g., scRNA) with HTS for 

rapid identification of drug targeting leukemic cell-BM interaction in heterogenous drug-resistant 

patient samples. 

Recently, we combined high throughput drug screening together with scRNA profiling to suggest 

safe and effective drug combinations targeting the functional diversity of heterogeneous tumors 

tissues (41). In another study, Kim et al. used scRNA along with drug screening in patient-derived 

xenograft models to optimize drug combination targeting metastatic renal cell carcinoma (67). 

Similarly, Anchang B et al. combined CyTOF with single-agent responses profiling using nested-

effect modelling to suggest drug combinations that lead to maximal desired intracellular effects at the 

single-cell level in a heterogeneous tumor sample (68). However, more such computational- 

experimental approaches are needed that allow integration of drug screening with cell-cell interaction 

scoring technology to identify drugs targeting leukemic cell-BM integration. 

2.4 Computational resources for drug response prediction targeting cancer cell-microenvironment 

interaction: More than 20 computational-experimental methods capable of suggesting safe and 
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effective anticancer drugs using the molecular information’s from pre-clinical cancer models have 

been developed (40-43, 69, reviewed elsewhere,70). These models most commonly use single 

nucleotide variations, copy number variations, RNA expressions, methylation, and proteomics as 

input for drug-combination prediction.  Despite reasonable prediction ability in the respective test 

datasets, many of the developed models finds limited use in the clinics as they tend to overfit the 

combination response in the training datasets. These models can provide valuable insights into drug 

combination mechanism of action and can also be used for marker discoveries (71,72). Some of these 

existing machine learning-based methods that use target-based approach to suggest combinations can 

be adopted for the discovery of novel and effective anticancer drugs targeting the cancer-

microenvironment interaction (Table 4). For example, these models can be re-trained using smaller 

number of molecular features involved only in cancer cell-microenvironment interactions, which will 

reduce the feature size as compared to the patient samples. Hence, attenuating the overfitting problem. 

Furthermore, the use of prediction model that can capture nonlinear interaction between various cell 

types and signaling molecules in the microenvironment will be better able to predict novel drug 

targeting these interactions. 

Apart from single drugs, drug combinations are being used as standard therapy for many of the 

cancers. Algorithms that can predict drug combinations targeting the cancer cell-microenvironment 

interaction will be highly valuable and useful. Cokol et al (73) developed a computational framework 

named Metabolism And GENomics-based Tailoring of Antibiotic regimens (MAGENTA) in the E. 

coli system that identifies synergistic or antagonistic drug combination targeting the E. coli and 

microenvironment interaction. It uses the chemogenomic profiles of individual drugs and metabolic 

perturbations in a cell, under different microenvironment to suggest the combinations. The method 
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can be adopted to identify synergistic or antagonistic drug combination targeting the cancer cell and 

microenvironment interaction (73). We also recently developed systematic computational-

experimental approaches, scComb (41) and the Drug combination prediction and testing (DCPT) (74) 

platforms that identify drug combinations with optimum synergy-efficacy-toxicity balance to target 

heterogenous cancer cell populations. Although, some of the predictions from these computational-

experimental methods may work via cancer-microenvironment interaction pathways, none of these 

algorithms specifically focus to identify drug targeting cancer-microenvironment interactions. 

2.5 Challenges for drug discovery targeting cancer cell-microenvironment interaction: Although our 

understanding of the leukemic BM microenvironment in hematological malignancies has made 

substantial progress, we still have miles to go in understanding the leukemic BM. The development 

of large-scale drug screening program aimed at identification of drugs targeting the cancer niche is 

still in its infancy and there is a critical need for novel strategies, such as those capturing the oncogenic 

interaction, to eradicate malignant leukemic stem cells in hematological cancers. However, capturing, 

analyzing and targeting the underlying interactions in hematological malignancies pose a unique and 

substantial challenge, warranting careful, coordinated, and multidisciplinary investigation. We have 

identified the following areas with substantial challenges that need to be addressed in order to 

accelerate the existing efforts in drug discovery in the field. 

2.5.1 Limited knowledge of underlying mechanism of blast microenvironment interaction: We now 

understand that BM microenvironment is a complicated ecosystem full of heterogeneity and can 

affect almost every aspect of cancer biology, further, they also influence the large number of healthy 

processes including hematogenesis and immunity (75-76). Treatment targeting tumour-
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microenvironment interactions can cause severe side effects (e.g., arterial thromboembolic events, 

myelosuppression). Hence, the next generation of computational-experimental tools predicting drugs 

to target the leukemia-bone marrow interaction should prioritize regimens with optimum efficacy and 

toxicity. The prediction or design of such drug regimens will require a deep understanding of the 

correct physiological context how the interaction provide a benefit to tumor cells, as this can provide 

the foundation for tailoring a rational combination of existing drug to target the process. However, 

many of the intricate process underlying the leukemic-cell and bone marrow interaction has just 

beginning to be explored. Further, there is a lack of reliable and specific markers for different 

celltypes (e.g., MSC, endothelial) (77). The lack of such detailed knowledge poses a major challenge 

for the discovery of safe and effective drugs. 

2.5.2 Technical hurdles: The current quantitative methods to score the extent of spatial and temporal 

interaction among niche cells require sophisticated techniques like imaging or single cell sequencing 

and complex scoring algorithm. Many of the interaction scoring algorithms are in its infancy and 

require information from ligand–receptor interactions databases, which is still incomplete and 

expanding. This scoring limitation may hinder the computational modelling of drug response and the 

validation of predicted regimens as determining whether drugs targeting the signalling modify their 

target in the niche could be difficult.

Continuous improvement of leukemic cell-microenvironment interaction scoring methods will likely 

advance computational prediction of safe and effective drug combinations as well.

2.5.3 Biobank facilities and collaboration: Both HTS program and experimental validation of 

predicted drug using require large amount of patient-derived-primary patient samples hematological 

samples. Further, depending on the research question, experimental validation may require isolated 

cells (e.g., stromal, T-lymphocytes) from BM aspirates, biopsies or lymph nodes. Storage and 

Page 14 of 40

URL: http://mc.manuscriptcentral.com/eodc  Email: IEDC-peerreview@journals.tandf.co.uk

Expert Opinion On Drug Discovery

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Information Classification: General

preservation of these extremely valuable samples require established biobanks with special facilities 

and culture conditions require for these specific cell types. However, these kinds of facilities are not 

available to all the centers hence could prove a hurdle to drug discovery program targeting leukemic-

microenvironment interaction. Biobanking facilities with appropriate collection, storage and culture 

condition need to be developed, refined, and standardized across different academic centers and 

industries. Apart from technical facilities, collection, processing, culture of such kind of sample 

requires careful planning, detailed communication, coordination, and extensive collaboration 

between clinicians and basic science researchers.

 

3.  Conclusion: In summary, we described the experimental models, drug-screening techniques, and 

computational methods for drug discovery targeting the cancer-microenvironment interaction with 

leukemia as a model disease. The drug screening technology, culture method and computational 

algorithm has progressed considerably over the past few years leading to better hit-identification. 

Further, knowledge about dynamic and special interactions between leukemic cell-bone 

microenvironment interaction has improved substantially. These new technological development and 

accumulated knowledge provide a unique opportunity to target the interaction therapeutically which 

can lead to eradicate the leukemic stem cells. We suggest that different experimental model systems, 

should be integrated and adopted at different level of drug discovery targeting the leukemic cell-

microenvironment interaction. For example, 2D and 3D co-culture models are the suitable model for 

high throughput screening of library involving large number of drug as they are easy to handle. On 

the other hand, patient’s leukemic cells derived spheroid cultures may be relevant in targeted study 

of drugs identified through drug screening for their effect on leukemic cell-bone marrow interaction 

as spheroid like cell aggregates better mimic the BM microenvironment. Furthermore, integration of 
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recent cell-cell interaction profiling method along with HTS techniques can speed up the discovery 

of drugs targeting the leukemic cell-BM interactions. We also note the need for implementation of 

more computational models especially developed for prediction of drugs targeting cancer-

microenvironment interaction in cancers is needed for accelerating the process.

4. Expert opinion

In this section, we highlight our opinion on drug discovery targeting the cancer cell-

microenvironment interaction, specifically in hematological cancers as the large-scale cancer 

sequencing efforts have well characterized the genomic aberrations and related heterogeneity specific 

to each cancer type (78-82). Further, patient-derived primary tissues samples are easily available for 

drug screening in hematological cancers. These are invaluable to identify drug targeting specific 

interactions, either for initial drug discovery during the high throughput screening phase or for 

validation of drugs identified using other computational and experimental approaches (74, 82, 83). 

However, we argue that adoption of advancement in culture methods, screening technologies, and 

computational algorithms can further speed up the process of drug discovery targeting the cancer-

microenvironment interactions. For example, the use of the co-culture-based model (e.g., 2D and 3D) 

side-by-side with patients-derived samples can ease the preclinical efficacy and toxicity testing of our 

constantly increasing pharmacological portfolio for rarely accessible tissues, such as lymph nodes 

and bone marrow. We believe along with others that testing both large-number of targeted and 

conventional therapies using drug testing assays in patient-derived ex vivo co-culture models, and 

later verified in patient-derived organoids (PDO) or xenograft (PDX) models in vivo, can enable the 

identification of high efficacy and low toxicity drugs, targeting cell-microenvironment interaction in 

a patient-selective way.
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In addition to the experimental model system, there is also a need for flexible and fast assays that can 

capture the leukemic cell-bone marrow interaction quantitatively. Hence speeding up the early phase 

of identification of drug targeting the oncogenic cell-microenvironment signaling. Rather than using 

bulk assays to measure the drug efficacy in a screening, we argue that it is important to use assays 

that can carefully dissect the effect of drugs on various cell types and their interactions such as 

physical connections or communication signaling. The use of cell-cell interaction scoring techniques 

(e.g. scRNA, CyTOF, high-content-imaging) in drug-screening can identify drugs targeting cell-cell 

interaction and can also help to quantify the efficacy and toxicity, of multi-targeting mono- and 

combinatorial therapies on the different cell types in the pre-clinical model systems. Furthermore, 

their use can greatly reduce the extensive cost, time and risks associated with drug discovery process, 

before entering clinical trials. 

We also suggest the need of implementing new artificial intelligence (AI) and machine learning (ML) 

models especially focused to predict drugs targeting cell-microenvironment interaction using the 

molecular features. Many in-silico drug prediction approaches have been developed, including AI 

and ML models, however, none of these methods have been specifically developed to predict drugs 

targeting cell-microenvironment interactions. Most computational studies use molecular information 

(e.g., mutation, RNA-Seq) to predict drug efficacy, yet many of their predictions fail at the validation 

stage and in clinics. These succumb because of overfitting data due to the curse of dimensionality 

and the numerous features along with small clinical samples (71, 84). We suggest that fitting models 

using only those features involved in cell-microenvironment signaling can reduce the curse of 

dimensionality problem, to some extent. 
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Although experimental models, cell-based drug testing technologies and cell-microenvironment 

interaction scoring techniques continue to improve, wider adoption of HTS for discovery of drug 

targeting cancer cell-microenvironment interaction can be held back by several logistic, regulatory, 

and financial issues. For instance, lack of solid tissues such as BM biopsies or lymph nodes in the 

established biobanks is a common hurdle for cell-microenvironment interaction as many of the 

biobank store blood tissues only. At the technological level, the biobanking of specific cell types such 

as stromal cells may require specific culture conditions that are different from the preservation of 

other hematological samples. Further, enrollment of patients, collection and storage of healthy and 

tumor samples requires careful planning, detailed communication, coordination and extensive 

collaboration between clinicians, surgeons, pathologists, and researchers. The sharing and reuse of 

pharmacogenomic data generated from these collected samples for new research or translational 

purposes needs clear regulatory legal guidelines as the process is often complicated by divergent 

legislations across countries. Furthermore, HTS, cell-cell interaction profiling technology and 

computational expertise required for drug screening is costly hence is out of reach for many academic 

laboratories which is slowing the drug discovery including drugs targeting tumor-microenvironment 

interaction. Taken together, while the drug discovery can be initiated through smart adoption of 

existing technology, the process can be speeded up by solving several additional biological and 

logistics hurdles.
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Figure 1: (A). Thematic diagram showing the effect of leukemic cell-bone marrow interaction on 
leukemogenic, leukemic stem cell (LSC) survival and drug resistance. (B) Diagram showing the relation 
between physiological relevance and throughput of experimental models used for during drug screening. 
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Comparison of the different ex-vivo drug screening assays on the basis of cell-cell interaction information 
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Table 1: List of ongoing clinical trials for targeting leukemic cells-microenvironment interaction in AML

Interventions Mechanism Conditions

Clinical Trial 

Reference (Phase)

Crenolanib| Cytarabine| Mitoxantrone| Placebo Oral 

Tablet| Fludarabine| Idarubicin| G-CSF

Inflammatory 

pathway

Relapsed/Refractory Acute 

Myeloid Leukemia With FLT3 

Activating Mutations NCT03250338 (3)

 Decitabine, Homoharringtonine, Aclarubicin, 

Cytarabine and G-CSF

Stromal cell–

mediated protection 

of blast  apoptosis

Acute Myeloid 

Leukemia|Induction 

Chemotherapy NCT04083911(3)

Cytarabine| Daunorubicin| Uproleselan Angiogenesis Acute Myeloid Leukemia

NCT03701308 

(2/3)

Uproleselan| Placebo Angiogenesis Acute Myeloid Leukemia NCT03616470 (3)

Magrolimab| Venetoclax| Azacitidine| Cytarabine| 

Daunorubicin| Idarubicin| Steroidal Eye Drops

Recognition of blast 

by immune cells Acute Myeloid Leukemia NCT04778397 (3)

Homoharringtonine| Azacitidine

Stromal cell–

mediated protection 

of blast  apoptosis Acute Myeloid Leukemia NCT04248595 (3)

Galinpepimut-S| Best Available Therapy

Recognition of blast 

by immune cells Acute Myeloid Leukemia NCT04229979 (3)
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CAR-T CD19

Recognition of blast 

by immune cells Acute Myeloid Leukemia

NCT04257175 

(2/3)

CD123/CLL1 CAR-T Cells

Recognition of blast 

by immune cells Relapsed/Refractory AML

NCT03631576 

(2/3)
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Table 2: Comparison of ex-vivo model system and culture methods for high-throughput drug screening (HTS) assay 

 

Normol 

2D 

culture

2D co-

culture
Spheroids Organoids

Cancer 

on chip
PDX

Animal 

models

Patient 

tumors

Physiological 

relevance
Low Low  Medium   Medium Medium High High High

Throughput High High Medium Medium Low Low Low Low

Availability to 

labs High High
Medium Medium Low Low Low Low

Cost Low Low Medium Medium High High High Low

PDX: Patient-derived xenograft model, 2D: 2-dimensional, 3D: 3-dimensional
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Table 3: Comparison of experimental techniques commonly used for HTS for their possible use in drug discovery targeting cancer cell-

microenvironment interaction 

 

Luminesce or 

fluorescence-based 

drug screening 

assays in cell culture

Touching 

Nexus 

Mass cytometry 

imaging

Image-based high-

content screening 

Throughput High Low Medium Low

Physiological 

relevance Low High Medium High

Diffuculty in 

data  analysis Easy Easy Medium Difficult

Availability Common Rare Rare Medium
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Table 4: Drug-combination predicting algorithms that can be adopted to suggest combinations targeting cancer cell-microenvironment interaction 

Methods Data input Combination prediction approach

scComb (41)

ScRNA profile, ex-vivo single 

drug response, drug-target 

information

Predict drug combination response using target expression level of 

involved drugs using an XGBoost model trained on single drug response 

and its target.

Metabolism And GENomics-

based Tailoring of Antibiotic 

regimens (MAGENTA) (73)

Single drug response under 

different gene knockout 

conditions

Predict drug combination response using single agents’ response under 

different genetic knockout conditions, and a random-forest model.
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Drug combination prediction 

and testing (DCPT) platform 

(74)

Exome-sequencing, bulk-RNA-

sequencing, ex-vivo single drug 

response in cancer patients and 

healthy controls

Predict drug combination response using target expression level of 

involved drugs and mutation profile as input using a random-forest model 

trained on single drugs’ response and their target.

Probability ensemble 

approach

(85)

Uses 6 target and structure-based 

information to calculate drug 

similarity (e.g. protein-protein 

interaction) and combine them 

using a Bayesian network into a 

likelihood ratio (LR) that 

represents its probabilistic 

similarity to the known 

interaction.

Combinations are prioritized based on their similarity with existing 

combinations.
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DrugComboRanker (86)
Disease genomic profiles and 

gene expression profiles before 

and after drug treatment

Prioritized synergistic drug combinations using drug functional network 

and a Bayesian non-negative matrix factorization approach.

TranSynergy (87) Drug-target information, gene 

expression or gene dependency
Uses transformer boosted deep learning model to predict combinations.

SynerDrug(88) Drug target interaction, protein-

protein interaction, and drug 

chemical fingerprint as input

Uses gradient tree boosting to predict drug combinations using probability 

distribution vectors of occurrence of drug combination target in a 

heterogenous network constructed from multiple sources (e.g., protein-

protein, protein-drug interaction).

Ranking-system of Anti-

Cancer Synergy (89).
Gene expression profile

Uses drug targeting networks and transcriptomic profiles to suggest drug 

combinations in cancer.
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Combinatorial Drug 

Assembler (CDA) (90)
Gene expression profile

Drug combination suggestion by matching differentially expressed genes 

(e.g., between healthy and patient samples) with differentially expressed 

genes on drug treatment.

DrugComboExplorer(91)

DNA-seq, gene copy number, 

DNA methylation and RNA-seq 

data, drug pharmacogenetic data

Dysregulated driver signaling networks are identified using non-

parametric, bootstrapping-based simulated annealing and later Bayesian 

factor regression approach is used on the network to identify drugs whose 

targets are enriched in the network.

Pang et al (92)
Drug target network, gene 

expression

Suggest drug combinations with complementary mathematical algorithms: 

Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover 

(MOTSC).
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