70 research outputs found

    Aspects of multi-resolutional foveal images for robot vision

    Get PDF
    Imperial Users onl

    Combining segmentation and attention: a new foveal attention model

    Get PDF
    Artificial vision systems cannot process all the information that they receive from the world in real time because it is highly expensive and inefficient in terms of computational cost. Inspired by biological perception systems, artificial attention models pursuit to select only the relevant part of the scene. On human vision, it is also well established that these units of attention are not merely spatial but closely related to perceptual objects (proto-objects). This implies a strong bidirectional relationship between segmentation and attention processes. While the segmentation process is the responsible to extract the proto-objects from the scene, attention can guide segmentation, arising the concept of foveal attention. When the focus of attention is deployed from one visual unit to another, the rest of the scene is perceived but at a lower resolution that the focused object. The result is a multi-resolution visual perception in which the fovea, a dimple on the central retina, provides the highest resolution vision. In this paper, a bottom-up foveal attention model is presented. In this model the input image is a foveal image represented using a Cartesian Foveal Geometry (CFG), which encodes the field of view of the sensor as a fovea (placed in the focus of attention) surrounded by a set of concentric rings with decreasing resolution. Then multi-resolution perceptual segmentation is performed by building a foveal polygon using the Bounded Irregular Pyramid (BIP). Bottom-up attention is enclosed in the same structure, allowing to set the fovea over the most salient image proto-object. Saliency is computed as a linear combination of multiple low level features such as color and intensity contrast, symmetry, orientation and roundness. Obtained results from natural images show that the performance of the combination of hierarchical foveal segmentation and saliency estimation is good in terms of accuracy and speed

    Study of Convolutional Neural Networks for Global Parametric Motion Estimation on Log-Polar Imagery

    Get PDF
    [EN] The problem of motion estimation from images has been widely studied in the past. Although many mature solutions exist, there are still open issues and challenges to be addressed. For instance, in spite of the well-known performance of convolutional neural networks (CNNs) in many computer vision problems, only very recent work has started to explore CNNs to learning to estimate motion, as an alternative to manually-designed algorithms. These few initial efforts, however, have focused on conventional Cartesian images, while other imaging models have not been studied. This work explores the yet unknown role of CNNs in estimating global parametric motion in log-polar images. Despite its favourable properties, estimating some motion components in this model has proven particularly challenging with past approaches. It is therefore highly important to understand how CNNs behave when their input are log-polar images, since they involve a complex mapping in the motion model, a polar image geometry, and space-variant resolution. To this end, a CNN is considered in this work for regressing the motion parameters. Experiments on existing image datasets using synthetic image deformations reveal that, interestingly, standard CNNs can successfully learn to estimate global parametric motion on log-polar images with accuracies comparable to or better than with Cartesian images.This work was supported in part by the Universitat Jaume I, Castellon, Spain, through the Pla de promocio de la investigacio, under Project UJI-B2018-44; and in part by the Spanish Ministerio de Ciencia, Innovacion y Universidades through the Research Network under Grant RED2018-102511-T.Traver, VJ.; Paredes Palacios, R. (2020). Study of Convolutional Neural Networks for Global Parametric Motion Estimation on Log-Polar Imagery. IEEE Access. 8:149122-149132. https://doi.org/10.1109/ACCESS.2020.3016030S149122149132

    Image synthesis based on a model of human vision

    Get PDF
    Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision

    Content-prioritised video coding for British Sign Language communication.

    Get PDF
    Video communication of British Sign Language (BSL) is important for remote interpersonal communication and for the equal provision of services for deaf people. However, the use of video telephony and video conferencing applications for BSL communication is limited by inadequate video quality. BSL is a highly structured, linguistically complete, natural language system that expresses vocabulary and grammar visually and spatially using a complex combination of facial expressions (such as eyebrow movements, eye blinks and mouth/lip shapes), hand gestures, body movements and finger-spelling that change in space and time. Accurate natural BSL communication places specific demands on visual media applications which must compress video image data for efficient transmission. Current video compression schemes apply methods to reduce statistical redundancy and perceptual irrelevance in video image data based on a general model of Human Visual System (HVS) sensitivities. This thesis presents novel video image coding methods developed to achieve the conflicting requirements for high image quality and efficient coding. Novel methods of prioritising visually important video image content for optimised video coding are developed to exploit the HVS spatial and temporal response mechanisms of BSL users (determined by Eye Movement Tracking) and the characteristics of BSL video image content. The methods implement an accurate model of HVS foveation, applied in the spatial and temporal domains, at the pre-processing stage of a current standard-based system (H.264). Comparison of the performance of the developed and standard coding systems, using methods of video quality evaluation developed for this thesis, demonstrates improved perceived quality at low bit rates. BSL users, broadcasters and service providers benefit from the perception of high quality video over a range of available transmission bandwidths. The research community benefits from a new approach to video coding optimisation and better understanding of the communication needs of deaf people

    Space-variant picture coding

    Get PDF
    PhDSpace-variant picture coding techniques exploit the strong spatial non-uniformity of the human visual system in order to increase coding efficiency in terms of perceived quality per bit. This thesis extends space-variant coding research in two directions. The first of these directions is in foveated coding. Past foveated coding research has been dominated by the single-viewer, gaze-contingent scenario. However, for research into the multi-viewer and probability-based scenarios, this thesis presents a missing piece: an algorithm for computing an additive multi-viewer sensitivity function based on an established eye resolution model, and, from this, a blur map that is optimal in the sense of discarding frequencies in least-noticeable- rst order. Furthermore, for the application of a blur map, a novel algorithm is presented for the efficient computation of high-accuracy smoothly space-variant Gaussian blurring, using a specialised filter bank which approximates perfect space-variant Gaussian blurring to arbitrarily high accuracy and at greatly reduced cost compared to the brute force approach of employing a separate low-pass filter at each image location. The second direction is that of artifi cially increasing the depth-of- field of an image, an idea borrowed from photography with the advantage of allowing an image to be reduced in bitrate while retaining or increasing overall aesthetic quality. Two synthetic depth of field algorithms are presented herein, with the desirable properties of aiming to mimic occlusion eff ects as occur in natural blurring, and of handling any number of blurring and occlusion levels with the same level of computational complexity. The merits of this coding approach have been investigated by subjective experiments to compare it with single-viewer foveated image coding. The results found the depth-based preblurring to generally be significantly preferable to the same level of foveation blurring

    Hierarchical Object-Based Visual Attention for Machine Vision

    Get PDF
    Institute of Perception, Action and BehaviourHuman vision uses mechanisms of covert attention to selectively process interesting information and overt eye movements to extend this selectivity ability. Thus, visual tasks can be effectively dealt with by limited processing resources. Modelling visual attention for machine vision systems is not only critical but also challenging. In the machine vision literature there have been many conventional attention models developed but they are all space-based only and cannot perform object-based selection. In consequence, they fail to work in real-world visual environments due to the intrinsic limitations of the space-based attention theory upon which these models are built. The aim of the work presented in this thesis is to provide a novel human-like visual selection framework based on the object-based attention theory recently being developed in psychophysics. The proposed solution – a Hierarchical Object-based Attention Framework (HOAF) based on grouping competition, consists of two closely-coupled visual selection models of (1) hierarchical object-based visual (covert) attention and (2) object-based attention-driven (overt) saccadic eye movements. The Hierarchical Object-based Attention Model (HOAM) is the primary selection mechanism and the Object-based Attention-Driven Saccading model (OADS) has a supporting role, both of which are combined in the integrated visual selection framework HOAF. This thesis first describes the proposed object-based attention model HOAM which is the primary component of the selection framework HOAF. The model is based on recent psychophysical results on object-based visual attention and adopted grouping-based competition to integrate object-based and space-based attention together so as to achieve object-based hierarchical selectivity. The behaviour of the model is demonstrated on a number of synthetic images simulating psychophysical experiments and real-world natural scenes. The experimental results showed that the performance of our object-based attention model HOAM concurs with the main findings in the psychophysical literature on object-based and space-based visual attention. Moreover, HOAM has outstanding hierarchical selectivity from far to near and from coarse to fine by features, objects, spatial regions, and their groupings in complex natural scenes. This successful performance arises from three original mechanisms in the model: grouping-based saliency evaluation, integrated competition between groupings, and hierarchical selectivity. The model is the first implemented machine vision model of integrated object-based and space-based visual attention. The thesis then addresses another proposed model of Object-based Attention-Driven Saccadic eye movements (OADS) built upon the object-based attention model HOAM, ii as an overt saccading component within the object-based selection framework HOAF. This model, like our object-based attention model HOAM, is also the first implemented machine vision saccading model which makes a clear distinction between (covert) visual attention and overt saccading movements in a two-level selection system – an important feature of human vision but not yet explored in conventional machine vision saccading systems. In the saccading model OADS, a log-polar retina-like sensor is employed to simulate the human-like foveation imaging for space variant sensing. Through a novel mechanism for attention-driven orienting, the sensor fixates on new destinations determined by object-based attention. Hence it helps attention to selectively process interesting objects located at the periphery of the whole field of view to accomplish the large-scale visual selection tasks. By another proposed novel mechanism for temporary inhibition of return, OADS can simulate the human saccading/ attention behaviour to refixate/reattend interesting objects for further detailed inspection. This thesis concludes that the proposed human-like visual selection solution – HOAF, which is inspired by psychophysical object-based attention theory and grouping-based competition, is particularly useful for machine vision. HOAF is a general and effective visual selection framework integrating object-based attention and attentiondriven saccadic eye movements with biological plausibility and object-based hierarchical selectivity from coarse to fine in a space-time context

    Automated retinal layer segmentation and pre-apoptotic monitoring for three-dimensional optical coherence tomography

    Get PDF
    The aim of this PhD thesis was to develop segmentation algorithm adapted and optimized to retinal OCT data that will provide objective 3D layer thickness which might be used to improve diagnosis and monitoring of retinal pathologies. Additionally, a 3D stack registration method was produced by modifying an existing algorithm. A related project was to develop a pre-apoptotic retinal monitoring based on the changes in texture parameters of the OCT scans in order to enable treatment before the changes become irreversible; apoptosis refers to the programmed cell death that can occur in retinal tissue and lead to blindness. These issues can be critical for the examination of tissues within the central nervous system. A novel statistical model for segmentation has been created and successfully applied to a large data set. A broad range of future research possibilities into advanced pathologies has been created by the results obtained. A separate model has been created for choroid segmentation located deep in retina, as the appearance of choroid is very different from the top retinal layers. Choroid thickness and structure is an important index of various pathologies (diabetes etc.). As part of the pre-apoptotic monitoring project it was shown that an increase in proportion of apoptotic cells in vitro can be accurately quantified. Moreover, the data obtained indicates a similar increase in neuronal scatter in retinal explants following axotomy (removal of retinas from the eye), suggesting that UHR-OCT can be a novel non-invasive technique for the in vivo assessment of neuronal health. Additionally, an independent project within the computer science department in collaboration with the school of psychology has been successfully carried out, improving analysis of facial dynamics and behaviour transfer between individuals. Also, important improvements to a general signal processing algorithm, dynamic time warping (DTW), have been made, allowing potential application in a broad signal processing field.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore