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ABSTRACT

György Dénes: Perceptual models for high-refresh-rate rendering

Rendering realistic images requires substantial computational power. With new high-

refresh-rate displays as well as the renaissance of virtual reality (VR) and augmented

reality (AR), one cannot expect that GPU performance will scale fast enough to meet the

requirements of immersive photo-realistic rendering with current rendering techniques.

In this dissertation, I follow the dual of the well-known computer vision approach:

vision is inverse graphics : to improve graphical algorithms, I consider the operation of

the human visual system. I propose to model and exploit the limitations of the visual

system in the context of novel high-refresh-rate displays; specifically, I focus on spatio-

temporal perception, a topic that has received remarkably less attention than spatial-only

perception so far.

I present three main contributions. First, I demonstrate the validity of the perceptual

approach by presenting a conceptually simple rendering technique motivated by our eyes’

limited sensitivity to high spatio-temporal change which reduces the rendering load and

transmission requirement of current-generation VR headsets without introducing perceiv-

able visual artefacts. Second, I present two visual models related to motion perception:

(a) a metric for detecting flicker; and (b) a comprehensive visual model to predict per-

ceived motion quality on monitors with arbitrary refresh rates and monitor resolutions.

Third, I propose an adaptive rendering algorithm that utilises the proposed models. All

algorithms operate on physical colorimetric units (instead of display-referenced pixel val-

ues), for which I provide the appropriate display measurements and models. All proposed

algorithms and visual models are calibrated and validated with psychophysical experi-

ments.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Perfect realism to the extent of indistinguishability from the real world has been the Holy

Grail of computer graphics for a long time. Many recent advances in both real-time ren-

dering and display technology attempt to bring us closer to creating such realistic imagery.

For instance, ever-increasing resolutions reveal fine details, binocular and multi-focal set-

ups add a sense of depth, and better animation quality improves perceived motion. Re-

cently, virtual reality (VR) and augmented reality (AR) have been in the focus of such

technological improvements, achieving reduced viewer discomfort, now striving to achieve

complete realism in a fully-simulated environment.

However, achieving the goal of perfect realism is still a long way away from current

rendering and display technology. How long away exactly though? Traditionally, rendering

is reduced to computing a sequence of static two-dimensional frames. Industry standards

would suggest at least 60 pixels per visual degree with a field of view of 110 degrees, two

eyes, and a refresh rate of 140 Hz. This yields over 12 billion pixels rendered and displayed

every second as a reasonable minimum – compared to the 400 million pixels per second

of the latest VR headsets.

The required bandwidth is further increased as we want to increase the dynamic

range or bring accommodation depth cues on multiple focal planes. Real-time generation

and display of this vast amount of data is seemingly impossible even for the next few

generations of graphics hardware.

Fortunately, perceived quality does not simply depend on the number of pixels and the

frequency of frames. When visual content is judged by subjective human observers, quality

becomes a complex function of multiple inter-related factors, such as spatio-temporal

15



content, scene motion, eye motion, and luminance level among others. In this dissertation,

I propose rendering algorithms derived from the limitations and models of the visual

system. These algorithms depart from the traditional sequence of constant-resolution

rendering.

The vast and complex fields of perceptual graphics and visual modelling have been in

the focus of numerous previous researches, producing valuable contributions, such as visual

difference metrics, and foveated rendering algorithms. Many of the spatial factors are

well-understood, however, the temporal domain has received remarkably little attention

so far. Therefore, in this work, I restrict my focus to unique solutions that high-refresh-

rate monitors offer — high refresh rate in this context is defined as more than the 60 Hz

update of standard desktop monitors. Such techniques are expected to dominate the real-

time game industry in the upcoming years both for desktop and virtual-reality setups.

Consequently, the proposed algorithms and models are primarily concerned with motion

quality and spatio-temporal perception.

1.2 Hypothesis

In this dissertation, I hypothesise that understanding the spatio-temporal limitations of

the visual system can be utilised to reduce the computational complexity of high-refresh-

rate rendering algorithms. The eventual consumers of the generated visual content are

humans, therefore I claim that insights into the limitations of the visual system can help

to design algorithms that are computationally cheaper but perceptually indistinguish-

able from their näıve counterparts. Furthermore, I postulate that invertible models of

the visual system can predict the trade-off between rendering dimensions such as resolu-

tion, refresh rate, bit-depth, etc., maximising perceived quality even under constrained

rendering budgets.

In a sense, I suggest to use the dual of the computer-vision philosophy that vision is

inverse graphics (VIG). Computer vision has successfully shown that utilising rendering

engines can help to more accurately estimate camera position, reconstruct 3D objects,

or to train neural networks. In this dissertation, I attempt to show that utilising visual

models can help to render in a more performant manner.

1.3 Structure of the dissertation

I first discuss the relevant stages of vision, limits and models of spatio-temporal vision,

and applications of these in computer graphics in Chapters 2 and 3. Chapter 4 describes

the behaviour and models of current display technologies. The rest of the dissertation

can be divided into two parts. In the first part (Chapter 5), I demonstrate how simple
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insights into the limitations of spatio-temporal vision can aid the intelligent design of a

high-refresh-rate rendering algorithm (Temporal Resolution Multiplexing). In the second

part, I focus on visual modelling, mapping the problem of motion quality to multi-scale

models (Chapters 6, 7, and 8), describing how such models can be used to design adaptive

rendering algorithms that maximise the perceived quality under a restricted rendering

budget.

1.4 Publications, presentations, awards
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(1) Gyorgy Denes, Akshay Jindal, Aliaksei Mikhailiuk, Rafa l K. Mantiuk,“A perceptual

model of motion quality for rendering with adaptive refresh-rate and resolution”, ACM

Transactions on Graphics (Proc. of SIGGRAPH 2020), 39(4), 133, 2020

Paper contribution: Designed a comprehensive perceptual model of motion quality

taking motion blur and judder into account.
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ing images”, Proceedings of Human Vision and Electronic Imaging conference, 2020
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(3) Gyorgy Denes, Kuba Maruszczyk, George Ash, Rafa l K. Mantiuk,“Temporal Res-

olution Multiplexing: Exploiting the limitations of spatio-temporal vision for more

efficient VR rendering”, IEEE Transactions on Visualization and Computer Graph-

ics, 2019

Paper contribution: Developed, calibrated and psychophysically validated a novel

temporal multiplexing algorithm for reducing the rendering cost and data transfer

requirements of high-refresh rate rendering pipelines such as VR.

(4) Gyorgy Denes, George Ash, Huameng Fang, Rafa l K. Mantiuk,“A visual model for

predicting chromatic banding artefacts”, Proceedings of Human Vision and Electronic

Imaging conference, 2019

Paper contribution: Designed a multi-scale model for detecting chromatic banding

(false contouring) artefacts.

(5) Gyorgy Denes, Kuba Maruszczyk, Rafa l K. Mantiuk,“Exploiting the limitations

of spatio-temporal vision for more efficient VR rendering”, ACM SIGGRAPH 2018

Posters (Article No. 21)
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Publications outside the scope of this dissertation

(1) Gabriel Eilertsen, Joel Kronander, Gyorgy Denes, Rafa l K. Mantiuk, Jonas Unger,“HDR

image reconstruction from a single exposure using deep CNNs”, ACM Transactions
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Paper contribution: Evaluated CNN-based inverse tone mapping operator (iTMO)

designed by collaborators to recover high-dynamic-range images from single-exposure

photographs. Evaluation consisted of running and analysing the results of pairwise
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reference and state-of-the-art iTMOs.
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of 2018
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(2) Best journal paper award at IEEE VR 2019 (paper title: Temporal Resolution

Multiplexing: Exploiting the limitations of spatio-temporal vision for more efficient

VR rendering)

(3) Best paper award at 2019 Human Vision and Electronic Imaging (HVEI) (paper

title: A visual model for chromatic banding artifacts)

(4) Best poster award at CGVC (poster title: Improving Quality of Anti-Aliasing in

Virtual Reality)
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CHAPTER 2

BACKGROUND ON SPATIO-TEMPORAL

PERCEPTION

“This story I tell you, to let you understand, that; in the observation related

by Mr. Boyle, the man’s fancy probably concurred with the impression made

by the sun’s light to produce that phantasm of the sun which he constantly saw

in bright objects. And so your question about the cause of phantasm involves

another about the power of fancy, which I must confess is too hard a knot for

me to untie.”

Sir Isaac Newton

Letter to John Locke

The aim of this dissertation is to demonstrate that insights and models of spatio-temporal

vision can be utilised to devise novel rendering algorithms. As such, some understanding

of how human vision works is unavoidable. Whilst this topic is rarely considered in

the graphics literature, there is substantial knowledge we can rely on in the fields of

psychophysics and visual science.

As this dissertation is primarily concerned with high-refresh-rate devices, I focus on

spatio-temporal sensitivity and motion perception. Related applications and models of

perception are discussed in detail in Chapter 3. First, I provide an overview of the

visual system, then describe the family of contrast sensitivity functions, and conclude by

separately addressing the four types of artefacts impacting motion quality perception.
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fovea

optical nerve

lens

retina

Figure 2.1: Left: biology of the eye. Right: Cone cells’ spectral sensitivity (as a function
of light wavelength). Source: Stockman and Sharpe [2000]

2.1 Overview of human visual system

The amount of information constantly reaching the human visual system (HVS) with an

infinitely detailed world around us is incredible, and in its completeness, unmanageable

even to our relatively complex brains. Starting from the retina up to the cortical represen-

tation, we find that sensitivity and bandwidth limitations determine our performance at

a range of visual functions, be they seemingly trivial or complex such as face recognition,

depth perception or colour constancy. Models attempting to capture the behaviour of

individual processing stages are mostly based on neurological observations, while end-to-

end perception of different stimuli are studied using psychophysical experiments. For a

broad yet concise review of the vast HVS literature, I recommend the reader to consult

Wandell’s Foundation of vision [1995]. In the following sections, I discuss the stages of

vision starting from the retina, with emphasis on aspects relevant to spatio-temporal and

motion perception.

2.2 Early vision

In the first stage of vision, also referred to as early vision, information is captured and

pre-processed, in a manner comparable to a digital camera [Watson 1990, p.61-74]. As

this is the entry point of the pipeline, understanding the limitations of early vision helps

to understand the information available to later stages in the visual cortex, where the

information is further processed and interpreted by the brain.

Capturing happens on the retina, the photosensitive layer at the back of the eye,

consisting of an inhomogeneous collection of two types of photoreceptors: rods and

cones. Rods are mainly responsible for vision in low-light conditions (scotopic vision;

< 0.001 cd/m2 [Zele and Cao 2015]). These cells provide limited spatial resolution [Wan-

dell 1995, p.46], and do not distinguish between different wavelengths of light; hence,

scotopic vision is strictly monochromatic. Rods are primarily found in the peripheral (non-
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central) part of the visual field, resulting in higher sensitivity to dim objects when viewed

slightly off-centre – a phenomenon utilised by astronomers when observing faint stars.

On the other hand, cones operate in well-lit environments (photopic vision; > 3 cd/m2

[Zele and Cao 2015]), providing significantly higher spatial acuity, and are mainly found

in the central region (fovea; Figure 2.1-left). The intermediate luminance range between

scotopic and photopic vision, when cones have just enough photons to gradually activate

and rods are not yet saturated, is referred to as mesopic vision (0.001 – 3 cd/m2 [Zele and

Cao 2015]). The luminance range of average content rendered on desktop displays and

VR headsets falls mostly within the photopic range.

Humans typically have three types of cones, responding to different wavelengths of

light (Short, Medium, and Long). The distinct response curves of cones (Figure 2.1-right)

allow the visual system to differentiate between colours, with lacking cones or overlapping

response curves causing colour vision deficiency (colour blindness). One limitation of early

vision is that the reduction from a domain of continuous wavelength to three response

values is not invertible. Consequently, multiple wavelength profiles can correspond to

the exact same perceived colour, a phenomenon known as metamerism. A well-known

example of how insights to the visual system can aid display design is how monitors use

three colour primaries (Red, Green, and Blue), relying on metamerism to reproduce a

perceptually continuous range of colours.

In the central 2◦ of the visual field (foveal region), where the cones are most tightly

packed, there is an estimated one cone in every 28” (arc seconds) [Curcio et al. 1990],

yielding approximately 120 cones per visual degree. Assuming a uniform grid, we can

compute the maximum resolvable spatial frequency with the Nyquist limit: i.e. 60 full

cycles of a sine wave over a visual degree, commonly written as 60 cycles per visual degree

(cpd). However, the cone mosaic does not follow a uniformly-spaced grid, and eye motion

also provides additional information; hence the question of maximum resolution is more

complex. For instance, Vernier acuity demonstrates that the HVS can incorporate eye

motion and cortical pooling to detect misalignments between elements of the stimulus

even when the misalignment is smaller than a single photoreceptor [Soraci and Murata-

Soraci 2003, p.51]. It is hence more usual to argue about the visual system’s spatial (and

temporal) integration based on end-to-end models of vision.

2.3 Visual pathways

Visual pathways (also called visual streams) consist of a series of cells and synapses that

carry information from the retina through the optic nerve and the LGN to the visual

cortex (V1, V2, V3, V4) [Squire et al. 2009]. The literature identifies several parallel

pathways that perform distinct tasks. The most well-known examples are the dorsal and

23



ventral pathways which are responsible for motion and form perception respectively, also

referred to as the “where”and “what” pathways. [Briggs 2017]. Other examples include

the Magnocellular and Parvocellular pathways: the Magnocellular pathway is considered

insensitive to colour, sensitive to lower spatial and higher temporal frequencies. On the

other hand, the Parvocellular pathway is sensitive to colour and high spatial frequencies,

but has reduced sensitivity to high temporal change [Liu et al. 2006]. The ventral pathway

gets its main input from the parvocellular cells, but such visual pathways are often inter-

connected. Other pathways have been shown to selectively respond to certain scales

of size only. The final visual perception is influenced by all the visual pathways – a

phenomenon that is challenging to model. A common approach is to focus on measuring

the performance at individual tasks in end-to-end psychophysical experiments.

2.4 Contrast sensitivity

Overall sensitivity to different stimuli can be described with the family of contrast sen-

sitivity functions. Specifically, sensitivity to an achromatic sine grating as a function of

spatial frequency is described by the spatial contrast sensitivity function (CSF). Consis-

tently with previous literature, I will use the CSF to refer to the spatial contrast sensitivity,

without qualifying the spatial aspect, unless otherwise specified.

2.4.1 Contrast definition

Formally, the most common contrast definition is Weber’s contrast: the ratio of a lumi-

nance change compared to a baseline luminance level.

C =
∆L

L
, (2.1)

where luminance is measured in cd/m2. We use ratios of luminance values rather than

absolute luminance differences according to the non-linearity of luminance perception,

described by Weber’s Law [Laming 2012, p.177-190].

The smallest change over a background luminance detectable by a human observer

(∆Lt) can be used to describe the threshold contrast (Ct). Contrast sensitivity is defined

as the reciprocal of the threshold contrast [Wandell 1995, p.135]:

S =
1

Ct
=

L

∆Lt
(2.2)

For periodic stimuli, the Michelson contrast definition is used [Kukkonen et al. 1993]:

C =
Lmax − Lmin

Lmax + Lmin

, (2.3)
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Figure 2.2: Michelson contrast for a sine grating. Taking the mean luminance as L, and
the signal amplitude as ∆L, this is equivalent to Weber’s contrast definition.

where Lmax and Lmin are the maximum and the minimum luminance in the periodic signal

respectively. For sine gratings, the two definitions are comparable (see Figure 2.2).

2.4.2 Spatial contrast sensitivity function

CSF measurements for achromatic sinusoid stimuli show that sensitivity rises from 0

cycles per degree (cpd), peaking on low-to-medium frequencies (3–8 cpd), then falls off

exponentially for higher frequencies [Van Nes et al. 1967]. Note, that we are still making

a strong distinction between threshold and supra-threshold stimuli; this bandpass-like

shape of the CSF is only valid for objects that are around the detection threshold; hence

the CSF should not be thought of as a modulation transfer function.

A common interpretation of the complex shape of the CSF is modelling the curve as a

combination of responses to multiple spatial frequencies (see Figure 2.3 for visualisation),

corresponding to neurons encoding different scales[Wandell 1995, p.136]. Such multi-scale

models are inspired by theories that information from early vision is propagated down

multiple pathways as discussed in Section 2.3.

The exact shape of the CSF depends on background luminance, orientation, stimulus

size, and eccentricity. Some authors measured a reduced sensitivity in higher eccentric-

ities [Thibos et al. 1996; Kelly 1984], verifying the intuition that our photopic vision is

sharpest in the central foveal region, degrading rapidly towards the periphery. Virsu and

Rovamo [Virsu and Rovamo 1979] argue that the contrast threshold increases linearly with

eccentricity, as predicted by the cortical magnification factor (CMF). Extensive studies
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Figure 2.3: Contrast sensitivity function based on Barten et al. [2004]. The overall shape
can be interpreted as a non-linear combination of different frequency bands, each peaking
an octave apart.

were also conducted to determine sensitivity for colour vision [Kelly 1974; Mullen 1985]

and varying background luminance [Kim et al. 2013; Wuerger et al. 2019].

Although there is no comprehensive model of the CSF, some achromatic CSF models

exist for standard observers [Barten 2004] that are valid in the fovea. Note, that in

practice, these models still require further calibration when being applied on complex

stimuli.

2.4.3 Temporal contrast sensitivity

For non-static stimuli, sensitivity is described by the temporal contrast sensitivity function

(tCSF). de Lange was one of the first people to measure the tCSF as a function of temporal

frequencies, by flickering a 2-visual-degree test field over a 60◦ background [De Lange Dzn

1952; de Lange Dzn 1958]. He found that the shape of the tCSF resembles the shape

of the spatial CSF, a band-pass filter with a peak sensitivity at 5-10 Hz. The exact

shape depends on a number of factors including background luminance, stimulus size and

eccentricity. Crucially, the spatial and temporal dimensions are not separable [Robson

1966; Daly 1998], which can be partially attributed to the fact that both dimensions are

affected by the parvocellular and magnocellular pathways in a complex manner. The joint

spatio-temporal contrast sensitivity function (stCSF) is shown in Figure 2.5-left.

The visibility of moving objects is better predicted by the spatio-velocity contrast

sensitivity function (svCSF) [Kelly 1979]. Here, temporal frequency is replaced with
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Figure 2.4: Contour plots of spatio-temporal contrast sensitivity (left) and spatio-velocity
contrast sensitivity (right). Based on Kelly’s model [1979]. Different line colours represent
individual levels of relative sensitivity from low (purple/dark lines) to high (yellow/bright
lines).

retinal velocity (in degrees per second). To relate the stCSF, and the svCSF, retinal

velocity in the svCSF can be derived as the ratio of the temporal and spatial frequencies

in the stCSF. The contour plots of stCSF and svCSF are shown in Figure 2.4. The

stCSF plot on the left shows that the contours of equal sensitivity form almost straight

lines for high temporal and spatial frequencies, suggesting that the sensitivity can be

approximated by a plane. This observation, captured in the window of visibility [Watson

et al. 1986; Watson 2013] and the pyramid of visibility [Watson and Ahumada 2017], offer

simplified models of spatio-temporal vision, allowing for an insightful analysis of visual

system limitations in the Fourier domain.

2.5 Temporal integration

Most artificial light sources do not produce a temporally-stable amount of light; they are

known to vary with time [Rutherford 2003]. For example, displays with LED light sources

control their brightness by switching the source of illumination on and off at a very high

frequency, a practice we can refer to as a form of pulse-width-modulation. The perceived

brightness of such a flickering display will match the brightness of the steady light that

has the same time-average luminance — a phenomenon known as the Talbot-Plateau law

[1834]. The Talbot-Plateau law only holds when every frequency of the temporal change

is fast enough to be imperceivable. The minimum frequency at which a light is perfectly

fused and is perceived as steady is the flicker fusion threshold, or as also known: the
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Figure 2.5: Spatio-temporal contrast sensitivity function in the fovea. With increasing
spatial and temporal frequencies sensitivity first increases, then falls rapidly. Absolute
sensitivity needs to be adjusted with background luminance. Left figure is based on
various datasets and fitted models from Kelly and Daly [Kelly 1984, 1964, 1959, 1983;
Daly 1998]. Right: the fitted pyramid of visibility model, where the approximation holds
from medium to high frequencies both in spatial and temporal dimensions [Watson and
Ahumada 2017].

critical flicker frequency (CFF). Based on observations of the tCSF it is unsurprising that

the CFF depends on multiple factors: it is known to increase proportionally with the

log-luminance of a stimulus (Ferry-Porter law), increase with the size of the flickering

stimulus, and to be more visible in the parafovea (the region between 5-30◦ from the

fovea) [Hartmann et al. 1979].

2.6 Motion perception

In order to describe motion perception, I first discuss the relevant types of eye motion,

the concept of apparent motion, and conclude by describing the four types of motion

artefacts that differentiate perceived motion of objects displayed on a computer monitor

from perceived motion in the real world. I will refer to the latter as perfect motion.

2.6.1 Eye motion

As described in Section 2.2, the first stage of image capture in the visual system is the

retina. However, to explain the retinal image during motion, eye motion also needs

to be considered. Eye movements can be divided into five broad categories: fixation,
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smooth pursuit eye motion (SPEM), saccades, vestibulo-ocular and optokinetic reflexes,

and vergence. For a detailed discussion I refer the reader to consult Leigh and Zee [2015].

Fixation

Fixation keeps a stationary object aligned with the high-acuity fovea. However, even

during the fixation the eyes are not perfectly still. Drifts, tremors and microsaccades

with velocities 0.8–0.15 deg/s result in small displacements, ensuring that vision does not

fade during fixation [Robinson 1964; Martinez-Conde et al. 2004].

SPEM

When observing a moving object with speeds from 0.15 deg/s up to 80 deg/s, the eye follows

the object, thus stabilising the image of the object in the foveal region of the retina. This

tracking is known as SPEM [Robinson 1965]. SPEM has an approx. 150ms latency, and

is imperfect. Inconsistencies between eye motion and the motion of the tracked object

result in an unstable retinal location. This in turn, when integrated by the eye under the

Talbot-Plateau law, results in retinal blur. The exact amount of such blur depends on

the velocity of the tracked object and the nature of its motion. For instance, perfect zero-

latency tracking can be achieved for sinusoid, parabolic, and cubic motion trajectories

after some learning [Terry Bahill and McDonald 1983] due to the predictive mechanism

of the visual system anticipating location and speed [Stark et al. 1962]. However, real-

world targets, such as leaves falling or insects flying, often do not follow such predictable

patterns. As a fallback, SPEM gets regulated by a feedback mechanism [Lisberger 2010].

Specifically, Lisberger et al. [1981] argues that SPEM mechanism can be viewed as a

servomechanism which takes the retinal velocity of the target object into account (retinal

error velocity, REV) to induce eye acceleration in order to keep eye velocity close to

target velocity. Numerous factors have been demonstrated to affect the accuracy of this

feedback mechanism, including traumatic brain injury [Suh et al. 2006] and whether

subjects attempt to track the same object with their hands as well [Niehorster et al.

2015].

Saccades

Saccades are rapid eye movements that shift the line of sight. The larger the saccade,

the greater the top speed, reaching 900 deg/s and up to 100ms [Leigh and Zee 2015]. To

prevent a sense of false motion during such high velocities, the visual system ignores much

of the intra-saccadic signal, a phenomenon known as saccadic suppression [Castet 2009].

However, studies suggest that the visual system is not fully blind during saccadic motion,

and can still perceive temporal change [Davis et al. 2015].
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Vestibulo-ocular and optokinetic reflexes

Eye movements occur during head movements to keep the line of sight on the object

of interest. Such reflexs can be further categorised depending on whether the motion is

induced by the vestibular system (vestibulo-ocular reflex, VOR), or is based on visual

cues (optokinetic reflex)

Vergence

Frontal vision requires a unique binocular coordination, where the eyes often move in op-

posite directions. Such vergence movements are primarily generated by disparity between

the locations of the a single target on the two retinas. There is also a strong coupling

with accommodation (the focal length of the eye) [Leigh and Zee 2015]. A conflict be-

tween vergence and accommodation cues can result in reduced depth perception, an issue

present in most 3D displays.

2.6.2 Apparent motion

Computer monitors, much like traditional TV sets, display a sequence of static frames to

the viewer, yet a human observer perceives continuous motion. This apparent motion has

been studied within a number of fields, with computer graphics primarily focusing on the

questions of frame duration and refresh rate.

Following signal-processing terminology, the reduction of a continuous signal in time

(perfect motion) to a discrete set of frames can be considered sampling. The action of

the sequence of static images in a continuous time domain can be modelled as a recon-

struction problem, where display technologies differ in the shape of the reconstruction

window. LCD monitors approximately show and hold a static frame until the next frame

becomes available, effectively reconstructing with a rectangle-like window. In contrast,

the reconstruction window of CRT monitors was determined by the phosphor layer’s time

response – short burst with a long tail. Stroboscopic displays only flash the stimulus for

a brief ∆t time, much shorter than the whole frame duration. Intensity of the signal then

needs to be enhanced by a factor of 1/∆t as stipulated by the Talbot-Plateau law.

Watson et al. modelled apparent motion with their proposed window of visibility

[Watson et al. 1986], a diamond-shape in the spatio-temporal domain bound by the critical

flicker frequency and the eye’s maximal spatial resolution in the temporal and spatial

domains respectively. Watson observed that sampling introduces periodic repetition in

the spatio-temporal frequency spectrum, and proposed that motion is only perceived

smooth when the spectrum of the up-sampled signal contains no copies inside the window

of visibility (see Figure 2.7). The duty-cycle of the display – i.e. the fraction of the period

when the display is active within the frame time, has no observable impact here.
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Figure 2.6: Motion artefacts (rows 2-5) compared to perfect motion (top row) for con-
secutive frames (columns). Flicker: luminance change in consecutive frames; false edges:
multiple copies of the original object; motion blur: loss of high-frequency detail; jud-
der: object location is inconsistent in consecutive frames (vertical lines indicate reference
locations for each frame).

2.6.3 Motion artefacts

Although the human brain accepts traditional cinema films to have apparent motion,

even an untrained observer can notice a difference when compared to motion quality in

the real world (perfect motion). The differences between apparent motion and perfect

motion can be divided into four categories: (1) flicker, (2) false multiple edges (ghosting),

(3) motion blur, and (4) non-smooth or juddery motion (also known as strobing or stutter)

[Daly et al. 2015]. In the following paragraphs I discuss each of these in turn. Please see

Figure 2.6 for a visualisation.

2.6.3.1 Flicker

Flicker artefacts arise when the luminance of a stimulus changes periodically at a temporal

frequency and contrast objectionable by the human eye. The visibility of flicker depends

on a number of factors, but is generally well-captured by the spatio-temporal contrast

sensitivity function.

2.6.3.2 False edges

Even with the rate of change above the CFF, artefacts might manifest as false edges;

i.e. the integrated image on the retina containing multiple copies of the original stimulus.

Such ghosting artefacts can occur if a low-persistence displays repeats the same frame (at
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Computing retinal signal of a moving line in the Fourier domain.
(a) sampled location in screen coordinates,

(b) retinal signal — signal from (a) accounting for perfect SPEM
(c) Fourier transform of (b).

Figure 2.7: Spatio-temporal frequency analysis of a the retinal image when SPEM follow-
ing a 1-pixel-wide line moving left to right with constant velocity, sampled by a display.
Top subplot shows the derivation with the retinal signal reduced to one spatial and the
temporal dimension, transformed to the Fourier domain. Due to discrete sampling, alias-
ing copies of (blue) of the spectrum of the original signal (black) are visible. Analysis
illustrates when sampled on different refresh rates (top row), moving with different veloc-
ities (middle row), and with low-persistence displays of varying duty cycle (bottom row).
Labels indicate object velocity in degrees per second, refresh rate in Hz and duty cycle
in percentage. Red diamonds show the window of visibility [Watson et al. 1986], i.e., the
threshold frequency in the spatio-temporal domain outside of which the visual system
cannot detect artefacts.
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Figure 2.8: Visualisation of motion artefacts when rendering a blue square moving hor-
izontally with constant speed on high-persistence (LCD) and low-persistence displays.
Red arrow indicates gaze motion (a-d: SPEM, e-f: saccade). Left column is a 1D slice
of what the display shows; Centre column illustrates what the retina sees, accounting for
eye motion; Right column shows the simulated perceived image of the blue rectangle. (a)
perfect motion; (b) LCD displays cause significant motion blur due to high persistence;
(c) low-persistence displays reduce motion blur; (d) ghosting artefacts due to repeating
frames on low-persistence displays; (e) blur on LCD displays when eye performs saccade
– this is suppressed by the visual system; (f) visible phantom arrays on low-persistence
display when eye performs a saccade.
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least) twice. A similar artefact can be observed with DLP projectors, where the colour

wheel presents the red, green and blue images subsequently. Alternatively, phantom arrays

(multiple copies of the same object) can be perceived during saccades at frame refresh

rates far beyond the CFF (500 Hz-1kHz) [Davis et al. 2015; Roberts and Wilkins 2013a].

For a visualisation, see Figure 2.8.

2.6.3.3 Blur

Most blur artefacts can be attributed to LCD displays holding an image for the full du-

ration of a frame. When the gaze follows a moving object, it moves continuously over

pixels that are stationary over a duration of a single frame. At higher refresh rates, this

is perceived as blur rather than non-smooth motion because the visual system integrates

the image over time [Tourancheau et al. 2009]. The amount of blur increases proportion-

ately with velocity, and decreases with refresh rate. Hence, on VR headsets, where high

velocities are common with head motion, motion blur is more prominent. This results

in simulation sickness [Anthes et al. 2016]. Stroboscopic low-persistence displays per-

form much better in terms of motion sharpness than hold-type (high-persistence) displays

(Figure 2.8). This reveals a recent example of how perceptual insights can contribute to

display design. VR headsets are one of the earliest adaptors of OLED displays due to

their low-persistent behaviour.

The other source of blur is eye motion. Predictable targets can be followed quite accu-

rately as described in Section 2.6.1. However, real-world movement is often unpredictable,

resulting in imperfect SPEM tracking and the target object consequently blurring on the

retina.

Further blur artefacts due to imperfections in the optics of the eye are not discussed

here, as they do not vary as a function of motion.

Watson and Ahumada [2011] provides an excellent review of studies investigating the

visibility of blur. With a focus on Gaussian blur (described by the standard deviation), the

authors unify available psychophysical experimental data, and discuss proposed models

for the visibility of blur. In Chapter 8, I follow similar principles to their visual contrast

energy (ViCE) model by computing energy after modulating the blurred signal with the

contrast sensitivity function. However, the field I focus on in this dissertation – high-

refresh-rate rendering – requires a more careful consideration of eye blur as a function of

motion velocity and SPEM predictability.

2.6.3.4 Judder

At low refresh rates the illusion of motion breaks, and individual frames become visible.

This creates artefacts known as judder, stutter or strobing motion. Judder is caused by

the discrete temporal samples of the display (frames), which produce aliasing; i.e. copies
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of the spectrum of the original signal will appear in the frequency domain (see Figure 2.7).

The temporal frequency of these aliasing copies depends on the refresh rate of rendering,

whereas the spatial frequency is determined by motion velocity. Therefore, judder can be

observed when motion velocity is high or when refresh rate is low.

2.6.4 Motion sharpening

Even with predictable SPEM tracking, the eye lags behind the target object. Daly et

al. [1998] estimates the ratio of target velocity and eye velocity as 0.82 (also known as

the average velocity gain). The retinal blur resulting from the velocity discrepancy would

intuitively imply reduced contrast sensitivity for moving objects. However, no drop in

sensitivity was observed for velocities up to 7.5 deg/s [Laird et al. 2006] and only a moder-

ate drop of perceived sharpness was reported for velocities up to 35 deg/s [Westerink and

Teunissen 1990]. Blurred images appeared sharper when moving with speeds above 6 deg/s

and the perceived sharpness of blurred images was close to that of sharp moving images

for velocities above 35 deg/s [Westerink and Teunissen 1990]. This effect, known as motion

sharpening, can aid us to see sharp objects when retinal images are blurry because of

imperfect SPEM tracking. Takeuchi and De Valois demonstrated that this effect corre-

sponds to the increase of luminance contrast in medium and high spatial frequencies in

moving objects [Takeuchi and De Valois 2005]. They also demonstrated that interleaved

blurry and original frames can appear close to the original frames as long as the cut-off

frequency of the low-pass filter is sufficiently large. Such examples once again highlight

the complexity of the visual system.

2.7 Summary

Successful computer graphics algorithms need to take into account the eventual consumer:

the human eye. Understanding some of the individual components of the visual system

has been shown to benefit display design. For example, the design of display primaries

that produce a range of metameric colours, or low-persistence panels, which reduce motion

artefacts. However, the human visual system is complex, consisting of a set of stages from

early vision (capture and pre-processing) to high-level cortical interpretation. Biological

understanding of individual stages such as the behaviour of rods and cones on the retina or

gaze tracking measurements provide useful insights, but psychophysical experiments are

required to measure and model the end-to-end perception of stimuli. Contrast sensitivity

functions for spatially, temporally, or spatio-temporally changing images (CSF, tCSF,

stCSF) are particularly well-researched tools for modelling the limitations of the visual

system. The other highly relevant framework for analysing motion quality, is separating

artefacts into (1) flicker, (2) false multiple edges (3) motion blur, and (4) judder.
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In the next chapter, I describe how the principles introduced here have aided the

design of existing display technologies and graphics algorithms. In Chapters 5–8 I also

rely heavily on the family of contrast sensitivity functions and the classification of motion

artefacts to propose novel algorithms and to design visual models for motion.
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CHAPTER 3

RELATED WORK

“The whole is other than the sum of the parts”

Kurt Koffka

Understanding the fundamental limitations of early vision and the visual system’s con-

trast sensitivity provides the essential insights that can be modelled, inverted and ex-

ploited. In this chapter I discuss how perceptual knowledge has been applied in the field

of computer graphics and display design. I start by outlining attempts to establish the

ultimate spatial and temporal monitor resolution, then discuss high-refresh-rate technolo-

gies, and examine existing multiplexing algorithms. At the end of the chapter I also

explain how perceptual models can be used to predict a perceivable difference between

static images.

3.1 Critical resolution

Analogously to the critical flicker frequency, knowledge of early vision and psychophysical

results can be applied to establish the critical spatial and temporal resolution.

3.1.1 Spatial resolution

The most well-known phrase in search of the critical spatial display resolution (a resolution

beyond which no improvement yields a perceived benefit) is one that comes from the

industry: Apple’s retina displays. The term was first coined for to the 3.5” 960 × 640

pixel iPhone 4 display. Although the number of pixels is not especially high compared
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Figure 3.1: Computing the angular resolution with monitor diagonal (x) in pixels (xpx)
or cm (xcm), and viewing distance d.

to more current figures; in terms of angular resolution, the iPhone 4 provided over 120

pixels per visual degrees (ppd) from a viewing distance of 53cm. This in turn can show

60 cpd, which coincides with the limit of spatial acuity.

The display resolution r (in pixels per degrees) can be computed as:

r =
xpx

2 arctan
(
xcm
2d

) , (3.1)

where xpx and xcm are the screen diagonal in pixels and cm respectively, d is the viewing

distance, and arctan is in degrees. The minimum viewing distance to achieve 120 ppd can

be derived as:

d =
xcm

2 tan
(
xpx
240◦

) , (3.2)

In contrast, a standard 15.6” laptop with Full HD (1920 × 1080) display needs to be

viewed from 123 cm to get the same angular resolution, but a 4K panel of the same size

could be reasonably called a retina display with a minimum viewing distance of 60 cm.

Such numbers indicate that in terms of resolution, desktop and mobile displays are close

to the limits of the spatial acuity of the eye. At the same time, latest VR headsets (HTC

Vive Pro with 1440×1600 pixels per eye, 110 ◦ field of view) only have an appalling 20 ppd

resolution.

However, it is worth noting that 60 cpd is not a hard limit; contrast and luminance

can affect contrast sensitivity at such high frequencies; also, the 60 cpd estimate ignores

the non-uniform structure of the cone mosaic, as well as eye motion. For instance, as

highlighted in Section 2.2 during Vernier acuity tasks, humans can detect misalignments

between line segments even beyond half an arc minute.

3.1.2 Temporal resolution

The temporal domain has historically received less interest than the spatial domain in

many walks of research and development. While spatial resolution has been gradually

increasing over the years, temporal resolution (refresh rate) has remained mostly fixed at
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60 Hz. The renaissance of VR and the increasing popularity of gaming monitors has only

recently started expanding this to 90 Hz, then 120 Hz with latest LCD panels operating

on 165 Hz and 240 Hz.

Numerous previous attempts have been made to establish the critical monitor refresh

rate, beyond which improvements yield no perceptual benefit. Noland et al. [2014] ap-

plied traditional sampling theory, combining the CSF with a simple model of eye motion,

employing the Nyquist limit to derive the refresh rate that is indistinguishable from per-

fect motion. Their model for an LCD display predicts that while 140 Hz is sufficient

for untracked motion, tracked motion requires at least 700 Hz for the illusion of perfect

motion. The authors highlight that the figures should only be considered approximate,

partly due to the limitations of Daly’s model of SPEM [1998]. Deeper knowledge of the

SPEM mechanism suggests that the nature of motion (predictable vs. unpredictable) is

also likely to affect this figure. Kuroki et al. [2006; 2007] arrived at a more conservative

estimate using psychophysical measurements showing that at least 250 Hz is required to

completely remove motion blur and judder. Such refresh rates are unfortunately still be-

yond the capabilities of most consumer GPUs and monitors, and the threshold numbers

provide little intuition as to how exactly the perceived quality of motion increases above

60 Hz.

The perception of motion quality has been measured in a number of experiments.

Notably Macking et al. [2016] isolated display blur and temporal artefacts such as flicker

and judder, collecting mean impairment scores (MIS) for each as a function of object

velocity and monitor refresh rate. The authors concluded that for object velocities below

60 deg/s, about 50% of the critical refresh rate (at which no artefacts are detected) could

provide an acceptable MIS, however, they do not provide any guidelines as to how different

motion artefacts contribute to the overall perceived quality below such threshold.

In the film industry, refresh rate can be considered an artistic tool. There is evidence

for a learned cultural bias in the context of cinemas, sometimes described as the soap opera

effect, indicating that observers prefer traditional 24 Hz content over higher refresh rates.

Simultaneous management of objectively better motion quality and viewer expectations

can be achieved by emulating continuously varying frame rates [Templin et al. 2016]. An

acquired taste similar to the soap opera effect has not been reported for computer games

or other applications, therefore it is reasonable to assume that discussions and models of

motion quality in this dissertation are valid for content outside the film industry. For this

reason, I do not consider video quality metrics such as VQM and MOVIE [Seshadrinathan

and Bovik 2010], or STR-RED [Soundararajan and Bovik 2012] to be directly applicable

to rendered content.

Perceived motion quality of panning (horizontal movement on the screen) was in-

vestigated recently by Chapiro et al. [2019]. The authors measured subjective motion

39



artefact scores for refresh rates typical of modern televisions (30, 60, and 120 Hz) across a

range of luminance (2.5–40 cd/m2) and camera panning speeds (2–6.6 deg/s). A trivariate

quadratic empirical model was shown to fit their data well. In contrast to their study,

which considered cinematographic content, my work is focused on computer graphics ren-

dering. The range of refresh rate and velocity values I consider are more representative

of computer games (up to 165 Hz with motion speeds up to 45 deg/s) with predictable and

unpredictable SPEM. In Chapter 8 I demonstrate how the empirical model of Chapiro et

al. is not suitable for such range.

3.2 Temporal display technologies

While most content is generated at 60 Hz, display manufacturers have been exploring

options to increase the perceived motion quality through blur reduction and adaptive

refresh rate technologies.

3.2.1 Blur reduction

Blur can be mainly attributed to eye motion over an image that remains static for the full

duration of a frame [Feng 2006]. When the eye follows a moving object, the gaze smoothly

moves over pixels that do not change over the duration of the frame. This introduces blur

in the image that is integrated on the retina, an effect known as hold-type blur (refer to

Figure 2.8 for the illustration of this effect). Hold-type blur can be reduced by shortening

the time pixels are switched on, either by flashing the backlight [Feng 2006], or inserting

black frames (BFI). Both solutions, however, reduce the peak luminance of the display

and may result in visible flicker.

Virtual reality headsets are bringing back the notion of stroboscopic or low-persistence

displays, where the duty cycle of the display is reduced. The display is active only during a

fraction of the frame time, but the peak luminance is increased proportionately according

to the Talbot-Plateau law. Low-persistence displays reduce motion blur during SPEM and

head motion, as discussed in Section 2.6.3.3, which in turn is claimed to reduce simulation

sickness [Ishan Goradia et al. 2014]. The refresh rate must be sufficiently high to prevent

visible flicker on the given display luminance.

OLED-based mobile phone displays can also provide two modes of operation: a stan-

dard mode where each frame is held for the full duration (maximising display brightness),

and a VR mode where the display produces a low-persistence behaviour.

Nonlinearity compensated smooth frame insertion (NCSFI) attempts to reduce hold-

type motion blur while maintaining peak luminance [Chen et al. 2006]. The core algorithm

generates a sharpened and blurred image pair, which is fused into the original image with

reduced motion blur. NCSFI is designed for 50–60 Hz TV content and, as demonstrated in
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Figure 3.2: Illustration of display sync strategies assuming a screen with approx. 60 Hz
refresh rate. No V-sync introduces tearing; V-Sync can result in repeated frames and
idle GPU cycles; G-Sync provides the best results by synchronising scanout with frame
generation.

Chapter 5, produces ghosting artefacts for high angular velocities typical of user-controlled

head motion in VR.

Other attempts have been made in the past to blur in-between frames to improve

coding performance [Fujibayashi and Boon 2008b]. These methods rely on the visual

illusion of motion sharpening which makes moving objects appear sharper than they

physically are. However, no such technique has been incorporated into a coding standard.

One issue is that at low velocities motion sharpening is not strong enough, leading to a

loss of sharpness.

3.2.2 Display sync (V-Sync, G-Sync, Free-Sync)

The general process of image presentation is as follows: (1) the graphics processing unit

(GPU) receives draw commands, (2) GPU executes draw commands and stores the result

in the frame buffer, (3) monitor updates its content. In practice, the above operations

happen concurrently. While the monitor is updating (non-atomic, usually executed row-

by-row), the graphical application fires new draw commands for the next frame at the

GPU, which then starts working on them in parallel. The order of draw calls is preserved,

but draw commands are usually asynchronous.

With a single frame buffer, the monitor might find itself reading out a half-complete

frame which can lead to strong flickering artefacts. For this reason, most applications

employ double-buffering, where the GPU outputs the in-progress result of draw calls to

a back buffer, and only swaps to the front buffer once the frame is complete. If the

swap happens more frequently than monitor updates (these occur at 60 Hz on standard

desktop displays), or the updates are not synchronised, tearing artefacts might occur.

That is, different parts of the monitor display inconsistent versions of the frame buffer.
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Synchronising buffer swaps with monitor reads (V-Sync) can effectively prevent tearing

[Poth et al. 2018], but might cause the GPU to block while waiting for the update. This

can decrease performance and introduce input lag. Even worse, when content generation

falls only slightly below 60 Hz, V-Sync will cause the monitor to repeat every other frame,

forcing the graphics pipeline to sit idle almost 50% of the time, while introducing judder,

blur and potential ghosting in the images. For an illustration of the different strategies,

see Figure 3.2.

G-Sync (NVidia) and FreeSync (AMD) are two similar techniques to eliminate both

screen tearing and judder. In both technologies, instead of forcing the application to

synchronise the rendering pipeline with the monitor updates, the monitor needs to try

and synchronise its updates to the frame generation. Refresh rates are no longer fixed, the

monitor synchronising circuit should be able to update at any arbitrary refresh rate within

the capabilities of its LCD crystals [Poth et al. 2018]. This yields a continuous range of

refresh rates from 20 Hz to 165 Hz on current generation hardware (ASUS ROG SWIFT

PG279Q). However, even on modern LCD panels, frame updates are not instantaneous.

As in G-Sync and FreeSync, the frame rate is completely dictated by the GPU, the

monitors need to be able to reasonably predict the presentation time of the next frame

to match backlight modulation and overdrive accordingly. When the system is faced

with highly irregular and frequently changing frame rates, prediction might fail, and

transition artefacts might occur. Furthermore, the prediction system is an isolated unit

on the monitor hardware, and there is currently no mechanism for the GPU to aid the

prediction mechanism with its own estimated refresh rate.

3.3 Multiplexing techniques

One way to overcome the computational and bandwidth limitations of consumer hardware

is to assume a fixed computational budget. In such a setup there are a number of factors

that contribute to the overall rendering cost including scene complexity, shading and

texturing quality, bit-depth, refresh rate, and scene resolution [McCarthy et al. 2004].

Increasing the sampling in one dimension entails reduction in another. Such a problem can

be modelled computationally, but the overall perceived quality requires an understanding

of relevant perceptual principles. For a comprehensive survey of this matter, I recommend

consulting [Masia et al. 2013]. In this section, I review a few notable techniques with

primary focus on algorithms that consider the temporal domain.

3.3.1 Resolution vs. colour

Human eye is more sensitive to change in luminance than colour, and chromatic contrast

sensitivity drops rapidly with higher spatial frequencies [Wandell 1995]. Images can be
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Figure 3.3: Illustration of chroma-subsampling in Yuv colour space. Blurring either or
both the chroma channels (u and v) results in minor discolourations, while blurring the
luminance channel (Y ) causes highly objectionable quality loss.

decomposed into a luma (brightness) and two chroma (colour) channels, usually by trans-

forming from red, green, and blue (rgb) to a colour space such as Y CbCr, Y uv or ITP .

Note that the distinction between luminance and luma originates from the attempt to

differentiate between physical luminance and screen-relative brightness respectively.

Resolution reduction in the luma channel is much more visible than resolution reduc-

tion in either or both the chroma channels (see Figure 3.3). A wide-spread implementation

of this observation in the image and video compression community is chroma-subsampling,

found in both the JPEG and MPEG standards. Here, down-sampling is performed in

Y CbCr both horizontally and vertically usually by a power of two. The downsampling

factors are customisable and usually denoted as L:H:V, where L is the horizontal sam-

pling reference, H is the horizontal chroma factor (relative to the first digit), and V is

the vertical chroma factor [Poynton 2002]. For instance, 4:4:4 indicates a full-resolution

image (both luma and chroma), 4:2:2 denotes full luma and half the chroma resolution

both horizontally and vertically. Assuming an equal number of bits in each channel, 4:2:2

yields 50% less data usually without introducing visible artefacts.

A display technique exploiting chroma-subsampling is Samsung’s PenTileTM technol-

ogy, popularised by the smartphone and VR markets [Elliott et al. 2005]. The authors

note that the eye has higher sensitivity to luminance when it comes to high-frequency

signals. Therefore, for each blue sub-pixel, they suggest two green and two red sub-pixels.

In practice, the number of red sub-pixels is also halved, resulting in a Bayer pattern (Fig-

ure 3.4). Resolution is reported in terms of the green sub-pixels, and the value of the red

and blue super-pixels are shared by the neighbouring pixels.

3.3.2 Resolution vs. refresh rate

Claypool et al. investigated the effect of latency and trading off resolution for refresh rate

in the context of videeo games, specifically within the first-person shooter (FPS) genre

[Claypool and Claypool 2007, 2009], where players engage in fast-paced virtual combat,

viewing the scene through the eyes of the avatar. Large-scale user studies revealed that

the refresh rate has a significantly larger influence on task performance compared to res-
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Figure 3.4: Traditional sub-pixel alignment (left) splits each pixel in three equal parts
for red, green and blue primaries. PenTileTM pixels have a diamond shape with twice as
many green sub-pixels as red or blue.

olution. On frame rates as low as 3-7 Hz users could not adequately target opponents,

and there were clear task performance benefits of increasing the refresh rate up to 60 Hz.

Perceptual quality and playability gathered with post-experiment questionnaires revealed

a similar but less pronounced trend [Claypool and Claypool 2007, 2009]. Unfortunately

no measurements were made beyond the capabilities of a standard 60 Hz monitor. Higher

refresh rates result in reduced game latency, another factor known to affect task perfor-

mance in FPS games [Beigbeder et al. 2004].

Controlling rendering quality under a constrained budget can be formulated as an

optimisation problem, where the free parameter is the ratio of refresh rate and resolu-

tion [Debattista et al. 2018]. Preference data collected in a two-alternative-forced-choice

(2AFC) design indicated that the optimal ratio is dependent on the computational bud-

get. The authors provide a mathematical model for selecting the optimal refresh rate,

but no consideration was given to the underlying mechanisms of the visual system that

influences preference. Notably, the experiment established a single refresh rate value over

a complete animation clip. As the perceived motion quality is known to change with scene

velocity, it is reasonable to expect that the optimal ratio is also a function of that velocity.

For example, a fully stationary scene would only benefit from high resolution, whereas

fast motion can produce highly-objectionable judder when rendered at low refresh rates.

In Chapter 8, I demonstrate that incorporating knowledge of object motion can predict

a better trade-off and allows the development of adaptive algorithms that dynamically

change the refresh rate of the animation.

3.3.3 Temporal multiplexing

Temporal multiplexing, taking advantage of the finite integration time of the visual system

and trading off temporal resolution for another rendering dimension, is a widely-researched

field.
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3.3.3.1 Resolution vs. time

In order to increase the perceived spatial resolution, the content on a high-refresh-rate

monitor can be rapidly varied. For instance, Didyk et al. [2010a] considers smoothly

moving images and optimises up to three consecutive frames under the assumption of

perfect temporal integration and smooth pursuit eye motion. On their 120 Hz test monitor

this introduced low-contrast flicker at 40 Hz — well below the CFF. Authors mitigate this

with a multi-scale CFF predictor, conservatively disabling quality improvements when

any probability of flicker is detected. Alternatively, Berthouzoz et al. [2012] show that for

stationary content, the display can be wobulated (oscillated) to achieve the same results.

3.3.3.2 Colour vs. time

Temporal multiplexing is also widely used to increase perceived bit-depth via spatio-

temporal dithering [Mulligan 1993]. Colour is commonly encoded in 8 bits (256 discrete

values) per colour channel. In dithering techniques each pixel is rapidly alternating be-

tween two integer values to produce intermediate luminance values, thereby extending

the bit-depth to 9 bits. Joint alternation of neighbouring pixels can achieve 10 bits. The

luminance change (∆L) in these schemes is usually small compared to the average lumi-

nance (L); therefore, the contrast of the spatio-temporal change is also small. The eye’s

contrast sensitivity is low on high spatial and temporal frequencies, which makes such

schemes applicable even on standard monitors.

Digital Light Processing (DLP) projectors also rely on temporal multiplexing to pro-

duce colour images. The core digital micromirror device (DMD) can update whether

or not to reflect the white light source thousands of times a second – a combination of

dithering and a rotating colour wheel is then used to produce 8-bit colour images. The

colour wheel and the light source jointly determine the colour gamut of the projector.

Recent research attempts to adaptively change the colour gamut to match the displayed

content [Kauvar et al. 2015]. This is achieved by altering the spectral power distribution

of the light source, keeping the colour wheel intact.

3.3.3.3 Temporal coherence

Since consecutive frames in an animation sequence tend to be similar, rendering cost

can be reduced by exploiting temporal coherence. A comprehensive review of related

techniques can be found in [Scherzer et al. 2012]. Here, we focus on the methods that are

the most relevant for VR application: reverse and forward re-projection techniques.

The rendering cost can be significantly reduced if only every k -th frame is rendered,

and in-between frames are generated by transforming the previous frame. Reverse re-

projection techniques [Nehab et al. 2007] attempt to find a pixel in the previous frame for
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each pixel in the current frame. This requires finding a re-projection operator, mapping

pixel screen coordinates from the current to the previous frame and then testing whether

the current point was visible in the previous frame. Occlusion can be tested by comparing

depths for the current and previous frames. Forward re-projection techniques map every

pixel in the previous frame to a new location in the current frame. Such a scattering

operation is not well supported by graphics hardware, making a fast implementation of

forward re-projection more difficult. This issue, however, can be avoided by warping

the previous frame into the current frame [Didyk et al. 2010b]. This warping involves

approximating the motion flow with a coarse mesh grid and then rendering the forward-

re-projected mesh grid into a new frame. Since parts of the warped mesh can overlap with

the other parts, both spatial position and depth need to be re-projected and the warped

frame needs to be rendered with depth testing. Recent techniques employ bidirectional

optical flow to warp frames and use them along with contextual information to synthesise

interpolated frames with the help of a convolutional neural network [Niklaus and Liu

2018].

Commercial VR rendering systems use re-projection techniques to avoid skipped and

repeated frames when the rendering budget is exceeded. These techniques often involve

rotational forward re-projection [Vlachos 2015]. Rotational re-projection assumes that

the positions of left- and right-eye virtual cameras are unchanged and only the view di-

rection is altered. This assumption is incorrect for actual head motion in VR viewing as

the position of both eyes changes with rotation. More advanced positional re-projection

techniques rely on screen-space warping, such as Oculus’s asynchronous spacewarp (ASW)

[Beeler et al. 2016]. These are known to result in colour bleeding, introduce difficulty in

handling translucent and reflective surfaces, and require hole fillings for occluded pixels.

Screen-space warping algorithms can either require the application to compute motion

vectors for each frame, or to estimate this with an optical flow algorithm. ASW takes

the latter approach to promote integration with existing applications, but produces addi-

tional optical flow artefacts around repeating patterns and dynamic lighting conditions.

Another limitation of re-projection techniques is that there is no bandwidth reduction

when transmitting pixels from the GPU to a VR display.

Re-projection techniques are considered a last-resort option in VR rendering, used

only to avoid skipped or repeated frames. When the rendering budget cannot be met,

lowering the frame resolution is preferred over re-projection [Vlachos 2015].

Other techniques include partial re-projection. Static far-away objects are only af-

fected by rotational movement; such objects can be pre-rendered, and an impostor object

can be re-projected in real time [Schaufler 2002]. Such techniques produce promising

results, but are heavily scene dependent, might have a significant memory overhead and

are not always trivial to integrate with existing pipelines.
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3.3.4 Non-uniform (foveated) rendering

The non-uniform sensitivity of the eye for different eccentricities (distance from the fovea)

has been discussed in Section 2.4. Geisler and Perry [1998] were the first to exploit

these limitations by encoding and decoding videos in a foveated multi-resolution pyramid,

assigning higher pixel density to lower eccentricities. Guenter et al. [2012] extended this

technique to computer graphics content, rendering three layers at different pixel densities,

then combining these with a soft stepping function.

In the periphery, orientation resolution is lower than target detection. I.e., the visual

system can often detect the presence (or lack) of image information at a given frequency at

a given location, but it is not so apt to resolve its orientation. Incorrect orientation is hard

to detect. Patney et al. [2016] utilised this insight, and argued that the information lost

during down-sampling in foveated rendering can be re-introduced with a post-processing

unsharp mask. Such sharpening is likely to introduce detail with the wrong orientation.

The authors demonstrated this technique on a VR headset saving up to of the 70% of

shading computations.

More recently, deep learning has been applied to reconstruct sparsely-sampled images

[Kaplanyan et al. 2018]. The samples follow a blue noise pattern with density correspond-

ing to the sampling density of the visual system. However, the performance impact of

their neural network outweighed the potential performance savings.

Foveated rendering algorithms can introduce two types of artefacts: temporal aliasing

(flicker), or over-smoothing in the periphery (radial blur, tunnel vision). As the perceptual

trade-off between these two is yet unknown, designing a robust and efficient foveation

algorithm is challenging. This, and the cost and imprecision of eye trackers have so far

prevented wide commercialisation of foveated rendering.

3.4 Image and video metrics

Image and video metrics play a crucial role in calibrating, evaluating, and driving novel

display techniques. Metrics can be broadly categorised as quality metrics and visibility

metrics. In full-reference quality metrics such as PSNR, the model takes a pair of images

as input: a reference R and a test T image, outputting a single quality value for the entire

image. Visibility metrics, on the other hand, produce a distortion map, providing spatial

information on the probability of detecting artefacts. Some metrics, such as SSIM produce

a distortion map, but it is only the mean value over the image that is shown to correlate

with subjective scores [Wang et al. 2003, 2004]. More accurate difference predictions are

achieved by white-box models based on knowledge of the human visual system, such as

the visual difference predictor (VDP) [Daly 2005], and further improved versions HDR-

VDP and HDR-VDP 2 [Mantiuk et al. 2005, 2011]. VDPs are fundamentally multi-scale
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models, decomposing the difference between R and T into a number of spatial frequency

bands as inspired by the multi-resolution model of the CSF discussed in Section 2.4. For

full detail of how edge orientation, masking and neural noise is taken into account, please

refer to [Mantiuk et al. 2011].

More recent attempts have used convolutional neural networks as a black-box model

of vision to improve image difference predictions [Wolski et al. 2018; Ye et al. 2019],

pre-trained on the predictions of HDR-VDP 2.

However, these metrics do not take temporal change and chromaticity into account.

In Chapter 6, I demonstrate how the multi-scale architecture of VDP can be used to build

visual models for detecting colour banding and later in Chapters 7 and 8 for quantifying

motion quality.

3.5 Summary

The steady improvement of GPUs and display technology allows us to render beyond the

spatial frequency limitations of the eye, but there is a long way to go in other dimensions.

Insights and models of the visual system can help us understand where exactly the bio-

logical and perceptual limits are, and to develop trade-offs between these dimensions. It

is often the temporal resolution that is sacrificed to (1) increase bit-depth (dithering), (2)

add colour in DLP projectors, (3) enhance resolution or (4) other detail shading quality.

Re-projection is a popular method to make up for the reduced motion quality, but is

known to fail with translucent and reflective surfaces.

Existing visual metrics have been shown to perform well for images in free-viewing

conditions, but there is a lack of metrics for peripheral rendering, colour stimuli, and

temporally changing signals. With renewed interest in VR, where motion artefacts are

known to be particularly objectionable, it is crucial to focus on the temporal domain

more.

In this work, I focus on temporal multiplexing, specifically, on the trade-off between the

spatial and temporal domain. In Chapters 5 and 8, I introduce two temporal multiplexing

algorithms. Temporal resolution multiplexing (Chapter 5) relies on simple insights into

the visual system to reduce the computational cost of rendering while maintaining high

perceived quality. In Chapter 8 I propose a visual model for capturing the trade-off

between spatial and temporal resolution, and propose an algorithm which adaptively sets

the resolution and refresh rate during real-time rendering.
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CHAPTER 4

DISPLAY PROFILING

“I think that it is a relatively good approximation to truth – which is much too

complicated to allow anything but approximations...”

John von Neumann

The Mathematician Part 2

Implementation, testing and psychophysical validation of any perceptual rendering tech-

nique rely on a detailed understanding of present display technologies. In this chapter,

I briefly describe the operation of OLED and LCD displays, illustrating the different

characteristics with physical measurements.

I also fit the popular gain-offset-gamma [Berns 1996] display models for a number

of displays, and propose an extension of this for high-refresh-rate LCD monitors. The

proposed algorithms in the rest of the dissertation all operate in linear colour spaces, and

rely on these models to transform to and from native pixel values.

4.1 Displays

Measurements were taken for the following six displays. In the rest of the dissertation I

will refer to these displays with the name in the brackets.

(1) Dell Inspiron 17R 7720 3D laptop display panel, 1920× 1080, 15.6”, 120 Hz (Dell)

(2) Samsung SyncMaster 2233, 1920× 1080, 22”, 120 Hz (Samsung)

(3) Asus ROG SWIFT PG279Q Gaming Monitor, 2560 × 1440, 27”, G-Sync capable

165 Hz (Asus)
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(4) Huawei Mate 9 Pro in normal and VR mode, 2560 × 1440, 5.5”, 60 Hz, (Huawei,

HuaweiVR)

(5) HTC Vive head-mounted display, 1080×1200 per eye, 110◦ field of view, 90 Hz (Vive)

(6) Oculus Rift CV1 head-mounted display, 1080× 1200 per eye, 95◦ field of view, 90 Hz

(Oculus)

4.2 Measurement equipments, methods

To gain a better understanding of the spatio-temporal behaviour of state-of-the-art dis-

plays, I performed two types of measurements: (1) photometric measurements to map

relative pixel luma values to luminance and chromaticity; and (2) high-frequency tempo-

ral measurements to investigate the temporal behaviour of displays.

4.2.1 Photometric measurements

Luminance and chroma response of each display for stationary stimuli were measured

using a Specbos 1211 Spectro-Radiometer with a temporal integration time of 1 second.

During measurement, the screen was filled with a uniform colour patch to cancel spatial

dithering techniques. The colours ranged from minimal (0) to maximal (1) brightness

for all primary components (Red, Green, Blue), all secondary colours (Cyan, Magenta,

Yellow) and White.

The spectrometer was placed in a typical viewpoint. For standard desktop displays

this was set 50cm away from the panel along the surface normal. To validate alignment

with the surface normal, a flat mirror was placed on the screen surface, and the deviation

in Specbos’s targeting laser’s source and reflection was measured. For all measurements

this was less than 1mm, which yields a negligible maximum error of ±0.57◦. For VR I

used an estimated eye position within the eye box and validated that rotating the headset

±10◦ did not yield significantly different readings (see Figure 4.1).

Measurements were taken in darkened rooms or during the night when ambient lumi-

nance fell below the sensor’s detection threshold of 0.1 cd/m2 [JETI 2010]. To improve

the device’s reported accuracy (1% luminance reproducibility), each measurement was

repeated three times, taking the average value as the final estimate. The order of the

measurements was randomised to reduce systematic errors due to heat.

For a complete visualisation of the measurements, please refer to Appendix A. Ta-

ble 4.1 contains a summary of major display characteristics.

50



Figure 4.1: Luminance and chrominance measurement setup for HTC Vive. The headset
is mounted on a rotating disc to allow measurements from different angles. Specbos is
aligned such that the axis of the measurement cone always goes through the centre of the
hypothetical eye.

4.2.2 Temporal measurements

Specbos correctly establishes the overall perceived colour by using a finite integration

time, however, to observe faster temporal variations such as low-persistence and back-

light modulation, we need a sensor with higher temporal resolution. With the help of

a lab technician, I combined an Arduino Mega board with a photodiode and a negative

feedback amplifier using an LM358N op-amp and two 1MΩ resistors. Figure 4.2 shows the

completed design which accomplished a sampling rate of ≈ 9kHZ. During measurement

the photoreceptor was placed within a few centimetres to the display panel. The resultant

readings correlate with emitted photons, however, as the change in the signal is more

crucial than absolute values, no attempt was made to convert to physical luminance

(cd/m2). As the temporal profile is not expected to depend on chroma, only a white

uniform colour patch was used.

4.3 LCD displays

LCD (liquid-crystal displays) is the most popular technology in current flat-panel displays

such as desktop and laptop monitors, and smart phones. The LCD layer itself does not

emit photons, it merely filters the backlight utilising a pair of polarisers. Applying voltage

across the crystals changes the orientation of the molecules, controlling whether each rgb

sub-pixel blocks or allows photons to pass through. The filtering layer is imperfect, it
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peak luminance black level dynamic technology backlight
(cd/m2) (cd/m2) range

Dell 324.9 0.3 1083:1 LCD LED
Samsung 192.8 0.2 964:1 LCD CCFL
Asus 155.2 0.1 1552:1 LCD LED
Vive 183.32 0.02* — OLED —
Oculus 84.26 0.01* — OLED —
Huawei 371.4 0.01* — OLED —
HuaweiVR 40.5 0.01* — OLED —

Table 4.1: Summary of display characteristics from the luminance measurement. Peak
luminance is measured for White stimuli; dynamic range is the ratio of maximal over
minimal luminance (white level divided by black level). *: black levels below the reported
measurement range. Dynamic range cannot be established in this case. For perfect
OLEDs this is expected, as such displays do not emit any photons when the screen is
black.

V

Photodiode

R2

1M

R1

1M

U2

Voltmeter

GND

+5V

Figure 4.2: High-resolution irradiance measurement sensor. The photocurrent is converted
to amplified voltage, then recorded by the Arduino Mega board at ≈ 10kHz.
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Figure 4.3: Backlight measurements showing different techniques for achieving maximum
(max; blue), minimum (min; purple) and medium (mid; red) brightness settings on a
monitor. Dell: pulse-width-modulation on LCD-LED display; Samsung: typical CCFL
profile with 180 Hz backlight frequency; ASUS: backlight change is unobservable at 10kHz;
Vive: daylight vs. night mode alters only peak value, duty cycle remains unchanged on
OLED-based VR headset.

cannot fully block the backlight. The amount of light emitted when displaying a black

screen is often referred to as the black level. The ratio of the brightest white (backlight

filtered through the transparent LCD layer) and the darkest black (backlight blocked by

the LCD layer) is known as the dynamic range or contrast.

4.3.1 Backlight

While the light source has been traditionally a cold-cathode fluorescent lamp (CCFL)

which provides approximately uniform illumination at all parts of the screen, recent ad-

vances in manufacturing technology has introduced LEDs to locally control the backlight.

As shown in Table 4.1, LED monitors have a higher dynamic range and often surprisingly

high peak luminance values.

Monitors often support a form of brightness adjustments to accommodate viewer pref-

erences in different viewing conditions. Reducing LCD voltages is impractical and often

insufficient to adjust brightness levels without sacrificing some of the dynamic range,

hence such adjustments usually take place in the backlight. In traditional LCD-CCFL

displays this is achieved by dimming the lamp. However, the CCFL light source flickers

at relatively low frequencies; in case of the Samsung SyncMaster monitor, a clear 180 Hz

modulation signal emerges (Figure 4.3-Samsung).As this particular monitor is updating

at 120 Hz, which means that consecutive frames will not receive the same amount of back-

light, making such setups unsuitable for delicate temporal multiplexing schemes. LED

backlights achieve different brightness levels by flickering the LEDs. For instance, when

the display is dimmed in the Dell monitor, the duty cycle of the LEDs are reduced (Fig-

ure 4.3-Dell). The emerging square-wave signal has a fundamental frequency ≈ 600 Hz,
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which is well beyond the visible range of flicker. Backlight modulation in the ASUS

monitor was not observable with the 10kHz sensor, making it ideally suited to develop

temporal multiplexing techniques.

Low-persistence behaviour can be achieved in LCD monitors by activating the back-

light LED for a single burst, for a fraction of the frame time. None of the displays

discussed in this chapter were observed to perform such behaviour.

4.3.2 Display model

The correspondence between gamma-compressed pixel values, as represented by the com-

puter, and displayed light is usually captured by a display model. The gamma-compressed

values are also referred to as luma for greyscale images. Without a loss of generality I

will assume that on the computer colour is stored as rgb, and pixel values are normalised

to lie in the 0..1 range. In this dissertation I represent physically displayed light in the

CIE-1931 XYZ colour-space unless otherwise stated.

When a display model is invertible, we can define the inverse display model which

outputs raw pixel values as a function of desired XYZ values. Note that when feeding

XYZ values outside the colour gamut of the display, the inverse display will output values

outside the 0..1 range.

The most commonly used invertible model, initially suggested for CRT monitors, is

the gain-offset-gamma model [Berns 1996]:XY
Z

 =

r
γr

gγg

bγb

×MRGB→XY Z +B, (4.1)

where XY Z is the output light in CIE-XYZ, rgb is the input pixel luma for red green and

blue respectively, MRGB→XY Z is a 3×3 transformation matrix, × is matrix multiplication,

and B is the three-component black level vector (as measured in CIE-XYZ). The inverse

model is then: rg
b

 =



XY
Z

−B
×MXY Z→RGB


[1/γr,1/γg ,1/γb]

, (4.2)

where MXY Z→RGB is M−1
RGB→XY Z , and power in the square brackets denote a component-

wise power operation.

The black level can be measured directly by displaying a black patch on the monitor.

Other parameters can be computed by measuring corresponding rgb and XY Z values,

then solving for the least-squares fit in pixel (luma) space. Display model parameters for
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Figure 4.4: LCD crystals switching from black to white (leftmost) and grey (other 3).
As crystal switching is not immediate, crystals cannot reach the desired value by the end
of the frame time. Overdrive can partially alleviate this problem, switching to a higher
luminance value to cancel the effects of switching time. Dark grid lines indicate frame
boundaries. Measurements were collected on the ASUS monitor at 60 Hz.

all discussed monitors were measured. Detailed results are listed in Appendix A.

4.3.3 Overdrive

The liquid crystals in the recent generation of LCD panels have relatively short response

times and offer between 160 and 240 frames a second. However, liquid crystals still

require time to switch from one state to another, and the desired target state is often not

reached within the time allocated for a single frame. This problem is partially alleviated

by over-driving (applying higher voltage), so that pixels achieve the desired state faster

(see Figure 4.4).

Switching from one grey-level to another is slower than switching from black-to-white

or white-to-black. This non-linear behaviour adds significant complexity to modelling

display response, which I address in Section 4.5.

4.4 OLED displays

OLED displays do not require a backlight, each pixel emits light depending on the applied

voltage. Output luminance can be finely controlled, hence dimming is simply achieved

by altering peak luminance as demonstrated in Figure 4.3. When no voltage is applied,

each pixel can go completely black, resulting in an extremely high dynamic range. Peak

luminance values are also matching or exceeding current LCD generations.

Output transitions are extremely fast compared to traditional LCDs, allowing for a

low-persistence mode of operation (Figure 4.5). Such mode is also sometimes labelled VR

mode, due to the low-persistence behaviour reducing motion blur and hence simulation
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Figure 4.5: Temporal profile of OLED displays. Colours denote different pixel luma
values. The low-persistence behaviour can be clearly observed on the HTC Vive with a
refresh rate of 90 Hz and a short duty cycle that only lasts ≈ 18% of the entire frame
regardless of pixel luma. Huawei Mate Pro 9 supports two modes of operation: normal
mode flickers on 240Hz, repeating each frame four times, whereas VR mode only uses
the first window with reduced maximum luminance to avoid perceivable flicker (left).
Different luma values are presented by altering the peak value, the shape of the window
is unchanged.

sickness. The duty-cycle of low persistence (around 25% for Huawei Mate Pro, less than

18% for the Vive) means that luminance is reduced according to the Talbot-Plateau law.

The Huawei Mate Pro 9 flickers on 240Hz, repeating each frame four time in normal mode

(overall refresh rate of 60Hz). When a VR application is launched, the display switches

to low-persistence mode, where only the first window is used – the screen emits no light

in-between. Different luma levels are displayed by changing the height of the peak, leaving

the width unaltered. The fast transition speed and high dynamic range makes OLEDs

ideal targets for visual science research [Cooper et al. 2013], as well as novel VR and

temporal multiplexing schemes. However, manufacturing cost and panel burn-ins have

been slowing down wide-spread usage.

4.5 High-refresh-rate LCD model

Due to the finite and different rising and falling response times of liquid crystals, we need

to consider the previous pixel value when modelling the per-pixel response of an LCD. I

used a Specbos 1211 with a 1-second integration time to measure alternating pixel value

pairs displayed at different refresh rates on the ASUS monitor. Figure 4.6 illustrates

the difference between predicted luminance values (sum of two linear values, estimated

by gain-offset-gamma model) and actual measured values. The inaccuracies are quite

substantial, especially for low luminance.

To accurately model LCD response, I provide an extension of the gain-gamma-offset

display model to account for the pixel value in the previous frame. The forward display
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Figure 4.6: Luminance difference between measured luminance value and expected ideal
luminance (sum of two consecutive frames) for It and It−1 pixel values alternating at
165 Hz. My measurements for ASUS ROG Swift P279Q indicate a deviation from the
plane when one of the pixels is significantly darker or brighter than the other.

LCD
combine

Forward LCD model

g-1 It, It-1 merged

Inverse LCD model

It, It-1 merged g

g

-1

linear space
γ-corrected space

g g-1 forward/inverse γvt

vt-1

I t-1

LCD
combine

vt

vt-1

Figure 4.7: Schematic diagram of the extended LCD display model for high-frame-rate
monitors. a) In the forward model two consecutive pixel values are combined before
applying inverse gamma. b) The inverse model applies gamma before inverting the LCD
combine step. The previous pixel value is provided to find a 〈vt, vt−1〉 pair, where vγt−1 ≈
It−1
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Figure 4.8: Dashed lines: measured display luminance for red primaries (vt), given a range
of different vt−1 pixel values (line colours). Solid lines: predicted values without temporal
display model (left) and with the proposed temporal model (right).

model, shown in the top of Figure 4.7, contains an additional LCD combine block that

predicts the equivalent gamma-compressed pixel value, given pixel values of the current

and previous frames. Such a relation is well-approximated by a symmetric bivariate

quadratic function of the form:

M(vt, vt−1) = p1(v
2
t + v2t−1) + p2vtvt−1 + p3(vt + vt−1) + p4 , (4.3)

where M(vt, vt−1) is the merged pixel value, vt and vt−1 are the current and previous

gamma-compressed pixel values and p1..4 are the model parameters. To find the inverse

display model, the inverse of the merge function needs to be found. The merge function

is not strictly invertible as multiple combinations of pixel values can produce the same

merged value. However, since rendering is often in real-time, and we can only control the

current and not the previous frame, vt−1 is already given and we only solve for vt. If the

quadratic equation leads to a non-real solution, or a solution outside the display dynamic

range, vt needs to be clamped to be within 0..1. To store the residuals from the clamping,

we can solve for vt−1. The difference in prediction accuracy for a single-frame and the

proposed temporal display model is shown in Figure 4.8. The parameter values for 165 Hz

for each channel (rgb) are as follows:

prgb =


p1 p2 p3 p4

r : 0.2054 −0.3433 0.4986 −0.0259

g : 0.2372 −0.3863 0.4932 −0.0278

b : 0.2601 −0.4331 0.4908 −0.0253

 (4.4)

Optimised parameter values for 90 Hz, 120 Hz are quoted in Section A.3.1.
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4.6 Summary

A thorough understanding of display technologies and reliable models to predict their

behaviour is essential to implement and validate novel rendering techniques. In this

chapter, I described how photometric measurements were collected and gain-gamma-offset

models were fitted to a number of different displays used throughout the rest of the

dissertation. I also described how OLED and LCD displays differ, and how the backlight

frequency and temporal profile of LCDs can interfere with high-refresh-rate algorithms.

To account for some of this, I have proposed a novel (invertible) extension of the gain-

gamma-offset model for high-refresh-rate LCD displays.
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CHAPTER 5

EXPLOTING PERCEPTUAL INSIGHTS:

TEMPORAL RESOLUTION

MULTIPLEXING

“And yet a great advantage would be lost, if so simple a law as Weber’s law

could not be used as an exact or at least sufficiently approximate basis for

psychic measurement; just such an advantage as would be lost if we could not

use the Kepler law in astronomy...”

Gustav Theodor Fechner

Elements of psychophysics

Simple insights into the visual system can prove to be mighty weapons to optimise exist-

ing rendering algorithms without introducing visible artefacts. In this chapter I propose

an efficient rendering algorithm which reduces both the bandwidth and computational

cost exploiting the limited spatio-temporal resolution of the human eye. The following

sections are heavily based on the best-journal-paper-award-winning 2019 IEEE Transac-

tions on Visualization and Computer Graphics (TVCG) article titled Temporal Resolution

Multiplexing: Exploiting the limitations of spatio-temporal vision for more efficient VR

rendering.
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5.1 Introduction

Real-time rendering algorithms are struggling to keep up with the increasingly higher

display resolutions and refresh rates. Especially in the context of AR and VR, the sheer

number of pixels drawn each second poses a challenge for both computing and transmitting

frames from the GPU to the display. The main goal of a robust multiplexing algorithm

is to address both of these issues.

As discussed in Chapter 2, the eye has very limited sensitivity to signals changing

with both high spatial and temporal frequencies. In other words, fine details flickering at

a high refresh rate are not perceivable to human observers, and removing them from the

rendering does not result in objectionable artefacts.

In this chapter, I propose a novel technique, Temporal Resolution Multiplexing (TRM),

which avoids rendering the high spatio-temporal part of the images by operating on

reduced-resolution render targets for every even-numbered frame. This reduces the num-

ber of pixels rendered and can be potentially used to reduce the amount of data transferred

to the display by 37–49%. TRM then compensates for the contrast loss, making the re-

duction almost imperceivable. TRM takes advantage of the limitations of the human

visual system: the finite integration time that results in fusion of rapid temporal changes,

along with the inability to perceive high spatio-temporal frequency signals. An illusion of

smooth motion is generated by rendering a low-resolution version of the content for every

odd frame, compensating for the loss of information by modifying every even frame. When

the even and odd frames are viewed at high refresh rates (> 90 Hz), the visual system

fuses them according to the Talbot-Plateau law, and perceives the original full resolution

content. The proposed technique, although conceptually simple, requires much attention

to details such as overcoming dynamic range limitations, ensuring that potential flicker

is invisible, and designing a solution that will save both rendering time and bandwidth.

In the following section, I describe these in more detail, then present a psychophysical

experiment validating the performance of the technique.

5.2 Method

The diagram of the processing pipeline is shown in Figure 5.1. The two high-level blocks

in the diagram are Rendering & encoding, and decoding & display. The two are separated,

as they may be realised in different hardware devices: typically rendering is performed on

a GPU, and decoding & display is performed by a VR headset. The separation into two

parts is designed to reduce the amount of data sent to a display. The optional encoding

and decoding steps may involve chroma subsampling, entropy coding or a complete high-

efficiency video codec, such as h265 or JPEG XS. All of these bandwidth savings would
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Figure 5.2: Illustration of TRM for stationary (top) and moving (bottom) objects. The
two line colours denote odd- and even-numbered frames. After rendering, the full-
resolution even-numbered frame (continuous orange) needs to be sharpened to maintain
high-frequency information. Values lost due to clamping are added to the low-resolution
frame (dashed blue), but only whenever the object is not in motion, i.e. displayed sta-
tionary low-resolution frames are different from the rendering, whereas moving ones are
identical. Consequently, stationary objects are always perfectly recovered, while moving
objects may lose a portion of high-frequency details.

come on top of a 37–49% reduction from TRM.

The top part of Figure 5.1 illustrates the pipeline for even-numbered frames, rendered

at full resolution, and the bottom part the pipeline for odd-numbered frames, rendered at

reduced resolution. The algorithm transforms those frames to ensure that when seen on

a display, they are perceived to be almost identical to the full-resolution and full-frame-

rate video. In the next subsections I justify each step of the algorithm (Section 5.2.1),

explain how to overcome display dynamic range limitations (Section 5.2.2), and address

the problem of phase distortions (Section 5.2.3).

5.2.1 Frame integration

The algorithm is designed to be suitable for high refresh rates, specifically, 90Hz or higher,

when frame duration is 11.1 ms or less. A pair of such frames lasts approx. 22.2 ms, which

is short enough to fit within the range in which the Talbot-Plateau law holds. Conse-

quently, the perceived stimulus is the average of two consecutive frames, one containing

mostly low frequencies (reduced resolution) and the other containing all frequencies. Let
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us denote the upsampled reduced-resolution (odd) frame at time instance t with αt:

αt(x, y) = (U ◦ it)(x, y) , t = 1, 3, ... (5.1)

where U is the up-sampling operator, it is a low-resolution frame and ◦ denotes function

composition. Up-sampling in this context means interpolation and increasing sampling

rate. Down-sampling in this context is defined as the application of an appropriate low-

pass filter and resolution reduction. Note that it must be represented in linear colorimetric

values (not gamma compressed); for this I rely on the display models introduced in Chap-

ter 4. The following equations only consider luminance here, but the same analysis applies

to linearly-encoded rgb or CIE XYZ colour channels. The initial candidate for the all-

frequency even frame, compensating for the lower resolution of the odd-numbered frame,

is denoted by β:

βt(x, y) = 2It(x, y)− (U ◦D ◦ It)(x, y) , t = 2, 4... (5.2)

where D is a down-sampling function that reduces the size of frame It to that of it

(it = D ◦ It), and U is the up-sampling function, the same as that used in Equation 5.1.

When an image is static (It = It+1), the eye integrates the frames according to the

Talbot-Plateau law, with the perceived image being:

αt(x, y) + βt+1(x, y) = 2It(x, y) . (5.3)

Therefore, we perceive the image It at its full resolution and brightness (the equation

is the sum of two frames and hence 2It). A näıve approximation of βt(x, y) = It(x, y)

would result in a loss of contrast for sharp edges; computing a compensated image βt is

hence a necessary step that prevents the rendered animation from appearing blurry.

The top row in Figure 5.2 illustrates rendered low- and high-frequency components

(1st column), compensation for missing high frequencies (2nd column), and the perceived

signal (3rd column), which is identical to the original signal if there is no motion. However,

what is more interesting and non-obvious is that we will see a correct image even when

there is movement in the scene. If there is movement, it is most likely caused by an

object or camera motion. In both cases, the gaze follows an object or scene motion (see

Section 2.6.1), thus stabilising the image on the retina. As long as the image is fixed, the

eye will see the same object at the same retinal position and Equation 5.3 will be valid.

Therefore, as long as the change is due to rigid motion trackable by SPEM, the perceived

image corresponds to the high-resolution frame I.
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5.2.2 Overshoots and undershoots

The decomposition into low- and high-resolution frames α and β is not always straight-

forward as the high resolution frame β may contain values that exceed the dynamic range

of a display. As an example, let us consider the signal shown in Figure 5.2 and assume

that our display can reproduce values between 0 and 1. The compensated high-resolution

frame β, shown in orange, contains values that are above 1 and below 0, which I will refer

to as overshoots and undershoots. Clamping the “orange” signal to the valid range, the

perceived integrated image will lose some high-frequency information and will be effec-

tively blurred. This section explains how this problem can be reduced to the point that

the loss of sharpness is imperceptible.

For stationary pixels, overshoots and undershoots do not pose a significant problem.

The difference between an enhanced even-numbered frame βt (Equation 5.2) and the

actually displayed frame, altered by clamping to the display dynamic range, can be stored

in a residual buffer ρt. The values stored in the residual buffer are then added to the next

low resolution frame: α′t+1 = αt+1+ρt. If there is no movement, adding the residual values

restores missing high frequencies and reproduces the original image. However, for pixels

containing motion, the same approach would introduce highly objectionable ghosting

showing as a faint copy of sharp edges at the previous frame locations. Better animation

quality is achieved if the residual is ignored for fast-moving objects. This introduces a

small amount of blur for a rare occurrence of high-contrast moving objects, but such blur

is almost imperceptible due to the imperfect nature of SPEM (Section 2.6.1) and motion

sharpening (see Section 2.6.4). Therefore a weighing mask seems suitable when adding

the residual to the odd-numbered frame:

α′t+1(x, y) = αt+1 + w(x, y) ρt(x, y) , (5.4)

where α′(x, y) is the final displayed odd-numbered frame. For w(x, y) let us first compute

the Michelson contrast [Kukkonen et al. 1993] between consecutive frames as an indicator

of motion:

c(x, y) =
|U ◦D ◦ It−1(x, y)− U ◦ it(x, y)|
U ◦D ◦ It−1(x, y) + U ◦ it(x, y)

(5.5)

then apply a soft-thresholding function inspired by the Weibull function [1951] :

w(x, y) = exp (−(ct(x, y))/s1)
s2) , (5.6)

where s1 and s2 are adjustable parameters controlling the sensitivity to motion – thereby

driving the trade-off between ghosting and blurring. In practice I observed that s1 = 0.46

and s2 = 3 provided good results for a range of content on a number of displays.

The visibility of blur for moving objects can be further reduced if up-sampling and
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Figure 5.3: The image of a moving square integrated on the retina for the original anima-
tion (dashed line) and after applying TRM (solid line). Due to dynamic range limitations,
edges can appear blurry.Left : In linear luminance space low- and high-luiminance artefacts
are equally sized; however, such representation is misleading, as brightness perception is
non-linear. Centre: better estimation of perceived signal using Stevens’s brightness, where
artefacts in the dark regions are shown to be more noticeable. Right : TRM performs sam-
pling in γ-compressed space, the perceptual impact of artefacts are balanced.

down-sampling occurs in an appropriate colour space. Perception of luminance change

is strongly non-linear; blur introduced in dark regions tends to be more visible than in

bright regions. The visibility of blur can be more evenly distributed between dark and

bright pixels if up-sampling and down-sampling operations are performed in a gamma-

compressed space, as shown in Figure 5.3. A cube root-function is considered to be a

good predictor of brightness (Stevens’s brightness), and is commonly used in uniform

colour spaces, such as CIE Lab and CIE Luv. However, the standard sRGB colour space

with gamma ≈ 2.2 is sufficiently close to the cube root (γ = 3) and, since the rendered

and transmitted data is likely to be already in that space, it provides a computationally

efficient alternative.

5.2.3 Phase distortions

A näıve rendering of frames at reduced resolution without anti-aliasing results in a dis-

continuity of phase changes for moving objects, which reveals itself as juddery motion. A

frame that is rendered at lower resolution and up-sampled is not equivalent to the same

frame rendered at full resolution and low-pass filtered, as it is not only missing information

in high spatial frequencies, but also lacks accurate phase information.

In practice, the correct phase can be reintroduced by utilising hardware-accelerated

anti-aliasing, such as multi-sampled anti-aliasing (MSAA) [Carpenter 1984].Further im-

provements in quality can be achieved with custom resolve filters (Gaussian or Lanczos)

if supported by hardware [Pettineo 2015]. Alternatively, the low-resolution frame can be

low-pass filtered to achieve similar results.

In my experiments I used a Gaussian filter with σ = 2.5 pixels for both the down-
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sampling operator D and for MSAA resolve. Up-sampling was performed as bilinear

interpolation, as it is fast and supported by GPU texture samplers.

5.2.4 Resolution reduction vs refresh rate (Experiment 5.1)

To estimate how much computation can be saved with TRM, I first establish the amount

of down-sampling which can be applied without introducing any visible artefacts. I define

the resolution reduction factor as the ratio of the rendered resolution and the original

display resolution. I measure the maximal imperceivable reduction factor as a function

of display refresh rate. More specifically, imperceivable means indistinguishability from

standard rendering.

Setup:

The animation sequences were shown on the ASUS monitor (2560 × 1440, 27”; for full

details see Chapter 4). This display, unlike any OLED displays found in VR headsets,

allows for fine control over refresh rate. The viewing distance was fixed at 75 cm using

a headrest, resulting in the angular resolution of 56 ppd. Custom OpenGL software was

used to render the sequences in real-time, with or without TRM. The monitor was driven

by a PC equipped with an Intel i7-7700 processor and NVIDIA GeForce GTX 1080 Ti

GPU.

Stimuli:

In each trial participants saw two short animation sequences one after another, one of them

rendered using TRM, the other rendered at the full resolution. Each animation lasted

5-10 s with an average duration of 6s. Both sequences were shown at the same refresh

rate. Figure 5.4 shows a thumbnail of the four animations used in the experiment. The

animations contained moving Chequered Circles, scrolling Text, panning of a Panorama

and a 3D model of a Sports hall. The two first clips were designed to provide an easy-to-

follow object with high contrast; the two remaining clips tested the algorithm on rendered

and camera-captured scenes. Sports hall tested more of a game-like setup by introducing

user interaction, letting users rotate the camera with a mouse. The other sequences were

pre-recorded. In the Panorama scene, the image panned with constant speed.

The animations were displayed at four refresh rates: {100,120,144,165}Hz. Lower

refresh rates could not be tested because the display did not natively support 90 Hz, and

flicker was visible at lower refresh rates. In this experiment, G-Sync was always disabled

to prevent any temporal aliasing artefact from the G-Sync control circuit.
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Figure 5.4: Stimuli used for Experiment 5.1.

Task:

The goal of the experiment was to find the threshold reduction factor at which the ob-

servers could notice the difference between TRM and standard rendering with 75% prob-

ability. An adaptive QUEST procedure, as implemented in Psychophysics Toolbox exten-

sions [Brainard 1997], was used to sample the continuous scale of reduction factors and to
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Figure 5.5: Result of Experiment 5.1: finding the smallest resolution reduction factor for
four scenes and four display refresh rates. As the reduction is applied to both horizontal
and vertical dimensions, the percentage of pixels saved over a pair of frames is computed
as (1− r2)/2× 100.

fit a psychometric function. The order of trials was randomised so that 16 QUEST proce-

dures were running concurrently to reduce the learning effect. In each trial the participant

was asked to select the sequence that presented better motion quality. They had an option

to re-watch the sequences (in case of lapse of attention), but were discouraged from doing

so. Before each session, participants were briefed about their task both verbally and in

writing. The briefing explained the motion quality factors (discussed in Section 2.6.3)

and was followed by a short training session, in which the difference between 40 Hz and

120 Hz was demonstrated.

Participants:

Eight paid participants aged 18 – 35 took part in the experiment. All had normal or

corrected-to-normal full colour vision.

Results:

The results in Figure 5.5 show a large variation in the reduction factor from one animation

to another. This is expected as motion velocity and contrast varied in this experiment,

while both factors strongly affect motion quality. For all animations, with the exception of
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the Sports hall, the resolution of odd-numbered frames can be further reduced for higher

refresh-rate displays. Sports hall was an exception in that participants chose almost the

same reduction factor for both the 100 Hz and 165 Hz display. Post-experiment interviews

revealed that the observers used the self-controlled motion speed and sharp edges present

in this rendered scene to observe slight variation in sharpness. Note that this experiment

tested discriminability, which results in a conservative threshold for ensuring same quality.

That means that such small variations in sharpness, though noticeable, are unlikely to be

objectionable in practical applications.

Overall, the experiment showed that a resolution factor of 0.4 or more produces an-

imation that is indistinguishable from rendering frames at the full-resolution. Stronger

reduction could be possible for high-refresh displays, however, a 0.4 resolution factor al-

ready corresponds to saving 42% of the pixel computations. Further savings towards 50%

although possible, are probably not worth risking the introduction of artefacts.

5.3 Comparison with other techniques

In this section I discuss other methods intended for improving motion quality or reducing

image transmission bandwidth and compare them to the proposed algorithm. Table 5.1

provides a list of common techniques that could be used to save on rendering cost.

Table 5.1: Comparison of alternative techniques.

Peak
luminance

Motion
Blur

Flicker Artefacts
performance

saving

Re-projection 100% reduced none
re-

projection
artefacts

varies; 50%
max.

Half frame rate 100% strong none judder 50%

Interlace 50% reduced moderate combing 50%

BFI 50% reduced severe none 50%

NCSFI 100% reduced mild ghosting 50%

TRM
(proposed)

100% reduced mild minor 37–49%

The simplest way to halve the transmission bandwidth is to halve the frame rate.

This obviously results in non-smooth motion and severe hold-type blur. Interlacing (odd

and even rows are transmitted in consecutive frames) provides a better way to reduce

bandwidth. Setting missing rows to black can reduce motion blur. Unfortunately, this

will reduce peak luminance by 50% and may result in visible flicker, aliasing and combing

artefacts. Hold-type blur can be reduced by inserting a black frame every other frame

(black frame insertion — BFI ), or backlight flashing [Feng 2006]. This technique, however,

is prone to causing severe flicker and also reduces peak display luminance (see Section 7.3
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for an illustration of this). Nonlinearity compensated smooth frame insertion (NCSFI )

[Chen et al. 2006] relies on a similar principle as TRM, and displays sharpened and blurred

frames. The difference is that every pair of blurred and sharpened frames is generated

from a single frame (from 60 Hz content). The method saves 50% on computation and

does not suffer from reduced peak brightness, but results in ghosting at higher speeds, as

demonstrated in Experiments 5.2 and 5.3.

Didyk et al. [2010b] demonstrated that up to two frames could be morphed from a

previously rendered frame. They approximate scene deformation with a coarse grid that

is snapped to the geometry and then deformed in consecutive frames to follow motion

trajectories. Morphing can obviously result in artefacts, which the authors avoid by

blurring morphed frames and then sharpening fully rendered frames. In that respect,

the method takes advantage of similar perceptual limitations as TRM and NCSFI. Re-

projection methods (Didyk et al. [2010b], ASW [Beeler et al. 2016]), however, are much

more complex than TRM and require a motion field, which could be expensive to compute,

reducing the performance saving. Such methods have limitations handling transparent

objects, specularities, dis-occlusions, changing illumination, motion discontinuities and

complex motion parallax. I argue that rendering a frame at a reduced resolution (as

done in TRM) is both a simpler and more robust alternative. Although minor loss of

contrast could occur around high-contrast edges such as in Figure 5.3; in Experiment 5.2

and Experiment 5.3 I demonstrate that the failures of a state-of-the-art re-projection

technique, ASW, produce much less preferred results than TRM. Moreover, re-projection

cannot be used for efficient transmission as it would require transmitting motion fields,

thus eliminating potential bandwidth savings.

Fourier analysis with the window of visibility

To further distinguish the proposed approach from previous methods, I use the window

of visibility analysis (Section 2.6.2) considering the spatio-temporal behaviour of a thin,

vertical line moving with constant speed from left to right. Such a simplistic animation

has proved to be an excellent visualisation tool, and as the discrete approximation of a

Dirac delta, poses a good challenge for the compared techniques. Figure 5.6 shows how a

single row of such a stimulus changes over time when presented using different techniques.

The plot of position vs. time forms a straight line for a real-world motion, which is not

limited by frame rate (top row, 1st column). But the same motion forms a series of vertical

line segments on a 60 Hz OLED display, as the pixels must remain constant for 1/60-th

of a second. When the display frequency is increased to 120 Hz, the segments become

shorter. The second column shows the stabilised image on the retina assuming that the

eye perfectly tracks the motion. The third column shows the image integrated over time

according to the Talbot-Plateau law.
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Figure 5.6: A simple animation consisting of a thin, vertical line moving from left to
right as seen in real-world (top row), and using different display techniques (remaining
rows). The columns illustrate the physical image (1st), the stabilised image on the retina
(2nd) and the image integrated by the visual system (3rd). The 4th column shows the 2nd

column in the Fourier domain, where the diamond shape indicates the range of spatial
and temporal frequencies visible to the human eye.
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60 Hz animation appears more blurry than the 120 Hz animation (see 3rd column)

mostly due to a hold-type blur. The three bottom rows compare three techniques aiming

to improve motion quality, including ours. The black frame insertion (BFI) reduces the

blur to that of 120 Hz without the need to render an image 120 frames per second, but it

also reduces the brightness of an image by half. NCSFI [Chen et al. 2006] does not suffer

from reduced brightness and also reduces hold-type blur, but to a lesser degree than BFI.

TRM (bottom row) has all the benefits of NCSFI but achieves stronger blur reduction,

on par with the 120 Hz video.

Further advantages of the proposed technique are revealed by analysing the animation

in the frequency domain. The fourth column in Figure 5.6 shows the Fourier transform

of the motion-compensated image (2nd column). The blue diamond shape represents the

range of visible spatial and temporal frequencies, following the stCSF shape from Fig-

ure 2.4-left. The perfectly stable physical image of a moving line (top row) corresponds

to the presence of all spatial frequencies in the Fourier domain (the Fourier transform of

a Dirac peak is a constant value). Motion appears blurry on a 60 Hz display and hence

we see a short line along the x-axis, indicating the loss of higher spatial frequencies. More

interestingly, there are a number of aliasing copies of the signal in higher temporal fre-

quencies. Such aliasing copies reveal themselves as non-smooth motion (crawling edges).

The animation shown on a 120 Hz display (3rd row) reveals less hold-type blur (longer

line on the x-axis) and it also puts aliasing copies further apart, making them potentially

invisible. BFI and NCSFI result in a reduced amount of blur, but temporal aliasing is

comparable to a 60 Hz display. TRM reduces the contrast of every second alias, thus

making them much less visible. Therefore, although other methods can reduce hold-type

blur, only the proposed method can improve the smoothness of motion.

5.4 Applications

In this section, I present three different use-cases of TRM. The applications are validated

with a set of psychophysical experiments described in Experiments 5.2, 5.3, and 5.4.

5.4.1 Virtual reality

To better distribute rendering load over frames in stereo VR, one eye is rendered at full

resolution and the other eye at reduced resolution; then, we swap the resolutions of the

views in the following frame. Such alternating binocular presentation will not result in

higher visibility of motion artefacts than the corresponding monocular presentation. The

reason is that the sensitivity associated with disparity estimation is much lower than the

sensitivity associated with luminance contrast perception, especially for high spatial and

temporal frequencies [Hoffman et al. 2011].
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Figure 5.7: Simulation of perceived video frames. At full frame rate (120 Hz) the stimulus
looks sharper than for half frame rate (60 Hz). With TRM low-frequency blur is elim-
inated. The reduction in contrast for high-frequency signal is usually unnoticeable for
moving objects.
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Figure 5.8: Measured performance of 90 Hz full resolution rendering on HTC Vive for four
consecutive frames averaged over 1500 samples (top); compared with the proposed TRM
method with 1/2 and 1/4 resolution reduction. Unutilised time periods (shown as wavy
lines) could be used to load resources or compute additional visual effects or geometry.
Post-processing and VR composition (yellow and purple) take less time than rendering.
For each frame, left and right eyes are drawn consecutively. Red borders indicate full-
resolution rendering, blue borders indicate reduced-resolution rendering. Image sizes in
the illustration are proportionate to the rendered resolution.

Another important consideration is whether the fusion of low- and high-resolution

frames happens before or after binocular fusion. Studies on binocular flicker [Perrin 1954]

suggest that while most of the flicker fusion is monocular, there is also a measurable

binocular component, also known as the Sherrington effect. As a result, off-phase flicker

between the two eyes has been shown to be less visible than on-phase flicker. This is

actually beneficial for TRM, as long as high- and low-resolution frames are presented

to different eyes. Indeed, observers reported that flicker is less visible in a binocular

presentation on a VR headset.

Reducing the resolution of one eye can reduce the number of pixels rendered by 37–

49%, depending on the resolution reduction. Informal experiments established that a

reduction of 1/2 (37.5% pixel saving) produces good-quality rendering on the HTC Vive. I

measured the performance of TRM in a fill-rate-bound football scene (Figure 5.9 bottom)

with procedural texturing, reflections, shadow mapping and dynamic lighting. The light

count was adjusted to fully utilise the 11ms frame time on the desktop PC (HTC Vive,

Intel i7-7700 processor and NVIDIA GeForce GTX 1080 Ti GPU). As Figure 5.8 indi-

cates, a 19-25% speed-up was observed for an unoptimised OpenGL and OpenVR-based

implementation. More optimised applications, especially ones relying on fragment-bound

effects such as ray tracing, hybrid rendering [Purcell et al. 2005] and parallax occlusion

mapping [Tatarchuk 2006] could benefit even more.
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A pure software implementation of TRM can be easily integrated into existing render-

ing pipelines as a post-processing step. The only significant change in the existing pipeline

is the introduction of the stage which alternates between full- and reduced-resolution ren-

der targets. In practice, available game engines such as Unreal Engine or Unity either

support resizeable render targets or allow light-weight alteration of the viewport through

their scripting infrastructure. When available, resizeable render targets are preferred to

avoid MSAA resolves in unused regions of the render target, and to prevent bleeding

artefacts around the edges of the viewport. Validation results on two VR headsets is

presented in Experiments 5.2 and 5.3.

5.4.2 High-refresh-rate monitors

The same principle can be applied to high-refresh-rate gaming monitor; utilising savings

from resolution reduction to render games at a higher quality or on lower-tier PCs. The

technique could also be potentially used to reduce bandwidth for transmission of high-

frame-rate video from cameras. However, the difference between 120 Hz and 60 Hz is

noticeable mostly for very high angular velocities, such as those experienced in VR and

first-person games. The benefit of high refresh rates is more difficult to observe for tradi-

tional video content. Validation results for high-refresh-rate desktop monitor is presented

in Section 4.

5.4.3 Portable devices

With the anticipated dawn of high-refresh-rate embedded devices, TRM could be also

implemented on smart phones and tablets to improve text readability while scrolling.

The reduced rendering load of TRM is expected to result in lower power consumption

and consequently longer battery life when compared to näıve rendering. Latest devices,

such as the iPad Pro, are just beginning to add support for >90 Hz refresh rates1.

5.5 Validation

I conducted three psyhophysical experiments to validate the proposed applications

5.5.1 Virtual Reality (Experiments 5.2 and 5.3)

The VR validation of the proposed technique is performed in Experiments 5.2 and 5.3,

comparing TRM with baseline rendering, and two alternative techniques: NCSFI and

state-of-the-art re-projection (ASW).

1Apple press release — https://www.apple.com/uk/newsroom/2018/10/new-ipad-pro-with-all-screen-
design-is-most-advanced-powerful-ipad-ever

77

h


CarFootball Bedroom

Figure 5.9: Stimuli used for validation in the VR experiments

Figure 5.10: Results of Experiment 5.2 on the HTC Vive (top) and Experiment 5.3 on the
Oculus Rift (bottom). Error bars denote 95% confidence intervals. The measured quality
difference between each pair of techniques is statistically significant, with the exceptions
of TRM vs. 90 Hz and 45 Hz vs. ASW.
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Setup:

Two high-end off-the-shelf VR headsets were used running on 90 Hz – HTC Vive and Ocu-

lus Rift CV1 for Experiments 5.2 and 5.3 respectively. Participants were asked to perform

the experiment on a swivel chair for stability, but were encouraged to move their heads

around. State-of-the-art re-projection technique, ASW, is unfortunately not implemented

for the HTC Vive, so in Experiment 5.2 I only tested TRM against baseline renderings

and NCSFI. In Experiment 5.3, I replaced NCSFI with the latest ASW implementation

on the Oculus Rift. I decided to not include NCSFI on the Oculus experiment to avoid

over-tiring participants.

Stimuli:

In each trial the observer was placed in two brief (10s each) computer-generated environ-

ments, identical in terms of content, but rendered using one of the following five tech-

niques: (1) 90 Hz full refresh rate, (2) 45 Hz halved refresh rate, duplicating each frame (3)

TRM with a 1/2 down-sampled render target for every other frame (4) non-linearity com-

pensated smooth frame insertion (NCSFI) in the HTC Vive Session, (5) Asynchronous

Spacewarp (ASW) in the Oculus Rift session. Because NCSFI was not meant to be used

in VR rendering, I had to make a few adaptations: to save on rendering time, only every

other frame was rendered. These frames were used to create sharpened and blurry frames

in accordance with the original design of the algorithm. For this comparison, I used the

same blur method as for TRM, focusing only on the two fundamental differences between

NCSFI and TRM: (1) NCSFI duplicates frames and (2) residuals are always added from

sharp to blurry frames, regardless of motion. For ASW the content was rendered at 45 Hz

and intermediate frames were generated using Oculus’ implementation of ASW.

The computer-generated environments (Figure 5.9) consisted of an animated football,

a car and bedroom (used only in Experiment 5.3). The first two scenes encouraged the

observers to follow motion; the last one was designed to challenge screen-space warping.

These scenes were rendered using the Unity game engine.

Task:

Participants were asked to select the rendered sequence that had better visual quality and

motion quality. Participants were presented with two techniques sequentially (10s each),

with unlimited time afterwards to make their decisions. Before each session, participants

were briefed about their task both verbally and in writing. For those participants who

had never used a VR headset before, a short session was provided, where they could

explore Valve’s SteamVR lobby in order to familiarise themselves with the fully immersive

environment. A pairwise comparison method with a full design was used, in which all
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combinations of pairs were compared.

Participants:

Nine paid participants aged 18–40 with normal or corrected-to-normal vision took part

in Experiments 5.2 and 5.3. The majority of participants had little or no experience with

virtual reality.

Results:

The results of the pairwise comparison experiments were scaled using publicly available

software2 under Thurstone Model V assumptions in just-noticeable differences (JNDs) ,

which quantify the relative quality differences between the techniques [Perez-Ortiz and

Mantiuk 2017]. A difference of 1 JND means that 75% of the population can spot a

difference between two conditions. The details of the scaling procedure can be found in

[Perez-Ortiz and Mantiuk 2017]. Since JND values are relative, the 45 Hz condition was

fixed at 1 JND for better presentation.

The results from Experiment 5.2 shown at top of Figure 5.10 indicate that the partic-

ipants could not observe much difference between the proposed method and the original

90 Hz rendering. NCSFI improved slightly over the repeated frames (45 Hz) but was much

worse than TRM or full-resolution rendering (90 Hz). Post-experiment interviews revealed

that this could be due to ghosting (double edges) artefacts, which were well visible when

blurred frames were displayed out of phase with misaligned residuals for fast head motion.

The results from Experiment 5.3 on the Oculus Rift, shown at the bottom of Fig-

ure 5.10, resemble the results of Experiment 5.2 on the HTC Vive: the participants could

not observe much difference between TRM and a full 90 Hz rendering. ASW was seen to

perform best in the football scene, whereas it performed worse in the car and bedroom

scenes. This is because complex motion and colour variations in these scenes could not

be compensated with screen-space warping, resulting in well visible artefacts. Note that

although not included in this experiment, it is reasonable to expect that the technique

by Didyk et al. [2010b] would suffer from similar warping artefacts, inherent to the use of

re-projection.

5.5.2 Validation for desktop setup (Experiment 5.4)

The primary goal of this experiment was to compare the quality of TRM at three selected

resolution reduction factors with standard rendering at 120 Hz and 60 Hz rendering. The

setup was identical to the one used in Experiment 5.1 (2560× 1440 G-Sync capable high-

refresh-rate Asus ROG Swift P279Q 27” monitor, viewing distance fixed at 75cm using

2pwcmp - https://github.com/mantiuk/pwcmp
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Figure 5.11: Stimuli used for validation on the high-refresh-rate monitor.
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a headrest, Intel i7-7700, NVIDIA GeForce GTX 1080 Ti GPU). However, instead of

comparing conditions sequentially, they were shown simultaneously side-by-side.

Stimuli:

In each trial, the participant saw two 10-second looping video clips simultaneously, one in

the upper, the other in the lower half of the screen. Five conditions were considered: (1)

60 Hz, presented at 120 Hz by repeating frames, (2) native 120 Hz video, (3–5) TRM with

the odd-numbered frames reduced to 1/2, 1/4 or 1/8 of the original resolution. The clips

Circles, Text and Panorama were identical to those used in Experiment 5.1, while the

new clip Boat was added to test for more complex animation. The thumbnails of all clips

are shown in Figure 5.11, while Figure 5.7 visualises how the eye perceives these videos

when SPEM is taken into account. The clips were presented using custom software, which

played uncompressed frames from the GPU memory.

Task:

The task was identical as in Experiment 5.1, but the goal of the experiment was different

— to measure the quality of each tested condition. A pairwise comparison method was

used with the a full design, in which all combinations of pairs were compared. Each

observer saw each pair three times, resulting in 120 trials per observer. The order of the

stimuli as well as the position of the techniques on screen were randomised.

Participants:

Eleven paid participants aged 18 – 40 took part in the experiment. All had normal or

corrected-to-normal full colour vision.

Results:

The results of the pairwise comparison experiments were scaled using publicly available

software as in Experiments 5.2 and 5.3. Since JND values are relative, the 60 Hz condition

was fixed at 1 JND for better presentation.

The results shown in Figure 5.12 indicate that observers could easily spot the difference

between the 60 Hz and 120 Hz videos. TRM was nearly indistinguishable from 120 Hz for

Panorama and Text, but about 75% of the observers could see the difference (1 JND)

for Boat and Circles clips. This is consistent with findings in Experiment 5.1, only

the threshold is shifted due to the side-by-side presentation. Further reduction in the

resolution of odd frames did not result in a strong reduction of quality. Fortunately, as

discussed, the saving in number of rendered or transmitted pixels also becomes negligible

as the resolution is further reduced.
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Figure 5.12: Results of experiment on a high-refresh-rate monitor. The higher JND values
indicate higher quality. Error bars denote 95% confidence intervals.

5.6 Limitations

TRM is applicable only to high-refresh-rate displays, capable of showing 90 or more frames

per second. At lower frame rates, flicker becomes visible. TRM is most beneficial when

the angular velocities of movement are high, such as those introduced by camera motion

in VR or first-person games. The proposed technique requires characterisation of the

display on which it is used, as explained in Chapter 4. This is a relatively easy step for

OLED-based VR headsets, but the characterisation is more involved for LCD panels.

Unlike re-projection techniques, TRM renders intermediate frames. This requires

processing the full geometry of the scene, which might reduce performance gain for some

scenarios. In particular, in scenes that are not fragment-bound, the main cost might

come from physical simulation, or geometry processing. However, this cost is effectively

amortised in VR stereo rendering, as explained in Section 5.4.1. The method also adds

to the memory footprint as it requires additional buffers, for storing the previous frame

and the residual. The memory footprint, however, is comparable to or smaller than that

of re-projection methods.

TRM is rather sensitive to timing. The current pipeline does not offer a straight-

forward solution for recovering from dropped frames due to intermittent performance

drops (e.g. operating system interrupt, poor cache conflict). Missing a frame will reduce

the fundamental frequency at which TRM produces flicker, pushing it to a region where

the human eye finds it highly objectionable. Future work should explore preventing such

flicker potentially by falling back to a re-projection algorithm.
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5.7 Summary

Temporal Resolution Multiplexing is an illustrative example of how a simple insight to

the human visual system can guide the design of a rendering algorithm and consequently

display design. In the coming years the visual quality of VR and AR systems is anticipated

to improve primarily by increased display resolutions and higher refresh rates. However,

rendering such a large number of pixels with minimum latency is challenging even for

high-end graphics hardware. In this chapter I described an algorithm that reduces the

GPU workload and the data sent to the display. TRM achieves a significant speed-

up by requiring only every other frame to be rendered at full resolution. The method

takes advantage of the limited ability of the visual system to perceive details of high

spatial and temporal frequencies and renders a reduced number of pixels to produce

smooth motion. TRM integrates easily into existing rasterisation pipelines, but could

also be a natural fit with any fill-rate-bound high-frame-rate application, such as real-

time ray tracing. A number of psychophysical experiments validated that TRM is close to

being indistinguishable from full-resolution rendering while saving 42% of the computation

power and data transfer bandwidth.
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CHAPTER 6

MULTI-SCALE VISUAL MODELS

“Since all models are wrong the scientist must be alert to what is importantly

wrong. It is inappropriate to be concerned about mice when there are tigers

abroad.”

George Box

Science and Statistics

We have seen how simple insights into the visual system can drive the design of more effi-

cient graphics algorithms. I discussed a few examples in Chapters 2 and 3 such as chroma

subsampling, and foveated rendering; and I argue that TRM, introduced in the previous

chapter, is similar in spirit. Unfortunately evaluating and analysing such algorithms un-

der novel conditions such as a wider colour gamut, higher dynamic range or novel display

technology is non-trivial. Psychophysical evaluations require human participants which

makes this approach impractical when dealing with a wide range of content or conditions.

Visual models can be used to gain a more robust prediction of the behaviour of hu-

man vision. Unfortunately, the HVS is remarkably complex, so a biologically accurate

and content-wise robust end-to-end model is infeasible. Thus, a number of simplifying

assumptions have to be made. A popular approach to reducing model complexity is to

break up the visual stimulus into multiple visual bands, often corresponding to different

scales of size.

In the next three chapters I describe the generic structure of such multi-scale models,

and show how this can be applied to detecting a range of motion-related artefacts such

as flicker (Chapter 7), judder and motion blur (Chapter 8).

This chapter borrows from the 2019 Human Vision and Electronic Imaging best-paper-

award-winning article: visual model for predicting chromatic banding artefacts.
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6.1 Multi-band models of vision

As discussed in Section 2.3, information throughout the visual system is processed by

parallel pathways, and the final perception is often established by the aggregated output of

these. The complex shape of the contrast sensitivity function can be also attributed to the

multi-scale detector system of the visual system. Inspired by our knowledge of the visual

system, the hard problem of detecting the visibility of a stimulus (I) can be implemented

by a collection of specialised detectors. The input of such models is the signal I, and the

output is a joint detection probability, where this is typically interpreted as the probability

of an average observer detecting the signal. State-of-the-art visual difference predictors,

VDP and HDR-VDP, employ this idea when breaking up the difference signal between a

reference image R and a distorted test image T into a number of spatial frequency bands

one octave apart [Daly 2005; Mantiuk et al. 2005, 2011]. The model output is a map of

probability values (indicating whether the difference can be detected up at a certain point

of the image). The full design of HDR-VDP considers feature orientation bands, as well

as inter-channel masking. In this chapter, I instead present a multi-channel model via the

simplified problem of banding artefact detection.

6.2 Banding artefacts

To fit continuous colour values within a discrete, digital representation, linear colour val-

ues are quantised to a target bit-depth by transforming into some desired colour space.

Quantisation of this sort can introduce banding artefacts, also known as quantisation arte-

facts or false contours. These banding artefacts are most prominent in images containing

smooth, low texture regions, such as skin, or the sky and water in Figure 6.1. With

insufficient bit-depth, smooth gradients in luminance and chrominance are perceived as

wide, discrete bands.

A number of published works address the visibility and subsequent correction of band-

ing artefacts [Lee et al. 2006b; Wang et al. 2016; Daly and Feng 2003, 2004]. Some authors

consider the problem from an image processing point of view [Lee et al. 2006b] without a

perceptual calibration. Wang et al.[Wang et al. 2016] demonstrate that such image pro-

cessing methods can be fine-tuned to better correlate with subjective (mean opinion score)

measurements, however, existing works take no account of the complex structure of vi-

sual perception, and are unlikely to generalize well to a colour space agnostic setup. Daly

et al.[Daly and Feng 2003, 2004] present a technique for achieving bit-depth extension

via spatio-temporal dithering. Their proposed technique utilizes the contrast sensitivity

limitations of the human visual system to evaluate and recommend perceptually-ideal

dithering patterns. In particular, [Daly and Feng 2004] analyses the error arising from
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Figure 6.1: Increasing severity of banding artefacts when quantised to a range of bit-depths
in different colour spaces (YCbCr, ITP). ITP results in less severe banding artefacts at
the same bit-depth.
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Figure 6.2: Overview of the banding artefact detection model for achromatic signals. The
error signal is transformed into the frequency domain. The amplitude at each discrete
frequency is scaled with the contrast sensitivity function, converted to probabilities with
a psychometric function, then aggregated with probability summation to derive a single
detection probability value.

the quantisation of a smooth gradient (Figure 6.3-left) in both the spatial and the fre-

quency domains. The newly proposed visual model builds on this analysis and extends it

for chromaticity.

6.3 Model design

As banding artefacts are the most visible when quantising smooth gradients, the presented

model conservatively targets this the worst-case scenario. To break up the problem, I

will first describe a model for achromatic images, then in Section 6.4 generalise to the

chromatic model, demonstrating how the different colour channels can be aggregated.

The design of this predictor model is following the typical pattern of multi-band models:

1. Determine the set of channels to operate on. In this case, we first determine a set

of spatial frequencies that are present in the banding signal.

2. Scale each channel according to visual sensitivity. Here, we use the above-mentioned

frequencies and Barten’s achromatic CSF model to determine how sensitive the eye

is to each spatial frequency component.

3. Convert scaled sensitivities to detection probabilities. This is typically done with a

psychophysical function such as the cumulative Weibull distribution, or the cumu-

lative normal distribution.

4. Pool probabilities across each channel. Similarly to VDP and HDR-VDP, I use

probability summation.

The rest of this section explains the above steps in more detail. For a schematic diagram

of the achromatic architecture, see Figure 6.2.
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Figure 6.3: Left: Illustration of the error signal (purple) between the original (blue) and
the quantised (red) signals. The error signal approximates a saw-tooth function. Right:
Analytical model of the error signal. With a known width (w) and height (h) we can find
the frequency components of the signal.

Identifying the spatial frequencies

To determine spatial frequencies of the contours, we can analyse the Fourier transform of

the difference signal between the smooth and contoured gradients. The banding artefacts,

i.e. the difference between smooth and quantised signals over a smooth gradient can be

approximated with a saw-tooth pattern (see purple line in Figure 6.3):

f(x) = wbx/wc − x, (6.1)

where x goes from 0 to 1, and w is the number of quantisation levels. The Fourier series

is given by:

f(x) =
−h
2

+
1

π

∞∑
k=1

h

k
sin

(
k2πx

f

)
, (6.2)

where x is spatial location in visual degrees, w is the width (period) and h is the amplitude

as in Figure 6.3. The amplitude of the frequency components is then:

αk =
h

kπ
for k = 1, 2, ... (6.3)

and the frequency of each component is:

ωk =
kρ

w
, (6.4)

where ρ denotes the angular resolution of the device in pixels per visual degree and w

is the width of the saw-tooth in pixels. As the eye has very limited sensitivity to high

89



spatial frequencies, in my findings Fourier components for k > 16 were insignificant and

did not improve the model’s accuracy.

Scaling with sensitivity

To compute the probability of detecting each Fourier component of the contour, we can

first determine the sensitivity to that component :

S =
Lb

∆Ldet
= ρA(ω, Lb), (6.5)

where ω is the spatial frequency, Lb is background luminance, ∆Ldet is the detectable

amplitude of that frequency component, and ρA() is Bartens’ achromatic CSF model.

Then, I normalise the contrast of the contouring pattern (ak/Lb) by multiplying by the

sensitivity so that the normalised values are equal to 1 when the k-th frequency component

is just detectable. The normalised contrast is given by:

ck =
ak
Lb
ρA(ωk, Lb). (6.6)

Conversion to probabilities

Next, to transform the normalised contrast into probabilities, use the Weibull psychome-

tric function [Weibull 1951]:

Pk = 1− exp(ln(0.5)cβk), (6.7)

where β is the slope of the psychometric function. An estimate of β = 3.5 is common in

visual sciences, however, for this particular model, β = 2 produced more uniform outputs

(see Figure 6.5).

Aggregating probabilities

Finally, the probabilities Pk need to be pooled across all Fourier components. In multi-

band models, where each band represents independent detection probabilities, probability

summation (PS) is normally used. Note that “probability summation” can be considered

a misnomer [Baldwin et al. 2015], as it represents the inverse of the probability of none

of the channels detecting the difference. No summation is involved.

P = 1−
∏
k

(1− Pk) (6.8)
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To determine the minimum bit-depth that does not result in contouring artefacts, one

can then perform binary-search for a bit-depth that would result in P = 0.5.

6.4 Extension for chromatic banding

The model, as described above, accounts only for banding due to changes in luminance.

While change in luminance is usually a large contributor to the visibility of banding,

changes in chromaticity can also have an impact. We can extend the model to account for

this using a chromatic contrast sensitivity function, and employ probability summation

across all visual channels. The final chromatic colour discrimination model takes a colour

gradient, specified in the CIE XYZ (1931) colour space, and predicts the probability of

observing a banding artefact when the smooth gradient is quantised to a given bit-depth.

First, independence of the visual channels is a crucial assumption, as this model does

not take masking into account. Hence, I convert all colours from XY Z into LMS space

(assuming CIE 1931 colour matching functions). Each channel of this tri-stimulus space

is proportional to the response of the long, medium and short cones of the retina (see

Section 2.2). It should be noted that there is no standard way to scale the absolute

response of each cone type and the response values are only relative. To convert CIE

XY Z trichromatic values into LMS responses I use the following linear transform:LM
S

 =

 0.15514 0.54312 −0.03286

−0.15514 0.45684 0.03286

0 0 −0.00801

×
XY
Z

 . (6.9)

The cone responses are further transformed into opponent responses: one achromatic

(black-to-white) and two chromatic: red-to-green and yellow-green-to-violet. The exact

tuning colour directions of those mechanisms are unknown, so I use one of the simplest

formulae commonly used in the literature:AR
Y

 =

L+M

L−M
S

 , (6.10)

where A is achromatic (luminance) response, R is the red-to-green response and Y is the

yellow-green-to-violet response.

Given two colours to be discriminated, we need to compute contrast between them.

Since there is no single way to represent colour contrast, my collaborators and I experi-
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Figure 6.4: Chromatic contrast sensitivity function based on [Kim et al. 2013]. Dashed
and solid lines show the sensitivity to red-green and blue-yellow change respectively at
different background luminance levels.

mented with a number of expressions to find the most suitable for this model:

CA =
|A2 − A1|

A1

, CR =
|R2 −R1|

α|R1|+ (1− α)A1

, CY =
|Y2 − Y1|

α|Y1|+ (1− α)A1

, (6.11)

where α is a free variable to be optimised for the experiment data. Given the colour con-

trast components CA, CR, CY , we follow the same steps as for the prediction of luminance

banding: (1) each colour contrast is multiplied by the corresponding contrast sensitivity

function from [Kim et al. 2013] and the Fourier coefficients of the saw-tooth pattern,

ak, (2) then transformed to detection probability, (3) then apply probability summation

across all frequencies and the A,R, Y colour channels.

6.5 Model predictions

The model can be trivially extended to take a starting colour and a colour direction vector

as input (instead of the smooth image gradient). Binary search can then establish the

colour along the colour direction vector for which the probability of detectable banding

artefacts is 0.5. I use such extension of the model to establish a detection threshold

and to plot colour uniformity ellipses akin to MacAdam ellipses. Figure 6.5 compares

the predictions of the proposed model to CIE ∆E 2000 difference and to the original

MacAdam ellipses. Note that the proposed model is meant to provide better predictions

for banding rather than predicting traditional colour patch difference; hence it is an

interesting observation that the resulting shapes are comparable.
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Figure 6.5: Predictions of the proposed model compared to CIE DeltaE 2000 and
MacAdam ellipses [Brown 1957]. Each plot corresponds to different luminance level. Note
that MacAdam ellipses were measured only for the background luminance of 48 cd/m2
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6.6 Summary

Simple insights into the visual system are powerful. However, to create, calibrate and

analyse novel graphical algorithms, we need to either rely on a new psychophysical exper-

iment every time, or a visual metric that is known to correlate with subjective preference.

The human visual system is extremely complex, so a number of simplifying assumptions

have to be made. One such assumption is the presence of multiple independent chan-

nels which together contribute to the final perception. In this chapter, I introduced the

concept of multi-band models via the problem of chromatic banding artefact detection.

Such white-box models have been demonstrated to produce accurate predictions only

after the model parameters (parameters of the Barten model in this case) are adjusted.

For more detail for how this was achieved for banding detection, please refer to the full

paper [Denes et al. 2019a].
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CHAPTER 7

A VISUAL MODEL FOR FLICKER

Novel display algorithms, such as l black frame insertion, and temporal resolution multi-

plexing (Chapter 5) introduce temporal change into images at 40-180 Hz, on the boundary

of the temporal integration of the visual system. This can lead to flicker, which in turn

induces viewer discomfort. The critical flicker frequency (CFF) alone does not model

this phenomenon well, as flicker sensitivity varies with contrast, and spatial frequency; a

content-aware model is required. In this section, I introduce a visual model for predicting

flicker visibility in temporally changing images. The model performs a multi-scale analysis

on the difference between consecutive frames, normalising values with the spatio-temporal

contrast sensitivity function as approximated by the pyramid of visibility. The output of

the model is a 2D detection probability map. I also describe the subjective flicker mark-

ing experiment I ran to fit the model parameters, then analyse the difference between

two display algorithms, black frame insertion and temporal resolution multiplexing, to

demonstrate the application of the model. This chapter borrows from the 2020 Human

Vision and Electronic Imaging article: Predicting visible flicker in temporally changing

images.

7.1 Model design

Temporal multiplexing algorithms often manipulate pairs of frames. Let us denote two

consecutive frames as Fi and Fi+1 that could be, for instance, the reduced-resolution and

sharpened frames of TRM; or a black frame and a luminance-boosted frame of BFI. The

proposed visual model predicts whether displaying Fi and Fi+1 alternately at refresh rate

R would result in perceivable flicker. The output is a Pdet(x, y) map corresponding to the

percentage of the population detecting flicker at a pixel (x, y).
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Figure 7.1: Overview of the flicker predictor model. The input is a pair of colour frames;
the result of the model is a 2D probability of detection (Pdet) map.

The flicker predictor utilises a spatio-temporal CSF in a multi-scale model with prob-

ability summation along the spatial frequency bands. For an overview of the pipeline,

please see Figure 7.1. The model does not distinguish orientation-sensitive bands, often

found in masking models [Watson and Solomon 1997]. The model also assumes that eye

movements have been already accounted for in image-space; i.e. , the same pixels on Fi

and Fi+1 will correspond to roughly the same photoreceptors on the retina.

As the source of most flicker is the change in luminance, I do not consider chromaticity

here. First, respective luminance values are computed (Yi and Yi+1) of consecutive frames

(Fi and Fi+1) based on a calibrated display model. Then, to find contrast, compute the

difference image:

∆(x, y) = Yi(x, y)− Yi+1(x, y), (7.1)

where x and y describe pixel location, and Yi(x, y) is the luminance of pixel (x, y) of the

frame Fi. The summed luminance of the consecutive frames can be similarly defined as:

Y (x, y) = Yi(x, y) + Yi+1(x, y) (7.2)

Spatial frequency decomposition

As flicker sensitivity varies with spatial frequency, the difference image ∆(x, y) is de-

composed into a Laplacian pyramid. This, in essence, creates the multiple bands of the

visual model. Each layer of the pyramid is half the spatial resolution of the one above;

the bottom layer capturing 2 cycles per visual degree (cpd) resolution or just below –

e.g. for a 52 pixel-per-degree image the mid points of the spatial frequency bands are

Si = {26, 13, 6.5, 3.25, 1.625} cpd. I use an undecimated pyramid, in which each band has

the same resolution.
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Contrast scaling with sensitivity

In each layer, Michelson contrast can be then computed as:

C(x, y, l) =
|∆(x, y, l)|
Y (x, y)

, (7.3)

where l is the Laplacian pyramid layer. To account for contrast sensitivity, contrast is

normalised at each layer by a the spatio-temporal CSF (ρ). I use the parametric pyramid

of visibility, as it has been shown to provide a good fit to previous CSF measurements

[Watson and Ahumada 2017].

ρ(W,F, Y ) = exp(c0 + cWW + cFF + cL log Y ), (7.4)

where W and F are the spatial and temporal frequencies in cpd and Hz, as in the original

paper, Y is the adapting luminance in cd/m2, and (c0, cW , cF , cL) are parameters that

are kept as free variables in the model. The underlying assumption is that the mean

fused image 0.5Y (x, y) provides a good estimate of the local adapting luminance. The

normalised contrast is then:

Ĉ(x, y, l) = C(x, y, l)ρ(R/2, Sl, 0.5Y (x, y)), (7.5)

where Sl is the spatial frequency of the layer, and R is the display refresh rate. I use R/2

to sample the temporal dimension of the CSF, as when modifying pairs of frames, this is

the highest temporal frequency according to the Nyquist limit.

Conversion to probabilities

Next, to transform the normalised contrast into probabilities of detection, a Weibull

psychometric function is used:

P (x, y, l) = 1− exp(Ĉβ(x, y, l))

2
, (7.6)

where β controls the slope of the psychometric function, a free parameter. In order to

pool the probabilities across all layers ,probability summation is used to compute P (x, y).

Finally, to account for detection inaccuracies, the map is further convolved with a small

Gaussian filter. Doing this in probability space yielded surprisingly better predictions than

in contrast space:

Pdet(x, y) = P (x, y) ∗Gσsp , (7.7)

where ∗ denotes convolution, and Gσsp is a Gaussian kernel with σsp being a free parameter

in the model.
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Figure 7.2: Pool of reference images used for the flicker marking experiment with a range
of content.

7.2 Psychophysical calibration (Experiment 7.1)

To tune the model parameters, ground-truth data is required on flicker perception in

complex images. As flicker is often perceived in multiple parts of the image, and location

information is crucial for Pdet(x, y), a marking experiment was chosen. Such experiments

have been utilised to calibrate similar metrics for image difference predictors [Wolski et al.

2018; Ye et al. 2019].

Participants

Nineteen participants aged 18-40 with normal or corrected-to-normal vision took part

in the experiment. As the trials involved looking at flickering images, a pre-experiment

screening question was used to ensure that no participant reported a history of epilepsy.

Informed consent was acquired before the beginning of the experiment, which involved

briefing participants on the aim, the procedure, and potential risks of the experiment both

verbally and in writing.

Setup

Participants were shown a 512×512 pixel flickering photograph in the centre of the ASUS

monitor. The viewing distance was fixed at 65 cm, yielding an angular resolution of 52

pixels per degree (ppd). Images hence had a field of view of 9.85◦; the rest of the monitor

was filled with a grey background of 36 cd/m2. Accurate refresh rates were achieved with

custom C++/OpenGL software and NVidia G-Sync.

Stimuli

Eighteen stimuli were created by flickering twelve colour photographs (see Figure 7.2).

The photographs provided a range of content from primitive zebra stripes, photographs of
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(a) original reference (b) Fi (c) Fi+1

Figure 7.3: Example stimulus pair. Stimilarly to TRM, reference frame is low-pass filtered
(Fi), and sharpened (Fi+1) to produce band-limited flicker.

birds, buildings and people. For each trial, a spatially band-limited flicker was introduced

at temporal frequency R. For each trial, a pair of frames were computed (Fi and Fi+1)

and alternated at refresh rate R in a manner similar to TRM:

Fi(x, y) = Fref(x, y) ∗ gσ(x, y)

Fi+1(x, y) = ξ−1
(

2ξ(Fref(x, y))− ξ(Fi(x, y))
)
,

(7.8)

where Fref denotes the original reference image in gamma-compressed rgb colour space

(rec.709 primaries), ∗ stands for 2D convolution, gσ(x, y) is an isotropic Gaussian blur

kernel with a standard deviation of σ, and ξ() is a gain-offset-gamma display model [Berns

1996] transforming gamma-compressed rgb to linear rgb values. For stimulus generation,

an approximation of the ASUS display model was used:

r′(x, y) = 0.99917r(x, y)2.15 + 0.000825, (7.9)

where r is the red channel. The same formula was applied to all colour channels. For

an example image pair, see Figure 7.3. Note that unlike in TRM, the residual buffer

is not used here. This might introduce some spatial artefacts to the viewer, but this

experiment did not attempt to establish overall visual quality, and such artefacts did not

impede flicker detection. For a summary of the stimuli images, σ and R values, refer to

Figure 7.4. For a complete illustration, please see Appendix B.

Task

Participants were asked to “mark (or paint) any part of the image where flicker is visible”

– quoted from the briefing form. Flickering areas could be marked by holding down the

left mouse button and moving the pointer around. Previous markings could be deleted

with the right mouse button in a similar fashion. A circular mouse pointer was used with

the diameter adjustable from 0.15◦ (8 pixels) to 2◦ (104 pixels) using the mouse wheel.
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Figure 7.4: Flicker markings (Data) and model predictions (Pdet) overlaid on the 18
reference images. Blue indicates no flicker (Pdet ≈ 0), green to orange indicates strong
perceivable flicker (Pdet → 1). Sub-captions state the standard deviation of the Gaussian
kernel (in visual degrees), and the refresh rate at which Fi and Fi+1 were alternated ( Hz).
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Any marked area was highlighted and immediately stopped flickering. At the beginning

of each trial, the mask was cleared. Participants were specifically asked to first mark (and

hence remove) the strongest flicker first to minimise the effect of masking. During briefing

and training it was highlighted that flicker might be more visible in the parafoveal area

of vision, and hence looking at objects slightly off-centre might reveal more flicker. This

was to ensure that all participants utilise the free-viewing setup equally.

Each participant created a marking map for each stimulus three times, yielding 54

trials in total. The order of the trials was randomised.

Results

Figure 7.4 shows the flicker marking maps averaged over nineteen observers and three

repetitions. As expected, flicker perception degrades with increasing refresh rates and

increases with the blur σ. The markings, however, cannot be considered ground truth

data for two reasons: (1) participants might make mistakes producing mis-markings, and

(2) the finite size of the brush allows for limited precision.

Markings can be considered the output of a stochastic process, where observers attend

to a distortion with Patt, and mis-mark a pixel with probability Pmis = 0.01 [Wolski et al.

2018]. Due to the small image size (9.85◦ ×9.85◦), and the characteristics of temporal

sensitivity, I assumed Patt = 1 for this experiment.

For each image in each 57 marking maps, each (x, y) pixel takes a binary {0, 1} value

depending on whether the participant marked it with the mouse. Assuming a detection

probability Pdet(x, y), the data can be modelled as a binomial distribution. Accounting

for the mis-markings, the likelihood of observing the collected data given a model is:

Λ(x, y) = Pmis + (1− Pmis)

(
n

k

)
Pdet(x, y)k[1− Pdet(x, y)]n−k, (7.10)

where n = 57 is the number of all collected markings for an image, k is the number of

trials a pixel is marked as flickering, and Pdet(x, y) is the predicted detection probability.

Parameter fitting

The task of finding the best model parameters can be posed as a non-linear optimisation

problem, maximising the average log-likelihood over the images. However, I observed that

the effects of spatial pooling were masked by the finite paint brush size; therefore decided

to fix this parameter to a value comparable to the brush sizes (σ = 0.36◦). Variable slope

values in the psychometric function were also expected to create a range of local minima,

hence I selected a single likely candidate β = 2. The remaining parameters are parameters

from the pyramid of visibility which were restricted to physically sensible ranges (cW < 0

for decreasing sensitivity with temporal frequency; cF < 0 for decreasing sensitivity with
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training test c0 cW cF cL
Pyramid of visibility - -3.204 2.1900 -0.0600 -0.0650 0.3880
Fit to all -2.849 - 1.9993 -0.1059 -0.0242 0.9102
cross 1 -2.829 -2.933 2.1946 -0.1025 -0.0362 0.8581
cross 2 -2.903 -2.779 1.9982 -0.1146 -0.0113 0.9782
cross 3 -2.782 -3.009 1.5741 -0.1006 -0.0128 0.9265

Table 7.1: Parameters, training and test fitness (measured as mean log-likelihood). Pyra-
mid of visibility (first row) uses the parameters from the Robson fit from [Watson and
Ahumada 2017]. When fitting to the new dataset, the log likelihood increases (Fit to all).
Cross # are indicate results of the 3-fold cross-validation.

spatial frequency; cL > 0 for increasing sensitivity with background luminance).

The results are summarised in Table 7.1. When refitting the parameters from the

original pyramid of visibility, the mean log-likelihood increases, as expected. Parame-

ters show some deviation from the values fitted to the Robson measurements. While

c0 is comparable, increasing temporal frequencies attenuate sensitivity faster (lower cW

values), increasing spatial frequencies attenuate sensitivity slower, and luminance ampli-

fies sensitivity faster. Such deviations are to be expected due to the significantly more

complex nature of the task presented in the marking experiment.

To analyse the possibility of over-fitting the model parameters to the new dataset, a

3-fold cross-validation was executed. For this, the dataset was randomly split into three

6-element groups. The models was fit to each two groups (training), then performance was

evaluated on the third groups (test). Results in Table 7.1 indicate that the training and

test likelihoods were comparable, and the optimum parameters did not differ significantly

from the scenario when all 18 images were included in the training dataset.

Qualitatively, I observed that model predictions for the experiment stimuli capture the

flickering details well. User-produced and predicted markings are as shown in Figure 7.4.

7.3 Application

The proposed flicker model can be used to analyse novel temporal multiplexing algorithms.

To demonstrate this, I analyse the amount of flicker introduced by TRM and BFI. For

TRM I assume the worst-case scenario and ignore the residual buffer. For black frame

insertion Fi was set completely black, while Fi+1 was boosted to double the luminance.

For representative content, three computer-generated images were selected.

As shown in Table 7.2, TRM generally requires lower refresh rates; it is unlikely to

be perceived as flickery on 90 Hz, while BFI causes minor distortions even on 120 Hz.

This is consistent with previous observations Chapter 5, specifically the claims outlined

in Table 5.1.
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TRM

BFI

TRM

BFI

TRM

BFI

60 Hz 75 Hz 90 Hz 120 Hz

Table 7.2: Analysis of flicker artefacts in black frame insertion (BFI) and TRM across
refresh rates. Red regions indicate that BFI produces noticeable flicker at bright regions
even on 120 Hz. TRM, on the other hand, does not flicker above 90 Hz on the analyzed
content for the target display with 156 cd/m2 peak luminance.

7.4 Summary

Novel display algorithms introduce temporal change which can lead to flicker, which in

turn induces viewer discomfort. The critical flicker frequency (CFF) alone does not model

this phenomenon well, as flicker sensitivity varies with contrast, and spatial frequency. In

this chapter, I introduced a content-aware visual model for predicting flicker visibility in

temporally changing images. The model performs a multi-scale analysis on the difference

between consecutive frames, normalising values with the spatio-temporal contrast sensi-

tivity function as approximated by the pyramid of visibility. The output of the model is

a 2D detection probability map. I described the subjective flicker marking experiment

I ran to fit the model parameters. Finally, I demonstrated how the new model can be

used to analyse the difference between two display algorithms, black frame insertion and

temporal resolution multiplexing.

Flicker is one of the four motion artefacts (Section 2.6.3). In the next chapter, I

introduce a visual model for detecting two other motion artefacts (judder and motion

blur), and based on the model predictions, I propose a novel motion-adaptive rendering

algorithm.
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CHAPTER 8

VISUAL MODEL FOR BLUR AND

JUDDER

Avoiding flicker artefacts is crucial for temporal multiplexing techniques. However, in

traditional rendering, blur and judder artefacts are more prominent. The perceived effect

of such motion artefacts, especially in the range of high-refresh-rate displays (> 60 Hz) is

not well-understood. In this section, I describe psychophysical measurements of perceived

visual quality of motion from 50 Hz to 165 Hz. Then, I propose a novel visual model that

predicts the quality taking into account two motion artefacts: non-smooth motion (judder)

and blur. Unlike similar work, I incorporate the velocity and predictability of motion into

the model. The treatment of blur is also uniquely broad, fusing hold-type blur, eye

motion and spatial blur arising from resolution reduction. The model isolates individual

components contributing to the quality of motion, such as judder, spatial blur aligned with

the direction of motion, and spatial blur orthogonal to the direction of motion. Then, the

discrimination of each component is modelled using spatio-temporal contrast sensitivity

functions. To find the free parameters of the model, I measured eye movement accuracy

and conducted further psychophysical experiments to quantify motion quality.

First, I describe the psychophysical experiment for measuring motion quality, then in-

troduce the model and describe the additional experiments used to fit the free parameters

in the model. Finally, at the end of the chapter, I propose a novel motion-adaptive refresh

rate and resolution rendering algorithm alongside a psychophysical validation experiment.

This chapter is based on the SIGGRAPH 2020 article titled A perceptual model of

motion quality for rendering with adaptive refresh-rate and resolution.
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(c) panorama

(a) ET target(b) circle

Figure 8.1: Animations used in the motion quality experiment.

8.1 Measuring motion quality (Experiment 8.1)

To motivate the design of the visual model, I first measured how perceived visual quality

changes with refresh rate, motion velocity and the predictability of motion. A pairwise

comparison protocol was chosen because of its relative simplicity and speed [Zerman et al.

2018], converting to a one-dimensional scale using Thurstone case V assumptions as in

TRM. To efficiently measure quality across the uniquely wide range of conditions, I relied

on an active sampling technique developed by a co-author.

Setup

Observers were shown the same scene at two different refresh rates, each shown on a

separate G-sync capable ASUS display. The displays were stacked on top of each other to

make the task of comparing horizontal motion easier. The viewing distance was 108 cm

(30◦ field of view). Every animation was shown at a one of 23 refresh rates from 50 Hz to

165 Hz. The granularity of 5 Hz was chosen to approximate the 1 JND threshold at 50 Hz

[DoVale 2017].

Stimuli

To cover a range of realistic and synthetic content, three animations were used: checkered

circle (circle), eye tracker target (ET ), and a panorama image (panorama) (Figure 8.1).

ET was a combination of a bull’s eye and a cross hair which has been shown to be effective

as a fixation target [Thaler et al. 2013]. Animations had only horizontal motion to aid

comparison in the vertically-stacked setup. Each of 6 tested conditions involved different

106



Figure 8.2: Example object motions used in the motion quality experiment. Sinusoid and
smooth staircase motion (left and center) are predictable by the SPEM mechanism, while
the sum of non-harmonic sinusoid (right) is unpredictable.

content, range of velocities, and type of motion. In conditions (a)–(c) the circle underwent

predictable sinusoid motion (Figure 8.2-left) with peak velocities at 15 deg/s, 30 deg/s, and

45 deg/s, respectively. In condition (d) the same circle underwent unpredictable motion

(Figure 8.2-right) with mean velocity 23 deg/s. In condition (e) ET underwent predictable

sinusoid motion (Figure 8.2-left) with peak 15 deg/s. Finally, in condition (f) panorama

underwent a predictable motion following a soft staircase function (Figure 8.2-right):

θ(t) = 15◦ (sin(2πt)/2πt+ t), peak velocity at 30 deg/s. For unpredictable motion I used

the same function as Niehorster et al. [2015] (the sum of non-harmonic sinusoid motions

with randomised phases):

θ(t) = 17◦
7∑
i=1

ai sin(2πωit+ ρi), (8.1)

where θ(t) is the horizontal object location at time t, ai = {2, 2, 2, 2, 2, 0.2, 0.2}, and

ρi = {0.1, 0.14, 0.24, 0.41, 0.74, 1.28, 2.19}.

Participants, Task

Eleven participants aged 20-42, one female ten male, with normal or corrected-to-normal

vision took part. The quality was measured using a pairwise comparison protocol be-

cause of its relative simplicity and speed [Perez-Ortiz and Mantiuk 2017]. For each trial,

participants were asked to select the monitor which has higher visual quality; i.e. the

one with sharp details and smooth motion. Each participant performed 600 comparisons

(6600 in total). During training, the researcher highlighted key differences in sharpness
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Figure 8.3: Quality across different velocities. +1 JND distance indicates preference by
75% of the population; error bars indicate 75% confidence intervals. Quality increases with
refresh rate, but the increase slows down above 100 Hz. Lower velocities are perceived to
be of higher quality. This is expected as higher velocities induce more blur and requires
higher refresh rates to reproduce.

and motion smoothness in side-by-side 30 Hz vs. 120 Hz animations on content that was

later not used in the experiment.

Sampling

In order to efficiently utilise observers’ time and obtain the most accurate scale possible,

active sampling was used [Ye and Doermann 2014; Glickman and S. 2005; Chen et al.

2013]. The next comparison was always chosen to deliver the most information, i.e. , the

one that have would have the highest impact on the posterior distribution.

Unified velocity scale

All 11 observers performed 420 comparisons within each condition (4620 across all par-

ticipants). To establish reliable quality differences between different velocities, 180 addi-

tional comparisons were collected across velocities for conditions (a)–(c) (velocities 15 deg/s,

30 deg/s, 45 deg/s). The two measurements together enable obtaining a unified quality scale,

taking into account both the refresh rate and the velocity of the object. Since JNDs are

relative, the quality of the lowest measured refresh rate was set to 0 JND. To show the

relative difference between the velocities in the circle animation, the quality of 15 deg/s at

50 Hz was set at 0 JND.
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Figure 8.4: Results of the motion quality experiment for all six animations. (a-d): circle
animation with different velocities; predictable and unpredictable motion. Velocity in
title indicates the maximum velocity during the animation. Each curve was anchored
such that 50 Hz corresponds to 0 JND.
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Results

Figure 8.3 shows the result of the cross-velocity scaling for predictable stimuli. The overall

shape is consistent with most previous expectations: higher refresh rates imply less-

perceivable motion artefacts, but differences above 100 Hz are increasingly more difficult

to observe. In this region of refresh rates, the dominant motion artefact is blur — an

artefact that is diminishing with refresh rate. There is also a clear preference for lower

velocities; the explanation here is two-fold: (1) higher velocities produce more motion blur

when displayed at a fixed refresh rate, and (2) content is easier to see at lower velocities,

so the visual system might have an implicit preference for those. Point (2) can also explain

why the velocities differ more in quality at high than at low refresh rates. At high refresh

rates, when motion blur is small, the observers are picking slower motion. However, at

low refresh rates, when judder is a dominant artefact, the velocities are more difficult to

differentiate (all motion looks bad) and the differences in quality are becoming smaller.

For all six scenes, the predictability of motion influences the shape of the quality curve

Figure 8.4. On the other hand, image content does not seem to be a strong factor, as the

quality curves for circles and panorama (15 deg/s) look comparable. Similar observations

can be made about circles and panorama (30 deg/s). From this, velocity and the pre-

dictability of the motion can be identified as the key factors of the model. I propose that

the quality measured in this experiment can be explained by motion blur and judder.

8.2 A perceptual model for motion quality

In this section I present a perceptual visual model which predicts perceived quality based

on the effects of refresh rate, resolution, tracked object velocity and movement type.

Later, I show that the model explains experimental data, and in Section 8.4, demonstrate

how it can be used to actively control the refresh rate and resolution of rendering.

Formally, I define the content-independent quality difference between rendering on

display A and display B, each using different spatial resolution and refresh rates:

∆Q(. . .) = ∆Q(fA, RA, fB, RB, v, τ), (8.2)

where the quality difference ∆Q is a function of display refresh rate f (Hz), image resolu-

tion R (pixels per degree; ppd), velocity of motion v ( deg/s), and predictability of motion τ

(binary input, predictable or unpredictable by SPEM). The unit of the Q function is JND.

When a display is rendering at a reduced resolution, I assume an image is up-sampled to

the full screen size using a bi-linear filter.

For an overview of the proposed model pipeline, see Figure 8.5. I approximate ∆Q as
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the weighted sum of three components:

∆Q(. . .) =wP ∆QP (fA, RA, fB, RB, v, τ)+

wO ∆QO(RA, RB)+

wJ ∆QJ(fA, fB, v, τ);

(8.3)

i.e. , the amount of blur in the direction of, or parallel to the motion (∆QP ), blur or-

thogonal to the motion, determined by the spatial resolution of the display (∆QO), and

the judder or non-smoothness of the motion (∆QJ). The following sections describe the

three steps to derive ∆QO and ∆QP , then Section 8.2.4 describes the model for ∆QJ .

8.2.1 Blur due to spatio-temporal resolution and eye motion

The first step is to determine the loss of quality caused by the motion blur and the

reduction of resolution. I separate the effect of refresh rate and resolution into three blur

components: display hold-type blur (bD), eye motion blur (bE), and spatial blur due to

the finite screen resolution (bR). I express the amount of each blur as the width of either

a box or a triangle filter in visual degrees.

Hold-type blur (bD)

When the eye follows a moving object, its motion is continuous, whereas LCD displays

can only present a sequence of discrete samples (frames) at a finite refresh rate. As

discussed in Chapter 4, current LCD displays do not necessarily emit a constant amount

of light throughout a frame. However, as the transition periods have been decreasing in

the recent years, and the exact transition profiles are complex, I follow Klompenhouwer

et al. [2004], and approximate hold-type blur with a box filter of the width (in visual

degrees):

bD =
v

f
, (8.4)

where v is the object velocity in degrees per second and f is the refresh rate in Hz.

Eye motion blur (bE)

When the eye follows an object with SPEM, the tracking is imperfect. As discussed

in Section 2.6.3.3, the difference between the object velocity and the gaze velocity is

proportionate to the object velocity [Daly 1998]. Hence such blur can be also modelled

as a box filter with width:

bE = pa v + pb, (8.5)
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Figure 8.6: Combining eye blur (bE) and hold-type display blur (bD). Left column shows
object and gaze location in absolute screen co-ordinates; right column shows the same data
relative to gaze (i.e. retinal location). Object location (top row) is followed by imperfect
eye motion. This introduces eye motion blur, the magnitude of which can be estimated
with σE. Displayed object location is also affected by display hold-type behaviour (bD).
The combined effect of these are shown in the bottom row. Data based on eye tracker
measurements (Section 8.3.1) on 55 Hz monitor.

where pa and pb are constant coefficients. I assume this eye motion blur to be independent

of the display refresh rate, but expect it to vary with the predictability of motion. There-

fore pa and pb are different for predictable and unpredictable motions, as demonstrated

with experimental data in Section 8.3.1.

Spatial resolution blur (bR)

With the general use of bilinear filters for up-sampling images in real-time graphics, the

blur due to reduced spatial resolution is well-modelled by a triangle filter with average

width bR (or base width 2bR). Given the angular resolution R in pixels per visual degree,

the width of the filter is

bR =
1

R
. (8.6)
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v

σD

σRσO σP

σE

Figure 8.7: Blur is anisotropic. For a given motion in the direction v, I propose distinguish-
ing between motion-parallel blur (σP ) and motion-orthogonal blur (σO). Motion-parallel
blur (σP ) consists of resolution reduction blur (σR; red), eye motion blur (σE; blue), and
hold-type display blur (σD; orange). Motion-orthogonal (σO) blur consists only of blur
due to resolution reduction (σR; red). σD and σE ellipses are drawn for visualisation only,
as I assume these sources of blur to be one-dimensional.

8.2.2 Motion-parallel and orthogonal blur

To simplify the combination of different blur types, I approximate each blur component

with a Gaussian filter (see Figure 8.6). A box filter can be approximated with a Gaussian

filter of the standard deviation:

σ =
w

π
, (8.7)

where w is the width of the box filter. This implies:

σD =
v

πf
, σE =

pav + pb
π

. (8.8)

The triangle filter, used to model the resolution reduction, can be considered as the

convolution of two box filters with base width bR. The standard deviation of this combined

kernel is then

σR =

√(
bR
π

)2

+

(
bR
π

)2

=

√
2bR
π

. (8.9)

Eye-motion blur (bE), and hold-type blur (bD) will blur the image only in the direction

of motion, but lowering spatial resolution (bR) will blur the image equally in all direc-

tions. Because of that, I separately compute the blur that is parallel (P) to the direction

of motion and the one that is orthogonal (O) to the direction of motion, as shown in

Figure 8.7.

The blur in the direction parallel to motion (σP ) is given by the convolution of indi-

vidual components:

σP =
√
σ2
E + σ2

D + σ2
R ; (8.10)

and the blur that is orthogonal to the direction of motion (σO) is affected only by the
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resolution reduction:

σO = σR . (8.11)

8.2.3 From σ to quality

Blur introduced by eye motion, hold-type blur, and spatial resolution will result in the loss

of sharpness. To quantify this in terms of loss of perceived quality, the physical amount

of blur is mapped to the perceived quality difference in JND units. The proposed blur

quality function is inspired by the energy models of blur detection [Watson and Ahumada

2011]. Such mapping is applied to the orthogonal (σO) and parallel (σP ) components of

the anisotropic blur separately, resulting in two independent quality values (QO and QP ).

As we are interested in content-independent predictions, the model assume the worst-

case scenario: a pixel-wide line, which is the discrete approximation of an infinitesimally

thin line (Dirac delta function δ(x)). At the limit this contains uniform energy across all

spatial frequencies. When convolved with a Gaussian blur kernel σ in the spatial domain,

the resulting image is a Gaussian function with standard deviation σ.

The Fourier transform of this signal is also a Gaussian, given by:

m(ω;σ) = exp
(
−2π2ω2σ2

)
(8.12)

where ω is in cpd. To account for the spatial contrast sensitivity of visual system, the

Fourier coefficients are modulated with the CSF

m̃(ω, σ) = CSF(ω)m(ω;σ) , (8.13)

where CSF is Barten’s CSF model with the recommended standard observer parameters

and the background luminance of 100 cd/m2 [Barten 2004].

To compute the overall energy in a distorted signal, a range of frequencies are sampled

an octave apart (ωi = {1, 2, . . . , 64} [cpd]), The blur energy is then

Eb(σ) =
∑
i

(
m̃(ωi;σ)

m̃t,b

)βb
. (8.14)

where m̃t,b is the threshold parameter and βb is the power parameter of the model. Both

of these are fitted to psychophysical data in Section 8.3.3.

Energy differences can be interpreted as quality differences, yielding:

∆QP = Eb(σ
A
P )− Eb(σBP ),

∆QO = Eb(σ
A
O)− Eb(σBO),

(8.15)

substituting in the standard deviations of the blur components for A and B, in the
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directions parallel (P) and orthogonal (O) to SPEM.

To gain further intuition as to why an energy model is suitable to predict JND differ-

ences, let us consider the probability of selecting condition A over condition B (P(A � B)).

This preference probability is commonly assumed to follow the psychometric function as

a function of signal contrast or energy. However, the probabilities obtained by this dis-

crimination model do not provide an intuitive, uniform quality scale. Hence, probabilities

are converted to JND units under Thurstone Case V:

Q(A,B) = σΦ−1(P(A � B)) , (8.16)

where Φ−1 is the inverse cumulative standard normal distribution. The choice of σ deter-

mines the relationship between distances in the quality scale and probabilities. Setting

σ = 1.4826 ensures that Q = 1 when exactly 75% of observers select A over B. Note, how-

ever, that the cumulative distribution function itself is a psychometric function. Hence,

the applied psychometric function which transforms energy to probability values is un-

done by the step of transforming probabilities to quality. The proposed model skips these

steps and assumes that energy is a good indicator of quality under the threshold (m̃t,b)

scaling.

8.2.4 Judder (QJ)

On lower refresh rates, finite sampling results in non-smooth, juddery motion. As de-

scribed in Section 2.6.3.4, the visibility of judder can be predicted by transforming the

signal to the frequency domain, and examining aliasing copies of the original signal (see

Figure 2.7).

The location of the first aliasing copy, as shown in Figure 8.8-Left can be determined

as follows: the temporal frequency (vertical axis) is equal to the refresh rate; the spatial

frequency (ρ, horizontal axis) is:

ρ =
f

v
. (8.17)

Given two refresh rates fA and fB, the same energy model architecture is employed

as for blur. The unit signal is modulated with the spatio-temporal contrast sensitivity of

the eye (stCSF), and normalized by a threshold modulation:

Ej(f, v) =

(
stCSF(ρ, f)

m̃t,j

)βJ

, (8.18)

where βJ is the power parameter for judder, and m̃t,j is the threshold for judder. The

threshold is fitted separately for predictable and unpredictable motion. stCSF is Kelly’s

spatio-temporal CSF [Kelly 1979]; however, to account for the finite width of the alias, I
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f

ρ

Figure 8.8: Left: the visibility of judder artefacts are determined by the location of the
first aliasing copy in the frequency domain (highlighted in blue). The peak of the aliasing
copy lies on the red line which in turn is determined by the spatial frequency and the object
velocity. Right: spatio-temporal CSF used in the judder model. Kelly’s model predicts
lower sensitivity values at low spatial frequencies (dashed); in the proposed model, I clamp
this conservatively (solid). Colors show different temporal frequencies.

use a truncated low-pass stCSF, as shown in Figure 8.8-Right. Similarly as for the blur,

I express the quality difference due to judder as the difference of energy:

∆QJ = Ej(fA, v)− Ej(fB, v) . (8.19)

8.3 Model calibration

To determine the free parameters of the proposed model, I collected further data on eye

motion ((Experiment 8.2) and perceived judder ((Experiment 8.3).

8.3.1 Retinal blur due to motion (Experiment 8.2)

Eye motion blur is caused by the differences between object and gaze motion. Daly et

al. [1998] suggested that the difference in velocity and therefore also blur amount (bE)

can be modelled as a linear function of object velocity within the SPEM-tracking range.

There is, however, little data on how this function might change with unpredictable eye

motion, and how to incorporate interaction with display refresh rates. To explore this

problem and to fit the linear parameters (pa, pb) of the proposed model described in

Section 8.2.1, I measured the eye’s ability to follow predictable and unpredictable objects

with an eye-tracker.
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Figure 8.9: Traces of gaze location during SPEM of predictable (left) and unpredictable
(right) objects at different refresh rates. Vertical yellow lines show interruptions in SPEM
(saccades). Unpredictable motion visibly requires more correction saccades, with the gaze
lagging behind object motion. Oscillations comparable to the respective display refresh
rates are not visible.
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( Hz)
No.

saccades
pos

err.(◦)
pos

var.(◦)
gain delay (s)

16.5 21.8 ± 6.8 0.70 0.50 0.60 ± 0.10 -0.01 ± 0.02
27.5 19.9 ± 4.0 0.58 0.40 0.63 ± 0.12 0.01 ± 0.01
55.0 30.6 ± 2.1 0.62 0.45 0.57 ± 0.10 0.01 ± 0.01
82.5 24.0 ± 4.2 0.70 0.58 0.59 ± 0.10 0.00 ± 0.02
165.0 20.6 ± 6.7 0.65 0.48 0.64 ± 0.11 0.01 ± 0.01

16.5 80.1 ± 12.3 1.73 1.24 0.23 ± 0.05 0.11 ± 0.02
27.5 73.6 ± 13.1 1.43 1.05 0.27 ± 0.05 0.09 ± 0.01
55.0 69.4 ± 10.0 1.33 1.01 0.30 ± 0.05 0.09 ± 0.01
82.5 72.5 ± 12.5 1.33 0.98 0.31 ± 0.06 0.08 ± 0.01
165.0 70.8 ± 12.5 1.34 1.04 0.31 ± 0.06 0.09 ± 0.00

Table 8.1: Quality of SPEM tracking. Aggregated eye tracking data for predictable (blue,
top 5 rows) and unpredictable (green, bottom 5 rows) with average object velocity of 20
deg/s. Metrics described in text.

Stimuli

The eye tracker target from Experiment 8.1 was used (bull’s eye and a cross hair; Fig-

ure 8.1). This object moved left-to-right with predictable or unpredictable motion. For

predictable motion the horizontal displacement followed a sinusoidal function with the am-

plitude of 17◦ and four different frequencies to give a peak velocity of {12, 18, 24, 36} deg/s.
For unpredictable motion I used the same motion as Experiment 1 (Equation 8.1). The

stimuli were rendered at a range of refresh rates Ti = {16.5, 27.5, 55, 60, 82.5, 120, 165}Hz.

Setup

The fixation target was displayed on the ASUS monitor with an Eyelink II eye-tracker

sampling the gaze location at 500 Hz (pupil-only mode).

Procedure

Participants were asked to follow the fixation target with their gaze with. Their head

was stabilized on a chinrest 80 cm away from the monitor (field of view of 41◦). Each

session consisted of 30 trials, each trial lasting 20 s. A binocular 9-point calibration was

performed before each trial, selecting the eye that performed better during the 9-point

validation. The order of trials was randomized.

Participants

Five participants aged 20-27 volunteered to take part in the experiments. Four partici-

pants had normal vision, while one participant wore prescription contact lenses.
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Results

Figure 8.9 shows examples of measured traces on different refresh rates for predictable

and unpredictable motion. The eyetracker reported blinks, and I ignored these blink

periods in the analysis. Velocities were obtained by two-point digital differentiation.

Saccades were then filtered out using a threshold method when either eye velocity exceeded

40 deg/s or acceleration exceeded 9000 deg/s2. I verified that results of the threshold method

corresponded to manual labelling.

I analysed the recorded traces with metrics from [Suh et al. 2006], excluding the first

five seconds of each trial and time periods of blinks. Table 8.1 shows the qualitative

results of SPEM tracking averaged across trials: (1) number of saccades (2) eye position

error defined as the average difference between target and gaze location measured in

visual degrees, (3) eye position variability defined as the standard deviation of target-

gaze difference measured in visual degrees, (4) eye gain defined as the ratio of target and

gaze velocity, and (5) delay between gaze and target object, identified as the delay that

gives the highest cross-correlation score of the target and gaze velocities. Note, that this

definition of velocity gain differs from that of Daly et al.[Daly 1998], and as such, it is not

comparable to the frequently-quoted gain value of 0.82.

The results can be summarised as follows: the eye motion is not affected by refresh

rates above 27.5 Hz; but it is affected by the nature of motion (predictable vs. unpre-

dictable). Specifically, SPEM contains significantly more saccades when tracking unpre-

dictable motion than for predictable motion (4.89 vs. 1.56 saccades per second). The

delay when tracking unpredictable motion is also significantly higher (0.092 s vs. 0.004 s).

I therefore fit the same model parameters (pa, bp) for all refresh rate, but separately for

the two motion types.

Analysis

To estimate the amount of blur due to eye motion, bE, the recorded gaze location traces

are split into segments corresponding in duration to the integration time of the eye. In

this analysis, I use 25 ms windows, i.e., the inverse of the approximate foveal flicker fusion

frequency [Simonson and Brozek 2017]. Within each integration window, I estimate eye

motion blur (be) as the difference between two extreme retinal positions of an object

within the window, effectively measuring the width of the box filter (see Figure 8.10). To

reduce measurement noise, the blur width was averaged for all windows with matching

refresh rate and (binned) target velocity.
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Figure 8.10: Eye blur estimation from eye tracking data. Top: gaze does not perfectly fol-
low the target object. Bottom: retinal location is computed as the difference between gaze
position and object position. The data is then split into 25-ms windows; for each window,
bE is estimated as the difference between the maximal and minimal retinal location.

Figure 8.11: Top: blur σ based on eye tracker data for a range of refresh rates (different
colours) and object velocities (x-axis). Blur was computed over 25ms intervals as the
distance travelled by the tracked object on the retina. Dotted line: Daly’s model (dotted).
Bottom row: model predictions for blur taking into account both eye motion and display
hold-type behaviour.
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pa pb
Predictable 0.001648 0.079818
Unpredictable 0.004978 0.176820

Table 8.2: Blur model parameters. For details, see text and Figure 8.11.

Fitting parameters pa and pb

Parameters were fitted to minimise the root-mean-squared-error between model predic-

tions from Equation 8.5 and the average blur values measured in this experiment. Fig-

ure 8.11-top indicates the measured linear relationship between object velocity and bE.

The common velocity gain of 0.82 [Daly 1998] would yield a linear gradient of pa = 0.0045

under the 25ms integration window, which the collected data for unpredictable SPEM

agrees with. However, for predictable motion, results indicate much more accurate track-

ing (and hence less blur). For the fitted parameter values (RMSE=0.02), see Table 8.2.

8.3.2 Judder parameters (Experiment 8.3)

To fit the parameters of the judder model (m̃t,j: energy threshold; βJ : power parameter),

judder artefacts had to be isolated from hold-type blur and measured independently. As

one cannot easily remove blur from low refresh rate and thus juddery motion, I instead

instead opted to do the opposite: generated smooth (high refresh rate) and juddery motion

(low refresh rate) and artificially introduced blur so that its amount was the same in both

conditions.

Setup

Animations were displayed in a single ASUS display in split-screen. The distance was

fixed at 80 cm using a chinrest.

Stimuli

Similarly to Experiment 8.1, participants observed predictable or unpredictable horizontal

motion, following a fixation target or a chequered circle (Figure 8.1 right). In the split-

screen setup, target 1 was rendered with refresh rate fHz, while target 2 was rendered

with 2f Hz, with motion blur simulated to match the hold-type blur of fHz. In practice

this was achieved by rendering all content at 2rHz, repeating the frame in the temporal

domain for target 1, and overlaying two offset frames for target 2. The spatial offset was

computed as v/(2f), where v was the actual velocity of the object.
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Figure 8.12: The probability of selecting the animation with reduced judder (double
the refresh rate) but the same amount of motion blur, at a range of refresh rates for
predictable (red) and unpredictable motion (blue). Observers were unable to tell the
difference between juddery and non-juddery animations above 60 Hz. Error bars denote
95% confidence intervals.

m̃t,j βJ
Predictable 218.712

2.5747
Unpredictable 165.779

Table 8.3: Judder model parameters from Section 8.3.2.

Task

Participants were asked to follow the fixation target with their gaze, then select the

animation that provided smoother motion. They could view each trail for up to 20 s with

the option to replay if needed. Each of the eight voluntary participants completed 108

comparisons.

Results

The probability of detecting judder is shown in Figure 8.12. Judder was detectable for

both predictable and unpredictable motion at 50 Hz and 60 Hz. At 72 Hz and 83 Hz the

observers could not discriminate between the animations. This indicates that the effect

of judder on quality is negligible at 72 Hz and higher refresh rates. Judder was easier to

detect for unpredictable motion.

Model fitting

As explained in Section 8.2.4, measurement results can be predicted by the energy differ-

ence in the spatio-temporal contrast sensitivity function. The best fit of Equation 8.18 to

the measurement was obtained for the parameters listed in Table 8.3. The RMSE of the

model predictions considering both predictable and unpredictable motion was 0.1074 JND.
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wJ wP wO m̃t,b βB
2.218677 1.472819 1.472819 383.5854 1.83564

Table 8.4: Model parameters. For details, see text.

8.3.3 Fitting the quality predictions

To find the final weights of the model, I minimised the root-mean-squared error (RMSE)

between the scaled output of Experiment 8.1, and the visual model for the circle scene.

The data included 3 velocities for predictable motion and one unpredictable motion (a–d in

Figure 8.13). A power of βB = 1.83564 and a threshold value of m̃t,b = 383.5854 provided

the best fit with RMSE=0.312. The relative weights of judder and blur indicated that

the judder component (when present) is a more significant contributor. Fitting the last

parameter of the model, the weight of orthogonal blur relative to parallel blur and judder

(wO), requires careful observation and comparison of spatial blur and motion artefacts.

High wO values bias the model to reject resolution reductions, while low wO values result

in insensitivity to orthogonal blur in slowly-moving images. The stimuli in Experiment 8.1

did not contain spatial blur orthogonal to the direction of the motion; however, the fitted

value of wP provides a reasonable starting point, as both ∆QP and ∆QO consider artefacts

due to spatial blur. An expert observer then adjusted the relative weight of ∆QO to ∆QP

by watching the same stimuli as in Experiment 8.1 at velocities ranging from 0 deg/s to

80 deg/s. I found that wO = wP , provided consistently good quality. In the next section I

consider the predictions of the model, then propose and validate an application showing

that the collection of parameters together can predict a good trade-off between resolution

and refresh rate.

8.3.4 Comparison with the model of Chapiro et al.

Chapiro et al.provides a trivariate quadratic empirical model of motion quality (see Sec-

tion 3.1.2). Figure 8.13 shows the predictions of their model in green. It must be noted

that the maximum velocity measured in their study was 6.6 deg/s while our minimum ve-

locity was 15 deg/s, therefore, both measurements are not directly comparable. For a better

illustration, I aligned their model with the new measurements at low velocities by linear

rescaling of quality predictions. Their model almost perfectly matches the new data for

15 deg/s. However, it is also clear that their model cannot extrapolate predictions for higher

velocities, nor can it distinguish between predictable or unpredictable motion. For a fair

comparison, I refitted their model to the new dataset by linearly rescaling the quality and

reported results in Table 8.5. Their functional model does not seem to improve the fit

over a fitted logarithmic function of refresh rate: p1 log(p2f).
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Figure 8.13: Fitted model predictions (red lines) against measurement data (blue error
bars; 75% confidence). Parameters of the proposed model were fitted for the checkered
circle scene (a-d). There is a distinct difference in the shape of the quality curves for
different velocities (a-c) and predictable vs. unpredictable motion (d). The bottom row
shows that predictions are consistent for the eye tracker target and the panorama scenes
as well. The empirical model of Chapiro et al.(green dashed) provdes an excellent fit for
low object velocity (15 deg/s), but fails for higher velocities.
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Figure 8.14: Predictions for perceived quality on a 15” display with varying resolutions
(horizontal axis) and viewing distances (colours). Top: slow panning motion with the
content moving horizontally across the entire screen in 6.2 s; Bottom: fast motion with
content moving across the entire screen in 1.5 s. Higher resolutions bring diminishing
quality gains, especially when viewed from far. Closer viewing distances also result in
higher angular velocities with more visible motion artefacts.
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features train test (a) (b) (c) (d) (e) (f)

Chapiro et al. 0.54 0.64 0.82 0.39 0.54 0.27 0.83 0.37
log 0.41 0.42 0.44 0.29 0.44 0.46 0.44 0.40
∆QP 0.42 0.43 0.45 0.28 0.46 0.48 0.46 0.40
∆QP , pr. 0.36 0.38 0.30 0.27 0.50 0.30 0.33 0.43
∆QJ 0.51 0.58 0.57 0.66 0.36 0.39 0.63 0.51
∆QJ , pr. 0.67 0.73 0.78 0.74 0.46 0.67 0.81 0.65
∆QP , ∆QJ 0.36 0.35 0.28 0.36 0.33 0.45 0.34 0.35
∆QP , ∆QJ , pr. 0.31 0.34 0.26 0.26 0.42 0.29 0.30 0.38

Table 8.5: RMSE error (goodness of fit) for different combination of model components.
Stimuli are labelled as in Figure 8.13. pr. indicates whether the model distinguishes
between predictable and unpredictable motion. The full model provides the best fit.

8.3.5 Ablation study

To justify the importance of each component of the proposed visual model, I perform an

ablation study. I isolate three key features: parallel quality (∆QP ), judder (∆QJ), and

the isolation of unpredictable vs. predictable motion (pred). I refit the model to the circle

scene for each combination of features, minimising the RMSE error in linear JND space.

Goodness of fit (RMSE) is reported for the training set (the four checkered scenes), and the

eye tracker target and panorama scenes as a restricted test set. Orthogonal blur cannot

be separated in this study, as Experiment 8.1 did not manipulate orthogonal resolution.

The results as presented in Table 8.5 indicate that the judder model (∆QJ) on its own

provides a poor fit to the quality curves (RMSE>0.51), the parallel quality factor (∆QP )

captures some trends, but cannot correctly distinguish between varying object velocities.

Best predictions are provided when each model feature is enabled (RMSE=0.31). Quan-

tifying the significance of each component is non-trivial; further model predictions are

shown in Appendix C.

8.3.6 The effect of resolution

One advantage of the proposed model is that we can extrapolate predictions to different

screen resolutions and viewing distances. Figure 8.14 shows how the perceived quality of

slow (top) and fast (bottom) panning motion changes with the screen resolution (x-axis)

and viewing distance. As expected, an increased screen resolution brings diminishing

returns when viewed from far, and the motion looks worse from a close distance because

of higher retinal velocity.
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8.4 Model application

Limited performance budgets and transmission bandwidths mean that realtime rendering

often has to compromise on the spatial resolution and temporal resolution (refresh rate) of

the generated content. The typical solution to fit within a constrained rendering budget

is to drive the display at a constant refresh rate and vary the rendering resolution or to

render at constant resolution and vary refresh rate.

G-Sync capable monitors offer the freedom to refresh the monitor at arbitrary rates

and without introducing tearing artefacts. However, under limited rendering budget, this

may result in images that are sharp but juddery if the resolution is too high, or blurry but

smooth animation if the resolution is too low. I propose a motion-adaptive resolution and

refresh rate (MARRR) rendering algorithm, where the quality predictions of the visual

model are used in real-time to establish the relative quality of different configurations of

refresh rate and resolution for a fixed rendering budget bandwidth. This can be formulated

as an optimisation problem from an anchor resolution Rκ and an anchor refresh rate fκ:

argmax
R,f

∆Q (R, f,Rκ, fκ, v, τ) s.t. R fΦ Θ ≤ B ∧ f ≥ 50Hz (8.20)

where B is the rendering budget in pixels per second, Φ and Θ are the horizontal and

vertical viewing angles of the monitor respectively. The optimal refresh rate will be

dependent on the current object velocity, and hence, does not necessarily remain constant

throughout the animation sequence. I found that the choice of the anchor point did not

have a significant impact on predictions.

Figure 8.15 shows the model predictions for the ASUS display at fixed viewing distance

(108 cm). For high budgets (> 443 megapixels-per-second; MP/s), the model recommends

keeping the refresh rate and the resolution constant up to a certain velocity and then to

gradually increase the refresh rate at the cost of the resolution. The transition is more

gradual for smaller rendering budgets and unpredictable motion, with slower increase in

refresh rate. The predictions show a rather complex shape of the velocity-budget-rate

surface.

8.4.1 Real-time implementation

To avoid solving an optimization problem (Equation ??) for each frame, the relation

between the pixel budget (B), velocity (v) and the optimum refresh-rate/resolution (R,

f) can be precomputed as a look-up table (LUT). Two such LUTs, one for predictable

and another unpredictable motion, are shown in Figure 8.15. In the experiments, I set

the anchor frame rate to fk = 150Hz, and sample velocity once per deg/s.
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Figure 8.15: Model predictions for different rendering bandwidths (colours; measured in
Megapixels per second) for predictable (top) and unpredictable motion (bottom). The
plots show only the refresh rate as the resolution is determined by the fixed rendering
budget.
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Figure 8.16: Model predictions for different display persistence values. Colours denote
the percentage of the frame duration when the display is on.

Low-persistence displays:

Although the proposed model was fitted and validated only on a high-persistence LCD

display, we can extrapolate predictions to low-persistence displays, such as the ones used

in VR/AR headsets. For this, it is sufficient to assume shorter integration time when

estimating the amount of hold-type blur. Consequently (v/f) is replaced by (vp/f) in

Equation 8.4, where p is the fraction of the frame when the display is on. The reso-

lution/refresh rate plot in Figure 8.16 suggests that high-persistence (high percentage)

demands higher refresh rates even at low velocities, whereas low persistence can keep the

resolution higher under the same budget (278 MP/s). Such a model could be potentially

used to dynamically control the persistence of a display to avoid visible flicker.

Comparison with Debattista et al.:

The approach that is conceptually the closest to the one proposed here is the work of

Debattista et al. [2018], discussed in Section 3.3.2. Since their model does not account

for the velocity of the motion, I consider a range of potential velocities in this analysis.

Assuming a fixed viewing distance of 108 cm yields a field of view of Φ = 30◦, Θ =

16.8◦ in their setup. In Figure 8.17, I plot the optimum resolution (left) and refresh

rate (right) for a given computational budget (x-axis), according to the proposed model

and that of Debattista et al.. Although both models show the same trends, there are

notable differences. The proposed model, intended for real-time graphics rather than

cinematographic content, does not allow for refresh rates lower than 50 Hz. It model

recommends overall higher refresh-rates and lower resolutions, especially when the velocity

of motion is high. However, when the budget is sufficiently large (>100 MP/s) and velocities

are low, the proposed model recommends higher resolutions than that of Debattista et al.

This demonstrates an adaptivity to velocity.
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Figure 8.17: Model predictions for predictable motion for different velocities (colours)
in deg/s (dps) plotted against Debattista et al. [2018] (dashed line). Assuming viewing
distance of 108 cm and a field of view of 30◦. Resolution is relative to linear image size;
Refresh rate predictions are for QHD resolution.

Note that the proposed model has several further advantages, such as adapting to

any viewing distance, maximal display resolution and refresh rate. In the next section I

demonstrate in a psychophysical experiment that adaptive rendering based on the pro-

posed model is preferred over Debattista et al. even within their operational range.

8.4.2 Experiment 8.4: psychophysical validation

To compare MARRR with the current state-of-the-art approach, I pick three computation

budgets and their corresponding refresh rates from Debattista et al. [2018], and demon-

strate how MARRR produces subjectively preferred results. The selected bandwidths

were Bi = {28, 55, 221} MP/s. To account for potential viewing condition differences be-

tween the experiment setups, I tested three fixed refresh rates on and around the reference

values reported in [Debattista et al. 2018].

Setup

The experiment used a 2AFC design with the same setup as in Section 1 — two G-sync

capable monitors stacked on top of each other. I implemented a custom C++ OpenGL ap-

plication that allowed the users to scroll across a panorama image using either a mouse or

predetermined motion. On one monitor, the renderer used a single refresh rate throughout

the entire animation; on the other monitor, the renderer established the optimal refresh

rate (from 50 Hz to 165 Hz) frame-by-frame according to the proposed visual model. For

this, a pre-computed look-up table was used with three input parameters: bandwidth,

velocity, and motion predictability (Figure 8.15). The application reduced rendering res-

olution to meet the budget requirements. The two monitors displayed the same content
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Figure 8.18: Panorama images used in the validation experiment.

but at different resolutions and refresh rates. The mouse movement was synchronised

over the network.

Stimuli

For content, four high-quality panorama images were picked (Figure 8.18). For predictable

motion, the observer could pan the panoramas by moving the mouse. Such user-controlled

motion is predictable and is similar to the target application, e.g. camera rotation in a

first-person game, or camera panning in real-time strategy or simulator games.

For unpredictable motion, I used the same formula as previously (Equation 8.1). The

experiment was more difficult to implement for unpredictable motion. The rapid changes

in refresh rates combined with mis-predictions in the control system of G-Sync during
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the unpredictable motion caused occasional skipped frames. Such motion flaw is not a

limitation of the visual model or the algorithm, but the lack of ability to aid the G-Sync

control system from an application side when picking the current refresh rate. To reduce

these artefacts, I discretised the predicted refresh rates to integer divisors of 165 Hz:

{55, 82.5, 165}Hz.

Participants and procedure

Nine people (aged 20–40) volunteered to take part in the experiment. They all had nor-

mal or corrected-to-normal vision. Participants were asked to imagine a scenario where

they were purchasing a new monitor for playing computer games, and for each trial to

pick either the top or the bottom monitor based on overall visual quality (including mo-

tion and sharpness). The order of the comparisons and the presentation on the monitors

were randomised. Each observer completed 81 and 27 comparisons for predictable and

unpredictable motion, respectively. All participants reported only casual gaming expe-

rience (playing only a few times a month) with little-to-no exposure to high-refresh-rate

monitors.

Results

The results of the validation experiment, shown in Figure 8.19, indicate an overall pref-

erence for MARRR as compared to the fixed rates from [Debattista et al. 2018]. The dif-

ference is particularly strong for mouse-induced (predictable) motion: for all bandwidths,

the proposed algorithm was picked with over a 70% probability. The trend indicates that

the impact of activating adaptive rendering was lower for higher bandwidths, which is

consistent with expectations. For unpredictable motion, MARRR provided better overall

results, but for high-refresh-rate conditions the experiment was inconclusive. Better syn-

chronisation capabilities with the monitor should allow for a less noisy comparison in the

future.

8.5 Limitations

I derived this model for the assumption of the worst-case content — an pixel-wide line

orthogonal to the direction of motion. This helped us to make the model content-

independent so that its predictions can be pre-computed and stored as a look-up table.

However, a less conservative model, considering image contents, could potentially pro-

vide better control over the resolution and refresh rate. The model also made a general

assumption on the monitor brightness, which implies that different displays (especially

high-luminance HDR displays) might require a different fit.
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Figure 8.19: Results of validation experiment showing the percentage of participants
picking the proposed adaptive MARRR algorithm over standard constant-resolution-and-
constant-refresh-rate rendering, viewing predictable (top) and unpredictable (bottom)
motion. Colours denote different rendering budgets. The refresh rates were selected
around the predictions of [Debattista et al. 2018]. Error-bars denote 95% confidence
intervals.
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While the validation experiment (Section 4) showed positive results, current display

technology seems to be a greatly limiting factor for validation. I anticipate that adaptive

spatio-temporal resolution could have a significant impact on virtual reality, but I was

unable to test this hypothesis without a VR headset supporting adaptive refresh rates. I

also faced issues driving G-Sync with precision and accuracy. Operating system interrupts

and other background tasks can throw the algorithm off, revealing blurry artefacts. Cur-

rent monitors implement G-Sync as a control system. This means that the display is able

to adapt to arbitrary refresh rates, but estimating the new refresh rate and transitioning

to it takes time. A direct interface to request a specific refresh rate from G-Sync would

greatly benefit the proposed technique and would allow a better evaluation especially for

unpredictable motion.

The proposed algorithm requires knowledge of the velocity of the object the user is

following with the gaze. In the experiments, I achieved this by instructing the user to

follow a certain object, or applying the same motion vector across the whole screen.

Ongoing work by my co-authors have demonstrated that MARRR can also operate in

complex game setups. They achieved this by integrating the algorithm into a popular

Unity game, combining user input and gaze location to derive a SPEM velocity value.

More detail on this work is to follow.

Finally, while the proposed visual model generalises in principle to VR headsets, pa-

rameters were calibrated to high-persistence displays. Further psychophysical experiments

would be needed to re-fit for low-persistence headset with potential extensions to account

for ghosting and flicker artefacts.

8.6 Summary

Simple insights into the visual system are powerful. However, to create, calibrate and

analyse novel graphical algorithms, we need to either rely on a new psychophysical ex-

periment every time, or a visual metric that is known to correlate with subjective pref-

erence. In this chapter, I presented new psychophysical data on motion perception on

high-frequency monitors (50–165 Hz). Then, I introduced a visual model for two promi-

nent motion artefacts: judder and motion blur. Finally, I used this visual model to design

a novel motion-adaptive resolution and refresh-rate rendering (MARRR) algorithm. The

presented results also revealed that while an empirical function might offer a simpler

model, a white-box approach can be still desirable, as it is more robust in novel circum-

stances.
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CHAPTER 9

CONCLUSION

“The curtain now rises upon the last act of our little drama, for hard-hearted

publishers warn me that a single volume must of necessity have an end.”

Thomas Hughes

Tom Brown’s schooldays

The main goal of my PhD was to demonstrate that insights into and models of temporal

perception can play a crucial role in the future of computer graphics. Graphics algorithms

typically run on a GPU – perhaps the most powerful part of modern computers. However,

with the rapid improvement of VR and AR, the resolution, refresh rate and power demand

of these headsets have shown that näıve approaches such as rendering every pixel for each

frame is simply unfeasible. Researchers have reached out to the field of visual science, and

have proposed algorithms with insights into visual perception. The resulting algorithms,

such as foveated rendering and chroma subsampling show promising results; however,

the temporal domain has received remarkably little attention. In this dissertation, I

highlight the importance of the temporal domain, and suggest models and algorithms

that incorporate perceptual knowledge to aid the design of future computer graphics

algorithms.

9.1 Contributions

The main contributions of my work are as follows:
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Temporal resolution multiplexing

In Chapter 5, I demonstrated how a relatively simple insight into the visual system can

drive the design of a novel rendering algorithm. Specifically, I exploited the eyes’ limited

sensitivity when it comes to high spatial and high temporal frequencies. TRM’s design

and integrability with existing pipelines makes it an appealing algorithm for VR. This

work has received both academic recognitions (best journal paper award), and interest

from industry partners who develop next-generation VR headsets.

Multi-scale visual models in the temporal domain

In Chapters 6–8, I described how multi-scale visual metrics can be applied to temporal

problems, such as flicker detection, and motion quality estimation. The models incorpo-

rate knowledge from the field of vision science, and fit any free parameters to results of

psychophysical experiments.

Motion-adaptive rendering

In the second half of Chapter 8, I presented a novel adaptive rendering algorithm which

takes screen parameters (maximum resolution, viewing distance, maximum refresh rate),

and on-screen motion information to account to predict the ideal trade-off between reso-

lution and refresh rate for a fixed computational budget. The algorithm showcases how

the visual models proposed earlier in the dissertation can be applied to render content

efficiently.

Display modelling

While perhaps not so much of an individual contribution, but certainly a crucial aspect of

my work is the use of physical units to express stimuli (e.g. cd/m2 for luminance). Much

of the existing literature in computer graphics and image processing relies on display-

referenced pixel values, which are not robustly applicable when applied to a novel display

with higher field of view, higher luminance, or just a previously uncommon viewing dis-

tance. In this dissertation, I provided accurate physical measurements of all displays

involved, establishing both their luminance response and temporal characteristics. I also

fitted existing display models and provided new extensions when needed.

9.2 Future work

Human perception is an incredibly complex problem; the visual system has several un-

expected limitations. Even within the temporal domain there are numerous directions
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unexplored in this work. Since VR headsets offer a previously unseen field of view (above

110 degrees), a promising direction would be to explore temporal artefacts in the periph-

ery. Foveated rendering is known to reduce rendering cost by up to 80%, but current

metrics do not even consider the highly-prominent flicker artefacts that are just as visible

in the periphery, as in the fovea. A topic of similar interest could be how motion can mask

flicker artefacts. Especially in the periphery, modelling this phenomenon could help to

drive the trade-off between flickering and ghosting artefacts, commonly found in modern

temporal anti-aliasing (TAA) algorithms. Another interesting direction is the incorpo-

ration of colour: colour sensitivity is known to be low for high spatio-temporal signals;

a limitation which could be exploited by an algorithm similar to TRM. Finally, in this

dissertation, I considered only three of the four motion artefacts. Although flicker, blur

and judder artefacts are the most prominent in modern real-time graphical applications,

future studies could investigate the relative importance of false edges, especially in the

context of low-persistence displays.

9.3 Final remarks

Human vision and computer graphics are inherently related: content produced by graphics

algorithms is primarily “consumed” by human observers. I hence started this dissertation

following the dual of the well-known computer vision argument that “vision is inverse

graphics”. Following this logic, I argued that understanding the human visual system

can drive the design of novel graphics algorithms. However, to come up with the perfect

invertible model is simply impossible for now. We do not possess enough knowledge of the

exact behaviour of the visual system – and since it is part of our brain, some argue that

we shall never have a complete model. However, that should not stop graphics researchers

from applying existing visual science knowledge. I believe this work has demonstrated

how some understanding of the visual system can lead to crucial performance savings.

At the same time, the dissertation also highlights that computer graphics research would

benefit from considering the temporal dimension with more care.
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APPENDIX A

DISPLAY PROFILES

This appendix section contains detailed results of the display measurement results includ-

ing the least-square-fit gamma-offset-gain model parameters.
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A.1 Dell Insipron 17R 7720 3D

Peak luminance: 324.90cd/m2

dynamic range: 1184:1

profile

γ = (2.54, 2.38, 1.68),

black level: bXY Z = (0.2829, 0.2742, 0.5714),

MXY Z→RGB =

 0.0109 −0.0030 0.0001

−0.0052 0.0057 −0.0004

−0.0017 0.0002 0.0029


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A.2 Samsung SyncMaster

Peak luminance: 192.80cd/m2

dynamic range: 1029:1

profile

γ = (2.51, 2.18, 1.68),

black level: bXY Z = (0.1933, 0.1873, 0.3158),

MXY Z→RGB =

 0.0139 −0.0054 0.0007

−0.0061 0.0103 −0.0016

−0.0022 −0.0000 0.0072


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A.3 ASUS PG279Q

Peak luminance: 155.20cd/m2

dynamic range: 1154:1

profile

γ = (2.10, 2.10, 2.12),

black level: bXY Z = (0.1266, 0.1289, 0.2192),

MXY Z→RGB =

 0.0211 −0.0061 0.0005

−0.0098 0.0117 −0.0010

−0.0033 0.0003 0.0066


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A.3.1 High-refresh-rate model parameters

90 Hz

γ = (2.05, 2.05, 2.04),

black level: bXY Z = (0.1237, 0.1255, 0.2201),

MXY Z→RGB =

 0.0209 −0.0059 0.0004

−0.0096 0.0115 −0.0009

−0.0033 0.0003 0.0063

,

prgb =

0.1888 −0.2976 0.4957 −0.0315

0.2326 −0.3554 0.4821 −0.0282

0.2365 −0.3754 0.4900 −0.0326


120 Hz

γ = (2.06, 2.05, 2.07),

black level: bXY Z = (0.1237, 0.1258, 0.2225),

MXY Z→RGB =

 0.0209 −0.0059 0.0004

−0.0096 0.0115 −0.0009

−0.0033 0.0003 0.0063

,

prgb =

0.1965 −0.3145 0.4954 −0.0282

0.2281 −0.3679 0.4937 −0.0313

0.2409 −0.3959 0.4939 −0.0294


165 Hz

γ = (2.08, 2.07, 2.08),

black level: bXY Z = (0.1307, 0.1285, 0.2214),

MXY Z→RGB =

 0.0208 −0.0059 0.0004

−0.0095 0.0114 −0.0010

−0.0032 0.0003 0.0063

,

prgb =

0.2054 −0.3433 0.4986 −0.0259

0.2372 −0.3863 0.4932 −0.0278

0.2601 −0.4331 0.4908 −0.0253


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A.4 HTC Vive

Peak luminance: 183.32cd/m2

dynamic range: 7667:1

profile

γ = (2.29, 2.25, 2.19),

black level: bXY Z = (0.0313, 0.0240, 0.0125),

MXY Z→RGB =

 0.0109 −0.0042 0.0003

−0.0032 0.0089 −0.0004

−0.0017 0.0004 0.0046


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A.5 Oculus Rift

Peak luminance: 84.26cd/m2

dynamic range: 9810:1

profile

γ = (2.15, 2.09, 2.06),

black level: bXY Z = (0.0079, 0.0095, 0.0073),

MXY Z→RGB =

 0.0232 −0.0086 0.0005

−0.0064 0.0187 −0.0014

−0.0034 0.0008 0.0105


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A.6 Huawei Mate Pro 9 – normal mode

Peak luminance: 371.40cd/m2

dynamic range: 33102:1

profile

γ = (2.41, 2.36, 2.32),

black level: bXY Z = (0.0126, 0.0120, 0.0247),

MXY Z→RGB =

 0.0056 −0.0022 0.0001

−0.0018 0.0044 −0.0002

−0.0008 0.0002 0.0022


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A.7 Huawei Mate Pro 9 – VR mode

Peak luminance: 40.50cd/m2

dynamic range: 3695:1

profile

γ = (2.39, 2.46, 2.28),

black level: bXY Z = (0.0178, 0.0119, 0.0144),

MXY Z→RGB =

 0.0527 −0.0200 0.0008

−0.0174 0.0409 −0.0014

−0.0077 0.0018 0.0199


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APPENDIX B

FLICKER MARKING STIMULI

Probability of detection

0% 25% 50% 75% 100%

reference Fi Fi+1 User marking Model prediction

σ = 0.25◦

70 Hz

σ = 1.02◦

80 Hz

σ = 0.41◦

60 Hz

σ = 0.76◦

72 Hz

σ = 1.52◦

84 Hz
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σ = 1.02◦

80 Hz

σ = 1.02◦

120 Hz

σ = 0.10◦

62 Hz

σ = 2.03◦

90 Hz

σ = 1.02◦

85 Hz

σ = 0.25◦

70 Hz

σ = 0.46◦

70 Hz
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90 Hz
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σ = 1.02◦

80 Hz

σ = 2.03◦

88 Hz

σ = 1.02◦

90 Hz

σ = 2.03◦

90 Hz

σ = 1.52◦

90 Hz
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APPENDIX C

MOTION QUALITY MODEL

PREDICTIONS

This appendix section is a qualitative extension to the ablation study in Section 8.3.5.

The proposed complete blur-judder model (red colour in the plots) provides a good fit

within the target refresh rate range. Furthermore, unlike alternative models, predictions

below and above the target refresh rate range are also plausible.

Figure C.1: Predictions of different model versions for the target refresh rate range (from
50 Hz to 165 Hz). With the exception of the judder-only model (QJ), all models provide
reasonable predictions.
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Figure C.2: Predictions of different model versions above the target refresh rate range
(>165 Hz). The complete proposed model (red) provides the most reasonable predic-
tions; the log-model (green) is inconsistent with the visual system’s diminishing ability
to differentiate between high refresh rates; the judder model (purple) is inconsistent with
existing measurements which show that humans can differentiate between refresh rates
above 150 Hz.

Figure C.3: Predictions of different model versions below the target refresh rate range
(<50 Hz). Witch such low refresh rates, the quality curve is expected to be reasonably
steep. The judder-only model provides perhaps the most intuitive results, with the com-
plete proposed model (red) coming second best. For more accurate predictions, flicker
artefacts would also need to be considered.
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