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ABSTRACT

This thesis is concerned with the investigation of some issues and 
problems of re a l- tim e  or  near r e a l- tim e robot vision and studies if an 
a p p ro p ria te  image rep resen ta tio n can serve as one approach to solve 
some of these problems.

The approach adopted here is based' on a m u ltire so lu tio n a l fo vea l  
(MF) image derived from some pertinent characteristics of the human 
retina image-acquisition system at the fovea and at the para/perifovea 
known as M u ltire so lu tio n a l Foveal Image R epresen tation  or M u ltire so lu ­
tio n a l Foveal Images.

The computational formulation and mathematical analysis of the MF 
image representation is pursued in further detail.

A suggestion is put forward using Linear Time-Invariant analysis 
that such an MF image provides an explanation for the source of the 
independent narrowly-tuned s p a t ia l  channels in the Human Vision S ys­
tem, widely observed in experimental psychovisual studies.

The techniques of the Multiresolutional Foveal Image representation 
are applied to three widely-researched issues of robot/computer vi­
sion, namely Semantic O bject R ecogn ition , Occluded O bject R ecognition  
and H ierarch ica l Image Transmission.

Computation and experimental results in this investigation show 
that the methods of MF Images do provide viable alternative solutions 
to some of the problems of robot vision.
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Statement o f  Originality.

The following paragraphs describe some aspects of the 
thesis that are original contributions.

In developing an alternative image representation for 
robot vision, the properties of the human visual system was 
the motivating factor. This led to the formulation of the 
Multiresolutional Foveal Image representation, (MF image) 
based on the foveal and perifoveal characteristics of the 
human eye.

This MF image has subimages of gradually decreasing 
resolution, extending from the image centre. The degraded 
resolution-factors of the perifoveal regions are represented 
as equivalent low-passed filtered images of different cut-off 
frequencies. These contrast with the multiresolutional pyra­
midal image representations in which each image layer has 
only one resolution factor.

The multiresolutional forvea-centred image was used as a 
composite mask for the generation of the semantic boundary of 
an object of interest. This mask is called the local MF image 
and is defined by a multiresolutional set of pixels, obtained 
from descriptions of both unthresholded edge-orientations and 
edge-strengths, thus providing a richer and more robust, 
weighted boundary detection scheme.

The study of the characteristics of this Multiresolution­
al image as a set of cascaded filters led to the search for a 
possible correspondence with optimal filters for robot vi­
sion, as proposed by others. By combining the properties of 
the Cornsweet Model for backward neuronal inhibitory inter­
action and the properties of visual receptive fields, it was 
found that spatial bandpass filters do result from this MF 
image representation. It was found that such bandpass filters 
in the MF image representation had bandpass-filter variables 
that make them arguably a suitable candidate for a class of 
optimal filters for robot vision.
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The adaptation of the Multiresolutional Image Representa­
tion as a basis for an alternative image coding scheme 
referred to, by various authors as ’gross coarse-information 
first’ coding, further showed that it does possess proper­
ties of compact image storage, simple reconstruction and 
interactive transmission for visual images, which are often 
required in a robot vision applications.

Two suggestions on the possible methods to generate 
Multiresolutional Foveal Images in near real-time were pro­
posed. The first method is based on the properties of the 
optical defocussing of visual images in a specially struc­
tured CCD array inside the vision camera. The second method 
is more conventional, using modified electronic timebase 
circuitry, together with pipeline, hardware, analogue low- 
pass filters as generators of the Multiresolutional Fovea 
images.
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CHAPTER 1

Image Representations and Robot Vision.
Image Representation and Robot Vision can be very much interrelated. Robot Vision 

must inevitably use an appropriate representation to perform its computational tasks. An 

image representation therefore constitutes the data structure or knowledge representation of 

the image to be computed upon. It not only specifies the way in which image entities at its 

various levels are to be encoded and described, it also directly or indirectly implicates the 

hardware and computational efficiencies of Robot Vision. These ideas will be expanded 

upon in the definitions that follow.

1.1 The Nature of the Problem and some Definitions.

Robot Vision, sometimes also loosely referred to as com puter vision or machine 

vision is the application of image processing techniques for robotic tasks [Horn8S]. 

Rosenfeld [Rosen87] makes a distinction between image processing and robot vision in 

defining image processing as a transformation of one image to another image with some 

desired characteristics (e.g smoothed) without a need to provide any description, whereas 

robot vision transform s an image with the aim of generating a description of the image to 

the user (in this case the robot). In the broadest sense, robot vision may be defined as the 

automated process of extracting, characterising and interpreting real-world, 3-D image 

information and may be subdivided into the following areas:

a)image sensing and acquisition, b)preprocessing, c) segmentation, d)description, 

e)recognition and ^ in terpreta tion . [Fu,Gonzales,Lee87].

These tasks can be grouped as low, mid, and high-level processes and a diagrammatic 

interpretation of these tasks is illustrated in fig 1.1 where some details of these processes 

commonly used in present-day robot vision are also described. Robot Vision would be more 

powerful if it could readily use some of the richer real-world image information like 

motion,stereo perception, colour etc. This may be possible in the near future with faster and 

parallel systems without the limitations of data I/O and other bottle-necks but generally, 

current real-tim e passive industrial robot vision systems have to be understandably and 

practically restricted to process images that are 2 -D  p la n a r  a n d  b i le v e l  with a high-contrast 

and a easily-segmentable background [Rosen87].

The techniques used in robotic vision are also relatively multi-disciplinary in nature 

and cover a broad area, ranging from image and signal processing, (image transformation, 

encoding and transmission), pattern recognition (feature extraction, statistical and syntactic), 

geometric modelling (model fitting), cognitive processing and Artificial Intelligence 

techniques (searches, algorithmic graphs, goals and plans). It is therefore not too surprising that
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Fig. 1.1 Illustration of Various Processing Levels 
of monocular Static Robot Vision.
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1 2  Image Representations at different levels
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Image Representation.

A representation is a fo r m a l  sy s te m  fo r  m a k in g  e x p lic i t  c e r ta in  e n t i t ie s  or ty p e s  o f  

in fo r m a tio n , a n d  a s p e c i f ic a t io n  o f  how  th is  h a s  to  b e  d o n e . [Marr82]. Representation 

plays a crucial role in determining the computational complexity of an information- 

processing problem. In enabling the computer to process the images, a suitable 

representation of the visual image must be employed that will encode the visual scene such 

that the essential knowledge and s tr u c tu r a l  r e la t io n s h ip s  in the scene are maintained. Such a 

knowledge representation of the image can be described as the image representation. Image 

representation is not a strict definition as it also implies a r a n g e  o f  r e p r e s e n ta t io n s  

(depending on which processing level as in para 1 above) whose appropriateness as a good 

representation depends on the computational level in question. These representations are 

shown in figure 1 .2  which emphasises the various representations due to the different image 

processing levels and the n a tu r e  of the image. It will be noticed from the figure that the 

choice of artimage representation at any lower level will implicate the computational 

complexities (serial/parallel operations), data structures (graphs, nodes, trees, lists etc) and 

algorithms at the higher levels, and therefore a judicious choice of the right representation 

at the right level will be quite a deciding factor on how good is the solution.

1.2 Real-Time Robot Vision: Difficulties and Problems

It may be necessary to emphasis that one of the aims of Robot Vision is its ultimate 

capability to execute its tasks in real-time or near real- time. This really means that solutions 

should be obtained within a time suitable for the task at hand, or within an equivalent time 

if performed by man (e.g parts inspections in a assembly line). The human model of real­

time vision processing is sometimes employed as a standard ( e.g. geometrically invariant 

object recognition ) since it is considered the most superior for such applications. This 

creates a desire to incorporate features of human-like visual processing for machine vision as 

is also pursued in this thesis. The difficulties and problems in real-time robot vision are not 

only due to the enorm ous amount of image information that needs to be  p ro c e s s e d  b u t  how b e s t  

to make inferences from the information that is available using the existing hardware, for 
image acquisition and information processing, which, at a non-laboratory environment, is 

likely to be a standard Von-Neuman machine with conventional T e le v is io n  S ta n d a r d  fr o n t - e n d  

s y s te m s .  These difficulties and problems may classified into 4 main areas in paragraphs 1.2.1 

to 1.2.3.

it can be considered as one of the more difficult technological challenges today.
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1.2.1 A case of a Ill-posed Problem.

The task of visual perception is acknowledged to be intractable in a straightforward 

manner. Even the subproblem of polyhedral labelling have been shown to be N P -c o m p le te  

[Kirousis and Papadimitriou85]. This is notwithstanding the issue of the ill- posedness of the 

problem. It is quite widely accepted that many of the problems in Computer Vision are ill- 

posed. This means that the problem domain contains uncertainties that cannot be resolved by 

the problem solver. One way of easily describing this ill- posedness is to consider a 

dimensionality inference task in Computer Vision where rich 3-D or even 2 1/2-D 

descriptions are expected from a essentially 2-D image frame without sufficient inputs from 

higher level knowledge and subjected to the vagaries of optical physics and global 

assumptions (e.g shape from shading). Current trends in Active Vision and M ultisensor 

Fusion [AAAI87] are indicative of ways in which these ill-posed problems are proposed to 

be solved.

1.2.2 Problems in the hardware.

It is difficult to pin-point one single area in hardware that would be considered a 

crucial impediment to Robot Vision. Whereas in earlier years,the image acquisition front- 

end was considered in need of improvement in terms of spatial resolution, quantisation 

errors and speed of frame- capture, advances have been rapidly achieved in recent years 

where spatial resolution in excess of the human visual acuity and real- time colour frame- 

grabbers are not uncommon. It seems that at the present, the problem relating to Computer 

Vision hardware is that of h o w  b e s t to  u se  th e  e n o r m o u s  im a g e  in fo r m a tio n  that is available, 

in a way that is faster and more Gestalt-like, than at present. While novel computer 

architectures like cellular arrays can solve certain classes of computer vision problem 

[Uhr72], the author feels that a more economical and imminent solution perhaps lies in the 

wider use of hardw are systolic o r  pipeline circuitry, special arithmetic processors and 

other digital Signal Processing Chips, together with processors capable of both serial and 

parallel processing (e.g. Transputers), as far as passive real-time Industrial Robot Vision is 

concerned.

1.2.3 Problems in the Computational Approach.

The multi-disciplinary nature of Robot Vision requires a study of a possibly unified 

approach in the Computation. Although in earlier years, the human perception model was 

suspected to be a detractor to how best Robot Vision should be approached  ̂ there is 

now more consensus that the human perception model is a more realistic model for Robot 

Vision. W orkers like M arrfM arr^ H an so n  and Riseman [Hanson80], Uhr [Uhr72],
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Macclelland, [Rumel/Macc86], Aleksander [Aleks87] have, in their various ways, 

incorporated features of human visual perception for robot vision. Although it is felt that a 

single Universal Com putational approach seems more unlikely now as the problems in 

Robot Vision become more user-specific,with new technologies being explored (e.g. active 

illumination, active viewer and multi-sensor fusion) an understanding of the fundamental 

difficulties is still very desirable.

1.2.4 Limitations of Image Representations.

Following the classification of Rosenfeld [Rosen82] and concentrating on the 

hierarchical characteristics of the representation, it is convenient to classify image 

representations into two categories:-

a) H ierarchical or non-traditional image representation and

b) Non-hierarchical or traditional image representation.

The traditional image representation is defined as those image representations that treat each pixel 

in the image as an entity of equal importance or weightage as in uniform fine-resolution images of 

conventional robot vision. The non-traditional image is characterised by the variation in importance 

of the pixels within the image as in p y r a m id a l  o r  h ie r a r c h ic a l  image data structures. Each of the 

representations above has a particular suitability for certain robot vision task. As an example, the 

pyramidal representation is useful where hierarchical coarse to fine searches are required but has 

the weakness of being unable to handle image pixels with intermediate fine-resolution as each 

pyramid layer has a finite logarithmic-order resolution. The traditional image representation is not 

as elegant when used in performing data abstractions in a more global window, but has the ability to 

perform  global uniform-resolution, low-level searches (e.g Hough searches ). Other methods of 

image representation using t r a n s fo r m  M e th o d s  (e.g Fast Fourier, Discrete Cosines, Hardamard, Haar 

etc ) though generally used with uniformly weighted coefficients can similarly be used in a 

hierarchical manner by ordering these coefficients. A clear distinction between hierarchical and 

non-hierarchical representations is not as easily defined since it is always possible to have a means 

of creating a hierarchy in the computational structure in order to make good use of such 

h ie r a r c h ic a l ly  s tr u c tu r e d  d a ta . However for speed and other desirable properties in computation, it 

should be more desirable that such hierarchically data should be derived in a n a tu r a l  and as e a r ly  as 

possible. Further a desirable image representation should also is o m o r p h ic a l ly  m a p  [Tsotos87] one 

domain to the other so that the representation maintains the features of the domain as much as 

possible throughout the hierarchy. This can be explained by noting that if the knowledge of spatial 

relationships in a scene is necessary for vision, then it should be desirable that spatial information 

be directly and easily extracted from the representations.

A suitable image representation that has the optimal combination of the good features of the
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various representations, especially for robot vision would be a very desirable goal. It is therefore 

believed that the M ultiresolution foveal Image representation in this thesis fulfils some of the 

requirem ents of a desirable image representation for Robot Vision, in that it possesses the following 

essential characteristics:- [ Fong( INNS-9 0 ) , Fong( ICARCV-90) ]

a. There is a h ie r a r c h y  in the structure from the various graded-resolution images.

b. The hierarchy is n a tu r a l ly  o r d e r e d  through the use of s m o o th  tr a n s i t io n s  in the 

multiresolutional images.

c. E m e r g e n t  properties of such arrangements of hierarchical processing can arise from 

interactions between the hierarchies. As an example, the primitive hierarchically-ordered 

low-pass images can generate spatial bandpass channels, such 1 independent narrowly- 

tuned channels* being a reason for optimal filtering in the human visual system 

[Sullivan82]. These aspects will be modelled in chapter 5.

1.3 Objectives and Outline of the Thesis.

In the following paragraphs the main objectives and the outline of the thesis shall be 

described. In essence, it hopes to explain why the Multiresolution image representation with the 

finest resolution in the central part of the image called the M ultiresolution Fovea-Centred Image 

Representation or MF image for short, possesses features making it worthy of further investigation 

as a suitable image representation, especially for Robot Vision. It has been strongly motivated by 

the arguments of experimental psychologists [Sull82],(Campbell and Robson68] that the optimal 

vision processing for im a g e  u n d e r s ta n d in g  is a set of s p a t ia l  v is io n  c h a n n e ls  and the well-accepted 

knowledge of the structure of the vertebrate retina with recent findings of the visual neuronal 

processing in the aspects of receptive fields and inhibitory actions [Cornsweet70].

1.3.1 Primary Objectives of the Thesis.

The primary objectives of the thesis shall be to investigate if there exists an alternative image 

representation that has desirable features for robot vision tasks. Such a image representation shall 

be formulated, analysed and used in two applications for robot vision tasks of a) semantic object- 

segmentation using perifovea-guided line-tracking, and b) occluded object recognition using local 

MF images that provide I n tr in s ic  im a g e s  in the context of Barrow and Tennenbaum [Barrow and 

Tennenbaum78]. The multiresolutional structure of the retina shall be modelled as as set of 

cascaded low-pass filtered images with properties of spatial bandpass,emerging from receptive fields 

and inhibitory actions. A study will also be made on the properties of the MF image representation 

as a compact and lossless image code, for which any desirable image representation should 

also concurrently possess. Constant reminders shall be made to the need for real-time performance 

and engineering implementability of the solutions.

18



1.3.2 Related Work.

Most M ultiresolutional models point to the earlier work of Kelly who used a 

m ultiresolutional image to obtain the outline of a human head by the p la n n in g  approach of Minsky
J

[M insSl]. Although Kellys image was a thresholded binary image of 32 by 32 pixels, it was shown 

to perform  considerably better than current approaches of its day. R e c o g n itio n  C o n e s  were 

developed by Uhr [Uhr72] as a visual computation model emulating the hierarchical processing in 

human visual perception. Similar pyramidal or cone systems were developed by Hanson and 

Riseman [Hanson 8o], Tanimoto [Tani79], Klinger [Klinger76] and Levine [Levine85] and Burt 

[Burt86]. Although there are some differences in the their various approaches, they are essentially 

an application of a parallel set of operations (generally called transforms) on the raw image at 

various layers with each layer processing the transforms generated by the previous layer, until the 

highest layer is reached. They could appear as operations on quad-trees, octrees, regular recursive 

decompositions or just plain pyramidal graph operations but the essence is a fast hierarchical 

computation on the nodes of a graph. Further related extensions were made for specific computer 

vision tasks using these hierarchical images for image segmentation [Trevor and Wohn88], model- 

based object recognition [Neveu and Chin86], Gaussian Pyramids [Tani80], Laplacian Pyramids 

[Burt86].

The work in this thesis is most related to the Gaussian and Laplacian pyramids, though with 

the difference that the emphasis is towards robot vision tasks rather than on general parallel image 

transform ations (e.g image smoothing, enhancements and non-semantic edge detection etc), for 

which much of the pyramidal systems have been directed towards.

1.3.3 The Multiresolutional Fovea Image.

In the most simple way, we can say that the MF image is an attempt to have an image that 

has, as much as possible, the properties of image-acquisition through the graded resolutions of the 

vertebrate retina. This MF image is relatively crude and primitive, having ignored descriptions of 

colour, motion, stereo perception etc. Two formulations of the MF image shall be studied, namely 

the G lobal MF image (GMF) which attempts to simulate the image in the p r e - a t te n t iv e  phase of 

object perception and the Local MF image (LMF) which simulates the lo c a l fo c u s e d - a t te n t io n a l  

phase of object perception [Marr82].

1.4 Organisation of the chapters.

Chapter 1 introduces the definitions and a statement of the problems of robotic vision in 

general pointing out the m ulti-disciplinary nature and the ill-posedness of robot vision problems. It 

describes the strong link between good image representation and robot vision in establishing sound 

computational approaches and introduces the Multiresolutional Foveal Image Representation as a
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representation for some robot vision tasks.

Chapter 2 is a review of the approaches and techniques available to solve a selection of the 

robot vision tasks. It discusses the concepts and approaches of some prominent workers in this field 

of Computer Vision, these approaches being selected with regard to their seemingly differing 

solutions towards general Robot vision problems. Briefly, these are:-

a. The importance of a S tr u c tu r a l  D e s c r ip t io n  of an image through the creation of intrinsic 

images of Barrow and Tennenbaum.

b. The need for a C o m p u ta t io n a l  T h e o r y  o f  V is io n  using some aspects of human perception as 

a model.

c. The approaches of faster solutions to image processing by the use of cellular array 

processors[Duf$5jand the pyramidal approaches of Uhr and Tanimoto.

d. The solutions to some specific problems in real-time robot vision as recognition devices, 

through the use of some equivalent massively parallel random access memory 

computations, as in the approaches of Aleksander [Alekslfl] and further possible 

extensions in Probabilistic Logic Nodes (PLN).

e. The approaches of K.S. Fu using s y n ta c t ic  m e th o d s  Fu[Fu74rJ

f. The industrial methods of robot vision as simpler model-based searches which have tested 

successes in practice [Perkins78].

Chapter 3 surveys the hierarchical and the non-hierarchical image representations that have 

been proposed for computer vision problems. The dichotomy follows that of Rosenfeld in that 

multiresolutional and pyramidal image representations are considered hierarchical.

Chapter 4 introduces the details of the Multiresolution Foveal image. It describes the 

structure of the image, the motivations, the biological and psychological parallels in using such a 

representation for robot vision tasks. The choice of a suitable generating kernel for the perifoveal 

areas is discussed. It also shows the computational advantages in using the multiresolutional foveal 

images.

Chapter 5 provides a mathematical analysis of the filters that generate the multiresolutional 

images. Using the backward inhibition model of Cornsweet [Cornsweet70], these non-recursive 

filters are modelled as a cascade of low-pass filters of progressively increasing cut-off frequencies. 

The inclusion of the the interactions of the r e c e p t iv e  f i e ld s  and b a c k w a r d  in h ib i t io n  thus producing 

changes in the configurations of these filters, shows that separate spatial filtering channels can be 

produced.

Chapter 6 uses the LMF image in an application to obtain a semantic edge of an object of 

interest that otherwise is not segmentable using non-semantic boundary tracing methods. It uses a 

set of variables to decide if an intensity-dicontinuity should be considered a valid edge point and 

subsequently
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uses these confirmed edge-points in line,-following. Line-following is performed by matching 

semantic-line descriptions. The use of perifovea-support reduces the possibility of false searches.

Chapter 7 is another application on the possible use of the MF image for a robotic vision task 

of object recognition for objects that are partially occluded. This follows the I n tr in s ic  Im a g e s  

approach of Barrow and Tennenbaum, except that the intrinsic images are not generated for the 

whole of the image but as foveal fixations by the LMF images. It contrasts with the more 

conventional approach of matching the object boundaries/shapes, in that the grey level information 

is used to infer some basic 2.5 D information from a minimum set of intrinsic images.

Chapter 8 studies the MF image as a possible image structure for progressive transmission in 

a robot vision environment where still images may need to be shared amongst users. The 

multiresolutional foveal image progressive transmission scheme is compared with that of the 

Gaussian and Laplacian pyramidal schemes.

Chapter 9 provides the conclusions and a summary of the main points of the thesis. It lists out 

the major advantages and limitations of the MF image representation and describes some areas for 

further work.
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CHAPTER 2

ROBOT VISION: REVIEW OF APPROACHES AND TECHNIQUES
In a real-world scene, objects are characterised by many properties. These properties 

include 3-dimensional object descriptions, surfaces, shadows, occlusions, relative motion of 

entities in the scene, textures, colours etc. To-date, the majority of robot vision systems 

have mainly used the grey intensity image with very little use of the other information. The 

reasons are well justified considering the vast amount of visual data that have to be 

processed. However, in so doing, it has also imposed quite insurmountable problems for the 

more widespread and general use of robot vision. Statistics on robot vision applications 

since 1982 [Wallace88] show that the following are the 3 main applications of Industrial 

Robot Vision:

a. Visual Inspection: Analysis of image dimensions or other figures of merit (pcb 

defects, dimensional inspections,surface finish, burrs in plastic extrusions etc.).

b. Object Recognition: Recognition of industrial parts.

c. Visual Control: Use of the visual information to control manipulators, and robots. 

According to Meyers [Meyers85] world-wide applications in visual inspection and object 

recognition constituted 70 percent of all robot vision applications in the year 1985.

The robot vision tasks in this thesis is mainly biased towards the restrictive task of 

object recognition. However an additional difficulty is introduced in these investigations in 

that the image has a v is u a l ly  c o m p le x  s c e n e  background, where visually complex here means 

that the objects are not easily segmentable from the background using simple histogrammed 

or other global, non-semantic descriptions. Such an example of a scene is shown in fig 2.1a 

which shows an example of multimodal grey level distributions of the image. This is 

contrasted with fig 2.1b of a scene with sufficiently high contrasted background that 

relatively simple global, non- semantic descriptions will be able to obtain the desired object 

from the other objects in the scene.
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Fig. 2.1a Exanple of "Visually-Complex" Scene and
Fig. 2.1c Multimodal Histogram of Visually Complex Scene.

lb) (d)
Source: W.A. Perkins. "Area Segmentation of Images Using Edge Points."  IEEE. PAMl-2. Number t. January 1980. °1980, 
IEEE. Used by permission.

Fig. 2.1b Example of "High-Contrast, Pre-engineered" Scene 
and Fig.2.Id Unimodal Histogram of High-Contrast Scene.
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Fig 2.1b is usually obtained with some form of s tr u c tu r e d  l ig h t in g . The corresponding grey- 

level histograms in fig 2.1c and 2. Id will show that in the case of fig 2.1c, some simpler 

histogrammed-equalised thresholding method will not be able to segment the object from the 

background, whereas in fig 2 .Id, the histogram shows an obvious modal distribution so that 

global methods of thresholding will readily yield the object from the background.

It may be not too inappropriate to further emphasise that a visually complex scene provides 

a big challenge to pattern recognition and can sometimes be a central issue in scene analysis. 

This is summarised in this tautological argument below:

"In a Visually Complex Scene, it is necessary to 
isolate the object of interest fro* its back­
ground or from other objects so that the isolated 
object can be identified or recognised. In order 
to isolate the object from the background it is 
necessary to recognise the object so that segmen­
tation can proceed.( which was the original task 
at hand)."

This shows an example that robot vision in a visually complex scene is a non-trivial task.

2.2 Some Approaches to Robot.Vision.

As has been previously mentioned, amongst the major categories of usage of Robot Vision, 

object recognition in a visually complex scene is the major concern of this thesis. Although the main 
approaches
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described in the following paragraphs, do not specifically address the issue of robot object 

recognition, they do address the wider problem of ro b o t v is io n , the understanding of which do offer 

a generic solution to many robot vision problems of which object recognition is one.

The approaches of Barrow and Tennenbaum, Marr and Aleksander share a common theme of using 

some analogues of the Human Visual System (HVS) in robot vision. In Barrow, the approach to 

robot vision emphasises the need to obtain more information than just the boundary of shape 

information through the derivation of in tr in s ic  im a g e s . M arr, amongst other exhortations, stressed 

the need to emulate some aspects of the the HVS in obtaining better *.structural inform ation^rom  

the scene and model the objects in the scene using a set of consistent g e n e r a l is e d  c o n e s /c y l in d e r s  

representation. Aleksander’s approach is to make full use of engineering-im plem entable networks 

of Random Access Memories as networks that could be a d a p te d ,  thus providing a desirable property 

of g e n e r a lis a t io n  c a p a b i l i ty  in robot vision problems, posed as pattern recognition tasks.

The approaches of cellullar arrays for image domain. These have been found to provide speed 

advantages of compared to the more conventional serial computations. Though such cellullar 

image operations are not primarily aimed at robot vision, its ability to perform fast image 

transformation and other lower- level preprocessing tasks like image enhancements, smoothing and 

other global operations could be employed as a precursor to robot vision. The Syntactic and 

Structural Approaches of [Fu 7+) -makes use of the established L a n g u a g e  T h e o r y  as a computational 

procedure to resolve the image p r im it iv e s  and structures that have been already derived.

2.2.1 Recovering Intrinsic Scene Characteristics from Images.

The approach of Barrow and Tennenbaum [Barrow and Tennenbin'ZS] is based on the premise 

that an image should not just be described by intensities but that these intensities should be used to 

provide in tr in s ic  in fo r m a t io n .  These intrinsic information should be generated for every point of the 

scene and may be descriptions of range, reflectance, incident illumination, surface orientations etc. 

to be used later by higher level analysis. Although not specifically stated by Barrow, the process of 

obtaining these intrinsic images need not preclude the use of other a c tiv e  m e th o d s  like laser ranging 

etc., its primary aim beingrto recover as much of the 3-D information as possible of the scene. It is 

only through the application of such intrinsic images that there can exist a more unique 

interpretation of the scene [Barrow78]. As an example, a shadowed area is characterised by a region 

having intensities proportional to the reflectance and constant over its surface. Hence in the context 

of intrinsic images, an instance of an edge can is defined as a point corresponding to the extreme 

boundary surface or to the boundary of a cast shadow. Using a set of such definitions of intrinsic 

image features, the s c e n e  u n d e r s ta n d in g  process can be summarised in the following steps:

a. For the whole of the scene, obtain the intrinsic image features.

b. Find the step discontinuities in the input image (e.g. edge points).
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c. Interpret the intrinsic feature of these discontinuities according to the set of intrinsic
)

features defined by their c o n s ta n c y  or ta n g e n c y  characteristics.

d. Hypothesise on the values to be assigned to the intrinsic images.

e. Perform relaxational computations over the whole of the region covered by the 

discontinuities.

This procedure is illustrated in the fig 2 .2 .1  , It can be observed that Barrow and

Tennenbaum were very aware of the need for m o d e l-d r iv e n  computations but have chosen to 

alleviate the problem by alternatively requiring the model-descriptions at higher image processing 

level as is shown in the area marked * * * . In fact, although it is not obviously evident, there is in 

fact a model-driven computation even at ** by making the observation that the model is that model 

of 'L a m b e r t ia n  surfaces fof 3-D objects under incident light illumination which is the source of the 

constancy, tangentiality characteristics.

In as much as this has some similarities with the Marr approach to be described later, in 

ending, it may be timely to highlight what the author feels to be two major differences from the 

M arr approach:

a. In the case of Barrow and Tennenbaum, range information is primarily obtained from the 

image-formation characteristics on 2-D surfaces whereas Marr prescribes the use of stereo 

image and texture cues.

b. In Barrow, investigation of low-level process should focus on what type of information is 

being sought, and how it might be obtained from the image. In some ways, contrasting 

with that of M arr, the design of edge detection need not focus on in te n s i ty -d is c o n t in u i t ie s  

(which is a necessary part of the derivation of primal sketches of Marr) but should rely on 

the physical meaning of the ty p e  of edge as a function of a combination of parameters 

(x ,y ,a...)

E = f(x ,y ,a ,b ,c)

where x,y are the spatial coordinates and a,b,c are the intrinsic features of range, 

reflectance,orientations etc.

2.2.2 Computational Theory of Marr.

Although the works of M arr on Vision was primarily directed at neurophysicists, his ideas 

provided a very strong influence on research in vision in general. In a 3-D object recognition case , 

the approach proposed by M arr can be seen in fig 2 .2  2 ,
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The real-world objects are 3-D but the aim is to obtain the 2 .5  D s k e tc h  through the use of various 

techniques described as r e s e g m e n ta t io n  o f  ' x  f r o m  y ' where various inference schemes are used to 

obtain for example s h a p e  f r o m  s h a d in g , s h a p e  fr o m  te x tu r e s , e tc . .  The 2.5 D surface map has to be 

feature-extracted or resegmented to finally yield a representation containing consistent relational 

structure descriptions of the objects. Finally, the resulting relational structure could be converted to 

the form of a visible-surface labelled-graph or similar, from where object recognition could proceed.

A brief summary of the pertinent steps representative of the approach by M arr can be 

described below:

a. From the visual scene (3-D objects and surfaces), the first step is to use as much of the 

available information (stereo-opsis, texture, shape from x ,etc) to obtain the 2.5 D sketch. 

The 2.5 D sketch now contains, amongst others, information on surface orientations, depth 

and discontinuities of visible surfaces.

b. Obtain the 3-D model representation from the 2.5 D by an iteration process called 

s e g m e n ta t io n  a n d  r e s e g m e n ta t io n  on the early vision processes.

c. Formulate the 3-D model in a knowledge representation using some canonical symbols 

(e.g. generalised cones) to form a relational structure for interpretation.

M arr put some considerable emphasis on the human vision system in deriving information even at 

low-levels (e.g. difference of Gaussian Mask for optimal edges etc) and the use of object 

representations that are more recoverable (e.g. generalised cones instead of skeletonal 

representations) and other properties that are more likely to provide reliable information to the 

higher cognition processes (e.g. image correspondence and disparity effects in stereoscopy, texture 

discrimination effects on region segmentation etc).

If it is possible to select 3 main issues that M arrs theory contributes to the work of 

m onocular object recognition, the following will be a probable list.

a. The importance of early processing to extract visible surfaces from the shape and 

dispositions relative to the viewer.

b. The importance of the model-based information to derive the 3-D information of the 

surfaces.

c. The importance of having a stable shape representation using generalised cylinders and 

cones. This contrasts with other shape representations that are sensitive to shape 

deformations, (e.g. Blums grassfire 2-D shape representations).

2.2.3 Cellullar Array and Multiresolutional Approaches.

The cellullar array and pyramidal approaches have been grouped together in this chap ter as
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pyramids can be regarded as a SIMD (Single Instruction Multiple Data) cellullar array, configured 

as a pyramid of processors [Tani83]. Pyramids have some advantages of being able to handle a 

more variable-distance pixel neighbourhood which are particularly needed for multiresolution image 

processing [DufSS) Cellullar arrays on the other hand can also be regarded as special cases of 

kindred architectures that include MIMD (Multiple Instruction Multiple Data) [Kruse82], systolic 

arrays [Kung82], pipeline architectures [Sternberg83] and other M ultiprocessor architectures that 

have been proposed to speed up the image transformations.

The cellullar array approach of the CLIP4/5 [Duf&juses 8 processors with 32 bit storage in an 

architecture shown in fig 2.2.3

Ram

CLIP4 Processor

Fig 2.23 Basic Clip4 Architecture

Logical operations on the input neighbourhood pixels are carried under SIMD control on an input 

array of 96 x 96 pixels. Pyramids have been built from SIMD processors with each processor being 

able perform pattern matching and other bit-serial arithmetic [Tani83].

2.2.4* The Logical-Node Neural-like approaches of Aleksander.

Though the main function of Pattern Recognition is to provide a statement about the input 

image [Aleks83], there is a wide range of robot vision task that can be formulated as pattern 

recognition tasks [Pott83]. as illustrated in fig 2.4. The WISARD [Aleks&f] uses Random Access 

Memory elements to perform logical N - tu p le  S a m p lin g  and d is c r im in a to r  fu n c t io n s  defined by n- 

tuples of 2w . L where ŵ  is the weight associated with the image pixel L. This overcomes some
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difficulties of plain mask or template matching "thereby - allowing the system to be trained by 

examples. Industrial systems of WISARD have been built with near real- time performances for 

certain vision tasks [Aleks84], Further, the judicious use of multiple discriminators and various 

decision-making regimes enable the WISARD to handle recognition of objects subjected to varying 

degrees of geometric variations like rotation, translation and scale. Recent extensions in the form 

of P y r a m id a l  P r o b a b i l is t ic  L o g ic  N o d e s  show promise as an engineering- implementable c o n n e c t io n is t  

architecture for pattern recognition. These have the property of providing a probabilistic output 

depending on the state of the RAM and they show promise as Pattern Recognition devices with 

generalisational properties [Aleks87].

2.2.5 Multiresolutional Approaches

The r e c o g n it io n  c o n e  [Uhr72] is chosen for a discussion as it is one of the earliest models of a

class of conceptual image computation models based on the hierarchical computation schemes, from

which later pyramidal multiresolution models were developed. The main motivation of the

recognition cones is that of the integration of both p a r a l le l  a n d  s e r ia l  processes in a scheme called

m a s s iv e ly  p a r a l le l  a n d  s h a llo w ly  s e r ia l  computation by using arrays of processors of the order of 10^
2

processing elements. This contrasts with the pure cellullar array approaches where up to 100 

processing elements have been implemented which do not readily lend themselves to perform serial 

operations that are required in scene understanding. The recognition cone uses a pyramidal 

tapering-cone with massively parallel and shallowly serial operations, resolving some of the earlier 

difficulties of o v e r ly  p a r a l le l  systems for image processing.

Basically, a series of layers of tr a n s fo r m s  are applied in parallel at each layer, which 

successively e x tr a c ts  a n d  c o -o p e r a tiv e ly  c o a le sc e s  in fo r m a tio n  by s y n a p t ic - l ik e  operations similar to 

neuronal structures [Uhr72j. These transforms are le a r n t  or programmed. An example given by Uhr 

is that of programmed PEs (processing elements) that look for local horizontal edges at the lower 

levels and to look for motion at the higher levels. A illustration of the recognition cone is shown in

fig. 2 .2 3 . _
Inputs ------------------------> Outputs

Retina Layers of Cone

CONVERGENCE

F '£5 Illustration of the ’Layered recognition Cones’
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2.2.£ Syntactic and Structural Approach of Fu.

No study in Image processing or robot vision is quite complete without referring to syntactic 

and structural methods as formulated by K.S. Fu. Syntactic approaches have been widely used in 

shape analysis, picture description [Shaw68] to other vision recognition problems (e.g. finger print 

recognition).

Work on recognition cones have been mainly in conceptual and simulation models [Tani80].

SYNTACTIC APPROACHES TO IMAGE PROCESSING.

Fig.22. 6 .  A framework for Syntactic Approach to Vision.

The syntactic and structural methods arose from the more established field of formal language 

theory by extending the notion of alphabet, strings, grammar to image primitives. For example 

1 string grammars have been used to describe complex shapes through the hierarchical chaining of 

embedded strings. Pattern recognition then becomes a problem of parsing the strings. More 

advanced methods have used c o n te x t  s e n s i t iv e  g r a m m a r s  (e.g. for closed boundary shapes) and 

p ic tu r e  d e s c r ip t io n  la n g u a g e s . In enabling syntactic pattern recognition to make use of the features 

of formal language theory, the following adaptations have been introduced:

Unlike formal languages, concatenation is seldom the the main relationship between symbols 

(shapes) (e.g. above, below, left of, etc) in syntactic pattern recognition.

The pattern primitives themselves need to be extracted by low-level image operations like 

enhancement, filtering, etc and can be quite fuzzy when compared to the symbols of language 

theory. A desirable criterion for the choice of the primitives include compact descriptions with little 

information loss. However, once the primitives are extracted, the relationship between the 

primitives can be make use of the power of formal language construct to solve the recognition 

problem ( e.g. adjacency, collinearity, etc).
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Fu [FuJ^Jpoi11*5 out that the main contributions of the Syntactic Methods in image processing 

have been in

a) the provision of a picture description language,

b) the application of high dimension grammar in the form of trees as opposed to arbitrary 

graphs for picture processing

c) the application of w eb  g r a m m a r  to more complex pictures where the picture intensity 

values are defined as a quadruple {n,t,p,s} of a finite set of non-terminals n, terminal 

symbol t, production pairs, start symbols. [Pfaltis and Rosenfeld69].

Although syntactic approaches are required to provide a formal theory on how to handle the higher 

level symbols, syntactical operations on these symbols are by no means trivial considering the 

amount of symbols that need to be processed. However an adjunct to the problem of the application 

of syntactic methods to robot vision is really the ability to extract consistent primitives so that 

coherent syntactical analysis can proceed.

2.3 Model-based Approaches

The model-based approaches of robot vision object recognition involves the matching of the 

input image with a set of predefined model of parts. Many of the successful industrial object 

recognition systems are based on model-based methods [Binford77]. Although most model- based 

methods use the approach illustrated in fig 2.3, they mainly differ in the way the features are 

extracted and how they are used in the matching process.

Decisions
Basic Operations in Model-Based Object Recognition
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Broadly, there are 3 major methods in the model-based approach, namely

a) global feature method [Agin75] which makes use of the global features of the object like 

areas, perimeters and higher-order moments. The well-known SRI methods can be 

classified in this category.

b) local or structural feature methods [Perkins78] where more complex features of the object 

like curve segments and corners are used as features. This facilitates the use of syntactic 

methods to perform matching of the model.

c) the relational graph method which uses local and relational features [Yachida77] organised 

as graphs where the nodes describe the features and the arcs denote the relationships. This 

enables model- matching to be reduced as a sub-graph search where efficient algorithms 

are available to carry out such tasks.

2.3.1 The necessity of the Model-based approach in Industrial Robot Vision.

Due to the existence of the enormous amount of techniques proposed for Computer Vision, 

(image understanding, x from y, optical flow), there are many detractors as to the right solution to 

some very basic I n d u s tr ia l  R o b o t V is io n  problems. Binford [Binford77] argues that ’no computer 

vision system can be expected to be so general that it can recognise objects without a model’. In fact 

a true dichotomy should not exist for model-based and non model-based approaches as we can 

always view the various techniques of computing x from y as precursors to f e a tu r e  e x tr a c t io n  for 

some form of model- matching. For Industrial Robot Vision at least, the necessity of using 

approaches that are firmly m o d e l-b a s e d  seem to be so absolute, at least at present, that successful 

schemes are nearly all model- based [Pugh83], In chapter 6 and 7 the model-based approach will 

therefore be adopted in the application of multiresolutional foveal images for occluded object 

recognition.

2.4 Current trends in Robot Vision

Since robot vision applications have been introduced to the industries in the last decade, 

much of the concern have been in feature detection and matching for binary images. One trend in 

Robot Vision is to use more of T r u e  g r e y - le v e l  systems. A true grey level machine vision is one, not 

only capable of acquiring a grey-level image, but has the intended purpose of using as much of the 

grey-level information in as high a level of representation as possible. This means that intensity 

thresholding if ever necessary, is employed only at later stages of processing.

Whereas in earlier years, efforts were spent to obtain faster and better hardware (faster frame- 

grabbers, faster computers, subpixel accuracy determinations etc) there seems to be a greater

awareness that overcoming the i l l -p o s e d n e s s  of machine vision should be a more desirable 
endeavour.
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A c tiv e  V is io n  is one such endeavour. There are a few definitions of Active Vision. One definition 

[Aloimonos and Bandyopadhay87] is that of having a c tiv e  observers. That is to say that the observer 

(camera image acquisition front end) should be allowed to move so that assumptions of smooth 

surfaces, reflectance characteristics need not impose restrictions that yield unstable solutions. This 

also enables machine vision to use the facility of s tr u c tu r e  f r o m  m o tio n  and other motion/velocity 

derived information like optic-flow computations in a better-posed and more stable environment. 

Another definition of active vision is that of using a c tiv e  s e n s in g  and m u lt is e n s o r  f u s io n  [AAAI87] 

which uses additional sensing in the forms of active illuminations (laser ranging, structured lighting) 

and additional m u l t ip le  s e n s in g  s y s te m s . In both of these definitions there are no preclusions from 

using binocular vision or other correspondence-derived computations.

It may be necessary to point out that there are also other actively pursued ways of finding 

possible solutions that extend beyond machine vision to areas of visual perception, through 

biologically and neurophysiologically-motivated investigations (neural computing, visual cortical 

receptive fields, biological retina). One such example, relevant to this thesis is that of the 

G e n e r a l is e d  G a b o r  S c h e m e  o f  Im a g e  R e p r e s e n ta t io n  [Porat and Zeevi88] where a image for machine 

vision can be represented as a set of 2-D Gabor elementary functions, using position-dependent 

sampling and having some of the characteristics of the m u lt ir e s o lu t io n a l  structure of the vertebrate 

retina.

2.5 Summary

The chapter has been organised into two main parts namely the first part on the theory of 

image processing that may lead to the longer range goal of image understanding and the second part 

describes the more immediate goal of robot vision in industrial environments emphasising on the 

need for model-based approaches. The model-based approach has been given this emphasis because 

in later chapters, the application of the multiresolutional image for the robot vision task of occluded 

object recognition and semantic-object segmentation shall rely on model-based techniques.

The contributions of Barrow and Tennenbaum have been described in terms of the generation of 

intrinsic images for all points of the image where subsequent object recognition is treated as the 

process of obtaining and matching as much of 3-D or 2.5 D information of the scene. Unlike the 

methods of Marr which incorporates the theory of stereo perception and texture to obtain depth 

information, active methods (e.g. laser ranging) have not been ruled out by Barrow as means to 

obtain the intrinsic images.

Marrs contribution is in a prescription for a computational theory with the right representations at 

all levels of image processing so that these representations will be uniquely recoverable.

U hr’s works have been instrumental in providing the impetus for the consideration of massively 

parallel and shallowly serial (the 1 0 0  s te p  l im ita t io n ) using conceptual processors organised as conic
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transforms. These ideas have led to the pyramidal image representations for robot vision using 

multiresolutional models.

The Syntactic Approaches of Fu have provided formal methods of using the established theory of 

languages in the field of 2-D picture analysis.

A leksander’s contributions have been in the engineering implementation of neural-like 

computational elements for adaptive pattern recognition and robot vision using Random Access 

Memory elements which are seen as good candidates for implementing neuronal-like networks with 

emergent properties.

The Model-based approaches have been discussed in the context that most successful industrial robot 

vision especially for object recognition have been based on some methods of model-based 

computation.

The discussions on current trends indicate that much effort is now being made to use multisensor- 

fusion active vision and stereo imaging to remove any ill-posedness as a solution to immediate robot 

vision problems.
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Chapter 3

Computer Representation of Images for Object Recognition- 
Hierarchical and Non-Hierarchical.

This chapter surveys the ways in which an image can be represented as a computer 

data structure for the main purpose of object recognition. In this context, and following 

Rosenfeld [Rosen83], those data structures that assign uniform weightages to every pixel in 

the image as n o n -h ie r a r c h ic a l  o r  tr a d i t io n a l  and those that assign different weightages to 

pixels in differentareas of the image as n o n - tr a d it io n a l  o r  h ie r a r c h ic a l . The relative strengths 

and limitations of these representations in relation to applications for object recognition will 

be discussed.

It will be noted that where an image is already segmented, and transform ed into bi-level 

images, there is a wealth of shape representations that are both compact and elegant. 

Invariant object recognition of such planar shapes involve a further transform ation of the 

shape into a domain for which the parameter of variance ( e.g orientation ) is non-sensitive 

to the recognition process. Such examples are moment invariance [Hsu70] and Fourier 

Descriptors. However, there are much fewer elegant ways of image data representation for 

images that are not segmented where invariant object recognition then becomes a more 

difficult process.

3.1 Relationship between Image Representation and Computer Data Structures.

Any image representation chosen will bear a relationship with the consequent data 

structure that the computer vision system needs to handle. Although strictly speaking 

Computer Data structure, image representation and image coding can be different entities, 

most literature cannot help but link these together in the discussion on image representation. 

One of the features of a good image representation is the capability of representing the 

digital image in the most compact form (hence the relationship with image coding). 

Although compactness of data usually leads to better data storage and faster manipulation, 

for the purpose of object recognition, compact data structures may not always provide 

robust object recognition as such representations may not be information preserving.

There are alternative ways of classifying image representation. As an example, image 

representation can be classified by the method in which the data is manipulated (e.g. graphs, 

trees, linked lists, matrices, orthogonal transforms etc), but with the increasing use of 

specialised hardware for computer vision systems, like pipeline, systolic, pyramidal 

processor, there is much overlap in possible classifications.

3.2 Hierarchical and Non-Hierarchical Image Representations.
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Following [Rosen83], we shall now classify image representations into the hierarchical and non-hierarchical 
types.

If we represent an MxM image I(x,y) in terms of its pixel intensity i(x,y) and weights associated with that 
pixel as w(x,y), i.e.

then we say a hierarchical image has non-uniform weights whereas a non-hierarchical image has uniform 
weights. T h e

different weights are related to the hierarchy, which can be expressed in terms of the resolu­

tion, size of pixel or other metrics. Thus in multiresolutional pyramidal images, a pixel at 

the higher pyramid layer (lower resolution) has a higher weightage than one at a lower 

pyramid layer (higher resolution). This lends itself well to computational algorithms using 

hierarchical search trees and graph-traversals. A Summary of Hierarchical and Non- 
hierarchical image representation is shown in fig 3,2
3.3 Non-Herarchical Representations.

Usually, early processing attempts to segment the interesting parts of the image from 

the background and then generate a compact representation of the segmented object using 

the closed boundaries of the object.

If the image is not easily segmented,usually due to distributions of grey level histograms 

that are not amenable to the various intensity thresholding methods (simple or dynamic- 

thresholds), then edge detection methods [Marr-Hildreth, Roberts, Sobel, Kirsch etc] can be 

used to detect intensity-discontinuities,to be followed by global thresholding, connectivity 

analysis, thinning and skeletonisation methods to obtain a compact representation of the seg­

mented object.

For images that are not easily segmented by the two methods described above, further AI 

motivated pixel tracking methods may be employed, though they are presently not as widely 

used in industry.

3.3.1 Non-Herarchical representations of segmented images.

Segmented images are usually bi-level either as a result of some thresholding 

processes on the original grey image or in some cases, special image acquisition front-ends 

like OpticRAM or p r e -e n g in e e r e d  structured lighting1 (e.g silhouette lighting) are used to 

generate the binary image. Objects can be represented by its b o u n d a r y  description where the

1 Pre-engineering is a common term used in industrial robot vision where the sceneis specially prepared 
for object recognition by methods of structured lighting, silhouetting, delivery of part from hopper to 
ensure orientations etc.

](x,y)- w(x,y)1(x,y))
x,y = 1
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t

#  This classification follows that of [Rosen/Tani] to emphasis 
the newer purposeful hierarchical representations of pyramids etc.

Fig. 3.2. A Summary of Hierarchical and Non-hierarchical 
Image Representation.
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im age is first decom posed into regions of constant grey levels or regions in which the grey  

levels  are considered sufficiently similar to be classified as belonging to the same regions. If 

there are 2'k grey levels in an image of 512 by 512 pixels, and assum ing there are 100 d is­

tinct regions, the boundary representation will need 20 ,000  + k + 1800 bits to com pletely  

specify the im age (w ith provisions for indexing, etc) which would otherw ise require 512 x 

512 x 2 bits. Provided the boundaried regions are also consistent boundaries of the object, 

such a representation can be used for object recognition.

W here the im age cannot be represented by disjunctive object boundaries, the r u n -  

l e n g t h  of the pixels can be used, where each run-length is the maximum length of som e uni­

form  grey level.

A s an exam ple, if a 512 x 512 im age has 2 grey levels then each run requires the specifica­

tion by k + 9  bits for the k grey levels and the length of the run. If there are 20 runs per 

row , we would need 2 0 (k -f9 ) bits compared to 512 bits.

B ilevel segm ented im ages can be further made more com pact for the purpose of object 

recognition  by skeletonisation m ethods. V arious skeletonisation m ethods have been pro­

posed and they include the medial axis transform s, M AT [Blum s67], and various thinning  

m ethods, the general aim of skeletonisation being to represent the shape by a sm aller set of 

pixels.

A lthough skeletonal representation seem s intuitively elegant, it is rather com putationally  

intensive as it involves making a calculation of the distance from every interior point to 

every point in the boundary of the region , as in the case of the M AT and are som etim es not 

inform ation preserving. A gain , rem em bering that we are assum ing a binary, hom ogenous- 

region object, ( i.e . possibly a single object in the im age), we could see that this representa­

tion is only used in very apt situations of object recognition where planar shapes are su ffi­

cient basis for recognition. P o l y g o n a l  approxim ations [Pavlidis73] can be used to represent 

segm ented shapes using polygons of varying segm ent lengths for its boundaries. For a 

closed curve, the approxim ation can be exact if the number of segm ents is the same as the
T

num ber of points in the boundary. Polygonal approxim ation com putation is really not 

trivial although the principle is sim ple because the problem can turn out to be a long itera­

tive search with many non-unique solutions. Further m ore compact representation o f an 

object shape have been suggested by Sklansky [Sklansky72] using the principle of the 

m inim um  perim eter fitting of the shape resulting only in very low  fitting errors.

Other polygonal approxim ation uses m e r g i n g  m e t h o d s  to com pute the m inim isation of a LMS 

error fit between the approxim ations and the boundary by further m e r g e  a n d  s p l i t  m ethods 

which norm ally takes more time than the sim pler m ethods.

P r o j e c t i o n  M e t h o d s  can be used to reduce the 2-D description of the im age into 1-D ,
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thus providing a sim pler and faster data structure for object recognition. The general 

m ethod is to project a boundary description of the shape to generate a linear signature which  

is sufficient to represent the object in the im age ,though such signatures must be norm alised  

for the starting point and size of the bounded area. Subsequently sim ple c h a in -c o d e s  a n d  

s h a p e  n u m b e r s  can be used to encode the boundary by a set of line-segm ents of specific  

lengths and directions in a 4 or 8-connectivity grid but they have to be norm alised with 

respect to the starting point and position of the object in the im age. To overcom e the prob­

lem  of object size and position , S h a p e -d e n s i ty  fu n c t io n s  can be used. O ne method due toN&hin 

[N ahin74] uses a s lo p e  d e n s i ty  fu n c t io n  as a signature where the shape density function  

defines a histogram  of the tangential angle values of the boundary.

S ig n a tu r e s  can be transform ed into equivalent m o m e n ts  corresponding to the variance and 

mean of the signatures, treated as a discrete random amplitude variable. This method is con ­

trasted with the m ore fam iliar 2-D  geom etric moments of H su [H su70] which is com m only  

used in many object recognition applications. The m ethod of geom etric moments of object 

representation has som e advantages of computation speed as m om ents can be com puted  

quite straightforw ardly. For the purpose of object recognition, it also enables a controllable  

degree of precision in recognition since only sufficient com binations o f the m om ents need be 

used. This m ethod also provides a sim ple way of obtaining geom etrically invariant shape 

recognition and is the principal method in the more successful general-purpose object recog­

nition m odules of SRI [A gin75].

Fu [Fu82>] described a projection method for shape representation using F o u r ie r  D e s c r ip to r s  

where the boundary of the object, expressed as a sequence of 1-D complex numbers (x-f- jy )  is 

used to compute the Fourier Transform of the shape. The resulting Fourier Descriptors in 

the form of a sufficient combination of coefficients can be used for object recognition. As 

in the method of moments, suitable combinations of the descriptor coefficients can be used 

to uniquely describe the object under various linear geometric transformations.

3.3.2 Non-Herarchical Representations of Unsegmented Images.

Im age representation for unsegm ented im ages is more problem atic. In coding theory  

this is related to the nature of the im age that has not been d e c o r r e la te d . A though segm enta­

tion of an im age into regions, objects etc is one of the early processes in conventional robot 

v ision , so that subsequent representation of the segm ented region o f interest reduces the 

dim ensionality of the data to be processed, there are many instances in which it is im p ossi­

ble or difficult to provide a semantically consistent segm entation [M arr82].

There also exists a great number of schem es to represent unsegm ented stationary

im ages that include schem es based on source encoding, variations of Pulse Code  
M odulation
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(PCM ), Predictive Coding (PC), In te rp o la te  Coding (IP), maximal block coding (MBC) 

[Kunt80] and Transform Coding, a more detailed treatment being in [Huang79] and 

[IEEE72]. PCM in its simplest form encodes quantised levels of the image intensity for 

digital representation and transmission whilst the variation of Delta PCM (DPCM) encodes 

the quantised levels in a more efficient way using statistical dependencies of previously 

represented samples. In PC, linear or non-linear predictors use several previous samples in 

variations of adaptive methods where the causal prediction3 of the pixel at location k, 1 is

In IP, subsets of the pixels are used as the basis for the interpolative recovery of the 

remaining samples, with adaptations for minimum-aliasing error, depending on the rate of

the pixels to assign an optimum code-word; thus providing better image data compression 

and manipulation. The T r a n s fo r m  representation of images has the principle motivation of 

transforming a set of data into another set of le s s  c o r r e la te d  coefficients that can be viewed 

as matrix-vector multiplications, of which the K a r h u n e n -L o e v e , H o te ll in g  tr a n s fo r m s  do pro­

vide optimal non-correlated coefficients. Other transform representation of non-segmented 

images using frequency-domain or spatial domain methods like the Haar, Hardmard, varia­

tions of Fast Fourier Transforms, Discrete Cosine Transforms are available and in some res­

trictive situations, can be adapted for object recognition.

3 .4 .  Hierarchical representations of images.

As pointed out earlier, non-traditional or hierachical images are images where each 

pixel in the h ie r a r c h y  of images have different weightages ( or importance ) according to its 

hierarchical level. Thus in multiresolutional pyramidal images, a pixel at the highest

pyramid layer has a higher weightage than one at the lower level. This lends itself in compu­

tational structures to efficient search trees and graphs through hierarchical graph-traversal. 

It may be pertinent to mention that multiresolutional images have been studied in various 

forms with different emphasis, making it sometimes as though they are disjointed

endeavours in image processing. They are studied under different names wi:th d i f fe r e n t  

e m p h a s is  such as r e c o g n it io n  c o n e s  [Uh72], Gaussian Pyramids [Tani80], Quad-tree images 

[Hunter70], Laplacian Pyramids [Burt86j, Regular Decomposition Models [Klinger76].

3 Causal prediction uses past pixels (i.e in previous lines and columns)

p
1  “,h-i

\  / -'1

sample changes. MBC techniques use the1 maximum block’size of some s im i la r i ty  m e a s u r e s  of

42



They however, have the common feature that im a g e  information is s u m m a r ­

ise d  as the resolution decreases.

Two examples of the d i f fe r e n t  emphasis hierarchical images need to be pointed out:-

a) h ie r a r c h ic a l  a n d  p y r a m id a l  c o m p u ta tio n  s tr u c tu r e s  for image processing.

b) R e g u la r  D e c o m p o s i t io n  image algorithms.

These hierarchical image representations have generated recent interest because of the following 

p o s s ib i l i t ie s .

a) fast processing capability if s u i ta b le  hardware is available,

b) the availability of image features at a wide range of resolution or scales enable processing 

not unlike that of humans

c) the ability to condense more global information into local information.

3.4.1 The Canonical Image Pyramid.

The canonical image pyramid is made up of N + 1 planes of dimensions 2nx2n , stacked on top
N Nof one another, with the base plane of 2 x 2 containing the original resolution and the apex plane 

2® x 2®, being a single pixel. If the level is defined by L = P-n  then each plane f^(x,y) is as shown in 

fig. 3.4,1 The planes are related to each other through a c o n s o lid a tio n  process using a g e n e r a tin g  

k e rn e l to map between planes. For any arbitrary level K, the plane ,y) is derived from

fk(x,y) using a selection of mapping functions IT where

fk + l ( p0) = T r [fk(P1)> fk (P2)> fk(p3), fk (P4)]

The pyramidal planes so obtained, are subsequently used for image computations.

Consolidation Process

3.4.1 The Canonical Pyraaid 
and its consolidation 
Process, (a.b)
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3 . 4 . 1 . 1  T h e  B a s i c  M -P y ra m id

The most basic form of pyramid image representation is that using M -p y r a m id s  (TaniflOj 

An M-pyramid or a matrix-sequence pyramid P is a sequence {M(L), M (L-1)...M (0)} of arrays 

where

M(L) represents the original image,

M (i-l) represents a version of M(i) at a reduced resolution (usually half resolution), proceeding to 

M(0) which represents a single pixel.
g

Each reduced resolution image is obtained by subsampling the original image without generating any 

kernel function. This is shown for an typical image below where resolution reduction is log 2. 1

Fig. 3.4.1 d) A M-pyramid image at plane 3

1
3.4.2 The Basic T-Pyramid.

The T - p y r a m id  [ T a n i 8 0 ]  describes the multiresolution image as a tree rather than as a 

matrix as in the M-pyramid. This allows an algorithm to traverse a tree according to the need for 

coarse or r e f in e d  image information and thus provides faster processing times through a hierarchical 

search. ’
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Formally, the T-pyramid is defined by :

1. a set of p-nodes P= {(k,i,j)} for 0< = k<  = L and 0< = i<  = 2 ^   ̂ and 0<  = j<  = 2 ^

2. a binary relation F on P with F(k,i,j) = (k-l,[i/2],[j/2])

3. A kernel generating function binding V to P

Hence the p-nodes corresponds to the pixels of the M-pyramid and the complete set of p-nodes at 

the levels{k} represents the image of the T-pyramid at level {k}. F is defined as the parent function 

defined for all levels except for the root-node at {0,0,0}. Thus every p-node q except at the level{L} 

has 4 sons which are those p-nodes q’ with F(q’) = q.

For a generating kernel of a'simple averaging*function, the T-pyramid can be concisely described as

y=0 ,1
V ( k , i , j )  = 0.25 2  V ( k = l , 2 i  + x , 2 j + y )

* = o , i

for k < L

and V(k,i,j) = A (i,j) for k = L

where A(i,j) represents the original image.

Similar equations can be obtained fo /sam pling^enerating  kernels.

3.4.2 Computation in Pyramids.

Once an image is available in mulitresolutions, it would be possible to use the right resolution 

level to obtain features which are known to be most easily available at that desired resolution (eg. 

edge elements e d g e ls  as opposed to e d g e  p o in ts ) . Further, in processing at the right resolution level 

we are also using less computation time as the total pixels in a reduced-resolution image is r e d u c e d

3.4.3 Pyramidal image applications:

The multiresolutional pyramid can be used to search for a pixel or image region of interest 

(ROI) by a hierarchical procedure [Tani80] by starting at the root of the pyramid and at each node, 

visit the sons which are non-zero until it terminates in level L. The spot coordinates of the ROI is 

then obtained from the search path in time proportional to the height of the pyramid.

Pyramidal e d g e  d e te c t io n  may be recursively done as a tree traversal with searches needing to be 

done for those areas showing promise at the coarser image.

Using the quad-tree representation, the medial axis transform  (MAT) is the set of points serving as 

centers of m a x im a l b lo c k s  with their corresponding radii. In pyramidal re g io n  a n a ly s is  the image is 

successively subdivided into quadrants until a block (possibly a single pixel in the case of unseg­

mented images) is reached that consists of Is or 0s. This process is represented by a tree of degree
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4 (i.e each non-leaf node has four sons ) in which the root node represents the entire image.

Other pyramidal image operations for robot vision task of c o n n e c te d -c o m p o n e n t la b e l l in g  is achieved 

by scanning the pixels not in a row by row basis as in traditional images, but by a sequential scan 

dictated by the tree structure in a p o s to r d e r  tr a v e r s a l  in which updates and merging of labels are per­

formed using metrics of a d ja c e n c y  that results in execution time proportional M log M where M is 

the number of pixels. Other features like E u le r  n u m b e r , p e r im e te r s ,  a re a s  a n d  m o m e n ts  have simi­

larly better execution times compared to those with tr a d i t io n a l  image representations.

3.4.4 Pyramidal Images as efficient image codes.

Proposals have been made to use the pyramidal hierarchy for Im a g e  S to r a g e  a n d  T r a n s m is s io n  

V [Tanii79] for both T-pyramids and M-pyramids.

For an image of n x n pixels, the M-pyramid requires a storage capacity equal to

n2( l + 1/4 +1/16+ ..) = 4n^2/3 /̂d pixels'

For T-pyramids, the data in the arcs may also need to be stored but compact storage can still be 

achieved by observing that the averaged nodes at various levels require a variable number of bits to 

encode the pixel intensities, e.g.

Level 0: k + 2 L bits per pixel 

Level L -2:k+4 bits per pixel 

Level L: k bits per pixel

It also provides an advantage of sending the coarser, low resolution image level first so that the 

recieving end can decide to continue or abandon the image without waiting for the fine-resolution 

image to be completely transmitted[Tani79].
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Limitations of Hierarchical Pyramidal Image Representations.

Although the pyramidal structure for image representation provides some of the advantages 

described above, most of the work are done in simulations only as real pyramidal computers are still 

in development [Tani80].

The reduction of the resolution by log 2 can be at times too drastic which consequently has led to 

proposals of o v e r la p p in g  p y r a m id s  [Ferretti86], where pixels of intermediate resolutions can be gen­

erated. Many of the pyramidal algorithms do assume some ’a priori’ knowledge of the image so 

that algorithms for search can start at that resolution. The time required to generate the pyramid 

using conventional computers is non-trivial, this having been used as a criticism of pyramidal 

approaches in image processing.

3.5 Other Hierarchical image representations.

Two proposals that have features of multiresolutional images need to be mentioned. These 

are

a) the logarithmic grid image representation of Weiman [Weiman79] in which a digitised image is 

represented by a more densely packed pixel distribution at the foveal area than at the periphery.

b) the N A S A  image in which pixels at the periphery are represented by a samples of the neighbour­

hood [Pratt78].

3.6 Summary.

The review of computer representations of image data in this chapter has attempted to make a 

distinction between the non-hierarchical and the hierarchical images, following the definitions of 

Rosenfeld and Tanimoto. This distinction has been chosen in order to relate them to the multireso­

lutional foveal image representation in this thesis which shares many features with the m ultiresolu­

tional models. The importance of segmented image representations and the various methods avail­

able for planar shape representations in robot object recognition were described. For images that 

are not readily segmented, various methods, more in the domain of image coding structures were
T

described, with reference to the need for object recognition. The various hierarchical data structures 

for images using quad-tree or pyramid descriptions were given more treatment in their techniques 

for image searches, image feature extraction, etc. Some of the limitations of hierarchical image 

representations were described.
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Chapter 4

The Multiresolutional Fovea-Centred Image Representation.

The M ultiresolutional Fovea-Centred Image Representation (MF image for short) 

attempts to represent an image of a scene as it would be seen by the human eye. Only the 

area in the retina corresponding to the fovea pit, subtending an angle of 1.5 degrees, has the 

highest resolution. The resolution outside the fovea decreases gradually till the limit of 

peripheral vision. Such a reduction in resolution being due to combinations of factors that 

include the distribution of photoreceptors in the retina, the optics of the eye and the visual 

information-transmission characteristics of the the visual pathways.

This chapter attempts to gather the more recent trends in image processing to make a case 

for the need of such a MF image for robot vision. It will briefly describe the pertinent 

aspects of the Human Visual System (HVS) in the light of the psychophysics of vision, the 

physiology of the eye, the neuronal processes from the retina to the visual cortex and the 

psychology of object perception. It will draw attention to the the experimental confirmations 

of the existence of spatial-bandpass channels in human vision [Robson68], the arguments of 

Fischler [Fisch78] for p a r t ia l  s e g m e n ta t io n  and Ballard [Ball87] for a need to rethink some 

present day approaches to computer vision.

The proposed structure of such a MF image) possessing certain features, making it more 

harmonious with the arguments above will be described. Formal definitions and comparisons 

with pyramidal m ultiresolutional systems will be made. The choice of the optimal median 

generating kernel is established.

4.1 The Human Visual System.

Visual Perception in humans must be sufficiently complex and efficient to make it one 

of the most advanced systems in creation. However, looking at its performance from other 

aspects, it has deficiencies and peculiarities making it seemingly not the best of Natures 

design. Our contrast sensitivity, which is the ability to detect changes in light intensity dl, as 

a function of intensity I, denoted as the Weber Fraction dl/I, is linear about 0.2 and becomes 

non-linear outside this range as shown in fig 4.1a and b. This is compounded by the further 

logarithmic dependence of the Weber fraction on the surrounding Intensity Is, as shown 

leading to an overall choice in some image processing systems on performing operations on 

the logarithm of the intensity rather than on the absolute intensity. The uneven sensitivity of 

the eye to different spatial frequencies1, being relatively insensitive to low and high spatial 

frequencies and more sensitive to mid spatial frequencies, gives rise to Mach Band effect. 

This effect leads us to think that since edges in images have high spatial frequencies, they

could be processed with less precision. The human visual system also exhibits the 
’Simultaneous-Contrast

1 Spatial frequencies are frequencies of a signal expressed in the space domain (x,y) as opposed to say 
the time domain.
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Fig. 4.1a Contrast Sensitivity functions

dl

I

Fig. 4.1b Non-linearity of Weber

Background Level Io Fraction

Intensity I

Fig. 4 Soae Features of Biological Vision related to Multiresolutional 
Foveal Irage Representation.
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Perception E rro rs’ [Cornsweet70] and other seemingly anomalous colour-related visual 

characteristics like C h r o m a tic  A d a p ta t io n , L a n d s  C o lo u r  P e r c e p tio n  e ffe c ts , etc that present 

day knowledge is confounded as to how best to apply them for robot vision.

4.2 Relationship between Multiresolutional foveal images and the HVS.

The main motivations for MF images for robot vision have been drawn from the 

physiology of the eye, the neuronal processing in the visual pathways and the observed 

psychological processes in object perception which together show the existence of 

hierarchical, parallel and distributed processes, that together enable the HVS to handle 

visual perception at such high speeds.

4.2.1 Physiological and Neural Parallels.

Although the physiological and neural processes seem to be closely linked in the 

HVS, it is widely accepted that while much of the physiology of the visual system (structure 

of eye and nervous pathways) is a relatively well established science from pathological 

studies [Dowling87], the mechanism of computing or neuronal activity (e.g. activity of 

visual cells and their receptive fields) have only been better elucidated in recent years 

[Hubel62]. To simplify this discussion, the physiological visual system and the neuronal 

visual system shall be discussed separately, 

a) Physiological Processes.

The physiology of the eye has been widely studied [Davson49]. Incident light on the 

eye’s lens is sampled by an array of approximately 107 million photodetectors distributed as 

100 million rods (intensity sensitive detectors) and 7 million cones (colour sensitive 

detectors) across the retina with their distribution in packing density shown in fig 4.2.1a. 

The rods are principally found at the peripheral area of the retina and the cones, mainly at 

the specialised area of about 0.55 mm across the retina near the visual axis, called the fovea. 

The density of these rods and cones are not uniform across the retina,, 

showing a highest packing’ density of 150,000 photodetectors at the fovea and decreasing 

away towards the peripheral area of the retina up to a perimetric angle of about + /- 80 

degrees. The distribution of b o th  ro d s  a n d  c o n e s  (scotopic and photopic vision) is 

extrapolated as a dashed line in fig 4 .2 .1a showing that the composite photodetectors build 

up to a peak at the fovea and decreases away towards the perifovea.

Beyond the retina, as in fig 4.2.1b, the photodetectors are connected to the optic nerves via 

specialised cells called the bipolar, horizontal, amacrine and ganglion cells. The output 

from the ganglion cell is not just a function of a single photodetector but a region of 

photodetectors in the receptive field2 of the retina.

2. Xhe Receptive Field (RF) of a visual cell is an area in the retina where visual stimuli affect that cell.
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Photoreceptors

Bipolars 
(DOG Receptive 

fields)

Horizontal Cells 
(Inter-receptor Inhibition)

Amacrine Cells
(Bipolar-Ganglion Inhibition)

Ganglion Cells

Optic Nerve

F ig , 4 .2 .1 b  Neuronal Processing in Vertebrate Retina
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This complex interconnection reduces the dimensionality of the visual information by some 

early visual excitory and inhibitory processes (on-centre, off-surround) of the ganglion cells 

which, through more complex interactions with the other cells produce detection of shape 

and orientations [Hubel62]. This visual information is then passed to the Optic Chiasm 

where the right eye information is available to the left brain and the information from the 

left eye, to the right brain.

This leads to the lateral geniculate nucleus (LGN), where optical nerve fibres containing 

similar visual-field information are terminated near to one another. Although little 

information is processed here, the arrangement at the LGN is supposed to aid in the 

binocular perception of the image on reaching the visual cortex. At the visual cortex, the 

simple cells and complex cells, which are complex interconnections of ganglion cells, detect 

more complex orientations, shapes and other stimuli including motion. The signals from 

each eye are combined at this stage and cortical cells perform higher level processes on 

different classes of stimuli involving specific sizes and shapes. [Sakrison77].

b) Neuronal Processes.

A growing interest in C o n n e c tio n is t or p a r a l le l  d is tr ib u te d  p r o c e s s in g  is developing 

amongst the community of neural biologists, computer scientists, psychologists and 

engineers [Aleks89, Rumelhart87]. The processing at neuronal levels have provided many 

motivations to research in pattern recognition and machine vision. A summary of such 

neuronal level processing may be appropriate in order to appreciate any relevance to 

multiresolutional images of the human visual system.

The retina consists of 5 main types of cells illustrated in fig 4 .2 .1 b .

Light stimuli are carried by the photoreceptors as membrane voltage variations proportional 

to the logarithm of the light intensity, to the bipolars and thence to the Ganglion Cells. Two 

interneuron cell-types, the horizontal cells mediate lateral interactions between the 

photoreceptors and the bipolars in the inner plexiform layer, whilst the Amacrine Cells 

mediate between the bipolars and the Ganglion Cells in the inner plexiform layer. The 

horizontal cells are thought to be a light sensitive resistive layer that aids in providing the 

dynamic range for the eye that far exceeds the performance of individual neurons. At the 

bipolar level, a difference of Gaussians (DOG) receptive field is created by photoreceptor- 

bipolar interactions providing the excitory centres. The horizontal cell-bipolar interactions 

provide the inhibitory peripheral response. The output of the Ganglion Cells is believed to 

be the earliest instance of directional-sensitive motion detection.

The outputs of the Ganglion Cells are carried by the axons which serve as an optic nerve, to 

the Visual Cortex. Beyond the Human Visual Cortex, much less is exactly known in terms
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of neuronal-level processing.

4.2.2 Psychological Studies of Human Object Perception.

In the field of computer vision especially, psychological and psychovisual theories 

seem to be very overpowering, that pure engineering of vision systems without regard to 

such theories seem to be foolish. An attempt will be made here to point out certain 

principle differences between the way in which object recognition is performed by man and 

the way in which most current robot vision systems perform the same task. This should lead 

to some justifications for the the need of multiresolutional foveal images in robot vision.

Put simply, robot object recognition usually begins with partitioning of the image into 

r e g io n s  or p r im it iv e  o b je c ts  (segmentation), characterised by a set of attributes, and using 

these attributes together with an a- priori set of inter-object relations ( predicates and 

relations e.g. left of, etc ) to provide a la b e l of the object. Many of the sucessfull object 

recognition systems [Perkins78, Agin75] in industry tend to use more fundamental 

techniques than is available in vision research, justifiably due to the requirement for 

robustness and speed.

They usually make use of a well-contrasted background and if possible, by simple 

thresholding, obtain the object of interest by performing hardware assisted connectivity and 

edge linking analysis to obtain the c o n n e c te d -c o m p o n e n ts . Usually, the computed moments 

serve as features for object recognition [Agin'75].

This procedure differs from the human object recognition model in two main ways in the 

context of visually complex scenes ( one extreme example being an outdoor scene with 

trees):-

a. Partial and complete Segmentation.

The term complete segmentation indicates an operation in which the scene is 

decomposed into disjoint regions with each object-region being given a distinct 

label as can be done in a preengineered conveyer belt of industrial parts (i.e.
T

region of part and region of background). Partial segmentation means that the 

segmentation process need not finally produce closed regions. Partial Segmentation 

allows the incomplete segmentation of entities so that unclosed boundaries need not 

be forced to create an u n n a tu r a l  object. It is unlikely that an image can be neatly 

described by a f i n i t e  set of discrete object entities. This implies that if complete 

segmentation of the leaves of the trees are required, the number of leaves and their 

positional interrelationships will not only be too many [Fisch78], but forced 

complete segmentation will also likely lead to semantically incoherent objects 

[Marr82].
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b. The impracticability of a complete set of predicates.

The central theme in this argument by Fischler [Fisch78] is that due to the n o n ­

is o m o r p h ic  way in which information is logically encoded in the conventional 

computer, it is impractical to have a complete set of predicates to describe the 

completely segmented objects in the scene. Non-isomorphism in information coding 

is described as the need to specifically encode a ll information and rules for 

unification e.g. if a predicate l e f t - o f  is encoded, there is also a need to encode
I /
r ig h t - o f  as there is no way the complementary rule is automatically known by the 

computer. These arguments lead us to consider that partial segmentation would be 

a more natural consequence of the g lo b a l p r e a t te n t iv e  a n d  lo c a l fo c u s e d - a t te n t iv e  

p h a s e s  in object recognition. Such a procedure is used in occluded object 

recognition in chapter 7

4.3 Spatial Frequency theory of HVS.

The S p a t ia l  F r e q u e n c y  th e o r y  of the HVS is a alternative theory of the HVS that seems to be

gaining more support in recent years, compared to the F e a tu r e  D e te c to r  th e o r y  which, before the

1970s was more more widely accepted. Psychologists have been puzzled by experiments that indicate

that the HVS seem to exhibit some primitive Fourier Analysis [Sullivan82]. In fact it was only as

late as two decades or more ago that an increasing use of patterned stimuli in the form of striped
b een

light, complex gratings etc havy'seen in psychovisual experiments [Georgeson78]. The existence of 

S e p a r a te  S p a t ia l  C h a n n e ls  in the human visual systems have been studied in [Robson68, Sachs71, 

Georgeson75}

Sources trace Robson as amongst the first to draw attention to the e x is te n c e  o f  s e p a r a te  

in d e p e n d e n t ly - tu n e d  n a r r o w  s p a t ia l  c h a n n e ls  Sachs confirmed the existence of these channels in the 

human visual systems by experimentally obtaining the psychometric functions using concurrent, 

simple and complex gratings for 2 frequencies centred on 14 cycles/deg, selectively tuned to a small 

range of spatial frequencies. Georgeson and Sullivan conducted experiments using high and low 

frequency gratings with 2t)% contrast that showed that the HVS was unable (within limits) to 

perceived the loss in contrast leading to their assumption that there exists narrow band-pass filters 

in the HVS.

In [Baker and Sullivan80], m u lt ip le  b a n d p a s s  f i l t e r in g  was used as universal o p t im a l  f i l t e r s  for 

computer tomography images with performances exceeding m a tc h e d  f i l t e r s  in cases of non a-priori 

knowledge images.

Though much of of the band-pass properties of the HVS have been experimentally confirmed, 

there is less study of this property from the point of the graded resolution retina structure. In 

Chapter 5, the contribution of the multiresolutional retina structure as an im portant component in
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the generation of such spatial bandpass images will be modelled.

4.4 Structure of the MF image.

There are two types of MF images used in this thesis namely,

a) the Global MF image (GMF) corresponding to the images obtained during the preattentive 

phase of human object recognition

b) the local MF image (LMF) corresponding to the images obtained during the local 

focused-attentive phase.

The LMF is the basis for the p e r i fo v e a l-a s s is te d  b o u n d a r y  tr a c k in g  in chapter 6 and in tr in s ic  im a g e s  

in chapter 7.

4.4.1 The GMF Image.

Referring to fig. 4.4.1a, the GMF image, Iq  of a scene Is is a set of n annular subimages {1^ 

• of different areas (a^ ...aQ} and of resolutions {r^ ..rn} all sharing a common image axis, 

formally described by the following equations:

I is the input image made up of rectangular co-ordinates of pixels 2 p r >, for l< x < M , 

l< y < N  where M and N are the limits of the images.

I(-j = {Igj -*Ig2 --Ign} w^ere each P*xel *n is generated from a function II on a variable

neighbourhood of pixels in 1̂  defined by the function f(n). II is an operation on a 

neighbourhood of pixels of the input image e.g. average, mode, etc.
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The subimage 1 ^  is called the foveal image and the set of images {I n . -Ign} is collectively 

called the periforveal image. Following the conventions of Tanimoto, the function n is 

known as the G e n e r a tin g  K e r n e l and the process is called a c o n so lid a tio n  of a 

neighbourhood of pixels of the input image, p ^  y  

Each pixel in I is given by PIgn(x>y) = n  {f (n) * Ps(°)} where f ^  defines the 

neighbourhood of pixels for the nth perifoveai image and * is a convolution operation. 

The area of coverage of each subimage Ign is an annular area of common consolidation- 

neighbourhood f^ny  This area is spatially isomorphic (pixel-to-pixel correspondence in 

x,y) to the input image since the reduced resolution images are not decimated as in the 

pyramidal image representations.

The resolution of each I is defined as the number of similar valued pixels as a result of thegn
consolidation. Hence the resolution of the foveal image is 1 and the resolution of 1^^ is 7, 

the higher this number, the lower is the resolution. If the input image neighbourhood of 

pixels cover more than a line, such a consolidation is called a n o n -c a u s a l consolidation, as 

opposed to c a u s a l  consolidation which takes its neighbourhood from pixels of one raster- 

line of ■ the input image. It is obvious that the quad tree pyramid images use causal 

consolidations whereas MF images use causal consolidations. If the neighbourhood is a 

square k x k window then the resolution reduction will vary as the square of k.

The GMF images are illustrated in fig 4 .4 .1a and the typical consolidation processes are shown in 

fig 4.4.1c.

Fig. 4.4.1c Consolidation by Median Generating Kernel
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The graded resolutions used here follow a simple linear rule of n = l  to n= N  in steps of 1, with the 

centre image called the fovea image being an all-pass of the input image.

The co-ordinates of the common axis of all the GMF images define the foveation centre of the 

image. GMF images of different foveation centres are shown in fig 4 .4 .Id.

Throughout this investigation, the input image size has been chosen to be a 256x256 pixel image of 

256 grey level intensities. Causal consolidation have been used with subimage physical dimensions 

being arbitrarily and experimentally chosen to meet the compromise of accuracy, image fidelity and 

speed of computation but generally guided by the distribution of the packing density of the 

photoreceptors across the retina as in fig 4.2.1b.

The table in fig 4 .4 .l i  shows the image coverage area of the GMF images showing the computation 

advantages in consolidating the input images.

Fig 4.4.1A Table showing the coverage area and number of 

pixels for subimages.

xg R gn C o
Ca Na

Ig l 1 1024 1024 1024

Ig2 2 4096 3072 1536

Ig3 3 9216 5120 1707

Ig4 4 16384 7168 1792

Ig 5 5 25600 9216 1843

Ig6 6 36864 11264 1877

W 7 50176 13312 1902

Ig8 8 65536 15360 1920

Total 65536 13601

I = Perifoveal Images with fovea as I * 
g 5 g l

R = Resolution Reduction in the I gn gn
CQ = Overall Image Coverage area in from I  ̂ to I

C = Coverage area of I a 6 gn
N = Number of consolidated pixels in I a F gn

4-. 4.2 Choice of Subimage dimensions.

The figures above are displayed in the graph of fig 4 .4 .If. It shows the comparative time-

58



T 3C N n n f Sarrmlps in

D ___ r -J O

1 2 3 4 5 6 7 8 X3 n

Fig.4.4.1<l Subimage No. and Resolution Reduction.

It will be seen that a bigger foveal image will increase the computation time for the GMF 

image. Using a 32 by 32 foveal image, and a linear resolution reduction consolidation, the total 

number of perifoveal images is 8. The relative sizes of the perifoveal images are shown in the 

graph. It indicates that although the annular image coverage area increases rapidly from 1024 to 

15360 in 8 resolution steps, the number of samples required to represent the annular images remain 

quite constant with a mean of 1700 pixels. This offers a faster processing of the image during the 

preattentive phase of vision.

Although non-square concentric GMF images seem to better portray the Multiresolution 

Foveal Images in the HVS, the generation of such images have been more difficult and farther, the 

present-day raster line-scan pixel addressing seems not very suited for such processing. For ease in 

computation, square GMF concentric images have been adopted.

4  4.4 Resolution Reduction in GMF images.

The resolution reduction in the GMF image is a more important issue. This is because there is 

a intuitive need to have subimages that are more c o n tig u o u s  in resolutions so that unnatural artefacts 

in the image will not be created. Resolution reduction is also related to the choice of causal or non-

4. 4.3 Shape of GMF Images.
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causal consolidation of input pixels. Even in causal consolidation, experiments with vertical consolidation, 

defined as consolidating input pixels in the vertical y co-ordinates as opposed to consolidating in the 

horizontal co-ordinates, illustrated in fig 4.4.4- show that the choice of vertical or horizontal 

consolidation seems to be not overly important.

Causal Consolidation in Horizontal Direction
1-  ----------------------------------------

Causal Consolidation in Vertical Direction

Fig. 4.4. f  Fidelity-loss in Vertical and horizontal consolidation.

4.5 Comparisons with Pyramidal Images.

In the canonical pyramidal images [Tani80), the input image of the n x m matrix of grey 

pixels need to satisfy the rule that n = n ’ x 2^. and m = m ’ x 2 ^ ’ w^ ere n anc* m are integers anc* L 

is the number of pyramid levels with 3 <  L <  10 typically. Further, sizes of the lower resolution 

levels of the pyramid need to satisfy the matrices

P.[n.,m.] for i= 0 ..,L - l  

, n. = n’ x 2*

m- = m’ x 21

L-l level being the input image.

The Generating Kernel chosen in [Tani80] is the simple averaging Function obtained by averaging 

blocks of 4 pixels in level k to get a output pixel in level k-1 where

Pk-1(i ’D = 0-25[Pk(2i,2j) + Pk(2 i+ l,2 j)  + Pk ( 2 i+ l ,2 j+ l)  + Pk(2i,2j+1)].

It is obvious that the num ber of image samples to represent a 256 by 256 image is 4A/3 where A is 

the size of the original image. The pyramid of image gentl is shown in fig 4.5a and is compared to 

the GMF image of fig 4.5b both using the averaging Generating Kernel.
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Fig. 4.5a Images at various levels of Canonical Pyramid 
using Averaging Generating Kernel.
Layer 1 to layer 8

Layer 1
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Fig 4.5c shows the Fourier Components of the 4th layer of 
the pyramidal image Gentl (fig. 4.5a). The Fourier Components 
are grouped around the centre of the image with regions of 
significant Fourier components concentrated along the w^ and 
W2 axis. Image discontinuities at the top and bottom of the 
image contribute energy along the Wg axis (vertical) and 
discontinuites at the 2 sides contribute energy along w^ axis. 
It can be observed that the frequency components are not 
bunched near the origins of the w-̂ and Wg axis as in the GMF 
images of fig. 4.5d. This is because the foveal areas near the 
centre of the GMF image has sharp discontinuities which 
contribute to the high and low frequency components.

It is clear that to reconstruct the spatial image from the 
Fourier components of fig. 4.5c, one has to include more 
frequency components away from the origin, since the energy 
is more spread out, unlike the case of the GMF image in fig. 
4.5d where the frequency components are more concentrated near 
the origin. In order to recover the image from the Fourier 
Components of the GMF image, it is only necessary to include 
those components extending to the limits of w^ amd Wg as 
desired by the fidelity measure. In both cases, we can see 
that low-pass filtering is the major operation on the orignal 
images, the difference being on the location and size of the 
windows involved.

It may be necessary to point out that the pyramidal layers 
(as in Tani80) are usually obtained through a consolidation 
and a decimation operation not exactly like the pyramidal 
layer shown in fig. 4.5a which is undecimated. This would mean 
that the Fourier components of the normally decimated pyrami­
dal layer would be reduced in number, since the image dimen­
sions would be similarly reduced.
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In fig 4.5a log^mn levels of the pyramid are needed for the original image. In using the pyramid, it 

is necessary to establish a level called the minimum resolution level that will be the starting level for 

the top-down hierarchical processing in pyramids. This level is usually obtained a-priori or as a 

result of a successful search for structure as in [Klinger73] in an application for the the isolation of 

visual objects. Each level of the pyramid represents a progressively filtered and decimated version 

of the original image. This is shown in fig 4.5c and d where the Fourier Components of the 

pyramidal and GMF images show a gradual loss in high frequency components as consolidation 

progresses. -----  -  - - - - - -

Fig. 4.5c Frequency Components in Pyradmial Images Fig. 4.5d Frequency Components in GMF Image/



Examining the pyramidal image representations of gentl and the GMF image of gentl, one can 

make the following observations:

a) Resolution reduction:

In the case of the Pyramidal images, processing attempts to start at the least computational-intensive 

lower resolution level. However, this level is not easily derived from information at a single level. 

It will be necessary to traverse (usually down) the levels to obtain the starting level. In contrast, in 

a GMF image, traversing levels is equivalent to moving between the foveal and perifoveal images. 

As the resolution reduction is more linear, it is expected that the initial level or perifoveal subimage 

easier to establish in MF images than in the pyramids. This is because the resolution reduction in 

exponents of 2 results in factors of 4,16,32,64 etc and thus cannot provide an in te r m e d ia te  f i n e r  

resolution to resolve any ambiguities.

b) Image sequence during Computation.

In pyramidal images, each level is processed at a time, though traversing the layers is normally done 

after any single level is exhaustively searched. At any one instance, there is no equivalence of a 

datum subimage (fovea) to confirm any computations. The nearest datum image in the pyramid is 

the 1st level of the pyramid, which is formed from a 2x2 neighbourhood consolidation of the input 

image. This contrasts with the the MF image where a datum foveal image is composite within the 

MF image serving as a datum all-pass subimage of the input image. Such a datum subimage can 

serve as an arbiter of any perception ambiguity.

c) Dimensionality of computational data.

The computational data is the total amount of image data (in this case the amount of pixels) that 

needs to be processed. In the simplest case of a non-hierarchical image, the computational data is N 
However in the 4-window pyramid , the computational data is the sum of the layers 1, given by

Similarly in the GMF representation, the total number of pixels to represent image Iq m f  *s
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n=r E —
n = 1 n

where aQ is the area of perifoveal image I and 

r is the resolution reduction factor.

4 .G.The Optimal Generating Kernel for GMF images.

The optimal Generating Kernel is that consolidation of the input pixelsTT and its asso­

ciated neighbourhood function f ^  such that the output pixel

Pj (n,m) = n  * [f/n\(P Is(n»m)] 
gn v '

has the least measure of distortion. Whereas the shape of the neighbourhood function f ^  

as been chosen to be causal and row-ordered (as opposed to column-ordered), the generat­

ing kernel can take on various forms that can s u m m a r is e  the data like averaging, median 

selection, mode selection or sampling.

Formally the averaging and median consolidation are defined as

Pj (n,m) = Average{Pj (n,m)}= 1/T s |P j  (n,m)} 
gn s s

where n,m  £  S, S being the set of coordinates of the neighbourhood,

and T is the neighbourhood window area.

The Median consolidation is

Pj (m ,n)=  Median {Pj (n,m)} = q 
gn s

where q is that value for which its probability of being less or more than its neighbourhood 

of pixels are equiprobable.

It is obvious that sampling (random or ordered) of neighbourhood pixels will provide a high 

distortion measure subject to the Sampling Theorem, though we may recall that this is one 

method used in image representation (Pratt82) of Satellite images where enormous amount 

of picture information need to be processed.

Before we need to decide on the choice of the averaging or the median generating kernel we 

proceed to discuss on distortion due also to causal or non-causal consolidation.

• Causal or non-causal consolidation.

Unlike time-series studies, where causal and non-causal can be related to a time datum t 

and usually in one dimension, the concept of causality in a spatial image is conveniently 

defined [Burt83] so that taking input pixels from a row-neighbour is considered causal. This 

ignores other factors like frames of images and perhaps non raster scan images. It is obvious 

that the consolidation on a neighbourhood that has less correlation is likely to generate more 

errors. This is evident from the linear additive properties of consolidation, an example being
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shown in the case of median consolidation later, relating to the limit of perifoveal consolidation. 

Notwithstanding that there is a higher distortion in causal consolidation, this investigation 

has kept to the simple causal consolidation since a more elaborate scheme would be needed 

to maintain a more graduated change in resolution, using non-causal consolidation on 2-D 

images.

9 E x p er im en ta l resu lts  o f  d ifferen t gen eratin g  k ern els .

A simple measure based on the mean square error (MSE) was used to to test the fidelity 

performance of the consolidation process defined as

where x and y are the consolidated and input pixels respectively.

From experimental results there seems to be little difference in using the median or averag­

ing generating kernel, though it is obvious that sampling generates a high error (Sampling is
3

not a consolidation in the strict sense of the word). This is because for real-world images 

where adjacent pixels are correlated the average and the median returns the same result. 

However for images that have noise and other unnatural intensity discontinuities, the 

median filter has been shown to be superior [Huang79] as it preserves edges and smoothes 

out impulse noise. For want of a better generating kernel, the median consolidation is 

therefore chosen. At this point it may be necessary to point out one basic difference in the 

m e d ia n  f i l t e r in g  as used in image processing and the m e d ia n  g e n e r a tin g  k e r n e l  as used here. 

In the case of median filtering, each output pixel is replaced by the median of the pixels of 

the input window for unit- pixel sliding of the window. In the case of the MF images, a 1-D 

window of n pixels (n = l,2 ..8 )  is slided over the input image and a ll pixels in the output 

window is represented from this median. This process is equivalent to a c a u s a l  m e d ia n  

f i l t e r in g  fo l lo w e d  b y  a z e r o -o r d e r  s a m p le  a n d  h o ld .

•  U p p er  b ou n d  on th e  p er ifo v ea l im ages.

The upper bound on the perifoveal image is imposed by the high MSE error at the 

perifovea. This high MSE can be attributed to the fact that at the perifovea the input win­

dow pixels are less correlated leading to the breakdown of the linear additive property in 

median filtering. For real-world scenes where there is high correlation of neighbourhood 

pixels [Pratt82], the median of a product of a constant K and any sequence of pixels f(j) is

med{k f(j)} = K med {f(j)} and 

med{K + f(j)}= K + med {f(j)}.

However, for 2 arbitrary sequence f(j) and g(j) this linearly additive property may not hold,

Real-life scenes are typified by strong interpixel correlation.3
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i.e.
med {f(j) +g(j)} = med {f(j)} + med {g(j)}

As most real-world images have pixel decorrelation increasing with the spatial Euclidean 

Distance, the median consolidation of bigger windows will inevitably create a higher amount 

of artefacts in the output image. This imposes a upper limit to how far we can make good 

use of the perifoveal subimage without it becoming virtually useless to represent the scene.

This can be observed in the perifoveal image I(g7)‘

4.7 Summary

In this chapter, the support for the Multiresolutional foveal image representation as a 

rational scheme for robot vision was built. These supports have been built on two main 

points, being:

a. Physiology of the HVS and in particular the obvious distribution of photoreceptors in the 

retina and the consequent visual-pathways processing indicate there is both*hierarchical and 

multiresolutional'inform ation processing.

b. A .I. and psychological theories of vision based on partial segmentation and 

preattentive/focused attentional processing influence us to consider that global approaches in 

complete segmentation and non-hierarchical(searches for structure’ limits the capability of 

effective robot vision.

Using the graded resolution of the retina as a model, the multiresolutional foveal images 

were developed. Experimental results show that the median generating kernel would not be 

a irrational choice for producing the MF images.
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Chapter 5

Optimal Filtering for Robot Vision Using Multiresolutional Foveal 
Images.

In chapter 4 the multiresolutional foveal images were derived as an image 

representation using simple median generating kernel consolidation of input pixels having a 

basic resemblance to that of the eye. Only the fovea was unconsolidated, representing an 

all-pass channel. The role played by the fovea in processing an input image is only as 

good as it can be supported by the peri fovea. While such hierarchical

images (whether in the form of pyramidal hierarchy or in this form of multiresolutional 

fovea images) have been proposed for machine vision as good models to perform fast search 

for structure, region analysis etc., there is relatively little emphasis in their being used as 

filters, not to mention its possible use as a class of o p t im a l  f i l t e r s .

Optimal filtering for image processing or machine vision is an extension of the theory 

of optimal filtering and associated m a tc h e d  f i l t e r in g  from digital communications and 

control. The basic question that has to be posed is this:-

Is optimal filtering applicable to robot vision?

If its applicable then it would not be too naive to assume that whatever filtering that is 

performed by the HVS, that filtering must have semblance to such optimality. This chapter 

shall provide further analysis of the MF images in their use as a s e t  o f  g r a d e d  f i l t e r s  having 

features that are optimal for image understanding. The question that has therefore to be 

answered is this :-

If the m ultiresolutional images are the products of a set of simple low-pass filter 

channels, how could optimal filtering result from this set of low-pass channels?

5.1 Relationship between the Multiresolutional Images and Spatial Bandpass Filters in 

Robot Vision.

Visual perception theory is sometimes approached from two angles, namely the f e a tu r e  

d e te c t io n  th e o r y  and Spatial Frequency theory. Up to the 70s, the neuronal organisation and 

response of the visual cells to lines and edges made the feature detection theory very acceptable. 

However, it breaks down in attempts to explain some visual illusions and also seems to be not 

consistent with the more recent findings in cell-responses to receptive fields. The importance of the 

spatial frequency theory can be traced to the paper by Campbell and Robson [Campbell68l- 

Campbell used psychophysical arguments and experimental evidence to suggest that the HVS might 

be analysing a visual image by its spatial frequency components1 as shown in the fig 5.1.

^ Frequency com ponents in this context are the com ponents of the im age in the spatial xy space, no t the 
electrom agnetic/chrom atic frequencies of the light spectrum .
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This spatial frequency theory is now becoming more important as it is able to explain some visual 

illusions (e.g Poggendorf and the Muller- Lyer illusion) which the feature-detector theory finds it 

difficult to provide a good answer. In its relevance to the multiresolutional images, the spatial 

frequency theory can be summarised in the following points:-

a) the HVS contains several sensory channels, each selectively sensitive to a different, 

moderately narrow range of spatial frequencies.

b) The outputs from these channels are stochastically independent.

c) The channels are passed through separate thresholds. The importance of the spatial 

frequency theory having been mentioned, we will now proceed to see how such spatial 

bandpass channels as advocated in this theory can be considered as a class of optimal 

filters.

5.2 Optimal filtering in machine vision and image understanding.

Physiological measurements on single cells of the eye and the visual cortex seem to confirm 

that the retina image is analysed by a s e t  o f  q u a s i l in e a r  f i l t e r s  o f  o v e r la p p in g  f r e q u e n c ie s ,  e a c h  f i l t e r  

b e in g  o f  th e  b a n d p a s s  ty p e  o f  1 .5  o c ta v e s  w id e , w h ic h  a t a n y  lo c a tio n  in  th e  r e t in a , s p a n s  4 o c ta v e s  

[Georgeson75]. Sullivan [Sull84] argues that matched filtering is not practical in image 

understanding. This must presently be quite obvious, though if we look at machine vision about a 

decade ago, there was still intense pursuit in, for example, the design of better edge-detection masks 

which can be regarded as a form of matched filters for high frequency detection.

By definition, a matched filter is one whose characteristics is such that its transfer function is 

the complex conjugate of the signal to be detected. In the case of digital communications where the 

coding process has made the detection of the signal pulse from the background of noise as the prime 

interest, there is some a-priori knowledge about the type of noise, fading characteristics of the 

channel and the type of signal pulse constituting the signal. Such a-priori knowledge, especially in 

the approximate shape or time-occurence of the pulse is definitely useful in the design of matched 

filters in digital communications. However in im age-understanding the signal (object? feature? 

line?) is not only of one type (for example an e d g e  where one can therefore design a matched filter 

for high-spatial frequency detection) but also many of other types (e.g. regions, orientations, 

homogeneity etc.) so that there must be an infinite number of matched filters needed for one task.

Sullivan’s argument is that the type of optimal filtering required for image understanding is a 

set of spatial bandpass filters. In [Baker and Sullivan80], attention was drawn to the use of 

bandpassed images as a desirable method for the analysis of computer tomography images. 

Although much of the spatial channel properties have been obtained from psychophysical 

observations ̂  (study of the relationship between stimulus and perceptual appearance)
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Gain

Device
Tuned Filters of 

Different Frequencies

Fig. 5.1 Model of Spatial Frequency Channels 
in HVS (taken fro* Ca*pbell68)

Fig 5.3a Equivalent Consolidation in MF Images.
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there is not much literature that studies how such spatial channels are actually formed in the earlier 

visual pathways, i.e. at the retina fovea and perifovea. In particular there is little mention of the 

generation of the bandpass spatial channels due to the multiresolutional nature of the retina-.

It will be shown here using simple linear time invariant (LTI) system representations that the set of 

lowpass filters under the conditions of in h ib i t io n  a n d  r e c e p tiv e  f i e ld s  perform like bandpass filters 

with the bandpass characteristics dependent, amongst other factors, on the size of the receptive 

fields.

5.3 Filtering in Multiresolutional Images.

We note that the the exact c o n s o lid a t io n  process in generating the multiresolutional Images 

was that of a median filtering followed by a zero order sample-and-hold as shown in fig 5.3a.

Noting that for a real-world image where there is high correlation between adjacent pixels, there is 

. actually a small difference in using the averaging generating kernel or the median generating 

kernel, both being smoothing filters [Huang79]. In fact if the statistical distribution of the image 

intensities in an image is symmetric, the median equals the mean or average. We shall therefore 

assume the use of the averaging filter in place of the median for the purpose of the frequency 

domain analysis of the filters, as averaging filters are better represented as polynomials in digital 

filter analysis. Representing the images as a 1-D array of pixels as in fig 5.3b,

Sample and Hold for Size of Window

^ ( I g n ) =^ ^ *  • • I # 1}

i= N

y „ = E c kun - k

I ( s )

Fig 5.3b MF Image as a 1-D Non-recursive Window Filter.

“ By definition [Ganong81], the retina comprises the photoreceptors, the neuron cells (bipolars, 
ganglion etc.) and optic nerve fibres.
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where

P^j  ̂ is a row of the input pixels {uq}

P(Ign) *s a row outPut P̂ xels {yn} 
is a row of coefficients,

we can then represent a consolidation of the input image as a recursive equation of polynomials in n

y„= 2  c ku n -k  
k — N

and u n i t y

In the multiresolutional images, C. is chosen to be equal-valued (i.e. unweighted filtering)

and the resolution reduction r generates the output pixel

y = 1/r (u + u  i + u + u , 1 + u , J  ; n v n-r n-1 n n + l  n + r '
Such filters represent a class of discrete non-recursive filters variously known as FIR (finite 

impulse response) filters, transversal filters or moving average filters).

The output image Fjgn can be specifically represented, for a odd- size window, as

,=  v h r  ^  u " -' — (1)yn

The transfer function of such a filtering process can be obtained by using the eigen­

function in w, e^wt as

H (W) = l/r[e-Niw + .. + e 'iw + 1 + eiw + eNSw] ~ ( 2 )

Using Eulers Identity cos x = 1/2 (e^x + e'^x), we have

H^w  ̂= l /r [ l  + 2cos w + 2cos 2w + ...2cos Nw] —(3)

Rearranging —(2) into a geometric progression of ê x terms,

H (w) = 1/r [e-iNw + e-i(N-1)w + ..+  e->Nw] - ( 4 )

H^w) = sin (N +0.5)w /(2N +l)sin(w /2) —(5)

The graph of eq. 5 is plotted in fig 5.3c.
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Frequency--- >>
Fig. 5.3c Equivalent Low-pass Filtering 

in Perifoveal Channels.

Variable dinensions of receptive fields represented 
by span of the input stimulus

Equivalent foveal and perifoveal 
where l/tn is the cutoff filters subjected to different
frequency associated Kith the reCeptive fields, 
perifovea and dependent on r
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The effect of the sample-and-hold is equivalent to taking the output sample every r pixel dis­

tance introducing a bigger error, though the general filter characteristics remain unchanged 

(i.e non- monotonically decreasing with w).

It shows the following features:-

a. The general shape of the filtering is that of a low-pass filter being periodic with w

since (H^w |̂ decreases non-monotonically with w. (The effect of the sample and 

hold process in the actual implementation is equivalent to taking samples every r 

pixel distance and holding for the duration. This only introduces aliasing and other 

sampling related errors but the equivalent is also non-monotonically decreas­

ing with w.)

b. The bigger the number of terms in the lower is the cut-off frequency, i.e the 

cut-off frequency of the low-pass filters decrease with r, the resolution reduction 

factor.

c. These equivalent low-pass filters generated the perifoveal images are periodic with 

w. (This must be expected since they are a class of unweighted, non-recursive 

filters.)

It should be possible to employ different filtering schemes to obtain better filter characteristics (e.g 

least-square quadratic smoothing) or plain Gaussian, but such is not the purpose of this chapter. 

Suffice now to show that the perifovea images are equivalent to low- pass filters through the filter­

ing scheme in eq. 5. We will now proceed to show that such a set of low-pass filters under condi­

tions of variations of the receptive fields and in h ib i to r y  c o n d u c tio n  can act as a set of bandpass filters 

with v a r ia b le  b a n d w ith s  a n d  v a r ia b le  c e n tr e - fr e q u e n c ie s  thus conforming to some of the characteris­

tics of optimal filtering as in [Sull85].

5.4 Simplified analogies with receptive fields and neuronal inhibitory conduction.

Sachs [Sach71] attributes the existence of spatial channels using electrophysiological evidence 
*?

that neural substrates in the ganglion cells with overlapping receptive fields and antagonistic 

centre-surround activity can generate bandpass channels. The location and bandpass region of such 

a filter would be a function of the dimensions of the receptive fields. Studies by Enroth-Cugell 

[Enroth66] reveal that receptive fields of different dimensions exist within the different visual 

regions of the retina and that the outputs of the cells have subtractive functions. Also in 

[Ratcliff63], lateral inhibition conduction, amongst the other neuronal conduction mechanisms, was 

considered the most im portant contributor to the frequency response of the eye.

We proceed now to make the following simplifications where the foveal and perifoveal filters are 

regarded as a linear time-invariant transfer functions as in fig. 5.4a.
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Using the one-sided symmetry of the eye and allowing all the filter gains to be unity, let the set of 

the retina channels be made up of a parallel cascade of n foveal and perifoveal channels {H^w^ ,  

^ (w )2 ’” ^(w )n^ w^ere subscript 1 represents the fovea and (2..n) represents the perifoveal 

channels. Then, the foveal channel being an all-pass channel is

4,

H (w)i = 1 = k

where k is a constant, independent of frequency w

and the perifoveal channels, modelled as a simple first-order low-pass channel is

1
1 + jw T  i

with i indexing the ith perifoveal channel of cut-off frequencies

l/(T j).

Clearly the graded resolutional filters indicate a graduated cut-off frequenciesarranged in the order

T2 < T 3 < T 3"
The variable-size receptive field in one dimension is equivalent to a region of common stimuli or 

common inputs, equivalent to an electrical short circuit of the filter inputs. Using the Cornsweet 

model of neuronal cell inhibition shown in fig 5.4b

neuronaX C&Cl output

g i =e i - 2  b i g i

j=l

Fig. 5.4b Cornsweet Model of Backward Inhibition 
of Neuronal Cells

1. As the perifoveal regions are concentric about the fovea, 
there is syuetry extending radially froi the fovea.
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The model in fig 5.4a shall now be analysed for different sizes and locations of receptive fields.

S-4-.1* Receptive fields near fovea and the generation of high-pass filters.

Assumptions: Small receptive field covering fovea and perifovea2.

Inhibition: Foveal channel and perifovea2 outputs are subtractive.

The equivalent transfer function of the fovea channel (fc) interface Is

H l i f c )
1 + sT 2

B ’M c )
s T 2

1 +  s T 2

which is equivalent to high'pass filter with upper cut-off frequency

_1_
T  2

1
Therefore we see that an id e a l h ig h  p a s s  c h a n n e l is formed at the fovea channel through 

receptive field at the fovea region, with perifovea2 channel inhibiting.

5,4;2. Bandpass Channels at the Perifovea.

Receptive field: Small receptive field covering perifovea2 and perifovea3

1. The existence of a high-pass channel m  suggested 
in [Caipbell-Robson68] through psycho-visual experiients.
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Fig. 5.4d Generation of Bandpass Channels at Perifovea2

Note I Inhibition: perifovea2 and perifovea3 channels are subtractive, 

and P 2 are the
Perifovea '1 and Perifovea 2 respectively

Receptive Fields Bandwidth B
spanning P^ and Centre Frequency W n
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H/ \ = 1 /(1+ sT2) - (1/(14-sT3)
w p23 2

=  s( T 3 -T 2 ) / ( sZ+ s ( T 2 + T 3 ) +  1)- (5.4.2)

Rearranging eqn (5.4.2) into the canonical form of a bandpass filter,

[( w ) c
where 2£w is the bandwidth n
and wq is the centre frequency of the passband

Representing H/ x in terms of filter constants A, B, C, we get 
lw ip23

The equivalent transfer function of the perifovea23(p2 (-£1^. 5.4-cl )

' (s2 + 2 ŵn+wn2)

^(w)/?25=—
A sB

S ~ Jr s B  + C
-------- C 5-.4 .3 )

we then obtain

A =gain  of the bandpass channel = (T3-T2)(T 2T3)

B= bandwidth of the bandpass channel = (T3 + T2)/(T2 + T 3)

C= centre frequency of the passband= V  (1/(T2T3)) 

all A, B, C being dependent on the perifoveal cut-off frequencies T2 and T3

We can therefore see that from this simplified analysis that the emergent characteristics of the cas- 

cade of low-pass filters or the multiresolutional filtering at the perifoveal regions is the generation 

of a set of graded bandpass filters.

Overall, the common stimulus in the receptive fields and the inhibitory action results in the 

following:-

a) a high-pass filter at the fovea region (nor ju s t  a n  a l l -p a s s  f i l t e r )

b) a set of bandpass filters of variable bandwidth, gain, and cutoff frequencies depending on 

the associated perifoveal regions. (S ee  F ig . 5 .4 e )
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Fig. 5.4e Spatial highpass and bandpass channels from the 
Multiresolutional Foveal image processing.
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Addendum.

An Explanation on the generation of bandpassed images from Multiresolutional Foveal Vision .

Using the illustration of fig. 5.4a the group of input stimuli to the eye ( which must now be regarded as an 

arrangement of an all-pass filter (fovea) and progressively low-passed filters (perifovea)) is actually the 

scene to be foveated. What is important is to consider that the size and position of the receptive fields are a 

function of the movements of the eye, meaning that as the eye changes its foveation either by ballistic eye 

movements or by saccadic movements, the receptive fields change accordingly. These stimuli will be 

filtered accordingly and will be subtractively combined at their outputs. This subtractive function is based 

on the fact that the dominant mode of neuronal processing in the visual cells seem to be lateral inhibition 

(Comsweet 70).

Consider the first case when the eye looks at a scene using channels near the fovea. In this case the receptive 

fields will affect both the fovea and the immediate perifovea-2 as shown in the stimulus area marked 'H'. 

It will be seen that their respective outputs, when subtracted will cause the existence of a high-pass filter ( 

which is quite unlike the normal high-pass filtering using image sharpening ). Thus what is significant 

here is that although the eye is know^only to be made up of all-pass and low-pass channels, by the change 

in the receptive fields , due to eye movements we do also perform high-pass filtering.

In the second case, if we should move our eyes so that we now have the scene stimuli acting on the 

perifovea-2 and perifovea-3 area, as represented by the receptive field area marked 'B', we say that the 

outputs of these channels will be equivalent to bandpass channels. This can be explained by the fact that 

the subtractive outputs from graded low-pass channels are equivalent to bandpassed outputs, as can be seen 

from the graph in fig. 5.4d.

Although the above illustration seem obvious in linear time-invariant system theory, it is not very 

conventional to imagine that filter outputs should be made to subtract.

It is the change in the receptive field size and receptive field locations that create such high-pass and 

bandpass filters.

Hence referring to fig. 5.4e, we can explain that the selection of the receptive fields (as a result of changing 

foveations) will cause us to be doing an equivalent filtering of the scene using combinations of high-pass 

and bandpass channels. A significant point is that such filter characteristics are readily made variable 

(passband centre-frequency, passband bandwidth, etc) by the controlled movement of the eye.



Chapter 6

Perifovea-guided semantic line tracking.
In many applications of robot vision for object recognition, much of the initial 

difficulties, by necessity, have to be solved by proper pre-engineering of the scene using 

various methods of s t r u c tu r e d  l ig h t in g , etc. so that the object contours can be obtained in an 

easier manner. Such a boundary becomes a part of the f e a tu r e  e x tra c tio n  process for further 

recognition of the object. A very real problem is to distinguish what constitutes the 

boundary of a object if the scene is visually complex. This is in fact compounded by the 

problem of defining what an e d g e  is (e.g is a shadow of an object or is the intensity- 

discontinuity on its surface due to reflectance, etc., an edge?) since there is fnzziness in the 

concept of an "edge" [Levialdi83]. Therefore, before we can define a boundary, we need to 

define what an edge is, as one simple definition of an o b je c t  b o u n d a r y  is that it is the outer 

edge of an object fulfilling certain semantic descriptions for that boundary (e.g. concavity, 

curvature, etc.). It must be plain that semantic boundaries of objects must yield a better 

feature for recognition than non-semantic ones (e.g one based on intensity threshold).

In this chapter we shall not concern ourselves with the complexity of edges but rather use 

standard ways of detecting intensity discontinuities defined as its gradient 7 f ( x , y )  specified

m *,y)~% L+¥ 'dx dy
giving its magnitude

A  =  and the

o r ie n ta t io n  o r  a n g le  of the edge as

6
1L

—  tan -l
1L
dy

However, we shall attem pt to use as much of the edge information as possible so that they 

could be matched against the semantic inputs to yield a semantic line. A s e m a n t ic  l in e  

becomes a line form ed by fulfilling a set of semantic descriptions. This idea is not new as 

m ultidim ensional space edge tracing has been proposed by [Liu78, Herman and Liu79]. 

However the use of p e r i fo v e a l  s u p p o r t  to reduce computation search space and to suppress 

spurious edge points in order to obtain a truer line is the main focus in this chapter.

6.1 The Problem of defining a semantic line.

The problem of defining the boundary of an object in terms of image primitives 

(edges, regions, contours etc.) is a very complex one [Shirai71j. A simple illustration of this
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difficulty is shown below:

where the task is  defined as :
"Generate the semantic boundary of the object Coinl (coin at the centre)".

Fig. 6.1a The difficulty of obtaining a semantic boundary.

We can use many edge detection masks to obtain image discontinuities. These range from

from the simpler Sobel, Prewitt, compass gradients to the more complex ones, DOG, Can-

nys etc. Although what they yield is the basic information on V> robot vision has yet to 
1

make f u l l  use of such information. Normally, an early attempt is made to threshold the 

points so that further processing can proceed, thus defining an edge as one that survives 

after the threshold. To use such edges means the sacrifice of some useful information since 

basically what is then left is a discontinuity pixel having j ^f(x ,y)|exceeding the threshold. 

Efforts to join such edges will at best yield non-semantic lines [M arr82j. In most cases, e d g e  

o r ie n ta tio n  information is not used.

If we can proceed a step ahead and try to use some prescribed information in an edge (e.g 

intensity profile of edge, edge neighbourhood metrics etc.) these edges are likely to provide 

a better semantic description of the objects of the scene. Obviously, such an attempt is 

bound to be difficult and time-consuming since there is a need to perform matching at every 

pixel with its neighbourhood, (e.g in a 5x5 neighbourhood, a point has to be matched to 24 

of its neighbours for k semantic descriptions and proceed to its next point and do the same 

for 24 neighbours while bookkeeping its search path). It is perhaps for this reason that 

most of the edge-linking in industrial robot vision use simpler region growing or e ro s io n  

techniques to perform  connectivity, based on the non-seraantic information of the edge points

1. As intensity-discontinuity thresholding, which is a non-linear 
operation, is done quite early in conventional robot vision, this 
aeans the loss of such of the information that intensity-discontinuity 
carries.
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as it guarantees convergence.

6.2 Related work in line following.

Methods involving special masks for the detection of vertical or horizontal lines like

M, -0.5 1 -0.5 

-0.5 1 -0.5 

-0.5 1 -0.5 for horizontal lines are basic methods. Methods are available based 

on parameter-space transformations like the Hough Transforms which can detect any analyt­

ical line describable by a table [Duda72]. The method of Chow and Kaneko [Chow72] for 

the detection of the left ventricle uses a logarithmic filtering, interframe averaging, region- 

based dynamic thresholding of grey-level intensities and final extraction of the boundary 

using the gradient information of these thresholded pixels. Another method due to Lemkin 

[Lemkin79] uses a B o u n d a r y  T r a c e  T r a n s fo r m  which is based on sequential thresholding of 

’stable’ regions, which show evidence of a boundary. Muerle [M uerle68] used a region 

growing method to perform segmentation of objects in a visually complex scene.

B o u n d a r y  tr a c k in g  belongs more to the s e q u e n t ia l  m e th o d s  rather than the p a r a l le l  methods 

of image processing [Rosen76]. In sequential methods, the results from each operation 

determines the next step whereas in parallel methods, the same set of operations are per­

formed for the whole of the image as illustrated in fig. 6 .2a.
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Fig. 6.2a. A summary c la ssifica tio n  of parallel and sequential 
methods of boundary tracking.
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In this context, the planning method of Kelly [Kelly] to obtain the boundary of a head could 

be classified as a sequential method using multiresolutions. Another method that is sequen­

tial is that of Martelli [Martelli72] which uses the concept of ’microedges’ which are defined 

as edges if immediate neighbours h a v e  d i f f e r e n t  p i x e l  i n t e n s i t i e s  p ( x , y )  

Microedge exists if p(x,y) f  p (x + l,y ) or p(x,y) 4  p (x ,y + l) .

These microedges are mapped into a graph where the search for the edges becomes a algo­

rithmic-graph cost-indexed search operation which seems to be serial though there are no 
l

semantic inputs in the search.

M ontanari [Mont71] used a dynamic programming method to track curves in a noisy 

environment where a figure of merit is embedded in the curve. This figure of merit contains 

some specifications on the nature of the curves (e.g straight lines).

One method by Robinson [Robinson77] generates a line only when edge orientations fulfil a 

neighbourhood connectivity criterion. One rule that was used was that an A point is part of 

an edge if its directional neighbours comply with a set of orientation conditions. The results 

on test images showed very little spurious edge-points.

Grifiths [Grifith73] made use of the profile of the edge and other a—priori information to 

obtain straight lines and vertices. This seems to be using more information from the edge 

and the a-priori knowledge can be regarded as some similar semantic information. A sophis­

ticated method based on a strong knowledge-base to find the lines of polyhedral objects is 

described in [Shirai73]. From the above methods we can note that sequential line following 

methods fall into two classes:

a) Those methods that tracks line and curves, using higher level knowledge by 

assuming that the A points are already valid parts of an edge. The algorithms 

assign the right edges to the right curves or lines.

b) Those methods [Grifiths, Robinson] that perform do not accept A points as valid 

parts of edges until some conditions are satisfied.

6.3 The ideal semantic-line tracking and the perifovea-guided semantic line tracking.

Before we discuss bn the investigation of the perifovea-guided semantic line-tracking, it 

would be good to think about what an ideal semantic line-tracking would look like.

An ideal semantic boundary tracking or any generalised line^tracking method using a sequential 

search mode is illustrated in fig. 6.3a.

1* Sei&ntic inputs aust take into account lore than the edge-strengths 
and need to include other possible aetrics (e.g edge orientations, 
edge-neighbourhood statistical sodalities, edge profile, etc), which 
also tend to lake the problea very coaplex.
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Fig. 6.3a Ideal Generalised Semantic-line Tracking Algorithm
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Ideally the program has two parts. The first part should be one collecting e v i d e n c e  of edges by

creating all pixels meeting the set of conditions a = where the as are information from
i,

the 7 points, e.g. orientations, edge intensity, edge profile, edge contrasts etc.}. A pixel E. so 

obtained is not thresholded at this stage but shall be specified by its tuples E. = {a l, ..ajjr ser

of possible edge points {E. ̂  are matcjjecj to inputs of the semantic description 0 of the line 
{(3}= where 3 specifies the semantic conditions for connectivity. The elements of 3

could be typically

3  ̂  ,3  2 = minimum and maximum length of any straight 

segment in the line,

3 3 O 4 = minimum and maximum curvature in a valid line, 

etc. for all other 3 s.
a

The sequential search for the semantic line L becomes mapping of

{a},{3 } y

This ideal appears easy to formulate but the real task is so daunting that it may sometimes be con­

sidered naive to think of this possibility. This can be seen from the fact that {as} specifies low-level 

vision tasks for which the ambiguities are plentiful while {3 } specifies a higher-level vision task 

which is not as difficult j f  low-level tasks are done right. Success of the whole scheme not only 

depends on the sequential success from low-level to high-level but that relaxational search may be 

also be needed.

This situation is in fact emphasised in [Horn86] that "least work has been done on the organisation 

of edge fragments into larger entities, i.e lines and curves".

The inputs to the program has two parts, coarsely equivalent to the lower-vision part and the higher 

vision part. The lower level vision part generates all pixels which make them candidates for edge 

points using the set of conditions:

{a 1,a2,an}=^! candidate edge-points {B^}
where are the full set of elements of the tuples of the 7  points (orientations 9e), edge strengths

S , edge contrasts C  , profile of edge in X-direction etc.). The edge points E. so obtained are not1
thresholded in any way. The full set of edge points {E.} shall be specified by their associated tuple

Er <ara2’“L}-
The set of edge points for the whole of the image is matched against the semantic descriptions of the 

boundaries given as tuples in B where

{B}={3r ...3k}
each 3 specifying the connectivity of the edge points {E.}. The elements of {B} could be typically, 

3 ^ 3 2  = minimum and maximum straight-line runs of the boundary

1. This is to re-esphasise that A  is a scalar whereas v  is a vector.



33>34 = nrinimum and maximum curvature of boundary line

3 3 ,3 g = minimum and maximum edge-strength difference in adjacent edge-candidates of 

the edge line.

Finally a boundary line segment is generated if it satisfies the conditions in {as} and {3s}.

6.4 Perifoveal-guided semantic line tracking.

In attempting to use perifovea-guided approach, simplifications will be made so that only 

three elements from  {a} and one element from {3 } shall be used.

These are

a^ = edge strengths

a 2 = edge orientations converted to modulo 8 cardinal directions east, north-east, north, 

etc. equivalent to 1 to 8.

a ^ e d g e  activity index (EA I), (a^  ranges from 0 (low edge- activity) to 1 for (high edge

activity), defined as a measure of how likely a V generated when a ,̂ and a 2 have a finite

positive values, are actually true edge-points and not a noise spike. This is based on a

measure of the neighbourhood characteristics. Intuitively, if the neighbourhoods show no

modality in the a s , then the 7  is not likely to be in part of a valid edge. Although it is

possible to obtain a EAI based on the weighted function of both a^ and a 2> we will only
1

use a simplified modality measure 0 2 *

Using these criteria one can say for example, ^

Edge point valid if ^ ^ 2 ,03 ) (0.7, 2, 0.3) r.e.

An edge point exists if the point satisfies the condition {0.7, 2, 0.8} 
meaning that it has a normalised edge-strength of 0.7, an edge orientation 
in the modulo-8  direction 2 and an edge-activity index of 0.8, thus showing 
a strong statistical edge-orientation modality in the neighbourhood.

1. Id the experiments here, only the edge-orientations (*£} hire been 
used to neasure EAI, defined as a siaple leisure of hov similar 
the neighbourhood pixel orientations are, with respect to the candidate 
edge-point in question, (i.e. a simple rote connt of the orientations). 
Hence if the candidate orientation is 2 and the neighbours show a doiinant 
orientation of 6 (2 and 6 directions being orthogonal), then the candidate 
edge is not part of a line.
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Similarly, the set of semantic inputs (3s} shall be the minimumj defined as:-

3  ̂ = maximum allowable differential in edge strength between two immediate neigh­

bourhood edge-points.

$ 2  ~  maximum allowable change in orientation between two immediate neighbourhood 

edge-points. 32 ranges from 1 to 8 .

We can see that 8 „ , „ . . . .  . . .and 32  are semantic characteristics of the type of line we want to accept as a
valid line. For example if we are interested in an object that has only a slight curvature, then 3 2 

need to be correspondingly specified for low values, perhaps not exceeding 2.

Using ■ points at (x,y) and (x ,y + l^ c a n  be a part of a line if it fulfils the conditions

a 1( x , y ) - a 1(x ,y + l)  < =  3 X —(1)

AND (logical and) 

a 2(x ,y )-  a 2(x ,y + i)  < =  3 2 —(2)

In this way semantic lines are traced (i.e created) for non-zero a points having valid combinations 

of ( a ^ ,a 2 , a 2) resulting in edge points defined only by ( a ^ ,a 2) and linked only if conditions of 3  ̂

and $2  are simultaneously fulfilled. This process is illustrated in fig. 6.4- a.
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Fig. 6.4*a Semantic Edge-linking using perifovea-support.
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6.5 Perifovea support in the neighbourhood.

The neighbourhoods of pixels in the line-tracking algorithm here is not a uniform resolution

neighbourhood of perhaps 1-unit Euclidean- distance pixels (e.g 3x3 window) but a larger neigh­

bourhood of two perifoveal windows (27x27) illustrated in fig. 6.5a.

Modulo-8 notation for 
cospass points 
l=east 2=north-east,.. 
8=south-east.

Fig. 6.5a Semantic Edge-linking using perifovea-support.

An Exaaple of conditions for 
Perifovea supported line-tracking: 

If candidate fovea pixel aJ pi 
has orientation of north and 
the perifovea in the north  
of it also fulfills condi­
tions for support, then 
connect the fovea pixel to 
the fa r th e s t pixel in the 
perifoveal boundary p3 .

A
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• Computation of and a.2 in perifovea.

Referring to the fig. 6.5b and considering perifovea window 2.

i) Calculation for a^

Let Y. be the pixels in the fine-resolution image.

For each Y- compute the vertical and horizontal components of the 7 using the Sobel

masks *1
-1 -2 -1 and 1 0 -1

0 0 0 2 0 - 2

1 2 1 1 0 - 1

yielding {v1-.v9} and {hr ..h9}

The consolidated edge-strength of the single pixel_Z is

a z_l ~
2.

ii) Calculation for

By similar consolidation, the orientation of the consolidated pixel in Z is

i = 9

2*i
oC?=: tan~ 1< I-  i = 9

2 v i

allowing for orientation normalisation.

iii) Similar computations are done for the perifovea 3 with the difference that i is now 27 instead of

9 (i.e. 27 pixels to be collapsed into one equivalent perifovea3 pixel)
In computation, the foveal and perifoveal a s  are arranged as a vector constituting the support for 

this
the fovea, we call,the foveation vector, given by

FV =  (a.f,a.p2,a.p3,o ,p ,q ,r ,s ^

where

a .f specifies the 9 a^  for the fovea f pi
a p 2 specifies the 8 a^ for the perifovea 2 , P2

a p2 sPec^^es 8 a  ̂  for the perifovea 3 > P3.

o ,p ,q ,r,s  specifies the decisions computed from the as when matched with the set of

semantic inputs in {£}. For example, o is set to 1 if the fovea centre pixel is a valid edge-

point, p is the next point to which this pixel should be linked to^ eic .
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Fig. 6.5b Perifovea support by 3x3 consolidation in ’Z’

The fovea is a regular 3x3 pixel window where each pixel has values (c tp O ^a-j). Each coarser- 

resolution ’pixel’ in perifovea window 1 is a consolidation of 9 pixels within itself as indicated by 

’Z ’ in fig. 6.5b.
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6.6 Experimental Results

The perifovea-supported algorithm was used to trace the semantic line 
(i.e. the outer boundary of the object "coinl" of the image fcoin of fig 
6.1a. The lighting is specially selected to be unstructured.

Fig. 6.6a(i) shows the result of finding the edges where the informa­
tion from oC-ĵ is only used (as in most conventional edge-finding methods).
The main variable that governs the merit of this result is only in the 
selection of the threshold value, which is done either interactively from 
visual inspection or from some optimal intensity-threshold methods (e.g 
histogram-equalisation) which is unlikely to yield semantic object bound­
aries, if the lighting is unstructured. .

Fig.6.6a(ii) shows the edge-points that satisfy the criteria for <^±>100 
ando<2 = 4 (NW) i.e condition x of fig. 6.3a. Note that although boundary 
edge-points are obtained, the background edges are similarly generated as 
random background edges do also satisfy conditions for o< land c<2..

Fig.6.6a(iii) shows the edges that satisfy the additional conditions 
for (edge-intensity profile) where planar objects as is characterised
by the flatter coinl will show a edge profile that has a steeper rising 
and trailing gradient than the more diffused edges of the plugs.

In Fig. 6.6b, much of the background edge-points are eliminated by 
using the perifovea-supported edge-activity index criterion, since random 
edge orientations of the background do not show a statistical modal distri­
bution unlike object boundaries.

Using perifovea-support to distinguish the background from the object 
boundaries results in a faster computation time since false triggers to 
link unlikely candidate-edges are suppressed whenever the perifovea region 
exhibits a low confidence in the existence of valid boundary-edges as 
illustrated in fig. 6.6c.

Finally another criterion for boundary edge-linking by including the 
semantic descriptor for p^ (maximum allowable curvature of the boudary) was 
experimented. An earlier naive procedure using only foveal edge-orienta­
tions (i.e to say no perifoveal support) show spurious results. Such spuri-
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-ious edges can be expected since single-pixel-distance edges are too close 
to give reliable information on changes in edge-curvatures. The result 
using conditions for to be less than 2, changing from the fovea to the 
perifovea, show more promising results^ as in fig. 6.6d.
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Fig. 6.6a(i). Image of fcoins with edge-strengths thresholded 
level of 100 grey intensity level (8-bit resolution 
grey levels)

Fig. 6.6a(ii) Image for fcoins satisfying the condition for 0̂ >|00j oCg 
<> 4 (i.e NW)
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Fig. 6.6a(iii) Image of fcoins satisfying , 0(2 * 0(3*

Fig. 6.6b Image of fcoins satisfying conditions of edge-activity index 
(EAI).
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Fig. 6.6c Image of fcoins with elimination of background random edges
using perifovea support to identify unlikely region of edge- 
points.

Fig. 6.6d Image of fcoins satisfying semantic-input criterion
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6.7 Limitations in the Perifoveal supported algorithm.

The main limitation of this algorithm  was that in actual computation, a long time was needed 

(approximately 5 minutes of computing time). This was not because of the matching of 3 but 

because of the computations to obtain the V for each point and consolidating them in the perifovea. 

Once a valid edge point is obtained, linking was fast. In any program that required a search, there is 

a possibility of an infinite loop in the search since a local minima could be reached. This could be 

overcome by a counter to allow the number of iterative loops so that the program could cease on 

time-out. This was not provided in the algorithm. In using any perifovea-support it is necessary to 

establish an order of importance to the information derived from the perifovea 2 and perifovea 3. 

This is because the consolidated information in the perifovea 3 being further away has been sub­

jected to more smoothing as compared to perifovea 2. The algorithm used here unfortunately 

assigned equal importance to the information from P2 and P3.

6.8 Summary

In this chapter, an attempt was made to use the perifovea as a support to guide in the tracing 

of semantic-lines. The importance of semantic edges/lines was discussed in the light of visually 

complex scenes. The techniques for sequential line tracing were reviewed, demarcating those that 

use inputs assuming that these are valid edge points and those that hypothesise on intensity- 

discontinuities until proved to be valid edge-points. The method of perifovea-supported line tracing 

was used in the second category. The perifoveal support provided a view of 27 x 27 pixels but con­

solidated at the perifoveal areas so that spurious information is smoothed out. Computation on the 

line-tracking decisions based on the resulting 25 pixels gave the search a speed gain since the deci­

sion variables were factored down by 30.

The results using perifovea support to track the object boundaries 
have been mixed. It must be pointed out that the primary aim of this 
endeavour is investigate if additional semantic inputs to a search program 
to obtain the object boundaries do yield better results. In the course of 
this, it was found that perifovea-support was necessary to constraint an 
otherwise exhaustive Imd falsely-triggered search. In designing the experi­
ments to search for semantic object boundaries, the author has spent con­
siderable time and effort to refine the algorithm. There seems to be many 
more descriptors that could be used to improve the results. However, at 
this point it is felt that any further effort may still be short of reli­
able results in practice since one fundamental fact always bears out. This 
is the much-discussed ill-posedness of the problem.
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Addendum,

Although an initial attempt was made to perform semantic line-tracking using perifoveal support, this was 

not carried out successfully in the experiments. One reason was that unless the foveation fell near the outer 

boundary of the coin, all other object boundaries will also start a tracking process. Another reason was 

that it was very difficult to give a robust and richer semantic description of the coin using geometric 

properties of the outer boundaries only.
The result in fig. 6.6d where the semantic criterion for P4 was complied, was not as a result of line-

tracking but was a map of all intensity-discontinuities that satisfied the conditions for the multiresolutional 
( a 1, a 2, a 3) and p4.

What the results prove is that using perifoveal support on a 27 x 27 pixel multiresolution window, strong 

intensity-discontinuities that would otherwise be considered as a possible object boundary, if computed at 

single unit pixel resolution level, would be rightly ignored since there will be no edge-coherence. This 

means that the background of the scene will not be mistaken to be possible boundaries of objects (the 

background being a mat-surface, strong intensity-discontinuity region , in an unstructured scene).



C h apter 7

M ultiresolutional Intrinsic Imaged for Occluded Object Recognition.

Intrinsic Images as a means of obtaining a more complete description of a visual 

scene was introduced in Chapter 3. The idea,originated from [Barrow78] was that by using 

models of illumination, reflectivity, surface slope, etc., and computing on the grey-level 

distribution, we should be able to generate these intrinsic images at e v e ry  point of the 2-D 

scene. Such intrinsic images can be viewed as a means of deriving 3- dimensional 

information from a 2-D scene. It is obvious that to derive the intrinsic images for a ll points 

of the scene will be very time consuming and therefore would need to be adapted if real­

time object recognition is the goal.

The methods using multiresolutional foveal images do not aim to process images globally 

throughout the computation process, as was pointed out in chapter 5. Upon obtaining an 

area of interest using the GMF, only the computation on a small multiresolutional window 

called the Local M ultiresolutional Foveal Image (LMF) would be used to compute the finer 

details. We will investigate how we can use the LMF to generate some equivalent intrinsic 

images for occluded object recognition. The methods used here are quite unconventional but 

it aims to use as much of the grey-level information from a scene as possible .using LMF 

foveations.

This chapter starts with a concise discussion on the problems of occluded object recognition 

and introduces the techniques used to solve these problems. Posing the problem of occluded 

object recognition as a problem solvable by deriving basic 3-D information from the scene, 

the method of intrinsic images is proposed. However, adapting the intrinsic images to the 

multiresolutional nature of the LMF, the computations may need to be modified. The 

procedures and algorithms for an occluded object recognition experiment are described. 

These results are analysed and compared to two methods that have been proposed by others 

to solve the same task. The first method is that of using a multiresolutional pyramid model 

[Neveu86]. The second, and more industrial-like is that of the local Feature focus method of 

[Bolles and Cain83]. ,

7.1 Occluded and unoccluded object recognition.
The need to recognise an object that is partially visible or occluded occurs widely in

Industry. This situations occur when objects or parts exit from some industrial processes

(e.g metal stamping station) in such a manner that these parts are randomly oriented and

overlap. This not only creates recognition ambiguities to the occluding object but also to the

occluded object. It can be expected that unless means are provided, (e.g. hopper or gates)

there is no special reason why parts should not be occluded at some stage of an industrial 
process.
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7.2 The problem of occluded object recognition.i
In retrospect, the problem of occluded object recognition in the earlier years of robot 

vision was actually a problem of trying to recognise occluded objects from binarised features 

(i.e mainly from shapes or outlines). Even today, in second generation robot vision systems 

[Rossol83] where processing starts from grey images, this is still by no means a trivial 

problem. The problem of occluded object recognition posed in this chapter is similar to that 

in [Neveu86] and will be described in 7.2.1 below:

7.2.1 Description of the experimental scene of occluded objects.

The scene is shown in fig 7.2.1a.

Objects in the scene: 5 planar objects (3 different keys and 2 similar coins).

Background: Any randomly chosen uniform-texture background (in this example, a 

briefcase).

Illumination: Normal unstructured study-lighting.

Amount of overlap allowed: From light to heavy overlap of the keys only. In this 

experiment, the coins do not overlap.

Touching of objects allowed?: yes

The problem to solve: To identify the occluding and occluded keys if any.
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(x) Textural edges 
(Refer para 7.4.1)

(y) Depth profile of 
edges (refer para 7.4.1)

(z) Area of high edge- 
strengths and incoherent 
edge-orientations 
(refer para 7.4.1)

Fig. 7.2.1a The experimental scene for occluded object recognition.
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Fig. 7.2.1 a(ii) Intensity-discontinuity (ID) points of experinental 
Scene.
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7.2.2 Minimum set of intrinsic images

To solve the problem of occluded object recognition as posed in paragraph 7.2.1 we will try a 

minimum set based on texture and edge characteristics. Therefore we will adapt the LMF 

to compute the following:-

i) Textural Edges.

ii) Depth from edge-profile

iii) Incoherent edge-angles in areas of strong edge- strengths. a
Textural edges are edges between regions of differing textures. This is,useful method to 

identify an object from its background. Thus a production rule for occlusion may be stated 

as:

"if an edge results from textures of two surfaces, such that 
one of the textures is not of the background, then occlusion 
of an object by another object is detected"

This is indicated by the area marked (X) in fig. 7.2.1a.
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7.3 Survey of techniques for occluded object recognition.

Complex 3-D occluded object recognition is extremely difficult to solve. An example is the 

classical bin of parts problem. We will only study the case for 2-D objects (actually this means the 

3rd dimension is small compared to the remaining two) that are overlapping or occluded so that 

uncertainties of the objects are in the plane of the camera.

Object recognition of unoccluded 2-d objects that have been pre-engineered is not too big a 

problem even with binary robot vision. Essentially, and the most common method employed in 

industry is to match the geometric moments (area, compactness etc.) as these can be obtained quite 

easily [Pugh83]. However, if objects are occluded, even this relatively universal method of moment 

matching fails as there is no simple way of distinguishing objects from additional moments that have 

been created due to either touching  or over lapp in g  or pa r t ia l  views.

Alternative faster methods that do not rely on moments, could use a model reference to 

reconstruct the object contours [Hattich83] or to use the local features of the objects (e.g Euler 

numbers, corners, and some extended features like the object boundary segment). The latter method 

is that of [Bolles83] that generates all the local features of the objects for matching.

Structured lighting methods involving the use of a specially s truc tured  illumination system 

such as a plane of light e.g. laser illumination [Agin73,CONSIGHT], slit of light [ShiraiTl], tapered 

light beam [Wei and Gini83] could be used to detect object overlap by inspecting the profile of the 

illumination. Although they seem easy to use, the problem is that of finding the illumination so that 

computation of the beam can start. Time of flight ranging using laser [Nitzan77], ultrasound [Waag 

and Gremiak76] or photom etric stereo [Ikeuchi and Horn81] have been proposed to obtain a range 

map which of course could resolve occlusion ambiguities at some cost. Methods using passive 

stereoscopy can be used to produce the disparity map which encodes the range information in the 

occlusion, though these are relatively difficult to implement.

Methods to derive 3-D information from 2-D, usually referred to as the recovery  o f  x from  y 

(shape from shading, etc.) are theoretically possible. Other methods of occluded object recognition 

using global search for a linear or curve features using the Hough transform ations in non- 

hierarchical ways or as a hierarchical search in a pyramidal image [Neveu86] have been also 

proposed.

From the above representative methods used for object recognition which have extensions of 

them being able to resolve occlusion, we can see that they belong to two groups. The first group 

tries to derive 3-D information from the scene and the second group tries to use the available binary 

features in the best way to resolve occlusion ambiguities. However, those methods that try to gather
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3-D information are not widely used in industry due mainly to computational efforts.

If it is possible to use more than one source of information concerning the objects (surfaces, 

edges, reflectance, textures etc.) in as short a time as possible, it may be possible to use them for 

occluded object recognition. Such a method of deriving and c o m b in in g  intrinsic images information 

using the local multiresolutional foveal image is the pursuit of the later parts of the chapter.

7.4 Adapting intrinsic images to detect occlusion.

There are many intrinsic images that one can generate from a scene. The problem is to 

identify a possible m in im u m  a n d  e a s i ly  c o m p u ta b le  set that will be just essential to perform occluded 

object recognition. From the theory of Intrinsic Images, we have many possibilities that include:

a) Shape from Shading

From optical physics we know that the amount of light reflected from a surface depends on 

the angles between the incident and emergent illumination at the point of illumination 

defined by a reflectivity function r(0j,0e). Assuming some regularities, (smoothness, 

constant illumination etc.), the surface normal can be inferred by measuring the change in 

brightness at two points of the surface due to change in the angles 0 in r(0^,0e). Thus an 

occluded surface may have its surface orientation changed more abruptly due to its being 

occluded by another object which has a different surface orientation.

b) Shape from  Edges or surface contours. As was pointed out in chapter 6 , the so-called 

edge operators are essentially in te n s i ty -d is c o n tin u i ty  detector. The outputs of these 

operators may not be real edges in the true sense of the word "edge" which normally 

means the outer boundary of an object. If we gather more information from the vicinity of 

these edges, we can infer about those edges that are

i) edges of shadows (usually not sharp changes)

ii) edges due to change in surface reflectivity (i.e different surface material)

iii) depth information from edges.

c) Shape from  Surface

i) change in surface orientation with respect to the illumination (e.g convex surfaces have a 

higher centre brightness)

ii) change in range of surface (as a result of occluding or being occluded)

d) Shape from Texture

i) Change in surface orientations can be inferred from the computations of the te x tu r e  

a n is o tr o p ie s  in the te x tu r e  m ic r o e d g e s  of the surfaces.

ii) Contours can be inferred from change in textures, giving rise to textured edges.

The above computations are non-trivial even making some broad assumptions on the problem.
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The problem associated with texture is to decide what the simplest descriptor for

texture is, for the problem at hand. Consequently, a simple statistical texture descriptor for 

roughness R ,  based on the nth moment M q ( z -) of the pdf of the grey-level intensities p(z^)

L
A/n(2(/)}=S(r«“ m),’/7(Z«) « = 1

where
L

m =  S  z tp ( z ' t))
1=1

being the mean, and R (normalised) for the 2nd moment or (z), being the variance, 

resulting in

is used.
l+p2(z)

Thus R ranges from 0 for smooth surfaces (all z. being equivalued) to 1 for rough 

surfaces. The value R is weighted with the mean to give the overall descriptor of 

texture T  described as

T  =  a m  +  $ R  --------- ( 7 . 4 . 1 )

where ^  and n are the weights for m and R.

• Inferring occlusion fro* edge-profile.

The edge-profile shall be used in the following way:

"If the edge profile Ps of the same object changes, indicadi»j there is an increasing 

depth in the edge (as compared to the reference edge- profile on the flat back­

ground), the object is likely to be occluding another object".

This is reasoned out from the fact that an occluding object will be on top of another object and so 

the edge depth will change. A simple definition of edge-profile is illustrated below ( - f io .I lv lc ) ,
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Fig. 7.4.1c Illustration of changing edge-strength 
profile across object boundary due to 
depth change.

Unthrasholded edge-strength profile  at region 
yl of scene fig . 7.2.1a.

x pixel coordinate

y 207 208 209 210 211 212 213 214 215 216 217 218 219

100^54 18 20 34 16 18 20 10 28 36 20 12 12
101 40 2Q 26 32 10 10 10 12 6 8 34 16 20
102 16 10 34 30 8 6 6 2 10 50 24 38 8
103 20 14 10 '"24 4 14 14 10 12 46 56 20 16
104 24 8 32 70 5^ 46 46 46 36 52 74 52 48
105 18 40 116 122 114 X 128 122 146 124 124 122 144
106 78 144 196 162 212 212 2i6 194 222 238 168 198 224
107 166 248 255 252 255 255 25525$ 248 255 254 252 242
108 242 255 255 255 255 250 222 234 ! 246 228 216 212
109 255 255 244 220 190 118 92 94 158 rSO 134V 102 112
110 228 164 102 98 60 16 42 12 52 40 6* 10 34
111 76 58 64 116 106 78 90 40 60 12 66 26, 50
112 236 184 158 170 158 110 98 60 44 32 78 20 $0
113 255 255 222 184 168 144 120 70 8 16 38 24 60
114 255 255 255 214 188 156 138 102 50 10 30 72 52
115 255 255 238 224 172 132 128 74 60 42 30 24 54

Profile of edge-strength at region y2

Unthresholded edge-strength profile  of region y2 of 
of scene fig . 7.1.2a

x pixel coordinate

y 220 221 222 223 224 225 226 227 228 229 210 211 212

95 K 24 32 52 98 144 244 255 202 255 255 255 255
96 2 "12 40 32 104 170 252 250 192 146 255 255 255
97 6 16 X4< 30 106 190 254 255 206 50 255 255 255
98 14 4 30 >4 122 196 255 2551174 148 255 255 255
99 18 6 14 54 U8 212 255 255 138 255 255 255 206
100 12 10 46 56 1 2 2 ^ 4

\
255 255 134 255 255 255 90

101 20 20 68 60 124 248 255 242 120 255 255 255 66
102 8 38 86 104 182 255 25523$ 114 255 255 255 150
103 16 96 134 184 240 255 255 224 >8 255 255 255 255
104 48 158 182 246 255 255 255 174 64 255 255 255 255
105 144 224 254 255 255 255 210 92 20 255 Z55 255 255
106 224 255 255 255 255 224 102 26 30 168 255 ' h i  255
107 242 255 255 254 208 80 22 54 n o 150 166 222 206
108 212 206 202 142 68 62 64 104 134 96 56 88 90
109 112 100 88 50 60 88 112 96 76 4 38 62 46
n o 34 26 28 48 82 104 78 68 14 8 22 32 10

Profile of edge-strength at region yl
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The edge-profile is derived from the unthresholded edge strengths sg by using the histogram of its 

edge strengths.

The production rule to detect abnormal edge depth is:

"If the edge-depth of an object and its background only, exceeds the threshold for its 

model edge-depth on a flat background surface, then the object is likely to be occluding". 

This is indicated by the location marked (Y) in fig.7 .2 .Ia.

We know that if two objects occlude, then the information from the edge angles at the point of 

occlusion will generally be such that they show the existence of strong edge-strengths at the point of 

occlusion. However, the associated edge-angles will not be coherent in the sense that the edge 

angles at the point of occlusion will change abruptly indicating that they are not the edge-angles of 

the same object.

The third production rule to detect occlusion may be stated as:

"If there are strong edge-strengths in a region, i.e ^ (S p S ^ sQ)/n >  threshold s , such that 

their edge angles 0s are not coherent i.e the variance in the edge-angles exceed a threshold

o’2 (0^.. &
then an area of occlusion is likely to exist". Such an area is indicated as (Z) in fig. 7.2.1a.

7.5 Local multiresolutional foveal (LMF) images as Intrinsic Images.

In the method of intrinsic images due to Barrow, uniform resolution images were proposed. 

On problem that has to be solved is how best to adapt the multiresolutional nature of the LMF to 

generate the 3 minimum set of intrinsic images in 7.4.1. It turns out that for the case of textures 

where we only use a simple description of textures based on lower-order moments of its grey level 

probability distribution functions, namely variance and mean, the linear properties of this texture 

description does not change with resolution change.

In the case of the edge profile, we can expect that the reduced resolution at the periphery of the 

LMF to provide an advantage that spurious variations in the edge profile will be smoothed out.

The same applies to the edge-strengths and edge-angles, as spurious edge-strengths sq and edge- 

angles 0Q at the periphery of the LMF will be smoothened out so that the information tends to be 

more reliable.

7.6 Algorithms.

The algorithms for the whole process of generating the intrinsic images and the search algo­

rithm using perifovea support is shown in fig 7.6.
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The grey-level of the image of the scene is first acquired. A 
random foveation is first attempted using the smaller window structured 
as a local multiresolutional foveal mask of 27 by 27 pixels as in section
6.5.

The aim of this foveation is to decide if the foveation image is 
solely a scene background or it also has some evidence of being part of 
an object. This is decided upon by generating the minimum set of the 
three intrinsic images. However from experiments it was found that suffi­
cient confidence can be obtained from just the texture measure and the 
thresholded edge strengths, without regarding even the edge orientations.

Further foveations will be attempted if this foveation yields 
the subimage as belonging to the background. However, unlike the first 
foveation which is purely random and unguided, the subsequent foveation 
will make use of the information from the intrinsic images generated.

For example, if the foveation yields a higher distribution of 
edge-discontinuities of more uniform edge-discontinuity orientations 
within a part of the 27 x 27 pixels, then the centre of mask for the next 
foveation will be chosen to coincide with this part. This process contin­
ues until a foveation on a part of an object is obtained.

On obtaining a foveation which has a high probability of being 
part of an object (region of high edge strengths and coherent edge orien­
tations), then this region becomes the new local focus point, from where 
further guided searches for conditions of object occlusion using the 
three production rules explained in section 7.4.
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Fig. 7.6 Algorithm for Perifovea-supported search and generation 
of intrinsic images for object recognition of occluded 
images.
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7.7 Experimental Results

Using the proposed algorthm of fig. 7.6 to infer the occluding/occlud- 
ed objects, the results that have been computed from the test image are 
discussed below:-

The method using edge-textures seems to provide reasonably consistent 
results. This is because in this case, certain textures are readily identi­
fiable, especially that of the background. Since it is necessary to com­
pare two textural regions across a strong edge-inteface, the program had to 
first look for an area containing strong edge-lines, before it could com­
pute the textures. The area in fig. 7.7 b was one of the areas detected and 
confirmed to contain object occlusion.

The criterion using edge-depth profile is only useful if an object 
edge and its background is obtained in a single foveation. However, it 
required a trace of the edge-line of the object, which turned out to be 
as labourious as the boudary-tracking algorithm used in chapter 6. The 
gradient of the edge-depth change along the edge-line turned out to be 
difficult to be used as a reliable model-input to the program. This is
compounded by the fact that different poses of the same object with respect
to the lighting produced different edge-depth profiles. This criterion 
turned out to be nearly unusable as a criterion for occluded object 
inference and was abandoned.

The use of the third criterion, i.e. strong edge-strengths but
incoherent orientations was more useful as a means to detect inter-object 
occlusion. This can be seen in table 7.7b where the two keys mutually 
overlap. This region shows a high degree of edge-strengths (denoted by non­
zero entries (0), since it was necessary to convert orientations to
equivalent grey-levels for visual display purposes). Within a small area, 
denoted by the subimage ’ za’, the edge-orientations are incoherent since 
the orientations change rapidly across pixels in all directions. On 
inspection of the image, it turned out that this region had the bigger 
brass key occluding the smaller aluminium alloy key.
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Fig. 7.7b A region of object occlusion using edge-texture 
of eqn. 7.4.1
(3 regions of distinct aodel-reference textures 
of .4, .6, .8 are detected in this region)

Pixel x coordinate R G . 6 r J 0 N  O b
) e c c L u s i o H

31
32
33
34
35
36
37
38

7 132 133 134 135 136 137 138 139 140 141 142 143 144

20 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8
21 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8
22 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8
23 .8 .8 .8 .8 R 8-_^8-—rg- fl__8_—r8---r8
24 .8 .8 ,6 .6 .6 .6 .6 .6 .6 .8 .8 .8
25 .8 • y .6 .6 .6 .6 . .6 .6 .6, .4 .4 • *x
26 .8 A .6 .6 .6 .6 .6 .6 A A .4 .4 .4
27 .8 1,6 .6 .6 .6 .6 .6 .6 A A .4 .4 .4
28 .8 / *6 .6 .6 .6 .6 .6 .6,) A A .4 .4 .4
29 .8 .6 .6 .6 .6 .6 .6.^A A A .4 .4 • 4
30 .8 .6 .6 .6 .6 .6 A 4 .4 A A .4 .4 .4
31 .8 .6 .6 .6 .6 .6 / . 4 .4 A A .4 .4 .4
32 .8 .6 .6 .6 .6 .6 . 4 .4 A A .4 .4 .4
33 .8 .6 .6 .6 .6 .6 \ 4 .4 A A .4 .4 .4
34 .8 .6 .6 .6 .6 .6 .6 .6'X 4 A .4 .4 .4
35 • u .6 .6 .6 .6 .6 .6 .6 .6s\  .4 .4 .4 .4
36 • fx .6 .6 .6 .6 .6 .6 .6 .6 \ .4 .4 .4 .4
37 • TL .6 .6 .6 .6 .6 .6 .6 .6 \4 .4 .4 .4
38 .4 ^ 4 - .6 .6 .6 .6 .6 .6 .6 .4 .4 .4

*£ (r/6N  OF O C C L U S IO N

7 I 132 133 134 135 136 147 148 149 150 151 152 153 154

20 78 84 112 88 120 455 255 255 255 122 202 255
21 100 80 52 22 74 74 150 >355 255 255 220 122
22 72 158 162 102 26 68 90 74 lf3frs£55 255 255 255
23 36 50 118 178 122 58 56 76 56 96 154 2̂55
24 90 30 12 68 104 104 150 102 50 50 10 66 152
25 2$^ 134 98 104 58 104 124 162 168 106 60 34 56
26 255 ^52 122 80 62 46 62 140 176 86 34 98
27 255 255 255 ~25F 1̂38 52 32 72 82 104 80 96
28 255 255 255 255 255 -156 82 60 78 132 128 102
29 132 168 255 255 255 255 255 *226 70 62 120 112 146
30 255 255 255 255 182 255 255 25^ 184 50 80 196 235

255 255 255 255 214 /184 
255 255 255 255 ttX 206 
255 255 255 2 ^ 2 2 8  146 
96 255 255 MQ 142 60
130 255 255/255 226 160
254 255 253 255 146 128
255 255 255 255 100 126
255 255 255 210 84 110

170 154 1 9 6 J ^ 2 5 0  
48 192/2^5255 255
112 255 255 255 202 
18^255 255 236 70 
f55 255 255 144 12 

255 255 240 62 0 
255 255 144 10 0 
255 255 86 0 0

OP O C C L U S iO A

A£<r/oAy aF 
OCCLUSION

Edge-strengths in the region showing relatively 
strong edges.
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Table 7.7b Region 'Z' of scene 7.2.1a showing 
a region of inter-object occlusion. 
(satisfying criterion 3) 

Note:The entries in the table are edge-orientations of the 
8 directions but scaled to increments of 30 to enable 
computer image printout as equivalent grey levels. Therefore 
30 represents orientation 1 or 45 degrees, 60 represents 
orientation 2 or 90 degrees, etc. This region of high edge­
stengths can be indicated by the absence of 0 entries, 
which is used to represent pixels having very low edge­
strengths, whose edge-orientations can be ignored. 
Incoherent edge-orientations can be seen from the 
abundance of varying orientations in a typical subimage 
area 'za'. 

~~ ,~122 123 124 125 126 127 128 129 130 131 132 13~ 1]4 135 136 137 138 139 140 141 142 143 

I
I 20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

(I) 

' z~ 

.. 
( II) 

Edge Angles computed at foveal resolution in (i) and at perifoveal 
resolution in (ii). 
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7.8 Limitations of the LMF intrinsic image approach.

The primary reason for investigating the intrinsic image approach was that of using as much 

of the grey-level information as possible to derive some simple 3-D information to resolve occlu­

sion. It was reasoned that by combining a few essential intrinsic images, we could detect an occlud­

ing and an occluded object. The idea is feasible but the experimentations showed the following 

major difficulties.

i) The texture measure using the roughness criterion R was not reliable as R changed with 

angle of lighting. Unless a model is constrained to be in specific locations so that R is con­

sistent, a single model of roughness is not sufficient. Perhaps additional measures of tex­

tures based on higher combinations of the moments of the pdf or structural texture 

descriptions will be necessary.

ii) In using the edge depth, the biggest problem was that of finding the exact position of the 

edge from where the depth can be inferred. This arises because in the experiment, the cri­

terion for the detection of the edge is that it is an edge of a single object and its back­

ground,based on detection of 3 entities simultaneously (object, background texture, edge). 

Extrapolations would be needed to centre the LMF so that its centre is the centre of the 

edge. This turns out not to be a easy task as it needs further fine detail search for the max­

imum of the edge-strength as the centre of the LMF.

iii) The criterion of incoherent edge-angles at points of high edge strength activity is difficult 

to model, as the variance of the edge-angles is not a sufficient measure of incoherence. 

Again the problem is that of locating the centre of the LMF window so that we have the 

right population of the edge angles.
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It will be noticed from the above experimental results that though 
the method using multiresolutional computations for. intrinsic image 
generation and perifovea-supported searches seem theoretically possi­
ble, there are certain limitations. These limitations will be dis­
cussed in the light of comparisons with two approaches that have been 
proposed to solve similar tasks. It needs to be reiterated that these 
two methods do make certain assumptions of s tru c tu re d  l ig h t in g  and a 
segmented background which is in contrast, not specifically demanded 
in the multiresolutional approach.

7.9 Comparisons with other methods for occluded object recognition.

7.9.1 The Multiresolutional Pyramidal Method.

The method of occluded object recognition described in [Neveu86] 
is based on a model-based matching technique using the coarse-to-fine 
search properties of a Gaussian pyramid. The boundary segment of the 
object is stored as a node in a hierarchical graph. A generalised 
Hough transform is used to match the model nodes with regions in the 
corresponding levels of resolution. Its strength lies in its having 
adapted the robustness of Hough-space searches by a hierarchical 
reodering of the object features (edge, holes etc.).

This method assumes that the object is already segmented reliably 
so that the edges and shape are the features sufficient to detect 
occlusion. In general it does not use any grey level information from 
the image except that these have been operated upon by a standard 
edge-mask to obtain edges. It could be considered as a occluded-object 
recognition technique using h ig h e r -le v e l information in a f a s t  h ie ra r ­
ch ica l model o f  computation. Though the Hough method is slow, it is 
robust. However, the Hough method does have limitations [Brown82] 
which shall not be discussed here.

7.9.2 The local feature focus method.

In [Bolles83], another method for the recognition of occluded 
workpieces is proposed. The edges of the occluded objects are avail-
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able to the program by edge-mask"operations. The resulting segmented 
scene containing entites called o b je c t- fe a tu r e s (edges, corners, and 
segments of perimeters of objects) are ordered in a manner making use 
of the clusters of m utually c o n s is te n t fe a tu re s to create certain 
hypothesis as to the existence of occlusion and hence infer on the 
occluded-object recognition.

There is an elegant emphasis in the use of lo c a l fe a tu r e s, as 
opposed to more global ones, so that the feature-selection process 
could use a sm a ller set of focused-features to infer on the other 
features. A sophisticated program generates such features off-line, 
from the models of parts presented to it.

7.9.3 Some Comparisons

We can see that in general the above approaches do not intend to 
use the grey information in the image except to generate the edges. 
This of course must assume sufficient preen gin eerin g so that the edges 
thus created are semantic edges (i.e edges of the objects).

The use of hierarchical search using reduced-scale images is a 
useful strategy in [Neveu86]. Hierarchical search is indirectly incor­
porated in the intrinsic images by selecting a-priori what fe a tu re s  
have the highest occurence. In the multiresolutional fovea method here 
these features include in t r in s ic  fo vea tio n  images (e.g background) 
whereas in [Neuveu86] the features are edge features.

The local-feature-focus method needs to build up a complete data­
base of the model during the model-acquisition phase. In contrast, 
multiresolutional foveal intrinsic images method do not demand as 
complete a model-base (e.g edge-segment runs).

In both the methods of Neveu and Bolles, a global search of the 
problem domain is performed. However, in the intrinsic image approach 
we should theoretically be able to perform a sequential non-global 
search, but computation difficulties of keeping some equivalent stack 
of the areas searched (possibility of infinite loops) have forced the 
author to use a global search, (top-left to bottom-right), this being 
not the intention of multiresolutional methods. It must be admitted 
that the method of Bolles is a more robust solution in industry and 
will be a likely method to be used for some time to come, in the light
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of the discussions in chapter 2/

7.10. Summary.

The problem of occluded object recognition was proposed to be 
solved by using the method of intrinsic images generated from LMF 
images. The LMF images were to be combined in a novel algorithm that 
used the information from te x tu re s , edge-depths and incoheren t edge- 
angles to detect any events of occluding and being occluded. The 
texture of the background was an important part of the search process.

The experimental results showed that although the concept is 
acceptable, the computation procedures required good formulations for

a) model descriptors and
b) good search methods.

The problem of good model descriptors was a bigger problem as sim­
pler, or even more complex descriptors for textures, edges, etc. are 
bound to be constrained by some irregularities of the environment (e.g 
illumination intensity, illumination direction, change in texture due 
to angle of lighting, etc.).

Improved search methods in the computation could be helpful but it 
does not solve the basic problem of being given the right things (true 
edges, true object boundaries, etc) to search.

In some ways, the problem posed here for the solution by the mul- 
tiresolutional foveal image method has been quite unconventional and 
consequently more difficult, as we have tried to place relatively 
little constraint on preengineeing, as was assumed in the two ap­
proaches in [Neveu86] and [Bolles83], Whereas the boundary features 
(edge segments) of the binary objects were the inputs to the search 
programs of Neveu and Bolles, in this method we have tried to use a 
smaller set of features called the minimum s e t  o f  in t r in s ic  images for 
the problem at hand.

The multiresolutional fovea intrinsic image method could be im­
proved by :-
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a) a better s e le c t io n  o f intrinsic images
b) a more robust model-reference (e.g texture 

measures, etc)
c) use of better model-matching (structural matching, 

Bayesian inference etc.)
It is felt that the intrinsic images do point towards a possible 
solution to this class of problems, for which the more conventional 
boundary-based methods would not likely be suitable. Any real success 
in this intrinsic image method would lie on the availability of com­
puter and imaging hardware capable of generating multiresolutional 
fovea intrinsic images at a higher throughput rate. Further, we can 
only console ourselves that short of removing the i l l-p o se d n e s s of the 
problem, real-life occluded-object recognition will continue to be a 
difficult problem to solve.
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Chapter 8

The Multiresolutional Foveal Image in a Hierarchical Progressive 
Image Transmission Scheme.

In robot vision, occasions arise where an inage has to be proc­
essed at different sites using fast and efficient means (e.g defect 
inspection).

C r o s s  c o a r s e - in fo r m a t i o n  f i r s t  im age encoding or P r o g r e s s iv e  t r a n s m i s s io n  (PT) 

schem es have been proposed with the aim of using minimum resources (tim e, storage, 

transm ission channel) in conveying a im age signal between two points in an in te r a c t i v e  

manner [K now lton80]. It makes use of an encoding scheme that builds a hierarchy from the 

im age and then sends these hierarchies in a prescribed manner to achieve this aim. An 

exam ple that could be envisaged is that o f two graphic workstations w orking on the same 

im age (C A D  im age, CT images' or just plain robot vision im ages) and needing the image to 

be sent to each other. The natural hierarchy in the m ultiresolutionai fovea l images was 

investigated for such a schem e. It was found that certain resulting properties give it 

additional advantages over the m ethods of Tanim oto [Tani79] and Burt [Burt83]

This chapter starts with a brief survey of relevant coding techniques for i m a g e s  and proceeds 

to develop the hierarchical transmission system s and algorithms for m ultiresolutional foveal 

im ages.

8.1 Brief Survey of Image1 Coding Methods.

Possib ilities o f im age coding arise from two main sources,

a) source coding, based on the statistical entropy of the image content and uses methods of 

r e d u n d a n c y  r e d u c t i o n

b) M ultiple com ponent coding of t r a n s fo r m e d  im ages, (transform ation here means any 

operation on the im age to obtain desired characteristics e .g  region-segm ented im age, not 

necessarily d o m a in  t r a n s f o r m a t i o n  m ethods).

In robot v ision , som e transform ations may be regarded as an encoding o f the image ( i.e  if 

the object o f interest is already segm ented, then Blums m edial axis transformation 

represents an effic ien t code o f the object). The advantage o f coding in this case is not so 

much of inform ation com paction as being a suitable data structure for the purpose of data 

manipulation and m atching in object recognition.

T here are two fundam ental steps in coding. The first is to decorrelate the input inform ation. 

Decorrelated inform ation provide many possib ilities of coding. The second step is to devise  

coding’ m ethods to encode this decorrelated inform ation. T herefore it may be possible to 

concisely say that coding m ethods generally involve novel techniques o f achieving the above  

two steps in i n f o r m a t i o n - p r e s e r v i n g  ( l o s s l e s s )  or lo s s y  ways subjected to the constraints of

the HVS.

Sampling and quantisation together form the most basic form of coding. Quantisation errors, aliasing *

* It needs to be reminded that the images best suited for this hierarchical scheme are still- frame images
as opposed to video signals with interframe information. However it seems these techniques could be 
extended to slow-scan systems.
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errors and the N yquist criterion set the upper bound on this m ethod. If there is redundancy 

in the im age, m ethods of p r e d ic t iv e  c o d in g * [M usmann79] and t r a n s fo r m  c o d in g  [Tescher79] 

can be used. Predictive coding uses neighbourhood pixels to achieve prediction either in 

causal or non-causal w ays.

G eneral transform  m ethods involve the transformation of the im age from  one dom ain to 

another such that the transform ed coefficients are less correlated with e n e r g ie s  concentrated  

in a few  coeffic ien ts, exam ples being Fourier, W alsh, Haar, Hadarmard, K arhunen-Loeve, 

D iscrete C osines etc. A m ongst these transforms the K arhunen-Loeve can achieve the best 

energy com paction using only the first m of the n transform  coefficien ts, although with long  

com putation tim es.

A nother category o f im age compaction makes use of the subjective perception in the H V S

(e .g  synthetic highs coding [Graham 67]). K nowing the statistical distribution of the im age, it

is possible to use o p t im a l  c o d e w o rd  a s s ig n m e n t  m ethods which are variations of the

H uff mans m ethod [H uffm an67].
[Kunt85]

S e c o n d  g e n e r a tio n  m e t h o d s / involving m u lt ip le -c o m p o n e n t  c o d in g  transform s the im age into  

m ultiple com ponents or signals, ( edges, regions etc.) so that these signals can be tailored to 

their individual characteristics for efficient coding. Other m ethods based on the hierarchy of 

the subim ages to be transmitted known as hierarchical coding schem es are becom ing m ore 

important as interactive transm ission becom es m ore com m on through ISDN netw orks 

(Integrated Services D igita l N etw orks). The method of M ultiresolutional fovea im ages could  

be classified in this category.

8.2 Multiresolutional Images and Progressive Transmission Codes.

Progressive Transm ission possibilities are strictly speaking not solely  restricted to 

m ultiresolutional im ages only. Any other method that can reorder its t r a n s fo r m  c o e f f ic ie n ts  

can sim ilarly be progressively  transmitted, though as we shall see later, they may need to be 

adapted to fit such schem es. In PT, series or im ages sent is such that successive im ages 

are progressively and non-destructively reconstructed using the property of G lobal to local- 

order of perception in the HVS [Spoehr82]. The m ethod of K now lton [K now lton80] uses a 

regular decom position  of the original image into blocks so that the average of the block is 

represented by an optim al assignm ent on a look-up table. H ill [H ill83] extended the 

K nowlton approach for progressive colour im ages. This m ethod allow s a convenient way of 

interception of the transm ission as the im age is constructed in the spatial domain which  

coincides with the dom ain of visual perception.

Tanim oto [Tani79] uses the G a u ss ia n  pyramid im ages as the series of im ages for  

transm ission. This uses decimated and reduced-resolution layers of the pyramid im ages which
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are essentially low-pass versions of the original image in a manner having similarities with 

in te r p o la t iv e  r e c o n s tr u c t io n  and m a x im a l b lo c k  encoding.

In the L a p la c ia n  pyramid approach of Burt, [Burt] a preprocessing of the Gaussian pyramid 

images is done by a simple pixel-to-pixel subtraction of successive layers of the pyramid. 

This difference is then transmitted instead, as it allows for fewer digits for representation 

due to its magnitude reduction. Vector quantisation is further employed to yield higher data 

compression.

Progressive transmission using the r e o r d e r e d  c o e f f ic ie n ts  of transform coding methods like 

DCT, Hadarmard and Fourier [Takikawa84] have been proposed. However, these methods 

generally pose a difficulty of obtaining the right sequence of the hierarchy of coefficients 

since the transform domain does not by itself yield such information, [Ngan84] though in 

[Chen and Smith77], a priority of sequence transmission is obtained from the property of 

activity of the blocks of the original image.

8.3 Multiresolutional Foveal Images for Progressive Transmission.
The adaptation of the multiresolutional foveal images for 

use in progressive transmission schemes is based on the 
following procedure.

a. generation of progressively low-pass perifoveal images together with the all-pass 

foveal image which we call the GMF image Iq ,being the set of {Igplg2 --*gn^ ^or 

1<  = n<  = 8.

b. generation of a set of bandpass images { ^ b p ^ '^ b n ^  ^or 2<  = n <  = 7 by 

subtracting I from the equivalent area aQ of the input scene image Is>

n bn n '  s gny v '  

where * indicates convolution operation.

c. the resulting bandpassed images 1̂  now have properties of

i. being decorrelated

ii. having a smaller dynamic range of amplitudes that lend themselves well to 

vector quantisation methods.

iii. being representable in reduced samples of l /rQ which results from the sample- 

and-hold process after consolidation, as explained in chapter 5, where rQ is  the- 

resolution reduction at nth perifoveal image.

d. Possible use of a regime of progressively refined image-reconstruction steps,(inter- 

pixel interpolation.) This arises from the fact ‘that there is always a true foveal 

image being available for interpolative reconstruction...
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8.3.1 System Description for Progressive Transmission.

Refering to Fig. 8.3.1a, we can represent the kth instance of the 
reconstructed image as 1^, given by

an
2  7

n —\ r n
sn

+ a2/r2Ig2 + •*a7/r7Ig7}
where aQ, rQ are the subimage areas and resolution reduction factor in the image

It is clear that the number of samples required to reconstruct the image I is

a /r . n n
In discussing Progressive Transmission, we have to introduce the idea of a set of

p r o g r e s s iv e ly  t r a n s m it te d  images {Ir  , I r  . . . l r  } where l r  is the composite
u t0 u tl  u tk ^ tk

image received after the kth discrete time of completion of transmission.

It is expected that on completion of any kth reconstructed image 
IGtk the recieving station can interactively decide with the sending 
station is further refinement of the image is required. If further 
refinements are required, the sending station will send the next Ign+1 
image. If further refinements are not required, then the Progressive 
Transmission terminates.

However, instead of simply sending the refinement images Ign as 
low-pass images, an computation is done at the transmitting station to 
encode the low-pass images as band-pass images by a simple subtraction 
of nieghbourhood low-pass images. Such a procedure not only ensures 
that there is more decorrelation in the image data to be sent, so that 
this creates better opportunities for coding, it also calls for re­
duced number of bits for coding of the band-pass images.

The detail manner in which the sequence of are transmitted and 
reconstructed is illustrated in the alogorithm of fig. 8.3.1b. and 
described in the following paragraphs
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Fig. 8.3.1a The Multiresolutlonal Foveal Image (MFR)
0

Progressive Transmission of Image I f o r  k=1 

(ie. first instance of reconstructed image l ^ )
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Fig. 8,3.1b
Algorithm for Progressive Transmission Using Multiresolutional 

Foveal Images

Obtain Image of Original Scene (Is)
and decompose into spatial subsets of {Isl..Is7}

Y .
Generate Multiresolutional Foveal Images {Igl..Ig7}

Y
Generate Bandpass Filtered Images (Ibl••Ib7} from 
Convolutions of {Isl..Is7} and {Igl.,Ig7}.

Y
Transmit ordered samples of {Ib2..Ib7} but 
complete pixels of Igl (which is also Isl, since 
Isi is the foveal image).

------------------ Y_________________________
Receiver

i
Reconstruct First composite image of Isl 
and ordered samples of Ibn

V
Interpixel interpolative refinement of Isl 
and Ibn to give first instance of

IGtl

Continue progressive transmission 
and refinement until satisfactory 
’reception of kth Image Iq .̂
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At time t l  the source image I is consolidated to obtain the set of {I -,..1 }. How-

ever instead of sending the I^ns we send the difference signal I^ns- Therefore a set

of bandpass images is'obtained using eqn (8.3). The complete set of

images comprising the foveal image and the bandpass images (1̂ 2’'*^b7l are

then transmitted. At the receiving end the first instance of the progressively

received image Ip  is reconstructed with a simple interpolative method to recon- 
tl

struct the subsampled perifoveal images using one immediate past sample only,
the

yn+ (xQ + xq ^)/n —(8.3.1) where y is/predicted pixel.

The user, that is the receiving party can, at this stage, decide to proceed or aban­

don the transmission (if he sees sufficient evidence for continuation or cessation 

from the information in Iq  ). If he decides to continue, a new set of images now 

of {^bx" ^ n}t2 *s sent- This set is a r e f in e m e n t  of the earlier set in that pixels sam­

ples not previously sent are only now sent. Various schemes for refinement can be 

used. The method chosen here is to send the extreme sample from the subsampled 

window. This was done hopefully that it will give better prediction performance in 

eqn (8.3.1).

This process continues until completion of the transmitted image set at t= t j  where 

full recovery should be possible subject mainly to quantisation and interpolational 

errors. Fig. 8.3.1c shows the progressive transmission of the multiresolutional 

foveal image using the method described above. It is compared with the same 

image transmitted in simple line—sequential manner. Ignoring aspects of code effi­

ciency from the difference-image transmission for the moment, we can see that if 

R^ is the cumulative total of pixels transmitted at time then R follows the rule:-

R 1 = R q (derived from table 4.4. Id) 
where R q is the total pixel number in the first MF image.

^ 2 = ^0  + a2̂ 2 + a^/3 + ,.a y 7  or 

R Q= R n  ̂ ..+  ..ay 7  for the MF image.

This means that the pixels that are progressively transmitted reduces 

with the instance ^ t^ .-  This is shown in the graph of fig. 8 .3 .Id.

127



Multiresolutional Foveal 
Progressive Transmission

Simple line-sequential 
transmission

Top left = Iq ^ ’ pixels
Bottom left = » £-6 k pixels

Top right = 13k pixels 
Bottom right =2>£ k pixels

Fig. 8.3.1c Results of Transmission
’Rhodes’ using Progressive Transmission 
olutional Foveal Image at left and 
Method at right.

of 256x256-pixel Image 
Method of the Multires- 
Simple Line-sequential
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Fig. 8.3,1d Number of Pixels transmitted during 

Progressive Transmission of 256x256 image
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Compared to non-progressive transmission schemes,progressive transmis­

sion allows for a better mode of in te r a c t iv e  transmission since the destination is 

better able to make use of available information per pixel transmitted, in order to 

decide on the further progress of the transmission. As an example, it is likely that 

a decision may be made at t= t^ in the progressive transmission case, compared to 

perhaps t = t 4 in the simple scheme (non-progressive transmission scheme.)

8.3.2 Decorrelation in the bandpass images 1  ̂ .

In the difference-signal of eqn (8.3) which is really a bandpass we note that the sub­

traction process creates pixels that are largely decorrelated. This arises from the 

fact that as I is obtained through the consolidation process IT, over a window of 

the the input image I , where I =TT * {I }, it follows that variance of I and I*v> gU j O O**
images (which should give a measure of the intra-frame pixel correlation) are 

related by

0'2{Ign(x>y)}= °"2{Is(x»y)}/'(11}' " eqn (8.3.2)
Eqn (8.3.2) shows that as the window-size increase, n increases and the resulting 

variability of the pixels in I decreases. Put in another way, the pixels in IgQ are 

more correlated than the pixels in Is- Consequently the pixels in the difference 

image

Ijjn = (I$) — (I ) would be largely decorrelated.

This is shown in fig. 8.3.2a for the middle row of the of I5 . and the Ig3 images. 

An alternative measure of the decorrelation of the pixels can be expressed in terms 

of the entropy of the image

256

i=*l

where f(q) is the probability of the pixel having intensity q.

The maximum entropy for the 256 level image would be 8 (if all pixels are 

equiprobable). If the variance increases, the entropy increases.The entropy meas­

ure is useful as it defines the minimum number of bits required to encode an image 

i.e the lower the entropy, the less bits per pixel for encoding.

The band-pass images of Fig. 8.3.2b would therefore be 
largely decorrelated and hence its entropy would be high. 
This consequently would allow for more opportunities of 
efficient coding for transmission of the image as shown in 
fig. 8.3.2c.
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and their corresponding histogram.
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Fm. 3.3.2b Printout of image grey level intensities of three 
3 typical images of ’Rhodes’

Original Image 
Pixel Intensity

Is

Low-pass Image 
Pixel Intensity

.......

Bandpass Image I 
Pixel Intensity(Is-Xai 
'intensity difference)

x-position

64 200 199 1
65 197 196 1
66 196 196 0
67 194 194 0
68 194 194 0
69 193 192 1
70 191 192 1
71 189 189 0
72 189 189 0
73 185 183 2
74 183 183 0
75 182 179 3
76 • 178 179 1
77 176 173 3
78 173 173 0
79 165 165 0
80 165 165 0
81 162 161 1
82 161 161 0
83 155 154 1
84 152 154 2
85 151 155 4
86 154 155 1
87 144 144 0
88 141 144 3
89 144 144 0
90 146 144 2
91 151 152 1
92 156 152 4
93 1,60 163 3
94 166 163 3
95 173 172 1

Variance 330.83 317.8 1.61
Mean 170.81 167.5 2
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Fig. 8.3.2C Decorrelation of pixels of ’Rhodes’ showing 
original image Ig , low-pass images Ig^ gg 
and band-pass images 1 ^  ^4

30.78

Correlation of pixels in bandpass images showing 
increasing decorrelation with higher-order bandpass.
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From the statistical properties of the bandpass images 
Ibn, it would be possible to employ the simple Huffman Code as 
the basis for the variable-length code for each subimage Ibn. 
As the entropy H increases with the order of n in Ibn, meaning 
that the bandpass images further away from the fovea would 
have a higher entropy as shown typically in the table below 
for Ib^ of the image ’Rhodes’, one can naturally expect the 
coding transmission efficiency to increase with n.

There is also an added advantage that since the size of 
the perifoveal bandpass image increases with n (i.e the number 
of pixels within the bandpass image), this increased coding 
efficiency is used to a proportionally bigger extent when its 
coding efficiency is higher.

However this method also brings along with it, other 
encoding overheads, to provide for what is equivalently the 
supervisory codes to delineate the image boundaries, codeword 
lengths, codeword assignments, etc in order to fully use this 
Huffman scheme.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 4 7 0 -3 -1 5 5 -3 6 -5 5 1
1 1 -4 -4 1 -2 2 4 -1 7 -5 2 -3 3
2 -1 8 -3 -2 2 -4 - 4 12 -1 9 -2 -2 3
3 6 -3 -11 6 - 8 -9 7 - 4 -3 -1 -2 -2 - 4 *

4 1 4 3 -2 8 - 3 7 1 2 3 -2 -1 6
5 10 -1 -3 0 3 -2 -1 - 3 -2 3 - 5 -2 1
6 11 -5 7 3 -4 - 6 11 - 3 -1 - 4 2 5 0
7 -7 2 -4 -8 8 -6 1 - 9 8 -3 -1 -1 -4
8 11 -1 5 -2 6 0 0 0 3 2 -2 4 1
9 2 -4 3 -3 4 1 3 0 -1 0 -1 6 -1 6
10 3 0 r 4 4 -2 3 3 - 4 0 3 7 -5 3
11 -7 -6 0 -5 0 5 -1 4  1 3 -4 -3 0 -6
12 12 -1 0  3 6 -5 15 2 - 4 7 -3 0 -1 -1

Bandpass Image pixels of top left corner 
(up to row 12 and column 12 of Ib^ of 
Image ’Rhodes’. In this case, 16 distinct 
grey-level intensities exist, in addition 
to the sign-bit.
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8.3.3 Quantisation advantage From decreased dynamic range of W

It is o b v io u s  that 1^ w ill  h a v e  its p ix e l  p ro b a b il i ty  d is tr ib u t io n  fu n c t io n  (p d f )  c o n c e n ­

trated  near  its 0 g rey  le v e l ,  s in ce  it is the erro r  o f  th e  in p u t im a g e  and  its p r e d ic t e d  

v a lu e .  In s te a d  o f  u s in g  the  fu ll 8 bits to r e p r e s e n t  th e  l e v e l s ,  w e  co u ld  u se  a s m a l le r  

n u m b e r  o f  b bits to e n c o d e  the  j d is t in c t  l e v e l s  by u s in g  the  re la t io n

b =  l o g 2 ( j ) .

T h is  sh o u ld  g iv e  a n e t  in c r e a s e  in t r a n s m is s io n  e f f i c i e n c y  th o u g h  th e r e  are 
o v e r h e a d s  in v o l v e d .  H o w e v e r ,  th is  a d v a n ta g e  w a s  n o t  m a d e  u se  o f  in th is  e x p e r i ­

m en t .

The number of distinct levels of the bandpass image 1 ^  
being 4 in this example of ’Rhodes*, would theoretically 
require only 2 bits plus a sign-bit to sufficiently encode 
the image pixel intensities.

An example of such bandpass images for 1 ^  and 1 ^  
of ’Rhodes’ is shown in the fig. 8.3.3a below.

a i l i i i iB i i* ?

Fxg. 8.3.3a Reduction of codeword lengths in"the bandpass images.
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8.4 Experimental Results.

Using a simple model for the progressive transmission of the Mul- 
tiresolutional Foveal image (i.e without considering opportunities for 
further efficient coding using features of matched channels, optimal 
length codes (e.g Huffman codes), higher-order predictive coding, etc, 
the experimental results of just sending the bandpass images of the 
prescribed dimensions followed by a simple linear predictive recon­
struction, as in eqn (8.3.1) show that this method of Progressive 
Transmission does have some distinct advantages.

This can be seen from an example of the image Iqj in fig.8.4a which 
is reconstructed using the bandpass images only. As the foveation 
centre was randomly chosen, falling at the lower middle part of 
’Rhodes’, the incidental appearence of the label ’GERADION’ provided 
ample revelations about the image ’Rhodes’. This image required about 
65600 bits of information for transmission, being approximately equal 
to 12% of the total information in the image ’Rhodes’. This can be 
contrasted with a similar 12% of the image sent using simple line- 
sequential transmission as seen in fig. 8.3.1c.

A detail calculation of the information bits used in 
this method of Progressive Transmission is shown below:

Image dimensions of ’Rhodes* = 256 x 256 pixels
Grey-level range of pixels = 256, requiring 8 bits for encoding.
Number of total bits in the image = 256 x256 x 8 = 524,288 bits

As we shall send I^n as explained in para. 8.3, we consider
the number of bits required to encode the bandpass images, obtained

136



in this case, by measurements using the real image ’Rhodes’ as:-

Image Xb2 Xb3 ^ 4 Xb5 h e Xb7

Number 
of Distinct 
Levels in 
Bandpass 
Image=B

4 - 10 16 28 37 56 63

The number of bits required to encode and transmit the image in the Pro­
gressive Transmission method of the Multiresolutional Foveal 
Image, ignoring the details for signed bit and datum bit required for 
reconstruction of the image is shown below

Image Name Area x B bits Reduced Sample 
Transmission factor

XG2

hi
1024 x 8 = 8192 
3072 x 4 = 12288 2 6144 6144

h2 5120 x 4 = 20480 3 6826 6826
he 7160 x 5 = 35800 4 8950 8950
xb4 9216 x 6 = 55296 5 11059 11059
hs 11264 x 6 = 67584 6 11264 11264
l b6 15360 x 6 = 92160 7 13165 13165

Total
( bite)

291800 biis 65600 12300S
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Fig. 8.4a Reconstruction of Igl from
bandpass image pixels. Foveation 
centre randomly chosen as in circle.
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From the above results we can see that the number of bits required to 
transmit and reconstruct the image Iqj and Iq 2 are

Iqj -- 65,600 ---- ■» 12% of pixels in ’Rhodes’
Iq 2 -- > 123,008 — » 23% of pixels in ’Rhodes’

By comparing the images in fig. 8.3.1c, we can see that there is a fairly 
large gain in efficiency using the Multiresolutional Foveal Image 
Transmission method, as opposed to the conventional line-sequential methods.
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8.5 Comparison with related Progressive Transmission schemes.

There are three schemes for progressive transmission that are closely related to the method 

using m ultiresolutional foveal images. These are the method of Knowlton [Knowl.8 Q], Tanimoto 

[Tani79] and Burt [Burt83], The method by Knowlton is one of the earliest novel methods to exploit 

the advantages of progressive transmission. As it does not explicitly use pyramidal structures, we 

shall instead make comparisons with the two hierarchical image structures of Tanimoto and Burt.

8.5.1 Comparisons with the Gaussian Pyramid.
2

In [Tani79], a progressive transmission scheme based on the Gaussian Pyramid of log2C t-l)  

planes was described. Using an image of 2^  by 2 "̂ matrix where L is any integer, an averaging 

pyramid is built up using l )  by windows until the 2^ by 2^ plane is reached. During transmission, 

the first 2° by 2° plane pQ is sent. Successive 2 ^  Pixels are sent and writes over the existing gua- 

drant of the planes. This continues until the 2^x2*" plane is constructed. This simple scheme is 

improved by sending selective parts of the quadrant to compute existing quadrants n o n -d e s tr u c t iv e ly .  

The third method mentioned in the paper is applicable to bilevel images. It makes use of the pro­

perty of creating binary graphs that allow for the maximal block encoding of the images [Tani77j.

8.5.2. Comparisons with the Laplacian Pyramid.

In [Burt83], the progressive transmission scheme makes use of the property of Laplacian 

Pyramids which is a difference signal of the input image and the Gaussian image planes ( The Gaus­

sian pyramid is so named because,instead of using the spatial averaging window as in the Canonical 

Pyram id, it uses an Gaussian-like function whose parameters are selected from the coefficients in 

the gaussian window on the spatial domain. However, in generating the difference image, an 

EXPAND operation is used to adjust for the decimated images in the gaussian planes. Decorrelation 

and quantisation of the difference images are used to achieve a high efficiency in this scheme.

In making comparisons between the multiresolutional foveal image PT scheme and that of 

Tanimoto and Burt, it is quite evident that the method of Tanimoto is a basic method, achieving 

efficiencies more from the hierarchical planes than from any decorrelation properties (which is why 

some maximal block encoding was found necessary). This must be expected since Gaussian Images 

do not provide the necessary decorrelation to employ encoding expedients.

The multiresolutional fovea scheme follows much of the ideas of Burt but with some differ­

ences namely:

a. There is no necessity to perform the EXPAND operation as in Burt since in the original 

MF image, a sample and hold was used to generate image planes that are undecim ated,as
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in chapter 5.

b. Unlike the Laplacian pyramid where the difference image is built for the whole of the 

2L 2Lxz image through the EXPAND operation, the multiresolutional foveal images are con­
structed successively from the successive 1^ for the areas a^. In the case of multiresolu­

tional foveal images, progressive transmission is obtained from building up a hierarchy of

1̂  where each I~, is refined from previously received I in a non-destructive
Gtk Gtk+i %

manner, unlike that in one of the methods of Tanimoto.

c. In the case of the MF images, there is always an instance of the foveal datum image being 

sent in the reconstruction of any IG^  This daram being located in the central areas of the 

image is subjectively advantageous as it is generally true that many of the images have 

their more important parts near the centre. This is not true for both the Tanimoto model 

and the Burt model. It is not clear how important this is in progressive transmission but 

certainly it would not seem to be a impediment.

8.6 Summary.

Being able to make use of the multiresolutional image for progressive transmission of images 

is a desirable feature that is in a sense incidental to the hierarchical nature of this image representa­

tion. It should be useful in any robot vision development environment where template images 

perhaps need to be interactively transmitted between work stations. In using this scheme, we can 

point out the following limitations:

Computation overheads are required to generate the averaged and the bandpassed images though 

using schemes of pipeline processing as in examples achieved by Burt, this is not a significant disad­

vantage.

There is a need to send s u p e r v is o r y  information to index the progression of the transmission ( nth

pixel of *bn image of I of vector-quantised code).
i, it il^not a truly information-preserving system and must be used in conjunctionIn this simple form,

with the allowable error set by the HVS.

Overall, there is valid reason to suppose that the multiresolutional foveal images for progressive 

transmission will have a use where still-frame images need to be shared in the course of image 

processing work in a robot vision environment.
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CHAPTER 9 

Conclusion
The thesis has been concerned with a possible alternative image representation for use 

in robot vision. The emphasis has been on real- time robot-vision for tasks that were in the 

main related to object recognition. Certain regularities in robot vision work mainly in 

structured lighting were dispensed with in order to examine possibilities of robot vision in 

situations with the scenes are relatively more visually-complex.

In Chapter 1, important definitions relating to this thesis i/jere introduced. The 

relationship between image representations and robot vision was discussed. The problem in 

robot vision was viewed in terms, not only of the hardware and algorithms but the image 

representation, defined as a suitable computational data structure to match the nature of the 

image. Some introductory aspects of the Multiresolutional Fovea Image (MF) were outlined. 

Theoretical and industrial approaches to solving the computer vision problems in general 

were reviewed. The theoretical parts covered the proposals of Barrow and Tennenbaum 

where intrinsic images were the critical link towards generalised robot vision. M arr’s work 

in terms of the HVS as a model for low-level vision and the need for more global object- 

representation descriptors in terms of 2.5 dimensional structures were described. In seeing 

robot vision as being constrained by hardware, cellullar arrays and pyramidal hardware 

became a intense area of research in the last decade. The success in the WISARD 

architecture using conventional random access memories to work in a neural-like manner 

indicated that certain tasks in robot vision can be solved by novel techniques of pattern 

recognition. The motivations of the hierarchical manner in which humans perform cognition 

tasks led to the ideas of recognition cones and pyramidal computation structures. The wide 

coverage of computer vision techniques was seen in the syntactic approaches to visual 

recognition using adaptations of formal language and automata theory. Model-based 

approaches to industrial robot vision was described together with a brief discussion on the 

indispensability of model-based approaches in practical robot vision.

Chapter 3 was a review of image representations for computer vision. This review 

made a distinction between hierarchical and non- hierarchical, segmented and unsegmented 

images. For images that were already segmented, it is seen that there exist many techniques 

to represent the resulting bilevel images, or images with considerable number of similar 

regions, ranging from skeletonal methods to geometric moments. However for unsegmented 

images, compact data structures were not as easy to derive.

The idea of hierarchy in an image in terms of the differing weightages at different 

parts of the image was related to the multiresolutional images,for which the pyramid is one 

example. As the pyramid image representation is most related to the multiresolution foveal

142



some details of the canonical pyramid computational procedures were described.

Chapter 4 introduces the computational structure and characteristics of the 

multiresolutional foveal images. Since the MF image is very related to the human visual 

system, attention was drawn to the aspects of the human visual perception from the 

psychological, physiological and other allied fields.

Modelling the multiresolutional foveal images as images generated from a composite 

set of all-pass (fovea) and low-pass channels or filters, (perifovea) the possibility of spatial 

bandpass channels being a result of the collective actions of retinal receptive fields and 

backward inhibition, was postulated. Such spatial bandpass channels were shown to possess 

filtering characteristics very akin to the optimal filters in indeterministic scenes.

An application of a form of multiresolutional image known as the local 

multiresolutional (LMF) image, corresponding to local foveations of a smaller area in 

human perception was shown to be possible for the task of line or curve tracking in robot 

vision. The emphasis here ,is  that the use of the perifovea-support to make decisions on 

tracking a line that is described by semantic inputs (curvature, thickness of boundary etc.) 

makes the algorithm more robust. It was observed that false searches are not easily triggered 

due to the suppression of spurious information in the periphery. Similar line-tracking 

without perifovea-support was shown to be more uncertain.

One of the main applications of robot vision today is object recognition of which 

occluded object recognition is a comparatively more difficult task. Unlike the more 

conventional approaches to perform object recognition using binarised model features, an 

attempt was made to use the LMF to derive intrinsic images of the occluded object scene. 

This used three techniques to infer the various states of occlusion using textural and edge 

activity index. The performance and experimental results were compared to two methods 

that were proposed to solve similar task.

As a further study of the MF image in a possible situation where images need to be 

shared amongst users, the hierarchy of the MF image was observed to possess desirable 

properties for its being used in interactive, progressive-transmission schemes. The system 

description and theory of such a scheme, sometimes also referred to as a gross coarse- 

information transmission scheme was presented. Comparisons with the model proposed by 

Burt and Tanimoto showed that the MF scheme possess additional advantages.

The emphasis in the MF images for robot vision has been that it not only attempted to 

use images in a way akin to that of some aspects of human visual perception, but it has the 

possibility of being implemented in near real-time, without resort to special cellullar 

architectures
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that will expectedly bring along with i t , associated encumbrance of overly parallel

processing. A suggestion on how such MF processing could be done using relatively

conventional hardware of pipeline and digital signal processing chips with additional

memory frames to store the various resolutions at near frame-rate was proposed.

The difficulty of studying robot vision in this manner using a more unconventional

image was that it was always hard to make generalisations. Even knowing the current

limitations of robot vision and how computer vision research is attempting to solve these

problems, one always have the feeling, notwithstanding that these ways may not be the

immediate answer to problems of industrial robot vision, they have provided much
< )

theoretical support for engineers in the industry. An example is that of image understanding, 

for which at times the engineers in the industry would find little relevance,not only to the 

domain of the factory but also such attempts of image understanding from a position of ill- 

posedness seem very limiting.

As was pointed out, the initial steps of robot vision in industry would be to structure 

the scene so that robot vision could proceed without having to resolve some dispensable 

unknowns, (e.g. shadows, occlusions, etc.). Although this procedure has managed to place 

robot vision as a aid in automation, it would definitely make robot vision more universal 

and versatile if it could be used in unstructured scenes.

It is likely that in future, active vision in its various forms would predominate over 

more passive methods. Such a c tiv e  methods may include active observers (for which 

stereopsis is a subclass) or multiple sensing. It is also likely that there will be more support 

in terms of real-time optics/electronics from the image-acquisition front-end since such 

information (e.g. state of focus of the scene, colour balance etc.) can be viewed as 

additional inputs to fuller automation.

One more dimension of information that is difficult to use, but which is very 

encompassing is temporal image inform ation. The studies in optical flow have helped to 

understand the problem but it may be sometime before such techniques have an application 

in the industry.

It has been the main thought in this thesis that a solution to the universality of robot 

vision would not only be strong computational algorithms, but that the image, or data 

representation, or image representation should possess desirable characteristics of hierarchy. 

Such a hierarchy can then be exploited to make algorithms faster, more immune to spurious 

information, and better guided through coarse perifovea support. One of the obvious results 

of being able to process at higher speed is that some form of that so-important temporal 

information could then be available.
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9.1 Suggestions for the Hardware Implementation of the 
Multiresolutional Foveal Images.

It must be expected that much of the speed increase in machine 
vision must necessarily come from faster hardware instead of just 
software techniques as typically demonstrated in the WISARD [IA84]. 
Further, as an engineer, one is always reminded of the need to consid­
er implementable alternatives founded in engineering practice [IA90],

The suggestions for a hardware implementation of the multiresolu­
tional foveal image generation and acquisition are made here for 
completeness of this study, though serious implementation of these 
schemes require extensive research.

The suggestions are based on two methods

a) Optical Hardware method.
b) Method using signal processing techniques of DSP or

simpler real-time analogue signal processing (i.e
video low-pass filtering circuits)

A) OPTICAL HARDWARE METHOD.

Generation of Multiresolutional foveal images from optical system 
lensing and focusing geometries.

This method is based on the principle that a defocused image 
naturally provides for blurrring which is equivalent to low-pass 
filtering of the optical image. Two changes in the conventional video 
camera front end would be required, namely:-

1) Use of a suitable geometrically curved CCD element in
the camera instead of the conventional flat surface CCD array.

2) Use of a suitable set of counters to generate the windows
of the multiresolutional foveal image so that a fixed regime 
of samples of the pixel elements are scanned out as MRF images.

In (1) the property of optical blurring due to being out of focus 
in the curved periphery of the specially structured CCD array means
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that the focus point becomes the fovea and the region extending away 
from the fovea naturally becomes the perifoval regions. The curvature 
of the 2-D CCD array can be optimised to allow for the graded deblur­
ring at the peripheral regions.

In (2), suitable time-base electronics must be implemented so that 
the sampling rate of the pixel-elements of the CCD array will follow 
the rule of the multiresolutional structure of the MRF image. Hence, 
the higest sampling rate will be done at the foveal area of the CCD 
array and a decreasing number of samples away from the centre of the 
CCD array. This is illustrated in fig. 9.1a.

B) SIGNAL PROCESSING METHODS.

Whereas, the method (A) requires some changes in the physical 
structure of the video camera and the active CCD array, the method in 
(B) retains the structure of the standard TV camera.

For the Multiresolutional Foveal Image to be generated in near 
real-time, maximum use could be made of the increasing power of digi­
tal signal processing (DSP) chips that have found applications as 
universal video image convolvers or signal filters [Brabner and Ritch- 
ings88].

Alternatively, signal processing of video signals using conven­
tional hardware-analogue filters (simple RC filters) which have been 
much ignored, seem to be potentially useful to generate the MRF image.

Consider the middle line of a standard video camera in Fig. 9.1b. 
The grey level intensity will be of equal resolution as it is scanned 
out from the scan electronics. However, if a suitable time-base/coun- 
ter is included in this scheme so that those pixel samples that are 
away from the foveal area (corresponding to the mid-section columns of 
the line pixels) are passed to switched sections of low-pass filters 
of differing low-pass cut-off frequencies, and recombined, then the 
net signal produced will resemble that of a single line of the mul­
tiresolutional fovea image. Additional timebase/counter electronics 
and control could be included to assemble the MRF image frame.
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The elegance in the method (B) is that there is a form of sequen­
tial processing much akin to the systolic-array [Kung82] or pipeline 
image processing methods, since each pixel is processed as it is being 
scanned out so that after a finitely small delay, perhaps not exceed­
ing one frame-time, a new MRF image frame can then be made available.

The suggestions for the two possible methods of hardware implemen­
tation as in Fig. 9.1a find Fig. 9.1b are very preliminary. Further 
research on its implementation would be necessary.
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Fig. 9.1a Defocussed CCD array as Multiresolutional Foveal 
I m a g e .

'""Lens System

Optical 
H^focfus )

. '"Lens System

Optical /  
^f ocujs Jr

Flat CCD \  '/ Curved CCD \\/_ Curved CCD \ j /

Clearly focused 
throughout CCD a r r a y x

^11-pass 
Low-pass filtering

Perifovea Fovea \

Time-base m ^ Pixel-column counter

^ Pixel-row counter

Multiresolutional 
Foveal image 
time-base/counter

v
Pixel frame counter

hori-sync vert sync frame sync

CCD array

Output latch

pixel selection

ADC

Digital pixel output 
in MRF format

148



Normal RS-170 video signal

Fig, 9-1 b
Generation of Multiresolutional Foveal images by MRF time-base 
controlled switching of filters.
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9.2 Suggestions for Future Research.

The MF image proposed in this thesis has been quite 
primitive and exploratory. The dimensions of the various 
fovea and perifovea subimages have been experimentally 
chosen. The size of the fovea being a 32 by 32 in the case 
of the GMF seem to be too big so that foveal computations 
required approximately reading 1000 pixels. If the human 
fovea is equivalent to an arc of 1.5 degrees in a perimet­
ric field of 180 degrees, then the equivalent fovea area in 
the GMF could perhaps be related to 0.008 of the image 
dimensions. The median generating kernel for the GMF image 
requires more computations since a sort of the neighbour­
hood window had to be made before the median is known. 
Further the median value may not even be a element of the 
neighbourhood since a new value may be generated. It is 
felt that perhaps results would have been the same, at 
least for real- world images, if the simple average or mean 
had been used.

In the model of the optimal filtering due to spatial 
bandpass channels, the characteristics of the perifoveal 
images could be treated as higher order filters than the 
simpler first order types. The study has not considered 
backward inhibitions from more than one source as in a 
multiple backward inhibition of Cornsweet. It would be also 
be more elucidating if some non-linearities in both the 
gain and frequency characteristics of the channels could be 
incorporated.

Further refinements incorporating non-uniform channel 
gains in the perifoveal channels would also be desirable.

In the application of the LMF for semantic line-track­
ing, the perifovea support, especially in detecting coher­
ent edge angles to determine if candidate intensity-discon­
tinuities should trigger a search, could perhaps incorpo­
rate better support calculations (e.g. both edge-angle 
coherence and edge-depth). This would have been more useful 
as semantic edges are also very much characterised by the
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edge-depth as in the case of the RCA type plug where its 
edges have a different edge depth compared to the flatter 
coins. It would also be desirable to incorporate some 
weightages for the information from the two perifoveal 
regions than is done in the simple scheme here.

The set of m u lt ir e s o lu t io n a l  fo v e a l in t r i n s i c  images 
used for occluded object recognition might not have been a 
well-matched set. This is because the information using 
edge-strengths and edge-gradients are sometimes redundant, 
as they are both derived from a common resolution intensi­
ty- discontinuity operator. The problem that was not solved 
well was how to find the best initial region to search. In 
the computations in this thesis, a top-left region by 
region scan to the bottom right of the image was performed. 
This avoided the difficulty of keeping either a counter or 
a stack of the regions tracked, so that excessive visita­
tions to the same area in case of a difficult search, could 
be avoided. This meant that the advantage of the global 
MFC was not used.

In the scheme for progressive transmission of MF images, 
the following areas could be improved.

a) The use of non-causal consolidation to reduce predic­
tion errors from causal pixels only. It is known that in 
real-world scenes, the picture correlation varies with the 
Euclidean distance in the 2-D image and therefore the mean 
or median obtained from a better correlated set of pixels 
would be a truer value than from a more uncorrelated set. 
However, to resolve this, but still wishing to preserve the 
more gradual successive bandpass-image refinements, the 
simpler quadrant consolidation scheme may have to be modi­
fied.

b) The use of the median generating kernel could be 
improved by not sending a new median if the median value is 
not an element of the neighbourhood. This means that we 
could instead send a pixel sample belonging to the set of 
elements in the window so that the receiving end could 
u n d e s tr u c t iv e ly use this sample, knowing that it is an

9
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element of the set. This may require a different strategy 
to send the successive bandpass-image refinements but such 
a scheme can be expected to be more efficient since re­
ceived samples need not be destroyed.

c) Interpolative reconstructions using a bigger neigh­
bourhood would definitely give the progressively received 
images a better fidelity than the simple single-immediate 
neighbourhood pixels implemented in the thesis.

An important area of future research in the multiresolu- 
tional fovea images is perhaps the engineering implementa­
tion of such a MF image in real-time so that the multireso- 
lutional foveal images could be generated from the real- 
world scene in near real-time. The two suggestions on the 
hardware implementation of the Multiresolutional foveal 
images need further research. It would seem that the ap­
proach using lens optics and curved CCD array would be a 
approach worthy of further research.

Finally, further research in a l l aspects of robot vision 
should continue in its varied ways, so that a wider base of 
knowledge is available to tackle what is currently consid­
ered to be one of the most difficult of computer tasks —  
Computer Vision.
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